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Abstract 6 

Traditional discharge monitoring usually relies on measuring flow velocity and cross-7 

section area with various velocimeters or remote-sensing approaches. However, the 8 

topography of mountain streams in remote sites largely hinders the applicability of 9 

velocity-area methods. We here present a method to continuously monitor mountain 10 

stream discharge using a low-cost commercial camera and deep learning algorithm. A 11 

procedure of automated image categorization and discharge classification was 12 

developed to extract information on flow patterns and volumes from high-frequency 13 

red–green–blue (RGB) images with deep convolutional neural networks (CNNs). The 14 

method was tested at a small, steep, natural stream reach in southern China. Reference 15 

discharge data was acquired from a V-shaped weir and ultrasonic flowmeter installed a 16 

few meters downstream of the camera system. Results show that the discharge-relevant 17 

stream features implicitly embedded in RGB information can be effectively recognized 18 

and retrieved by CNN to achieve satisfactory performance in discharge measurement. 19 

Coupling CNN and traditional machine learning models (e.g., support vector machine 20 

and random forest) can potentially synthesize individual models’ diverse merits and 21 

improve generalization performance. Besides, proper image pre-processing and 22 

categorization are critical for enhancing the robustness and applicability of the method 23 

under environmental disturbances (e.g., weather and vegetation on river banks). Our 24 

study highlights the usefulness of deep learning in analyzing complex flow images and 25 

tracking flow changes over time, which provides a reliable and flexible alternative 26 
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apparatus for continuous discharge monitoring of rocky mountain streams.  27 
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Discharge monitoring; Mountain streams; Deep learning; Machine learning; Image 29 
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1 Introduction 31 

Continuous discharge data is critical for hydrological model development and flood 32 

forecast (Clarke, 1999; Mcmillan et al., 2010), water resources management (Council, 33 

2004), and aquatic ecosystem health assessment (Carlisle et al., 2017). Traditional 34 

discharge monitoring relies on stream gauges that convert water level to discharge with 35 

an established stage-discharge curve, or information on stable cross-sections and flow 36 

velocity obtained from flow velocimeters such as Acoustic Doppler Current Profiler 37 

(ADCP) and ultrasonic defectoscope (Kasuga et al., 2003). However, these approaches 38 

require significant investment on the implementation of equipments, training of 39 

personnel with expertise, and constant maintenance (Fujita et al., 2007; Czuba et al., 40 

2017; Yorke and Oberg, 2002). Besides, the performance of transducers and 41 

velocimeters is usually susceptible to sediments and floating debris, particularly in 42 

flooding seasons (Hannah et al., 2011). Consequently, large temporal gaps remain in 43 

many discharge records across the world despite of the growing demand on data 44 

(Davids et al., 2019; Royem et al., 2012). Spatially, flow monitoring of downstream 45 

river sections has been assigned to a higher priority due to the concerns on water supply 46 

and flood control, leading to an acute shortage of discharge data in mountain streams 47 
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and headwater catchments (Deweber et al., 2014).  48 

To overcome the limitations of traditional methods, a few image-based approaches 49 

have been introduced into water stage, flow velocity, and discharge measurement in 50 

rivers (Noto et al., 2022; Leduc et al., 2018). Image-based (Leduc et al., 2018; Noto et 51 

al., 2022) approaches rely only on the acquisition of digital images of streams from 52 

inexpensive commercial cameras and thus have been a promising alternative for 53 

continuous, noninvasive, and low-cost streamflow monitoring. The two most 54 

commonly used approaches include large-scale particle image velocimetry (LSPIV) 55 

and particle tracking velocimetry (PTV). LSPIV (Fujita et al., 2010) is based on a high-56 

speed cross-correlation scheme between an interrogation area (IA) in a first image and 57 

IAs within a search region (SR) in a second image. The technique has been proved 58 

effective in monitoring low-velocity and shallow-depth flow fields (Tauro et al., 2018). 59 

However, it performs poorly in mapping velocity fields in high resolution when there 60 

is a lack of seeds on the water surface because the algorithm obtains the average speed 61 

of each SR (Tauro et al., 2017). Compared to LSPIV, PTV was designed for low seeding 62 

density flows, focusing on particle tracking instead of recognition. The PTV approach 63 

does not require assumptions on flow steadiness nor the relative position of neighbor 64 

particles (Tauro et al., 2018). Several algorithms have been developed for PTV analysis, 65 

such as space-time image velocimetry (STIV) and optical tracking velocimetry (OTV), 66 

overcoming the over-dependence on natural particles’ shape and size (Tauro et al., 2018; 67 

Tsubaki, 2017). STIV evaluates surface flow velocity by analyzing a texture angle 68 
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within a variation of brightness or color on the water surface, while OTV combines 69 

automatic feature detection, Lucas-Kanade tracking algorithm and track-based filtering 70 

methods to estimate subpixel displacements (Fujita et al., 2007; Karvonen, 2016). 71 

