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Abstract. The open source Video In Situ Snowfall Sensor (VISSS) is introduced as a novel instrument for the characterization

of particle shape and size in snowfall. The VISSS consists of two cameras with LED backlights and telecentric lenses that allow

accurate sizing and combine a large observation volume with relatively high pixel resolution and a design that limits wind

disturbance. VISSS data products include various particle properties such as maximum extent, cross-sectional area, perimeter,

complexity, and sedimentation velocity. Initial analysis shows that the VISSS provides robust statistics based on up to 10,0005

unique particle observations per minute. Comparison of the VISSS with collocated PIP (Precipitation Imaging Package) and

Parsivel instruments at Hyytiälä, Finland, shows excellent agreement with Parsivel, but reveals some differences for the PIP

that are likely related to PIP data processing and limitations of the PIP with respect to observing smaller particles. The open

source nature of the VISSS hardware plans, data acquisition software, and data processing libraries invites the community to

contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.10

1 Introduction

It is well known that "every snowflake is unique". The shape of a snow crystal is very sensitive to the processes that were active

during its formation and growth. Vapor depositional growth leads to a myriad of crystal shapes depending on temperature,

humidity, and their turbulent fluctuations. Aggregation combines individual crystals into complex snowflakes. Riming describes

the freezing of small droplets onto ice crystals, causing them to rapidly gain mass and form a more rounded shape. In other15

words, the shape of snow particles is a fingerprint of the dominant processes during the life-cycle of snowfall.

Better observations of the fingerprints of snowfall formation processes are needed to advance our understanding of ice and

mixed-phase clouds and precipitation formation processes (Morrison et al., 2020). Given the importance of snowfall formation

processes for global precipitation (Mülmenstädt et al., 2015; Field and Heymsfield, 2015), the lack of process understanding

leads to gaps in the representation of these processes in numerical models. In a warming climate, precipitation amounts and20

extreme events, including heavy snowfall, are expected to increase (Quante et al., 2021), but the exact magnitudes are associated

with large uncertainties (Lopez-Cantu et al., 2020).
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Remote sensing observations of snowfall are indirect, which limits their ability to identify snow particle shape by design.

Ground-based in situ observations of ice and snow particles can identify the fingerprints of the snowfall formation processes

and provide detailed information on particle size, shape, and sedimentation velocity. Using assumptions about sedimentation25

velocity or an aggregation and riming model as a reference, the particle mass-size and/or density relationship can also be

inferred from in situ observations. (Tiira et al., 2016; von Lerber et al., 2017; Pettersen et al., 2020; Tokay et al., 2021;

Leinonen et al., 2021; Vázquez-Martín et al., 2021a). Various attempts have been made to classify particle types and identify

active snowfall formation processes using various machine learning techniques (Nurzyńska et al., 2013; Grazioli et al., 2014;

Praz et al., 2017; Hicks and Notaroš, 2019; Leinonen and Berne, 2020; Del Guasta, 2022; Maherndl et al., 2023b); these30

classifications are needed to support quantification of snowfall formation processes (Grazioli et al., 2017; Moisseev et al.,

2017; Dunnavan et al., 2019; Pasquier et al., 2023). In situ observations have also been used to characterize particle size

distributions (Kulie et al., 2021; Fitch and Garrett, 2022), investigate sedimentation velocity and turbulence of hydrometeors

(Garrett et al., 2012; Garrett and Yuter, 2014; Li et al., 2021; Vázquez-Martín et al., 2021b; Takami et al., 2022), and for model

evaluation (Vignon et al., 2019). In combination with ground-based remote sensing, in situ snowfall data have been used to35

validate or better understand remote sensing observations (Gergely and Garrett, 2016; Li et al., 2018; Matrosov et al., 2020;

Luke et al., 2021), to develop joint radar in situ retrievals (Cooper et al., 2017, 2022), and to train remote sensing retrievals

(Huang et al., 2015; Vogl et al., 2022).

Different design concepts have been used for in situ snowfall instruments. Line scan cameras are commonly used by optical

disdrometers such as the OTT Parsivel (Löffler-Mang and Joss, 2000) and their relatively large observation volume reduces the40

statistical uncertainty for estimating the particle size distribution (PSD). However, additional assumptions are required to size

irregularly shaped particles such as snow particles correctly due to the one-dimensional measurement concept (Battaglia et al.,

2010). This limitation can be overcome when adding a second line camera as for the 2DVD (2-dimensional video disdrometer,

Schönhuber et al., 2007), but particle shape estimates can still be biased by horizontal winds (Huang et al., 2015; Helms et al.,

2022). The 2DVD’s pixel resolution of approx. 190 µm per pixel (px) and the lack of gray-scale information prohibits resolving45

fine-scale details of snow particles.

To get high resolution images, a group of instruments uses various approaches to obtain particle images with microscopic

resolution at the expense of the measurement volume size. For example, the MASC (Multi-Angle Snowfall Camera, Garrett

et al., 2012) takes three images with 30 µm px−1 pixel resolution of the same particle from different angles. This allows

for resolving very fine particle structures, but during a snowfall event Gergely and Garrett (2016) observed only 102 - 10450

particles which is not sufficient to reliably estimate a PSD on minute temporal scales needed to capture changes in precipitation

properties. Del Guasta (2022) have developed a flatbed scanner (ICE-CAMERA) that has a pixel resolution of 7 µm px−1 and

can provide mass estimates by melting the particles, but this approach only works at low snowfall rates. The images of the D-

ICI (Dual Ice Crystal Imager, Kuhn and Vázquez-Martín, 2020) have even a pixel resolution of 4 µm px−1 and show particles

from two perspectives, but similar to the MASC, the small sampling volume does not allow for the measurement of PSDs with55

a sufficiently high accuracy.
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The SVI (Snowfall Video Imager, Newman et al., 2009) and its successor the PIP (Precipitation Imaging Package, Pettersen

et al., 2020) use a camera pointed to a light source to image snow particles in free fall. The open design limits wind field

perturbations and the large measurement volume (4.8 x 6.4 x 5.5 cm for a 1 mm snow particle) minimizes statistical errors in

deriving the PSD. However, the pixel resolution of 100 µm px−1 is not sufficient to study fine details. Further, the open design60

requires that the depth of the observation volume is not constrained by the instrument itself. As a consequence, particle blur

needs to be used to determine whether a particle is in the observation volume or not which is potentially more error prone

than a closed instrument design. A similar design was used by Testik and Rahman (2016) to study the sphericity oscillations

of raindrops. Kennedy et al. (2022) developed the low-cost OSCRE (Open Snowflake Camera for Research and Education)

system that uses a strobe light to illuminate particles from the side allowing for the observation of particle type of blowing and65

precipitating snow but the observation volume is not fully constrained.

This study presents the Video In Situ Snowfall Sensor (VISSS). The goal was to develop a sensor with an open instrument

design without sacrificing the quality of measurement volume definition or resolution. It uses the same general principle as

the PIP (Fig. 1): gray-scale images of particles in free fall illuminated by a background light. Unlike the PIP, this setup is

duplicated with overlapping measurement volumes so that particles are observed simultaneously from two perspectives at a70

90° angle. This robustly constrains the observation volume without the need for further assumptions. In addition, having two

perspectives of the same particle increases the likelihood that the observed maximum dimension (Dmax::::
Dmax) and aspect ratio

are representative of the particle. While the VISSS does not reach the microscopic resolution of the D-ICI or ICE-CAMERA,

its pixel resolution of 43 to 59 µm px−1 is significantly better than the PIP, and the use of telecentric lenses eliminates sizing

errors caused by the variable distance of snow particles to the cameras.75

The VISSS was originally developed for the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Cli-

mate) experiment (Shupe et al., 2022) and deployed at MetCity and, after the sea ice became too unstable in April 2020, on

the P-deck of the research vessel Polarstern. After MOSAiC, the original VISSS was deployed at Hyytiälä, Finland (Petäjä

et al., 2016) in 2021/22and
:
,
:
at Gothic, Colorado as part of the SAIL campaign in 2022/23 . (Surface Atmosphere Integrated

