
Snow depth plays a critical role in the estimation of snow water
equivalent (SWE). Snow depth data from measured ultrasonic instru-
ments are an essential part of the validation and assimilation of these
models. This paper showed that a Random Forest classifier can be
used to train and perform classification of snow depth from weather
stations to snow/bare ground. This will help to reduce noise in SWE
model coming from the misclassification of the snow depth data. In
general, this a well-written paper with clear objectives, results and
discussion. I recommend this paper for publication with only a few
minor comments.

We thank Reviewer 1 for their constructive comments. We are happy that
the Reviewer appreciated the writing style. All requested revisions are feasible
and we will work in this direction as soon as the interactive discussion will be
finalized.

L31-L34. This sentence is long. Consider splitting into smaller
sentences.

Thanks for the comment. Following the suggestion, we propose this new
version :

Assessing the implication of snow-driven hydrological processes on stream-
flow and precipitation events helps with resource management. Indeed, a more
in-depth understanding of snowmelt implications for the time and quantity of
freshet supports forecasting for water management, dealing with water security
and water related vulnerability. Most importantly, better understanding enables
the development of a sustainable water resource carrying capacity, which is cru-
cial to cope with the shift in water balance caused by climate change.

Section 2.2. Can you give more details on how this dataset is dif-
ferent or not from the training set? This is not evident if you are not
familiar with this region of the world.

We apologize for the lack of details in describing a different dataset to an
audience not familiar with the region we are working in. We will add a detailed
description of the geographical and meteorological differences between Aosta
Valley and the rest of Italy. Here the proposed text:

Italian climate presents a considerable variability from north to south. Ac-
cording to the Köppen-Geiger climate classification (Beck et al. 2018), in the
Alps the climate is humid and continental. Central Italy, alongside the Apen-
nines chain, is characterized by a warm, temperate, Mediterranean climate with
dry, warm summers and cool, wet winters. In Southern Italy, where the climate
is still a warm temperate, Mediterranean climate, winters are mild, with higher
humidity and higher temperature during summer.
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Concerning snow-cover distribution, accumulation across the Alps is gener-
ally higher and more persistent than across the Apennines, where it is spatially
more limited and more variable from one season to the others. Rivers draining
from the snow-dominated Alps and a handful of basins draining from central
Apennines host the vast majority of snow water resources across the Italian
territory. In particular, the Alpine water basins host nearly 87% of Italian
snow. The central Apennines, accumulate about 5% of the national mean win-
ter SWE, leaving the remaining 8% – 9% scattered across the remaining basins
over the territory. Intraseasonal melt, expected in a Mediterranean region, is
a common feature in sites where cold-alpine and maritime snow types coexist
like the Apennines (Avanzi et al. 2023).The validation dataset refers to the re-
maining of the the Italian Peninsula (Aosta valley excluded). Italy (∼301 × 103
km2) is a topographically and climatically complex region. Its mountain chains,
the Alps and the Apennines, are among the highest peaks in Europe. Partially
snow-dominated regions like the Po river basin or the central Apennines have
high socio-economical relevance (Group 2021).

Italian climate presents a considerable variability from north to south. Ac-
cording to the Köppen-Geiger climate classification (Beck et al. 2018), in the
Alps the climate is humid and continental. Central Italy, alongside the Apen-
nines chain, is characterized by a warm, temperate, Mediterranean climate with
dry, warm summers and cool, wet winters. In Southern Italy, where the climate
is still a warm temperate, Mediterranean climate, winters are mild, with higher
humidity and higher temperature during summer.

Concerning snow-cover distribution, accumulation across the Alps is gener-
ally higher and more persistent than across the Apennines, where it is spatially
more limited and more variable from one season to the others. Rivers draining
from the snow-dominated Alps and a handful of basins draining from central
Apennines host the vast majority of snow water resources across the Italian ter-
ritory. In particular, the Alpine water basins host nearly 87% of Italian snow.
The central Apennines, accumulate about 5% of the national mean winter SWE,
leaving the remaining 8% – 9% scattered across the remaining basins over the
territory. Intraseasonal melt, expected in a Mediterranean region, is a com-
mon feature in sites where cold-alpine and maritime snow types coexist like the
Apennines (Avanzi et al. 2023).

Section 2. Do all sensors were similar ultrasonic sensors? Any
effect of the different sensor types?

To our knowledge, all snow-depth sensors operationally used in Italy are ul-
trasonic sensors, with an accuracy of a few centimeters (Avanzi et al. 2023).
However, the implementation and everyday management of these sensors falls
under the responsibility of Regional Environmental Agencies, thus only sparse
information on sensor types was available for this study. Evaluating the perfor-
mance of the algorithm as a function of sensor types is an interesting research
question, which we will mention as a possible future development in the final
section (pending availability of this information).
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L116-L117. Consider adding a citation that relates snow depth to
random forest. I can think of a couple.

We agree. We will cite the work of Meloche et al. (2022), which proved the
ability of a Random Forest algorithm to predict snow depth distribution from
topographic parameters with a root mean square error of 8 cm (23%) in western
Nunavut, Canada.

L114. Some feature importance calculations can have a bias due
to the correlation between features. This will split the importance
between features (Strobl et al. 2007). Even if the feature seems un-
correlated in this case. Consider adding a sentence to acknowledge
this. Reference : Strobl et al, 2007. Bias in random forest variable
importance measures: Illustrations, sources and a solution. DOI :
10.1186/1471-2105-8-25

We thank the reviewer for pointing out an important aspect when dealing
with Random Forest algorithms. We acknowledge the necessity of mentioning it
and we plan to add the following text to section 4.2:

It is important to acknowledge that correlation among features and mul-
ticollinearity are problematic for feature importance and interpretation in a
Random Forest. Features importance may spuriously decrease for features that
are correlated with those selected as the most important (Strobl et al. 2007).
On the other hand, Hastie et al. (2009) point out how that the predictive skill of
the algorithm is relative robust to correlations thanks to de-correlation factors
involved in bootstrapping. Indeed, even low-importance features may drive the
decision process of the algorithm (Avanzi et al. 2019). In our case, we chose to
use all the features after testing the lack of strong correlations across features
(values below -0.5 or +0.5).

Figure 4. Typo in label of graph b). “Ground” should be ground.

We thank the reviewer for this remark. We will update the figure.
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