Existing image-based discharge measurement methods all use the velocity-area method 72 

to indirectly deduce discharge after identifying stage and average (Davids et al., 2019; 73 

Leduc et al., 2018; Tsubaki, 2017; Herzog et al., 2022) velocity. The average velocity 74 

in a cross-section is estimated with surface velocity derived from natural or artificial 75 

seeds on water surface and pre-defined empirical relationships between the surface 76 

velocity and average velocity. The velocity-area method relies on a stable relationship 77 

between stage and cross-sectional area, and needs to take velocity extrapolations to the 78 

edges and vertical distributions throughout the cross-section into account (Le Coz et al., 79 

2012). However, it is difficult to identify the water stage and vertical characteristics of 80 

mountain streams due to the steep, narrow, and highly heterogeneous cross-sections. 81 

The applicability of PIV and PTV approaches is largely hindered by such topography.  82 

Unlike PIV and PTV, deep learning models possess the capability to extract 83 

discharge-related features from images of rivers or streams automatically. These models 84 

are able to adjust the weights assigned to each feature, eliminating the need for manual 85 

attention and reducing the risk of overemphasizing or misinterpreting features that are 86 

unresponsive to flow discharge (Canziani et al., 2016). Besides, deep learning models 87 

can extract low-level image features, such as edges, textures, and colors (Jiang et al., 88 

2021). These merits could be essential in retrieving information from images of 89 
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mountain streams, particularly in regions with intricate cross-sectional profiles. For 90 

example, Ansari et al. (2023) developed a convolutional neural network (CNN) to 91 

estimate the spatial surface velocity distribution and derive discharge, outperforming 92 

traditional optical flow methods both in laboratory and field settings, albeit with a 93 

reliance on surveyed cross-section information.  94 

In this study, we propose a novel mountain stream discharge monitoring method 95 

using a low-cost commercial camera and deep learning models. Automated image 96 

categorization and pre-processing procedures were developed for processing high-97 

frequency red–green–blue (RGB) images, and then CNN was used to extract 98 

information on flow patterns from RGB matrices and establish empirical relationships 99 

with the classification probabilities of discharge volumes. We hypothesize that (1) the 100 

features of mountain streams (e.g., coverage of water surface, flow direction, flow 101 

velocity) embedded in RGB images can be recognized by suitable deep learning 102 

approaches to achieve effective discharge monitoring, and (2) proper image pre-103 

processing and categorization can improve accuracy of image-based discharge 104 

monitoring of mountain streams. A rocky mountain stream of a headwater catchment in 105 

tropical southern China was used as a study site to test our hypotheses.  106 

 107 

2 Methods 108 

2.1 Site and field setting 109 

The study site is located on a small, steep, rocky reach of a stream in the Zhuhai Campus 110 
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of Sun Yat-sen University, China (22°20′58″ N, 113°34′29″ E). The site elevation is 13 111 

m above sea level and about 2 km away from the Lingding Yang of South China Sea. 112 

The stream flow is mainly controlled by rainfall in the upstream drainage area. Water 113 

stage and flow velocity increase rapidly during East Asian summer monsoon rainfalls 114 

and fluctuate with synoptic weather conditions on dry days.  115 

The main objective of the study was to test the applicability of deep-learning based 116 

image processing approaches in capturing the flow characteristics and discharge 117 

volumes in the daily flow cycle in this mountain stream. We selected a straight, single-118 

thread reach for the gauging location, and set up a Hikvision camera on the left bank of 119 

the stream to collect flow images (Fig. 1). Discharge data monitored by a weir about 8 120 

m downstream of the camera was used for model training and validation. The camera 121 

was installed 3 m above the ground, facing the surface of the stream almost vertically. 122 

The entire stream width is visible in the images. The camera was equipped with a 150W 123 

solar panel and 80AH lithium battery, enabling the camera to work continuously for 80 124 

hours without external power on rainy days. The camera supports the wireless 125 

transmission of video data to the server. 126 

 127 
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 128 

Figure 1. Camera setup. The camera is set on the left bank of the stream, about 3 m 129 

above the water surface, and 8 m upstream of a gauging weir. The top right panel 130 

demonstrates the changes in the flowmeter’s discharge during the measurement period.  131 

 132 

2.2 Data 133 

The flat V-shaped weir downstream of the camera monitors discharge with an open 134 

channel flowmeter and an overflow flowmeter. The flowmeters measure water levels in 135 

the channel and in front of the weir with ultrasonic sensors and calculate real-time 136 

discharge at the time step of two minutes by a semi-empirical equation suggested by 137 

the State Bureau of Technical Supervision of China (www.chinesestandard.net), as 138 
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 𝑄 𝐶 tan 2𝑔ℎ  (1) 139 

where 𝑄  is the discharge of stream, 𝜃  is the angle of triangular weir, 𝑔  is 140 

acceleration of gravity, ℎ  is the height of the water surface from the bottom of triangle 141 

barrier, 𝐶  is an empirical coefficient. 142 

We collected the discharge data of the weir (Fig. 1) and its corresponding stream 143 

videos during daylight (07:00-19:00 UTC+8) from July 20th to September 27th, 2022. 144 