Field Laboratory, Feldman et al., 2023)
:::
and

::
at

:::::::
Eriswil,

::::::::::
Switzerland

:::
for

:::
the

:::::::::
PolarCAP

:::::::::::
(Polarimetric

:::::
Radar

:::::::::
Signatures

:::
of

:::
Ice80

::::::::
Formation

:::::::::
Pathways

::::
from

:::::::::
Controlled

:::::::
Aerosol

::::::::::::
Perturbations)

::::::::
campaign

::
in
::::::::

2023/24.
:
During a test setup in Leipzig, Germany,

the VISSS was used to evaluate a radar-based riming retrieval (Vogl et al., 2022). An improved second generation of VISSS

was installed at the French-German Arctic research base AWIPEV (the Alfred Wegener Institute Helmholtz Centre for Polar

and Marine Research - AWI - and the French Polar Institute Paul Emile Victor - PEV) in Ny-Ålesund, Svalbard (Nomokonova

et al., 2019) in 2021. A further improved third generation VISSS is currently being built at the Leipzig University and will be85

deployed in Hyytiälä end of 2023. The VISSS hardware plans and software libraries have been released under an open source

license (Maahn et al., 2023b; Maahn, 2023a, b) so that the community can replicate and further develop VISSS. The VISSS

hardware design and data processing are described in Sects. 2 and 3, respectively. Example cases including a comparison with

the PIP are given in Sect. 4 and concluding remarks are given in Sect. 5.

3



2 Instrument design90

The VISSS consists of two camera systems oriented at a 90° angle to the same measurement volume (Fig. 1). Both cam-

eras work using the Complementary Metal Oxide Semiconductor (CMOS) global shutter principle and use a resolution of

1280x1024 gray-scale pixels and a frame rate of 140 Hz (250 Hz since the 2nd generation). One camera acts as the leader,

sending trigger signals to both the follower camera and the two LED backlights that illuminate the scenes from behind with a

350,000 lux flash. Green backlights (530 nm) were chosen because the camera and lenses are optimized for visual light. The95

leader-follower setup results in a slight delay in the start of exposure between the two cameras. To compensate for this, the

background LEDs are turned on for a duration of 60 µs only when the exposure of both cameras is active. Thus, the 60 µs flash

of the backlights determines the effective exposure time of the camera as long as there is no bright sunlight, which is a rare

condition during precipitation.

The two camera-lens-backlight combinations are at a 90° angle so that particles are observed from two perspectives, reducing100

sizing errors. Leinonen et al. (2021) found that using only a single perspective for sizing snow particles can lead to a normalized

root mean square error of 6% for Dmax ::::
Dmax:and Wood et al. (2013) estimated the resulting bias in simulated radar reflectivity

to be 3.2 dB. For the VISSS, the accuracy of the measurements can be further improved by taking advantage of the fact that

the VISSS typically observes 8 to 11 frames of each particle (assuming a sedimentation velocity of 1 m s−1 and a frame rate

of 140 to 250 Hz), and additional perspectives can be obtained from the natural tumbling of the particle.105

Telecentric lenses have a constant magnification within the usable depth of field, eliminating sizing errors. Consequently,

the lens aperture must be as large as the observation area, making the lens bulky, heavy and expensive. For the first VISSS

(VISSS1), a lens with a magnification of 0.08 was chosen, resulting in a pixel resolution of 58.75 µm px−1 (Table 1). The

working distance, i.e. the distance from the edge of the lens to the center of the observation volume, is 227 mm. This partly

undermines the goal of having an instrument with an observation volume that is not obstructed by turbulence induced by nearby110

structures, but was caused by budget limitations. It also does not allow for sufficiently large roofs over the camera windows

to protect against snow accumulation in all weather conditions. This problem was partially solved by the increased budget (22

kEUR) for the second generation VISSS2, which used a 600 mm working distance lens as well as a camera with an increased

frame rate of 250 Hz and a pixel resolution of 43.125 µm px−1. However, the optical quality of the lens proved to be borderline

for the applications, resulting in an estimated optical resolution of approximately 50 µm and slightly blurred particle images.115

Consequently, the lens was changed again for the third generation VISSS3 (currently under construction), which has a working

distance of 1300 mm. This was motivated by the result of Newman et al. (2009) that the air flow is undisturbed at a distance of

1 m from the instrument. Image quality is potentially also impacted by motion blur and the exposure time of 60 µs was selected

to limit motion blur of particles falling at 1 m/s to 1.02 and 1.44 pixels
::
px

:
for VISSS1 and VISSS2, respectively. Particle blur

can also occur when particles are not exactly in focus of the lenses. The maximum circle of confusion is 1.3 pixels
::
px at the120

edges of the observation volume.

The lens-camera combinations and backlights are housed in waterproof enclosures that are heated to −5°C and 10°C,

respectively. The low temperature in the camera housing is to prevent melting and refreezing of particles on the camera window.
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Figure 1. a) Concept drawing of the VISSS (not to scale with enlarged observation volume). See Sections 3.2 and 3.3 for a discussion of

the joint coordinate system and the transformation of the follower’s coordinate system, respectively. b) First generation VISSS deployed at

Gothic, Colorado during the SAIL campaign (Photo by Benn Schmatz), c) Randomly selected particles observed during MOSAiC on 15

November 2019 between 6:53 and 11:13 UTC.

The cameras of VISSS1 and VISSS2 are connected to the data acquisition systems via separate 1 Gbit and 5 Gbit Ethernet

connections, respectively. Due to the increased frame rate, two separate systems are required to record data in real-time for125

VISSS2.

3 Data processing

The cameras transmit every captured image to the data acquisition systems which are standard desktop computers running

Linux. Based on simple brightness changes, the computers save only moving images and discard all other data (this was not

implemented for MOSAiC yet). The raw data of the VISSS consists of the video files (mov or mkv video files with h264130

compression), the first recorded frame as an image (jpg format) for quick evaluation of camera blocking, and a csv file with the

timestamps of the camera (capture_time) as well as the computer (record_time) and other meta information for each frame. The

cameras run continuously and new files are created every 10 minutes (5 minutes for MOSAiC). In addition, a daily status csv

file is maintained that contains information about software start and stop times and when new files were created. Both cameras
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Table 1. Technical specifications of the three VISSS instruments.

VISSS1 VISSS2 VISSS3
::::::::::
(preliminary)

Pixel resolution [µm px−1] 58.75 43.125 46.0

Obs. volume (w x d x h)

[mm]

75.2 x 60.1
:::
75.2 x 60.1 55.2 x 44.2

:::
55.2 x 44.2 58.9 x 47.1

:::
58.9 x 47.1

Used frame size [px] 1280 x 1024 1280 x 1024 1280 x 1024

Frame rate [Hz] 140 250
250

:::
270

Effective exposure time [µs] 60 60 60

Working distance [mm] 227 mm 600 mm 1300 mm

Camera Teledyne Genie Nano M1280

Mono

Teledyne Genie Nano 5G M2050

Mono

Teledyne Genie Nano 5G M2050

Mono

Lens Opto Engineering TC12080 Sill S5LPJ1235 (with modified

working distance)

Sill S5LPJ1725 (with modified

working distance)

Maker University of Colorado Boulder University of Cologne Leipzig University

Deployments MOSAiC 2019/20,
:
;
::

Hyytiälä,

::
FI

:
2021/22, SAIL

:
;
:::::

SAIL,
:::::

USA

2022/23;
:::::::
Eriswil,

::
CH

:::::::
2023/24

Ny-Ålesund,
:::
NO

:
since 2021 Hyytiälä(planned for winter

:
,
::
FI

2023/24 )

VISSS data 
acquisition

Status Files CSV Files Image Files Movie Files

metaEvents

metaFrames

metaRotation

level1detect

level1match

level1track

level2match

level2track

meta data level 1: per 
particle properties

level 2: time 
averaged properties

imagesL1detect

10 min

daily

file frequency:

level 0 raw data

both cam
eras processed separately

both cam
eras

processed jointly

Figure 2. Flowchart of VISSS data processing. Daily products have rounded corners, 10-minute resolution products have square corners.

record completely separately which requires an accurate synchronization of the camera and computer clocks for matching the135

observations of a single particle.
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Figure 3. Estimation of particle perimeter p and area A (cyan), maximum dimension Dmax ::::
Dmax (via smallest enclosing circle, magenta),

smallest rectangle (red), region of interest ROI (green), and elliptical fits using openCV’s fitEllipseDirect (white) and fitEllipse functions

(blue, covered by white line if identical to fitEllipseDirect). The particles were observed during MOSAiC on 15 November 2019 05:25 UTC

except the particle on the right (Hyytiälä 23 January 2022 04:10 UTC).