The raw video resolution was 2560×1440 pixels with a refresh rate of 50 Hz. Images 145 

were extracted from the videos at 5-minute intervals to avoid excessive similarity 146 

between adjacent images. A total of 7,757 image samples labeled with 37 discharge 147 

values between 0.014 and 0.050 m³/s at the interval of 0.001 m³/s were collected for 148 

model testing.  149 

2.3 Image processing 150 

2.3.1 Image categorization 151 

Environmental disturbances such as illumination and shadow can seriously interfere 152 

with the extraction of effective image features of mountain streams, such as boundaries 153 

of water surface and textures of flow lines (Herzog et al., 2022; Gershon et al., 1986). 154 

Although researchers have proposed methods to eliminate shadows (Finlayson et al., 155 

2002), the treatment effect in some complex environments, such as plant shadows and 156 

boulders distributed on mountain streams, is not always satisfactory. 157 

Frequently observed disturbances on images include: (1) shadows in the target stream 158 

region due to plants blocking direct sunlight; (2) image noise due to raindrops attached 159 
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to the camera lens on rainy days; (3) the lack of light leading to low brightness and 160 

contrast of the image; (4) overexposure of image due to light reflection of the water 161 

surface (around 16:00 UTC+8 in this case). Taking these factors into consideration, we 162 

divided all image samples into six categories, including "Good quality", "Raindrops", 163 

"Middle shadow", "Below shadow", "Water reflection", and "Dark" (Fig. 2). "Good 164 

quality" contains image samples without obvious noise or shadow. All the other images 165 

lose some feature information due to noise, shadows, reflections, or dim lighting. To 166 

ensure the model performance under different environmental conditions, we designed 167 

an automated categorization procedure (Fig. 3) to screen the raw images and exclude 168 

the "Raindrops" and "Dark" samples from model training.  169 

 170 
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 171 

Figure 2. Flowchart of image processing and discharge monitoring. 172 
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 173 

 174 

Figure 3. Procedure of automated image categorization.  175 

 176 

Firstly, we selected four areas in the image as the detection areas (Fig. 4a) where the 177 

special conditions mentioned above commonly occurred: the upper and lower shadows 178 

in the target stream section mainly appeared in Area 3 and Area 1&2, respectively; 179 

disturbance of water surface reflection was mostly found in Area 4. Then, the thresholds 180 

of saturation or brightness in the four detection areas for image categorization were 181 

determined manually by comparing image samples under different conditions. The 182 

four-step procedure includes: (1) "Dark" images (Fig. 4f-2) were identified when the 183 

standard deviation of the brightness or saturation of the full image was less than 0.2. (2) 184 
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"Raindrops" images (Fig. 4f-3) were identified when the brightness of the whole image 185 

with the largest number of pixels was greater than 0.6. These two types of images were 186 

excluded from the training samples. (3) "Below shadow" (Fig. 4b-2; Fig. 4c-2) and 187 

"Middle shadow" images (Fig. 4d-2) were identified when the brightness value with 188 

the largest number of pixels in Area 1&2 and Area 3 was less than 0.3 and 0.4, 189 

respectively. (4) "Water reflection" images were identified when the number of pixels 190 

with a brightness value of 0.98 in Area 4 exceeded 1300 (Fig. 4e-2). The images passing 191 

all the tests in the procedure were considered "Good quality" samples. The other charts 192 

in Fig. 4 show the saturation and brightness distributions derived from a typical “Good 193 

quality” image. 194 
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 195 

Figure 4. Comparison of saturation and brightness distributions in the four detection 196 

areas under different environmental conditions. The horizontal axis is the interval range 197 

(0-1) of saturation and brightness in HSB space. The vertical axis indicates the number 198 

of pixels under a certain saturation or brightness value. Figures b-1, c-1, d-1, and e-1 199 

display the saturation and brightness distributions in Area 1-4 of a “Good quality” 200 

sample. Figures b-2, c-2, d-2, and e-2 display the results derived from samples of 201 

“Below shadow” (b-2; c-2), “Middle shadow” (d-2), and “Water reflection” (e-2), 202 

respectively. Figures f-1, f-2, and f-3 display the saturation and brightness distributions 203 

of an entire image, derived from “Good quality”, “Dark”, and “Raindrops” samples, 204 
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respectively. 205 

 206 

2.3.2 Color enhancement 207 

In order to highlight the stream features embedded in the images and avoid image 208 

information redundancy, we compared three commonly used color enhancement 209 

approaches to process the image samples. 210 

    (1) Color Enhanced. A dynamic histogram equalization technique (Abdullah-Al-211 

Wadud et al., 2007; Cheng and Shi, 2004) was used to enhance contrast and emphasize 212 

stream features. First, vegetation areas on both sides of the stream were cropped and 213 

filled with black. Then, histogram equalization was used to enhance the contrast 214 

between light and dark, i.e., brighten the bubbles, swirls, ripples, splashes, water 215 

coverage, etc., and darken the bottom stones and reflections in the water. 216 

    (2) Binarization. Binarization of image information can decrease the 217 

computational load and enable the utilization of simplified methods compared to 256 218 

levels of grey-scale or RGB color information (Finlayson et al., 2002; Sauvola and 219 

Pietikäinen, 2000). In this case, the RGB and HSB (Hue, Saturation, Brightness) 220 

information extracted from images suggests that the brightness of the stream water 221 

under daylight ranges from 0.2 to 0.7, and the values of three color components follow:  222 

 𝑅 𝑥,𝑦 𝐺 𝑥,𝑦 𝐵 𝑥, 𝑦 350 (2) 223 

Where 𝑅 𝑥,𝑦 , 𝐺 𝑥,𝑦  and 𝐵 𝑥, 𝑦  respectively represent the red, green, and blue 224 

color values of the pixel (x, y). The original image was transformed into a binary image 225 
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by assigning the values of "1" and "0" to the pixels within and out of the water body, 226 

respectively.   227 

    (3) Water-color Enhanced. Considering that water-color features may carry some 228 

useful information on discharge (Kim et al., 2019), we tested a new pre-processing 229 

method combining the two approaches above. The RGB information of the original 230 

image within the water body areas was kept unchanged, while the non-water body areas 231 

were filled with black color. Then, the water body areas were further enhanced with the 232 

histogram equalization method to highlight the edge transition between the water body 233 

and the background (Abdullah-Al-Wadud et al., 2007). 234 

2.3.3 Image denoising 235 

Images pre-processed by all of three approaches still contain large amounts of noise 236 

due to environmental disturbances and edge oversharpening caused by image contrast 237 

enhancement (Herzog et al., 2022). Therefore, the wavelet transform (Zhang, 2019)was 238 

adopted to denoise the image samples. We chose a compromise threshold between hard 239 

and soft thresholds as the threshold function (Chang et al., 2010). When the wavelet 240 

coefficient is greater than or equal to the threshold, a compromise coefficient α ranging 241 

from 0 to 1 is added before the threshold to achieve a smooth transition from hard to 242 

soft thresholds, as 243 

 𝜆
.

2log 𝑀 𝑁  (3) 244 

 𝜔
𝑠𝑖𝑔𝑛 𝜔 |𝜔| 𝛼𝜆 , |𝜔| 𝜆

0, |𝜔| 𝜆
 (4) 245 

where 𝑗  is the scale of wavelet decomposition, 𝑑 𝑘   is the coefficient of wavelet 246 
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decomposition, M and N are the length and width of images, 𝜔  is the wavelet 247 

coefficient, 𝜆  is the set threshold, and 𝑠𝑖𝑔𝑛  is the sign function. In this case, M×248 

N=2560×1440, α=0.5. 249 

2.4 Correlation between color information and discharge 250 

The unstructured image data of mountain streams implicitly contains many stream 251 

features relevant to discharge, such as the width and depth of streams, the coverage of 252 

water surface, and spatial distributions of flow direction and flow velocity. In this study, 253 

we attempted to achieve discharge monitoring by establishing empirical relationships 254 

between the RGB color information of the water body and the discharge volumes. We 255 

first explored the correlation between the combination of R/G/B values (𝑎𝑅 𝑏�̅�256 

𝑐𝐵, where 𝑅, �̅�, 𝐵 are the mean values of red, green and blue channels of an image, 257 

respectively, and a, b, and c are coefficients to be determined) in the region of interest 258 

(ROI, see Fig. 2) and the discharge conditions. Spearman’s rank correlation coefficient 259 

between 𝑎𝑅 𝑏�̅� 𝑐𝐵 and discharge is calculated as  260 

 𝑟 1
∑

 (5) 261 

where n is the number of samples, di is the difference between the ranks of R/G/B values 262 

and discharge of each image sample.  263 

 264 

2.5 Algorithms of discharge estimation 265 

We used three algorithms to establish discharge classification models (Fig. 2), including 266 

convolutional neural network (CNN), support vector machine (SVM), and random 267 
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forest (RF). The data of the RGB color matrix derived from pre-processed images was 268 

used as model inputs. SVM and RF were coupled with CNN to explore the potential 269 

merits of traditional machine learning algorithms in improving the classification 270 

accuracy and efficiency of CNN-based discharge classifiers. All the embedding image 271 

features are normalized and regularized before passed to classifiers to avoid overfitting 272 

for CNN-based models. 273 

2.5.1 Convolutional Neural Network (CNN) 274 

Deep convolutional neural network allows computational models composed of multiple 275 

processing layers to learn representations of data with multiple levels of abstraction, 276 

which have brought breakthroughs in processing images, video, speech, and audio 277 