Obtaining particle properties from the individual VISSS video images requires (1) detecting the particles, (2) matching

the observations of the two cameras, and (3) tracking the particles over multiple frames to estimate the fall velocities. The

level
::::
Level

:
1 products contain per-particle properties in pixel units using (1) a single camera, (2) matched particles from

both cameras, and (3) exploiting particles tracked in time. For the level
::::
Level

:
2 products, the level

::::
Level

:
1 observations are140

calibrated (i.e., converted from pixel in metric units) and distributions of particle size, aspect ratio, and other properties are

estimated based on the per-particle properties. In addition to the level
::::
Level

:
1 and level

:::::
Level 2 products, there are metadata

products: metaEvents is a netcdf version of the status files along with a camera blocking estimate based on the jpg images.

metaFrames is a netcdf version of the csv file. metaRotation keeps track of the camera misalignment as detailed below. The

imagesL1detect product contains images of the detected particles which is required for creating quicklooks like Fig. 1.c.145

In the following, the processing of the level
:::::
Level 1 and level

:::::
Level 2 products is described in detail (Fig. 2).

3.1 Particle Detection

Hydrometeors need to be detected and sized based on individual frames. First, video frames containing motion are identified by

a simple threshold-based filter. Except for the MOSAiC dataset, this is done in real-time, which significantly reduces the data

volume. Because snow may stick to the camera window, individual particles within a video frame cannot be identified by image150

brightness. Instead, the moving region of interest (ROI)
::::
mask

::
of
::::::

pixels is identified by openCV’s BackgroundSubtractorKNN

class (Zivkovic and van der Heijden, 2006) in the image coordinate system (horizontal dimension X , vertical dimension Y

pointing to the ground). The
::
In

:::
the moving mask identified by the background subtraction methods cannot be used directly for

particle detection because the particles in the moving foreground mask
:::::::
method,

:::
the

::::::::
individual

::::::::
particles are systematically too

large
:
so

::::
that

:::
the

:::::::
moving

:::::
mask

::::::
cannot

::
be

::::
used

:::::::
directly

:::
for

:::::::
particle

:::::
sizing. For each particle,

:::
i.e.

::::::::
connected

::::::
group

::
of

:::::::
moving155

:::::
pixels,

:
we select a 10 pixel

::
px padded box around the region of interest (ROI) which is the smallest non-rotated rectangular

box around the particle
::
’s

::::::
moving

:::::
mask

:
(Fig. 3). Then, we use

:::
This

::::::::
extended

::::
ROI

::
is
::::

the
::::
input

:::
for

:
openCV’s Canny edge

detection (after applying a Gaussian blur with a standard deviation of 1.5 pixels
::
px) to identify the edges of the particleand

the corresponding particle masks. To fill in small gaps in the particle contour.
:::
To

:::::::
estimate

:::
the

:::::::
particle

:::::
mask

::
by

::::::
filling

::
in

:::
the

:::::::
retrieved

:::::::
particle

:::::
edges,

::::
gaps

::::::::
(typically

::
1
::
px

::
in
:::::
size)

:::::::
between

:::
the

::::::
particle

:::::
edges

:::::
must

::
be

::::::
closed.

::::
For

:::
this, we dilate the contour160

:::::::
retrieved

:::::
edges

:
by 1 pixel, fill the contour, erode

::
px

::
to

:::::
form

:
a
::::::
closed

:::::::
contour,

:::
fill

::
in

:::
the

::::::
created

:::::::
contour,

::::
and

:::::
erode

:::
the

:::::
filled
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:::::
shape by 1 pixel, and identify the new contour. This method closes potential holes in the particle mask that

::
px

::
to

::::::
obtain

:::
the

::::::
particle

:::::
mask.

:::
To

:::::
detect

::::::::
potential

::::::
particle

::::::
holes,

:::::
which

:
should be retained to avoid overestimation of particle area. Therefore,

the final particle mask contains only values confirmed by the Canny filter and
::::::::::::
overestimating

:::
the

:::::::
particle

::::
area, the background

detection mask
:::::
Canny

::::
filter

:::::::
particle

:::::
mask

:::
and

:::
the

:::::::
moving

:::::
mask

:::
are

::::::::
combined

:::
for

:::
the

::::
final

:::::::
particle

::::
mask. As a result, VISSS165

can detect even relatively small particle structures, as shown in Fig. 3. The use of only 1
:::
one

:
pixel (i.e., 43 to 59 µm) for

dilation was found to be sufficient and allows to potentially resolve more details of the particles than MASC and PIP, which

dilate by 200 µm (Garrett et al., 2012) and 300 µm (Helms et al., 2022), respectively. The final particle mask and
::::::::::::
corresponding

contour are used to estimate the particle’s maximum dimension (using openCV’s minEnclosingCircle function), perimeter p

(arcLength), area A (contourArea) and aspect ratio AR (defined as the ratio between the major and minor axis), as well as170

the canting angle α (defined between vertical axis and major axis). AR and α are estimated in three different ways, from the

smallest rectangle fitted around the contour (minAreaRect) or from an ellipse fitted to the contour (fitEllipse and the more

stable fitEllipseDirect). Particle area equivalent diameter (Deq::::
Deq) is obtained from A. Particle complexity c (Garrett et al.,

2012; Gergely et al., 2017) is derived from the ratio between particle perimeter p to the perimeter of a circle with same area A

c=
p

2
√
πA

. (1)175

In addition to these geometric variables, the level1detect product contains variables describing the pixel brightness (min,

max, standard deviation, mean, skewness), the position of the centroid, and the blur of the particle estimated from the variance

of the Laplacian of the ROI. All particles are processed for which Dmax ≥
::::::
Dmax ≥:

2 px and A≥ 2 px holds. To avoid

detection of particles completely out of focus, the brightness of the darkest pixel must be at least 20 steps darker than the

median of the entire image and the variance of the Laplacian of the ROI brightness must be at least 10. Particle detection is the180

most computationally intensive processing step and is typically performed on a small cluster. Processing 10 minutes of heavy

snowfall for a single VISSS camera can take several hours on a single AMD EPYC 7302 core.

3.2 Particle Matching

The particle detection of each camera is completely separate, so the particles observed by each camera must be combined.