(Lecun et al., 2015). The AlexNet architecture (Krizhevsky et al., 2017) was used to 278 

construct our model. Parameters of the semantic layer of the model were calibrated to 279 

achieve feature extraction and classification of stream images. The image size was first 280 

rescaled from 2560×1440 to 227×227 to facilitate the migration of trained AlexNet. A 281 

227×227×3 (length×width×color) matrix was retrieved from each image as the model 282 

input. There were five built-in convolutional layers, using a 3×3 convolution kernel and 283 

a 3×3 pooled kernel. We replaced the last three layers of AlexNet with a full-connection 284 

layer, a softmax layer, and a classification layer, leaving all other layers intact. The 285 

parameters of the full-connection layer were set according to the number of selected 286 

discharge values. The ReLU function was used as the convolutional layer activation 287 

function to extract and pass on the water coverage features. The SoftMax function was 288 
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the activation function of the output layer, and the extracted feature vectors were 289 

compressed under each discharge label. The probability that a stream image falls into a 290 

discharge label was calculated as 291 

 𝑃 𝑦|𝑥
,

∑ ,  (6) 292 

where x is the feature vector extracted by CNN, y is the discharge label, n is the number 293 

of labels, ℎ 𝑥,𝑦  is the linear connectivity function. The training method for CNN 294 

was stochastic gradient descent with momentum, with 15 samples in small batches, a 295 

maximum number of rounds of 10, a validation frequency of 3 epochs, and an initial 296 

learning rate of 0.00005. The samples were shuffled in every epoch. The loss function 297 

for discharge classification was Cross-Entropy Loss, as 298 

 𝐿 𝑦 , log 𝑝 ,  (7) 299 

where L is the value of loss, N is the number of samples, C is the number of discharge 300 

classes, 𝑦 ,  represents the value of the true label for the ith sample in the cth class using 301 

one-hot encoding, and 𝑝 ,   represents the probability of ith sample belonging to cth 302 

class calculated by CNN. 303 

 304 

2.5.2 Convolutional Neural Network coupled with Support Vector Machine 305 

(CNN+SVM) 306 

SVM is a machine learning method based on structural risk minimization and Vapnik–307 

Chervonenkis (VC) dimension theory (Cortes and Vapnik, 1995). It has been widely 308 

used in image processing, pattern recognition, fault diagnosis, prediction and 309 
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classification (Burges, 1998), which can help to capture key samples and eliminate 310 

redundant samples by finding the optimal hyperplane. Compared with neural networks, 311 

which rely on large training samples and tend to fall into local optima, SVM can achieve 312 

global optima with a simpler model structure (Hanczar et al., 2010; Matykiewicz and 313 

Pestian, 2012). However, the SVM-based classifier requires manual input of image 314 

features. Therefore, we coupled CNN and SVM to achieve automatic discharge 315 

classification. Image features extracted by CNN (i.e., the output of the 5th CNN pooling 316 

layer) were fed into SVM classifiers to calculate discharge. The extracted image 317 

features, coded with a "one-vs-all" scheme, were used to train binary SVM classifiers. 318 

Specifically, one SVM classifier with a linear kernel function was trained for each 319 

discharge class to distinguish that class from the rest. The hinge loss function was 320 

employed to optimize the entire model by maximizing the margin between discharge 321 

classes. 322 

 323 

2.4.3 Convolutional Neural Network coupled with Random Forest (CNN+RF) 324 

RF (Tin Kam, 1995) is a flexible machine-learning algorithm that combines the output 325 

of multiple decision trees to reach a single result. Each decision tree depends on the 326 

values of a random vector sampled independently and with the same distribution for all 327 

trees in the forest (Breiman, 2001; Panda et al., 2009). It is an integrated algorithm of 328 

the Bagging type (Aslam et al., 2007) that combines multiple weaker classifiers, and 329 

the final result is obtained by voting or averaging to improve accuracy and 330 
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generalization performance. We here used an RF comprising 350 decision trees and five 331 

decision leaves for discharge calculation. The coupling method of CNN+RF mirrors 332 

that of CNN+SVM, using the same pooling outputs of CNN as inputs for RF discharge 333 

classifier. RF is trained to assign optimal weights to each decision tree and leaf without 334 

a specific loss function. 335 

 336 

2.6 Model evaluation metrics 337 

The performance of discharge classification models was measured by four widely used 338 

metrics, including classification accuracy, F1 score, coefficient of determination (R2), 339 

and root mean square error (RMSE). 340 

(1) Accuracy: 341 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
∑

 (8) 342 

where TPi is the number of correctly classified samples in the ith discharge class; N is 343 

the total number of samples; k is the number of discharge classes. 344 

(2) F1 score: 345 

 𝐹1  (9) 346 

where Precision is the ratio of true positive classification (TPi) to the sum of TPi and 347 

the number of misclassified samples with the ith discharge simulated by a model (FPi); 348 

Recall is the ratio of TPi to the sum of TPi and the number of misclassified samples 349 

with the observed ith discharge (FNi), calculated as 350 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∑  (10) 351 
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 𝑅𝑒𝑐𝑎𝑙𝑙 ∑  (11) 352 

where ni is the number of samples that fall in the ith class.   353 

(3) R² 354 

 𝑅 1
∑

∑
 (12) 355 

where yj and 𝑦  are the observed and simulated discharge, respectively; Y is the mean 356 

discharge.  357 

(4) RMSE 358 

 𝑅𝑀𝑆𝐸 ∑ 𝑦 𝑦  (13) 359 

3 Results 360 

3.1 Correlation analysis 361 

We first performed a preliminary correlation analysis between the RGB matrices in ROI 362 

and the discharge values. Traversing the common algebraic combinations of the three 363 

colors, we found that 𝑅 7.5�̅� 6.5𝐵 (𝑅, �̅�, 𝐵 are the mean values of red, green 364 

and blue channels of an image, respectively) had a spearman correlation coefficient of 365 

0.67 with discharge (p-value < 0.01), indicating that the discharge is significantly 366 

correlated with the color combination value at the 99% confidence level (Fig. 5). Such 367 

result suggests that discharge conditions are embedded in RGB information of 368 

mountain streams to some extent, which could be further retrieved and refined by CNN 369 

models.  370 
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 371 

Figure 5. Correlation between RGB color values and corresponding discharges. 372 

 373 

3.2 Effectiveness of automated image categorization 374 

Most of the previous image-based studies only selected unblemished images for 375 

discharge or velocity monitoring, which resulted in poor model performance under 376 

environmental disturbances (Leduc et al., 2018; Chapman et al., 2020; Herzog et al., 377 

2022). In this study, we also included samples under the influence of vegetation 378 

shadows and water reflection for model training. We selected approximately 100 stream 379 

images corresponding to each discharge volume (at the interval of 0.001 m³/s) from the 380 

pre-processed samples (3168 images in total). The databases of "Good quality", 381 

"Middle shadow", "Below shadow", and "Water reflection" were approximately 382 

sampled in the ratio of 7:0.6:1.4:1 (2146:244:437:341 images) to ensure the 383 

representation of different environmental conditions. The samples were distributed 384 

evenly in each discharge interval to avoid bias towards particular discharge conditions 385 
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and enhance model performance on high and low flows (Wang et al., 2023). 386 

Fig. 6 demonstrates the difference in classification accuracy of monitoring discharge 387 

by the defective images, using two sets of models trained with only "Good quality" 388 

images and samples filtered by automated image categorization, respectively. Results 389 

derived from the three discharge classification models and three color-enhancing 390 

methods consistently suggest that the procedure of automated image categorization can 391 

significantly improve model performance in apprehending defective images. 392 

Classification accuracy of the models trained with only “Good quality” samples 393 

staggered between 11.8%-18.7%, while the accuracy of the models trained after 394 

automated image categorization was higher than 79.0% (79.0%-97.4%) regardless of 395 

the choices of color processing method and deep learning model. The average 396 

difference in classification accuracy between the two sets of training samples reached 397 

73.9%. The proportionate inclusion of defective images with vegetation shadow and 398 

water surface reflection enhances the anti-interference ability of the models in complex 399 

environments. 400 

 401 
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 402 

Figure 6. Accuracy of discharge classification of images under environmental 403 

disturbances. Bars with and without patterns show the results using the models trained 404 

with only "Good quality" samples and samples after automated image categorization, 405 

respectively. Color enhancement methods include Color Enhanced (CE), Binarization 406 

(BZ), and Water-color Enhanced (WE). 407 

 408 

3.3 Model training and validation 409 

After the treatments of color-enhancing, image denoising, and automated image 410 

categorization, the images were randomly divided into training and validation sets by 411 

the ratio of 7:3, and then used for model training and validation, respectively. 412 

3.3.1 Loss changes 413 

The changes in training and validation loss of the CNN models driven by three types of 414 

color-enhanced images are demonstrated in Fig. 7. In the initial twenty epochs, the 415 

training loss values decreased rapidly from 7.70 to 3.73 (Color Enhanced), from 5.91 416 

to 3.73 (Binarization), and from 5.41 to 3.80 (Water-color Enhanced), respectively. 417 
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Subsequently, the decreasing rates slowed during the following 1000 epochs, averaging 418 

around -0.0027 to -0.0030 per epoch. The loss value usually stabilizes after 1000 epochs 419 

in CNN training (Keskar et al., 2016). In our case, the loss value began to flatten after 420 

the 1300th epoch, signifying convergence towards a consistent loss value below 1.00 421 

across all three color-enhancing methods. Therefore, we set the maximum training 422 

epochs to 1470 to ensure model performance while avoiding overfitting. 423 

The proximity between the training and validation loss changes at the final few 424 

epochs is an important indicator that the model is not suffering from overfitting. A 425 

commonly acknowledged benchmark of such proximity is approximately 0.1 to 0.2 426 

(Heaton, 2018). In our CNN models, the validation loss values at the final epoch were 427 