This particle combination allows for the particle position to be determined in a three-dimensional reference coordinate system.185

As a side effect, this constrains the observation volume by discarding particles outside of the intersection of their observation

volumes, i.e. observed by only one camera. We use a right-handed reference coordinate system (x,y,z) with z pointing to the

ground to define the position of particles in the observation volume (Fig. 1). In the absence of an absolute reference, we attach

the coordinate system to the leader camera (i.e., (xL,yL,zL:::::::
xL,yL,zL) = (x,y,z)) such that x=XL and z = YL, where XL and

YL ::::::
x=XL:::

and
:::::::
z = YL,

:::::
where

:::
XL:::

and
:::
YL are the particle positions in the two dimensional leader images. Note that small letters190

describe the three dimensional coordinate system and capital letters describe the two dimensional position on the images of the

individual camera images. The missing dimension y is obtained from the follower camera with y =−XF where XF ::::::::
y =−XF

:::::
where

:::
XF the horizontal position in the follower image.
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The matching of the particles from both cameras is based on the comparison of two variables: The vertical position of the

particles and their vertical extent. Due to measurement uncertainties, the agreement of these variables cannot be perfect and195

they are treated probabilistically. That is, it is assumed that the difference in vertical extent ∆h (vertical position ∆z) between

the two cameras follows a normally distributed probability density function (PDF) with mean zero and standard deviation 1.7

px (1.2 px), based on an analysis of manually matched particle pairs. Since pixel measurements are discrete with 1 px steps,

::
To

:::::::::
determine

:::
the

:::::::::
probability

:::
(of

::::
e.g.,

::::::::
measuring

::
a
::::::
certain

::::::
vertical

:::::::
extent), the PDF is integrated for

::::
over an interval of ±

:
±0.5

px
:::::::::

representing
:::
the

:::::::
discrete

::
1

::
px

:::::
steps.200

This process requires matching the observations of both cameras in time. The internal clocks of the cameras ("capture time")

can deviate by more than 1 frame per 10 minutes. The time assigned by the computers ("record time") is sometimes, but not

always, distorted by computer load. Therefore, the continuous frame index ("capture id") is used for matching, but this requires

determining the index offset between both cameras at the start of each measurement (typically 10 minutes). For this, the

algorithm uses pairs of frames with observed particles that are less than 1 ms (i.e. less than 1/4 of the measurement resolution)205

apart in record time assuming that the lag due to computer load is only sporadically increased. This allow
::::::
allows

::
the

:::::::::
algorithm

to identify the most common capture id offset of the frame pairs. We found that this method gives already stable results for a

subset of 500 frames. Similar to h and z, the capture id offset ∆i is used as the mean of a normal distribution with a standard

deviation value of 0.01, which ensures that only particles observed at the same time are matched. During MOSAiC, the data

acquisition computer CPUs turned out to be too slow to keep up with processing during heavy snowfall. With the additional210

impact of a bug in the data acquisition code and drifting computer clocks when the network connection to the ship’s reference

clock were interrupted, the particle matching for the MOSAiC data set often requires manual adjustment. These problems have

been resolved for later campaign
::::::::
campaigns

:
so that matching now works fully automatic.

The joint product of the probabilities from ∆h, ∆z, and ∆i is considered a match score, which describes the quality of

the particle match. Manual inspection revealed that the number of false matches increases strongly for match scores less than215

0.001, which is used as a cut-off criterion. Assuming that the probabilities are correctly determined, this implies that 0.1% of

particle matches are falsely rejected, resulting in a negligible bias.

For each particle, its three-dimensional position is provided and all per-particle variables from the detection are carried

forward to the matched particle product level1match. The ratio of matched to observed particles from a single camera varies

with the average particle size, since larger particles can be identified even when they are out of focus, and varies between220

approximately 10% and 90%.

3.3 Correction for camera alignment

Although alignment of both observation volumes is a priority during installation, the cameras can be rotated or displaced, i.e.,

misaligned. As a result, the same particle may be observed at different heights and z = YL = YF ::::::::::
z = YL = YF does not hold.

The observed offsets are not constant and can change due to unstable surfaces or pressure of accumulated snow on the VISSS225

frame. We could simply ignore the misalignment and continue to take z from the leader, but this would not allow
::
us to generally
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use the vertical position to match particles from both cameras (see above). Also, offsets in z reduce the common observation

volume of both cameras, which could lead to biases when calibrating the PSDs if not accounted for.

Besides a constant offset in the vertical z dimension Ofz ::
Ofz , one of the cameras can also be rotated around the optical axis

(expressed analogously to aircraft coordinate systems with roll φ), around the horizontal axis perpendicular to the optical axis230

(pitch θ), or around the vertical axis (yaw ψ). As a consequence, ∆z = YL −YF :::::::::::
∆z = YL −YF:depends on the position of the

particle in the observation volume.

To account for the misalignment, we attach the coordinate system to the leader (i.e., we assume that the leader is perfectly

aligned (xL,yL,zL :::::::
xL,yL,zL) = (x,y,z)) and retrieve the misalignment of the follower with respect to the leader in terms of φ, θ

and Ofz :::
Ofz . We cannot derive ψ from the observation and we have no choice but to neglect it by assuming ψ = 0 to reduce235

the number of unknowns. Mathematically, we need to transform the follower coordinate system (xF ,yF ,zF :::::::
xF,yF,zF) to our

leader reference coordinate system (xL,yL,zL:::::::
xL,yL,zL) using rotation and shear matrices. In the appendix A, we show how the

transformation matrices can be arranged so that the follower’s vertical measure zF ::
zF:can be converted to zL::

zL:depending on

φ and θ with

zLL =− sinθ

cosθ
xLL +

sinφ

cosθ
yF F +

cosφ

cosθ
(zF F +Ofz fz

:
). (2)240

This equation can be considered as a forward operator that calculates the expected leader observation zL ::
zL:based on a

misalignment state (Ofz :::
Ofz , φ, and θ) and additional parameters (xL, yF , zF:::

xL,
:::
yF,

::
zF). While we assume that the misalign-

ment state is constant for each 10 minute observation period, the other variables (xL, yF , zF ::
xL,

:::
yF,

:::
zF) are available on a

per-particle basis, combining observations from both cameras. Therefore, we can use a Bayesian inverse Optimal Estimation

retrieval (Rodgers, 2000) implemented by the pyOptimalEstimation library (Maahn et al., 2020) to retrieve the misalignment245

state from the actual observed zL :
zL.

The retrieved misalignment parameters are required for matching, but retrieving the misalignment parameters requires

matched particles. To solve this dilemma, we use an iterative method assuming that misalignment does not change suddenly.

The method starts by using the misalignment estimates and uncertainties (inflated by a factor of 10) from the previous time

period (10 minutes) to match particles of the current time period. These particles are used to retrieve values for φ, θ, and Ofz250

:::
Ofz which are used as a priori input for the next iteration of misalignment retrieval. The iteration is stopped when the changes

in φ, θ, andOfz:::
Ofz:are less than the estimated uncertainties. For efficiency, the iterative method is applied only to the first 300

observed particles and the resulting coefficients are stored in the metaRotation product. A drawback of the method is that this

processing step requires processing the 10-minute measurement chunks in chronological order, creating a serial bottleneck in

the otherwise parallel VISSS processing chain. Obviously, this method does not work when no information is available from255

the previous time step, e.g., after the instrument was set up or adjusted. To get the starting point for the iteration, the matching

algorithm is applied for frames where only a single, relatively large (> 10 px) particle is detected, so that the matching can be

done based on particle height difference (∆h) alone, ignoring vertical offset (∆z).
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Figure 4. Composit of a snow particle recorded by leader (a) and follower (b) during MOSAiC on 15 November 2019 05:31 UTC. Result

of particle
:::::
Particle

:
tracking

:
is
::::::
shown for a

:::::
frame

::
of

:
the leader (c) and

::
the

::::::
matched

:::::
frame

::
of

:::
the follower (d) of a snow particles recorded in

Hyytiälä on 23 January 2022 04:10 UTC.
:::
For

::::
each

::::
snow

::::::
particle

:::::::::
(surrounded

::
by

:::::
boxes

:::::::
denoting

::::::
particle

::
id,

::::
time

::
of

:::::::::
observation,

:::
and

:::::
match

:::::
score),

::
the

::::::
particle

::::
track

::
is

:::::
shown.

:
The tracks indicate past and future positions of a particle and are labeled . with the track id number starting

with T. Only parts of the tracks observed by both cameras are displayed.The number at the particles denote particle id, time of observation,

and match score.

3.4 Particle Tracking

Tracking a matched particle over time provides its three-dimensional trajectory, from which sedimentation velocity and inter-260

action with turbulence can be determined. Since the natural tumbling of the particles provides new particle perspectives, the

estimates of particle properties such as Dmax::::
Dmax, A, p, and AR can be further improved. This can be seen in a composite

of a particle (Fig. 4.a-b) observed during MOSAiC, which also shows how the multiple perspectives of the particle help to

identify its true shape. The example also shows that during MOSAiC the alignment of the cameras was not perfect, resulting

in some of the measurements being slightly out of focus; this has been resolved for later campaigns. The tracking algorithm265

uses a probabilistic approach similar to particle matching taking into account that the particles’ velocities only change to a

certain extent from one frame to the next. That change can be quantified as a cost derived from the particles’ distances and

shape
:::
area

:
differences between two time steps. This allows to use the Hungarian method (Kuhn, 1955) to assign the individual
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matched particles to particle tracks for each time step in a way that minimizes the costs, i.e. to solve the assignment problem.

To account for the fact that the particle’s position is expected to change between observations, we use a Kalman filter (Kalman,270

1960) to predict a particle’s position based on the past trajectory and use the distance δl between predicted and actual posi-

tion for the cost estimate. Without a past trajectory, the Kalman filter uses a first guess which we derive from the velocities

of
:::
200

:
previously tracked particles.

::
If

::
no

::::::::
previous

:::::::
particles

:::
are

:::::::::
available,

:::
the

:::::::
tracking

::::::::
algorithm

::
is
:::::::
applied

:::::
twice

::
to

:::
the

::::
first

:::
400

:::::::
particles

::
to
:::::

avoid
::

a
:::::::
potential

::::
bias

::::::
caused

:::
by

:::::
using

:
a
:::
not

:::::::::::
case-specific

:::::
fixed

:::::
value

::
as

:
a
::::
first

::::::
guess. We found that tracking

based only on position is unstable and added the difference of particle area (δA, mean of both cameras) to the cost estimate to275

promote continuity of particle shape. The combined cost is estimated from the product of δl and δA weighted by their expected

variance. The performance of the algorithm can be seen for an observation obtained in Hyytiälä on 23 January 2022 04:10

UTC where multiple particles are tracked at the same time (Fig. 4.c-d). The results of the tracking algorithm are stored in the

level1track product which contains the track id and the same per particle variables as the other level
:::::
Level 1 products.

3.5 Particle size distributions280

To estimate the particle size distribution (PSD), i.e., the particle number concentration as a function of size, the individual

particle data are binned by particle size (1 px spacing, i.e. 43.125 or 58.75 m) and averaged to one minute resolution for particle

properties such as size, area, and perimeter. These level 2 products are available based on the level1match and level1track

products. For level2match, binned particle properties are available either from one of the cameras or using the minimum,

average or maximum from both cameras for each observed particle property. This means that the multiple observations of the285

same particle all contribute to the PSD. This does not bias the PSD because the number of observed particles is divided by the

number of frames, and the PSD describes how many particles are on average in the observation volume. For level2track, the

distributions are based on the observed tracks instead of individual particles, and are calculated using the minimum, maximum,

mean, or standard deviation along the observed track using both cameras. The use of the maximum (minimum) value along a

track is motivated by the assumption that the estimated properties of a particle such as Dmax (AR) of a particle will be closer290

to the true value than when ignoring the different perspectives of a particle along the track obtained by the two cameras.

For both level2 variants, the binned PSD and A, perimeter p, and particle complexity c are available binned with Dmax and

Deq to allow comparison with instruments using either size definition. In addition to the distributions, PSD-weighted mean

values are available forA,AR, and c in addition to the first to fourth and sixth moments of the PSD that can be used to describe

normalized size distributions .295

For VISSS observations where only a single camera is available, it would also be possible to develop a product based on

particles detected by a single camera, using a threshold based on particle blur to define the observation volume, similar to the

PIP .

3.5 Calibration

Calibration is required to convert Dmax, Deq:::::
Dmax,

:::
Deq, and p from pixels to µm. It depends not only on the optical properties300

of the lens but also on the used computer vision routines. Calibration is obtained using reference steel or ceramic spheres with 1
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Figure 5. Calibration of Dmax::::
Dmax:(first row), Deq ::

Deq:(second row), and perimeter p (third row) using metal spheres for the VISSS 1

(first column), using metal spheres for the VISSS 2 (second column), using artificial sphere images (third column), and using artificial square

images (fourth column). For artificial images, a Gaussian blur filter is applied with a standard deviation according to the embedded legends.

The legends also show the results of linear least squares fits.

to 3 mm diameter that are dropped into the VISSS observation volume. After processing using the standard VISSS routines, the

estimated sizes are compared to the expected ones. A linear least square fit is applied to the 604 reference sphere observations

obtained at Hyytiälä and SAIL resulting in

Dmax[px]max[px]
:::::

= (0.01700± 0.00001) ·Dmax[µm]max[µm]
::::::

+(0.49301± 0.02101), (3)305

for the VISSS1 (Fig. 5.a) and

Dmax[px]max[px]
:::::

= (0.02311± 0.00003) ·Dmax[µm]max[µm]
::::::

+(0.81569± 0.06997), (4)

for the VISSS2 based on 372 samples from Ny-Ålesund (Fig. 5.b). The inverse of the slope is 58.832 µm px−1 (43.266

µm px−1) and is close to the manufacturer’s specification of 58.75 µm px−1 (43.125 µm px−1) for the VISSS1 (VISSS2).

The random error estimated from the normalized root mean square error obtained from the difference between observed and310

expected size is less than 0.8% indicating that random errors are negligible. To investigate the source of the non-zero intercept,
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we also tested the VISSS computer vision routines with artificially created VISSS images with drawn spheres and compared

the expected to measured Dmax ::::
Dmax:by a least squares fit (Fig. 5.c). Gaussian blur with a standard deviation between 0 and 3

px was applied to account for a realistic range of blurring due to e.g., motion blur or particles that are slightly out of focus. Note

that in addition to that, a Gaussian blur filter with a standard deviation of 1.5 px needs to be applied during image processing315

for the Canny edge detection as discussed above. For the artificial spheres, the obtained slope deviates less than 2% from the

expected slope of 1.0, but the offset ranges from 0.6 to 1.5 px caused by the seeming enlargement of the particle due to the

applied blur. To investigate the shape dependency of the results, we repeated the experiment with squares (Fig. 5.d). Again,

the slope deviates less than 2% from 1.0, but the offset is this time negative with values ranging between −1.4 px and −2.9 px

depending on blur. This is because the corners of the square are rounded when applying Gaussian blur so that the true Dmax320

::::
Dmax:can no longer be obtained. In summary, the VISSS routines overestimate Dmax ::::

Dmax:
of spheres, but underestimate

Dmax ::::
Dmax of squares. In reality, the VISSS observes a wide range of different shapes that can be both rather spherical or

rather complex with "pointy" corners. Therefore, we decided to set the intercept to 0 when calibrating Dmax ::::
Dmax:which can

cause a particle shape dependent bias of ±4 to ±6%. For particles smaller than 10 px, this bias can be slightly larger due to

discretization errors as can be seen from the larger impact of blur for small squares (Fig. 5.d).325

For better comparison withDmax,Deq ::::
Dmax,

::::
Deq is used instead ofA for testing the computer vision method for estimating

A (Fig 5.e-h). The results are almost identical to Dmax ::::
Dmax:so that the slopes derived from Dmax ::::

Dmax:are applied to Deq

:::
Deq:(and consequently A) as well.

For the perimeter p (Fig. 5.i-l), the slopes derived from the reference spheres are about 5% steeper than for Dmax ::::
Dmax

indicating that VISSS p are biased high. This bias is also found for artificial spheres independent of the applied additional330

blur. Therefore, this bias is related to the image processing and most likely caused by the Gaussian blur required for the Canny

edge detection. For squares, however, the slope is close to 1 likely due to compensating effects caused by "cutting corners" of

the algorithm. In reality, the VISSS observes more complex particles for which the perimeter increases with decreasing scale.