0.60, 0.78, and 0.63, respectively, which were 0.19, 0.08, and 0.07 lower than the 428 

corresponding training loss. Such results suggest that the models did not suffer from 429 

overfitting or underfitting. 430 

 431 

 432 

Figure 7. Changes in training and validation loss of the models driven by three types 433 

of color-enhanced images. Color enhancement methods include Color Enhanced (CE), 434 

Binarization (BZ), and Water-color Enhanced (WE). 435 
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3.3.2 Comparison of discharge classification models 437 

The heap map (Fig. 8) visualizes the performance of different models in classifying the 438 

validation image set with three tested color-enhancing methods under different 439 

environmental conditions. Results show that all three models (i.e., CNN, CNN+SVM, 440 

CNN+RF) can achieve satisfactory performance on discharge classification. The R2 441 

under all environmental conditions was greater than 0.97, suggesting that the simulated 442 

discharge was significantly correlated to the flowmeters’ measurement. The comparison 443 

of model performance generally shows consistency under different environmental 444 

conditions. Higher classification accuracy and F1 score are always accompanied by 445 

higher R2 and lower RMSE, showing that CNN-based models perform well in 446 

accurately recognizing true discharge and handling outliers. Among the three models, 447 

CNN is more likely to over- or under-estimate discharge than both CNN+SVM and 448 

CNN+RF, with classification accuracy and F1 score 8.6~13.4% and 0.084~0.115 lower 449 

than CNN+SVM and CNN+RF, respectively. With all environmental conditions taken 450 

into account, CNN+SVM shows the best overall performance with the highest 451 

classification accuracy of 88.6%, the highest F1 score of 0.878, the highest R2 of 0.989, 452 

and the lowest RMSE of 1.08 dm3/s. Such results could be related to the size of our 453 

samples and the characteristics of the features extracted by deep layers of CNN. The 454 

features extracted from stream images under one specific flow discharge show 455 

similarities, which highlights the SVM’s capability in classifying the embeddings from 456 

small samples with linear features.  457 
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 458 

3.3.3 Comparison of color-enhancing methods 459 

Among the three tested color-enhancing methods, the Color Enhanced approach 460 

generally shows the best performance in discharge classification. Models driven by 461 

Color Enhanced images achieved higher classification accuracy (+2.3%~+7.4%), 462 

higher F1 score (+0.033~+0.067), higher R2 (+0.001~+0.009), and lower RMSE (‒463 

0.068 ~ ‒0.415 dm3/s) than those driven by images processed with Binarization and 464 

Water-color Enhanced. This is partly due to the different treatments in the edges of the 465 

water body. Binarization and Water-color Enhanced relatively cause larger deviation 466 

from the real edges, while Color Enhanced retains the image information to the 467 

maximum extent. Binarization reduces the cost of discharge computation and data 468 

storage by transforming raw stream images into binary images, and thus facilitates real-469 

time monitoring by embedded end-to-end devices (e.g., mobile phones) with 470 

insufficient computing power (Shi et al., 2019). Considering that the color and texture 471 

of the water surface vary significantly with discharge volumes while the background is 472 

relatively stable, we proposed the Water-color Enhanced approach that only processes 473 

color information within the water body. In our experiment, it took only 0.0154s to 474 

recognize flow discharge from one Binarization image with an Intel (R) Core (TM) i7-475 

10750H CPU, which was 36% and 22% faster than that of Color Enhanced and Water-476 

color Enhanced images, respectively. Such results suggest that it is beneficial to retain 477 

the background information to the maximum extent and include the non-water parts of 478 
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mountain streams in image processing. However, future applications of image-based 479 

discharge monitoring need to strike a balance between accuracy and speed when 480 

choosing color processing methods.  481 
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  482 

Figure 8. Performance of discharge classification models under different 483 

environmental conditions. Color enhancement methods include Color Enhanced (CE), 484 
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Binarization (BZ), and Water-color Enhanced (WE). 485 

 486 

4 Discussion 487 

The existing image-based methods usually rely on either the estimations of flow 488 

velocity and cross-section area or assumptions on stage-discharge correlation (Tauro et 489 

al., 2017; Leduc et al., 2018; Davids et al., 2019; Li et al., 2019). The first type of 490 

method uses image-derived surface velocity to estimate sub-sectional mean streamflow 491 

velocity and spatial integration of discharge (Le Coz et al., 2012). The difficulties in 492 

capturing cross-sectional characteristics and the relationship between flow velocity and 493 

water depth limit their application in small mountain streams. The second type of 494 

method retrieves river geometry directly through remote sensing, yet the accuracy is 495 

primarily determined by the empirical assumptions on the relationships among water 496 

depth, velocity, and discharge (Gleason and Smith, 2014; Young et al., 2015). In this 497 

study, we proposed a new camera-based method to directly establish the relationship 498 

between the RGB matrices of stream images and the classification probabilities of 499 

discharge. The unique merit of the CNN-based model is its capability in automatically 500 

extracting and refining discharge-related features from image samples, which improves 501 

the accuracy and applicability of the model. Previous attempts suggest that the selection 502 

of image features can significantly affect the performance on classification of stream 503 

images (Tauro et al., 2014). For example, Chapman et al. (2020) manually extracted 504 

features from pre- and post-weir images and used them as the inputs of machine 505 
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learning models. However, the dominant image features relating to stream discharge 506 

could vary across different environments (e.g., topography, vegetation on river banks, 507 

water quality), limiting the transferability of such manually identified features.  508 