(compare to coast line paradox, Mandelbrot, 1967). Therefore, we conclude that it is extremely unlikely that the perimeter of

real particles is biased high like for artificial spheres but rather biased low depending on complexity. As a pragmatic approach,335

we also apply the Dmax ::::
Dmax slope to p but stress that p has a considerably higher uncertainty than Dmax or Deq:::::

Dmax ::
or

:::
Deq.

The calibration is also checked by holding a millimeter pattern in the camera and measuring the pixel distance in the images,

the found difference to the reference spheres is less than 2%. The millimeter pattern calibration did not reveal any dependence

on the position in the observation volume so that errors related to imperfect telecentricity of the lenses can be likely neglected.

Calibration of the PSD also requires to obtain the exact size of340

3.6
::::::::::::

Time-resolved
:::::::
particle

:::::::::
properties

:::::
While

:::::
Level

::
1

:::::::
products

:::::::
contain

:::::::::
per-particle

::::::::::
properties,

:::::
Level

:
2
::::::::
products

::::::
provide

::::::::::::
time-resolved

:::::::::
properties.

::::
This

::::::::
includes

:::
the

::::::
particle

::::
size

::::::::::
distribution

::::::
(PSD),

:::::
which

::
is

:::
the

::::::::::::
concentration

::
of

:::::::
particles

:::
as

:
a
:::::::
function

:::
of

:::
size

::::::::::
normalized

::
to

:
the

::
bin

::::::
width.

:::
To

:::::::
estimate

:::
the

:::::
PSD,

:::
the

::::::::
individual

:::::::
particle

::::
data

:::
are

::::::
binned

:::
by

:::::::
particle

:::
size

:::
(1

::
px

::::::::
spacing,

:::
i.e.

::::::
43.125

::
or

::::::
58.75 µ

:::
m),

::::::::
averaged

:::
over

:::
all

::::::
frames

::::::
during

::::::::::
one-minute

:::::::
periods,

::::
and

::::::
divided

:::
by

:::
the

:
observation volume. For perfectly aligned cameras, this

:::
the345
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:::::::::
observation

:::::::
volume would simply be the volume of a rectangular cuboid with a base of 1280 px x 1280 px and a height of 1024

px. However, due to misalignment of the cameras, the actual joint observation volume is slightly smaller than a rectangular

cuboid and can have an irregular shape. Therefore, the observation volumes are first calculated separately for leader and

follower. To calculate the intersection of the two individual observation volumes, the eight vertices of the follower observation

volume are rotated to the leader coordinate system, and the OpenSCAD library is used to calculate the intersection of the two350

separate observation volumes
::
in

::::
pixel

:::::
units. To account for the removal of partially observed particles detected at the edge of

the image, the effective observation volume is reduced by Dmax::::
Dmax/2 px on all sides.

:::::::::::
Consequently,

::::
each

::::
size

:::
bin

::
of

:::
the

::::
PSD

:
is
:::::::::
calibrated

::::::::::::
independently

::::
with

::
a

::::::::
different,

:::::::::::::
Dmax-dependent

::::::::
effective

::::::::::
observation

:::::::
volume.

:
Finally, the volume is converted

from pixel units to m3 using the calibration factor estimated above.

:::
The

:::::
Level

::
2
::::::::
products

:::
are

::::::::
available

:::::
based

:::
on

:::
the

::::::::::
level1match

::::
and

:::::::::
level1track

::::::::
products.

::::
For

:::::::::::
level2match,

::::::
binned

:::::::
particle355

::::::::
properties

:::
are

::::::::
available

:::::
either

:::::
from

:::
one

::
of

:::
the

::::::::
cameras

::
or

:::::
using

:::
the

:::::::::
minimum,

:::::::
average

::
or

:::::::::
maximum

::::
from

:::::
both

:::::::
cameras

:::
for

::::
each

:::::::
observed

:::::::
particle

::::::::
property.

::::
This

:::::
means

::::
that

:::
the

:::::::
multiple

:::::::::::
observations

::
of

:::
the

::::
same

:::::::
particle

::
all

:::::::::
contribute

::
to

:::
the

:::::
PSD.

::::
This

::::
does

:::
not

::::
bias

:::
the

::::
PSD

:::::::
because

:::
the

:::::::
number

::
of

::::::::
observed

:::::::
particles

::
is

:::::::
divided

::
by

:::
the

:::::::
number

::
of

:::::::
frames,

:::
and

:::
the

:::::
PSD

::::::::
describes

:::
how

::::::
many

:::::::
particles

:::
are

:::
on

:::::::
average

:
in

:::
the

::::::::::
observation

:::::::
volume.

::::
For

::::::::::
level2track,

:::
the

:::::::::::
distributions

:::
are

:::::
based

:::
on

:::
the

::::::::
observed

:::::
tracks

::::::
instead

::
of

:::::::::
individual

:::::::
particles,

::::
and

:::
are

::::::::
calculated

:::::
using

:::
the

:::::::::
minimum,

:::::::::
maximum,

:::::
mean,

:::
or

:::::::
standard

::::::::
deviation

:::::
along

:::
the360

:::::::
observed

:::::
track

:::::
using

::::
both

:::::::
cameras.

::::
The

:::
use

:::
of

:::
the

::::::::
maximum

::::::::::
(minimum)

:::::
value

:::::
along

:
a
:::::

track
::
is

::::::::
motivated

:::
by

:::
the

::::::::::
assumption

:::
that

:::
the

::::::::
estimated

:::::::::
properties

::
of

:
a
:::::::

particle
::::
such

::
as
:::::
Dmax:::::

(AR)
::
of

::
a
::::::
particle

::::
will

:::
be

:::::
closer

::
to

:::
the

::::
true

::::
value

::::
than

:::::
when

::::::::
ignoring

::
the

::::::::
different

::::::::::
perspectives

::
of

::
a

::::::
particle

:::::
along

:::
the

:::::
track

:::::::
obtained

::
by

:::
the

::::
two

:::::::
cameras.

:

:::
For

::::
both

:::::
level2

::::::::
variants,

:::
the

:::::
binned

:::::
PSD

:::
and

:::
A,

::::::::
perimeter

::
p,

:::
and

:::::::
particle

:::::::::
complexity

::
c
:::
are

:::::::
available

::::::
binned

:::::
with

::::
Dmax::::

and

:::
Deq::

to
:::::
allow

::::::::::
comparison

:::::
with

::::::::::
instruments

:::::
using

:::::
either

::::
size

::::::::
definition.

:::
In

:::::::
addition

::
to

:::
the

:::::::::::
distributions,

:::::::::::::
PSD-weighted

:::::
mean365

:::::
values

::::
with

:::
one

::::::
minute

:::::::::
resolution

:::
are

:::::::
available

:::
for

:::
A,

::::
AR,

:::
and

:
c
::
in

:::::::
addition

::
to

:::
the

::::
first

::
to

:::::
fourth

:::
and

:::::
sixth

::::::::
moments

::
of

:::
the

::::
PSD

:::
that

:::
can

:::
be

::::
used

::
to

:::::::
describe

::::::::::
normalized

:::
size

:::::::::::
distributions (Delanoë et al., 2005; Maahn et al., 2015).

:

:::
For

::::::
VISSS

:::::::::::
observations

:::::
where

::::
only

::
a
:::::
single

:::::::
camera

:
is
:::::::::

available,
:
it
::::::

would
::::
also

::
be

::::::::
possible

::
to

:::::::
develop

:
a
:::::::
product

:::::
based

:::
on

:::::::
particles

:::::::
detected

:::
by

:
a
:::::
single

:::::::
camera,

:::::
using

:
a
::::::::
threshold

:::::
based

:::
on

::::::
particle

::::
blur

::
to

::::::
define

:::
the

::::::::::
observation

:::::::
volume,

::::::
similar

::
to

:::
the

:::
PIP (Newman et al., 2009)

:
.370

4 Pilot studies

Here, we analyze first generation VISSS (VISSS1) data collected in winter 2021/22 at the Hyytiälä Forestry Field Station

(61.845◦N, 24.287◦E, 150 m MSL) operated by the University of Helsinki, Finland to show the potential of the instrument.

For comparison, we use a co-located PIP (von Lerber et al., 2017; Pettersen et al., 2020) and OTT Parsivel2 laser disdrometer

(Löffler-Mang and Joss, 2000; Tokay et al., 2014). The distance between the VISSS and PIP was 20 m. The Parsivel was375

located inside of the double fence intercomparison reference, which was located 35 m from VISSS.
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4.1 Case study comparing VISSS, PIP, and Parsivel

VISSS level2match data are compared with PIP and Parsivel observations for a snowfall case on 26 January 2022. For a fair

comparison with PIP and Parsivel that observe particles from a single perspective, only data of a single VISSS camera is used

in this section. Because Parsivel uses something similar toDeq :::
Deq:(see discussion in Battaglia et al., 2010, for the predecessor380

instrument), Deq :::
Deq:is also used as a PIP and VISSS size descriptor in the following. Also, Deq :::

Deq:is not affected by the

problems of the PIP particle sizing algorithm identified by (Helms et al., 2022). The PSD is characterized by the two variables

N∗
0 and D32 ::

N∗
0::::

and
::::
D32 used to describe the normalized size distributions N(D) =N∗

0F (D/D32)::::::::::::::::::::
N(D) =N∗

0 F (D/D32)

(Testud et al., 2001; Delanoë et al., 2005) where N∗
0 :::
N∗

0 is a scaling parameter and D32 :::
D32:

normalizes the size distribution

by size. Assuming a typical value of 2 for the exponent b of the mass-size relation (e.g., Mitchell, 1996), D32 :::
D32 is the proxy385

for the mean mass-weighted diameter defined as the ratio of the third to the second measured PSD moments M3/M2::::::
M3/M2.

Assuming the same value for b, N∗
0 :::
N∗

0 can be calculated with

N00
∗ =

M4
2

M3
3

M4
2

M3
3

:::

27

2
(5)

as shown in Maahn et al. (2015). The variability ofN∗
0 andD32:::

N∗
0::::

and
:::
D32:as well as the particle complexity c and the number

of particles observed throughout the day are depicted in Fig. 6. The spectral variable c is available for each size bin. Because390

using a PSD-weighted average over all sizes for c would be heavily weighted to smaller particles which are less complex due to

the finite resolution, we use the 95th percentile for c in the following. The main precipitation event lasted from 10:00 to 17:30

UTC and shows an anticorrelation between N∗
0 and D32 ::

N∗
0::::

and
::::
D32: the former increases up to 105 m−3 mm−1 until 13:00

UTC before decreasing to 103 m−3 mm−1 at the end of the event. The particle complexity c divides the core period of the

event into two parts with c≈ 2 before 13:00 UTC and c≈ 2.8 after 13:00 UTC. This transition can also be seen in the random395

selection of matched particles observed by the VISSS (Fig. 7) retrieved from the imagesL1detect product. For each particle, a

pair of images is available from the two VISSS cameras. Before 13:00 UTC, a wide variety of different particle types has been

observed, including plates, small aggregates and small rimed particles. Since particle shape and mean brightness are not used

to match particles, the observed image pairs also confirm the ability of VISSS to correctly match data from the two cameras.

After 13:00 UTC, needles and needle aggregates dominate the observations explaining the increase in observed complexity.400

Towards the end of the event, particles become smaller and more irregularly shaped. Around 18:30 UTC, even some ice lolly

shaped particles (Keppas et al., 2017) are observed by the VISSS.

N∗
0 and D32 :::

N∗
0 :::

and
::::
D32:are also calculated from the PSDs observed by PIP and Parsivel. For the core event, N∗

0 :::
N∗

0

measured by the PIP is about an order of magnitude smaller than that measured by VISSS and Parsivel. The agreement

of VISSS and Parsivel is better, but some peaks in N∗
0 :::
N∗

0 :
are not resolved by the Parsivel when D32 :::

D32:is large. This405

discrepancy may be related to problems of the Parsivel with larger particles reported before (Battaglia et al., 2010). The reason

for the observed differences between PIP and VISSS is likely more complex. Overall the measured D32 :::
D32:agrees better than

N∗
0 . Because D32 :::

N∗
0 .

::::::::
Because

:::
D32:is a proxy for the mass-weighted mean diameter, larger more massive snowflakes have

a larger impact on D32::::
D32 than more numerous smaller particles. This implies that PIP is not capturing as many small ice
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particles as VISSS, while measurements of larger particles seem to be less affected. Tiira et al. (2016) have studied the effect410

of the left-side PSD truncation on PIP observations (see Fig. 6 in Tiira et al., 2016), but the observed VISSS - PIP difference

seems to be somewhat larger than expected, namely the difference extends to larger D32 :::
D32:values.

The number of particle observations ranges between 10,000 and 100,000 per minute, showing that estimates of N∗
0 , D32::::

N∗
0 ,

:::
D32, and c are based on sufficient number of observations to limit the impact of random errors. This is about 1.5 orders of

magnitude more particles than observed by Parsivel and PIP (Fig. 6.d), but this is not a fair comparison because Parsivel and415

PIP report the number of unique particles, and the number of particle observations is used here for the VISSS. When applying

the tracking algorithm to the VISSS and consider
:::::::::::::
and—consistent

::
to

::::
the

::::
other

::::::::::::::::::
sensors—considering

:
only unique particle

observationsconsistent to the other sensors, the advantage of the VISSS is reduced to 50%
::::
more

:::::::
particles

::::
than

::::::::
observed

:::
by

::::::
Parsivel

::::
and

:::
PIP. The average track length of the VISSS varies throughout the day between 5 and 20 frames with an overall

average of 8.5 frames.420

To further investigate the differences between the instruments, we compare VISSS, PIP, and Parsivel PSDs (Fig. 8) for the

three discussed times during the snowfall case. While Parsivel and VISSS mostly agree for D > 1 mm for all three cases,

Parsivel observes more particles for 0.6 mm<D < 1 mm (as previously reported by Battaglia et al., 2010) before dropping for

D < 0.6 mm, which is likely related to limitations associated with the Parsivel pixel resolution of 125 µm. The comparison of

VISSS and PIP shows larger discrepancies as explained above. The PSDs tend to agree forDeq > :::::
Deq > 1 mm for cases where425

larger ice particles are more spherical (11:24 UTC). For the needle case (13:00 UTC), PIP reports lower number concentrations

than VISSS and Parsivel for almost all sizes. At 10:10 UTC, VISSS and PIP approximately agree for sizes between 0.4 and

0.8 mm, but PIP reports lower values for other sizes. Although no needles are observed at 10:10 UTC, Fig. 7 shows that there

were also small columns that could be affected by the dilation of structures less than 0.4 mm wide by the PIP software, or some

parts of radiating assemblage of plates were removed by the image processing.430

All three instruments have different sensitivities to small particles. This can be seen for the drop in D32 :::
D32:around 17:45

UTC (Fig. 6) where the Parsivel does not report any values, and the PIP N∗
0 :::
N∗

0 :
estimates differ strongly from the VISSS when

D32 < :::::
D32 <:

1 mm. The VISSS reports D32::::
D32 values as low as 0.16 mm around 19:00 UTC. Although the sample sizes

are sufficient (> 10,000 particles per minute), the errors are likely large due to the VISSS pixel resolution of ~0.06 mm. In the

absence of an instrument designed to observe small particles, it is not possible to determine how reliably VISSS detects and435

sizes small particles.