Weather conditions (e.g., sun position, fog, rain) are the most common difficulties 509 

that reduce picture quality (Leduc et al., 2018). Therefore, we designed an automated 510 

procedure for categorizing samples by their brightness and saturation: (a) select four 511 

areas in the image as detection areas, (b) eliminate images with insufficient light or 512 

raindrops on the lens, (c) identify thresholds and classify the remaining images into four 513 

categories for further model training, including the images under the influence of 514 

vegetation shadow and overexposure caused by water reflection in certain angles. Such 515 

inclusion and categorization of defective samples have significantly enhanced the anti-516 

interference ability of the model, facilitating uninterrupted discharge monitoring 517 

through the daytime. These factors and the thresholds of brightness and saturation are 518 

site-specific and require manual trials to identify them. However, after adequate initial 519 

calibration, an established model can be used for the same site for extended periods and 520 

repeated installations of camera systems.  521 

The training and validation of deep learning models require a large number of 522 

representative samples (He et al., 2016). We collected a total of 7757 image samples 523 

from July 20th to September 27th, 2022, and 3168 images were used for model training 524 

and validation after image screening and categorization. Although we executed an 525 

effective automatic categorization procedure on the acquired image samples, it is 526 



33 

 

undeniable that the training and validation sets didn’t cover all environmental 527 

disturbances. For example, the time of sunrise and sunset, the appearance of water 528 

surface reflections, and the coverage of vegetation shadows are affected by the angles 529 

of sunlight and vary with seasons. With sufficient artificial lighting or installation of a 530 

night-vision infrared camera (Royem et al., 2012), the images during nighttime can also 531 

be used for discharge monitoring after training. More image samples are needed to 532 

enrich the representativeness of the model in further studies. Another limitation is that 533 

we have focused on low and average flow conditions in the model training due to the 534 

lack of high-quality flood samples. In tropical and subtropical mountain streams of 535 

southern China, floods usually occur during rainstorms and only last for a short time. 536 

Heavy rainfalls constantly block the camera lens with raindrops, and the rapid 537 

streamflow movement during heavy rainfall tends to cause blurred images, which can 538 

only be partly improved by increasing the shutter speed and adjusting the camera 539 

position. Moreover, site-specific field data is crucial for identifying the criteria for 540 

image categorization and model training, which restricts the broader applicability of 541 

our approach in ungauged basins, where such field data may not be readily available. 542 

Further research on integrating multiple data sources and surveying approaches is 543 

warranted for developing a more generalizable method.  544 

5 Conclusions 545 

This study presents a novel method for discharge monitoring of mountain streams using 546 

deep learning techniques and a low-cost solar-powered commercial camera 547 
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(approximately $200). The results confirmed our hypothesis that the discharge-relevant 548 

stream features embedded in a large number of RGB images can be implicitly 549 

recognized and retrieved by CNN to achieve continuous discharge monitoring. 550 

Coupling CNN and traditional machine learning methods can potentially improve 551 

model performance in discharge classification to various extents. In this case, the 552 

classification accuracy, F1 score, and R2 of CNN+SVM and CNN+RF were 553 

9.1%~14.4%, 0.084~0.115, and 0.006~0.010 higher, respectively, while RMSE was 554 

0.31~0.51 dm3/s lower compared to CNN. Proper image pre-processing and 555 

categorization can largely enhance the applicability of image-based discharge 556 

monitoring. In an environment under complex disturbances such as mountain streams, 557 

image quality is constantly interfered with by shadows of vegetation on the river banks. 558 

The automated image categorization procedure can effectively recognize discharge 559 

from defective images by filtering samples under different conditions and improve 560 

model robustness. The comparison of the three color-enhancing approaches also 561 

confirms the importance of including the non-water parts (e.g., large rocks) and 562 

retaining the background information to the maximum extent in the image analysis.   563 

The proposed method provides an inexpensive and flexible alternative apparatus for 564 

continuous discharge monitoring at rocky upstream mountain streams, where it is 565 

challenging to identify the cross-section shape or establish a stable stage-discharge 566 

relationship. Site-specific field data is needed to identify the criteria for image 567 

categorization and model validation. However, it circumvents the potential errors in 568 



35 

 

assuming cross-section characteristics, such as the relationship between water depth 569 

and flow velocity, and represents a new direction for applying deep learning techniques 570 

in acquiring high-frequency discharge data through image analysis.  571 
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