Additional insight is provided by comparing the drop size distributions (DSD) observed by the three instruments during

a drizzle event on 16 October 2021 (Fig. 8.d). The use of drizzle allows Parsivel to be used as a reference instrument as it

has been shown to provide accurate DSDs for sizes between 0.5 and 5 mm (Tokay et al., 2014). In fact, Parsivel and VISSS

DSDs differ no more than 10% for 0.55 mm >D > 0.9 mm both showing a dip in the distribution around 0.55 mm. For larger440

droplets, differences are likely related to their low frequency of occurrence increasing statistical errors. For smaller droplets,

VISSS (and PIP) report about an order of magnitude higher concentrations than the Parsivel. Similarly, (Thurai et al., 2019)

found that a 50 µm optical array probe observed more small drizzle droplets than a Parsivel. For these small particle sizes close

to the VISSS camera pixel resolution, discretization errors likely play a role which we investigate by comparing Dmax and
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Deq ::::
Dmax::::

and
:::
Deq:for the VISSS. As drizzle droplets can be considered sufficiently spherical (i.e. AR >0.9) for D <1 mm445

(Beard et al., 2010), we can evaluate whether Dmax =Deq ::::::::::
Dmax =Deq:

holds as expected (Fig. 8.d). As expected, VISSS

Dmax and Deq ::::
Dmax::::

and
:::
Deq:are in almost perfect agreement for D >0.5 mm, but larger differences occur for D <0.3 mm

indicating that discretization errors can become substantial for D <0.3 mm.

In the absence of a reference instrument for smaller particles in Hyytiälä or reference spheres with diameters smaller than

0.5 mm, the performance of the VISSS for observing small particles with D <0.5 mm is difficult to assess. Particles close to450

the thresholds for size, area, and blur might be rejected for parts of the observed trajectory which could explain the decrease in

VISSS number concentration for small particle sizes.

4.2 Statistical comparison of VISSS, PIP, and Parsivel

The results of the case study comparison of VISSS, PIP, and Parsivel also hold when comparing 6661 minutes of joint snowfall

observations during the winter of 2021/22 (Fig. 9). The ratio of N∗
0 :::
N∗

0 :
observed by VISSS and PIP (Parsivel) is compared to455

D32, N∗
0 :::
D32,

::::
N∗

0 , and complexity c. For D32 < :::::
D32 < 1 mm, the VISSS to PIP (Parsivel) N∗

0:::
N∗

0 :
ratio increases strongly and

can reach a value of 10,000 (10). Therefore, the comparison of the N∗
0 ratio with N∗

0 ::
N∗

0:::::
ratio

::::
with

:::
N∗

0 :
itself and c is limited

to data with D32 > :::::
D32 >:

1 mm. For the PIP, the difference in N∗
0 ::
N∗

0:
does not depend on N∗

0 :::
N∗

0 but—as suggested by the

needle case above—on complexity c, with higher c values indicating larger N∗
0 :::
N∗

0 :
differences, probably related to problems

of
::
as

:
a
::::::

result
::
of

:::::::::
limitations

::
in

:
the PIP image processing

:::::::::::::
implementation. For the VISSS to Parsivel comparison, the N∗

0 :::
N∗

0460

difference depends rather on N∗
0 :::
N∗

0 instead of c. Because D32 and N∗
0 :::
D32:::

and
::::
N∗

0 :
are often anti-correlated, this could be

related to size-dependent errors of the Parsivel as identified by Battaglia et al. (2010).

4.3 Advantage of the second VISSS camera

Here, we quantify the advantage of observing multiple orientations of a particle with the VISSS. For this, we compare one

minute values of mean Dmax, Deq:::::
Dmax,

:::
Deq, and p obtained from a single camera, using the maximum value obtained from465

both cameras, and the maximum value obtained during the observed particle track (Fig. 10.a-c). For AR, the minimum of the

two cameras and along the track is used instead of the maximum (Fig. 10.d). To evaluate the effect of particle type, three cases

with mostly dendritic aggregates (6 December 2021, 07:19 - 12:30 UTC), needles (5 January 2022, 00:00 - 14:30 UTC), and

graupel (6 December 2021, 00:00 - 04:50; 13:30 - 14:20; 21:15-24:00 and 5 January 2022, 15:00 - 16:40; 19:40 -20:50 UTC)

are used. The change in observed values is strongest for needles, which are the most complex particles, where when using470

two cameras Dmax, Deq:::::
Dmax,

::::
Deq, p, and AR change by 16%, 10%, 14%, and −12%, respectively, and when additionally

considering tracking the values change by 24%, 19%, 24%, and −27%, respectively. Changes for dendritic aggregates and

graupel are less and surprisingly similar: Dmax ::::
Dmax increases by 8% and 7% (13% and 16%), Deq :::

Deq increases by 6% and

6% (14% and 14%), and p increases by 7% and 7% (19% and 16%), respectively, when using two cameras (two cameras with

tracking). The dependency of particle properties to orientation can be also seen from the fact that mean AR decreases from475

0.62 to 0.54 and 0.42 for aggregates and from 0.73 to 0.67 and 0.54 for graupel highlighting that orientating matters even for

graupel.
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Figure 6. Comparison of VISSS (blue), PIP (orange), and Parsivel (green) for a snowfall case on 26 January 2022 at Hyytiälä using N∗
0 :::
N∗

0

(a), D23 :::
D32 (b), complexity c (c), and the number of observed particles (d). For the VISSS, the latter is shown without (blue) and with (red)

particle tracking. The three vertical black lines indicate the sample PSDs shown in Fig. 8.

Underestimating Dmax ::::
Dmax:can lead to biases when using commonly used Dmax:::::

Dmax based power laws for particle mass

(Mitchell, 1996) or when using in situ observations to forward model radar observations. This is because scattering properties of

non-spherical particles are typically parameterized as a function of Dmax ::::
Dmax:(Mishchenko et al., 1996; Hogan et al., 2012).480
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Figure 7. Image pairs of particles observed by the two VISSS cameras on 26 January 2022 between 10:00 and 19:00 UTC in original

resolution. The (R) indicates that more particles than shown were observed by the VISSS and only a random selection is presented in the

panel. Even though particles ≥ 2 px are processed, only particles with Dmax ≥
::::::
Dmax ≥ 10 px (0.59 mm) are shown because the particle

shape of smaller particles cannot be identified.
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Figure 8. (a-c) Particle size distributions of VISSS, PIP, and Parsivel for the three cases indicated in Fig. 6 on 26 January 2022 integrated

over 1 minute. Deq :::
Deq is used as a size descriptor. (d) Same as (a-c), but showing the drop size distribution of a drizzle case on 16 October

2021. In addition, the VISSS drop size distribution is also shown with Dmax :::
Dmax:as the size descriptor.

Further, particle scattering properties are also impacted by the distribution of particle mass along the path of propagation

(Hogan and Westbrook, 2014) which is impacted by AR. To analyze how the different Dmax ::::
Dmax and AR estimates affects

the simulated radar reflectivity for vertically pointing cloud radar observations at 94 GHz, we use the PAMTRA radar simulator

(Passive and Active Microwave radiative TRAnsfer tool, Mech et al., 2020) with the riming-dependent parameterization of

the particle scattering properties (Maherndl et al., 2023a) assuming horizontal particle orientation (Sassen, 1977; Hogan et al.,485

2002). Using two cameras (i.e., max(Dmax::::
Dmax, min(AR)) increases mean Ze ::

Ze:values by 2.1, 2.5 and 1.8 dB for aggregates,

needles, and graupel, respectively. When exploiting also the varying orientations
:::
are

:::::
taken

:::
into

:::::::
account

:
during tracking, the

offsets increase to 4.5, 4.6, and 3.7 dB, respectively, which is considerably larger than the commonly used measurement

uncertainty of 1 dB for cloud radars. The change in Ze ::
Ze:is similar to the 3.2 dB found by Wood et al. (2013) using idealized

particles.490

5 Conclusions

The hardware and data processing of the open source Video In Situ Snowfall Sensor (VISSS) has been introduced. The VISSS

consists of two cameras with telecentric lenses oriented at a 90° angle to each other and observe a common observation volume.
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Both cameras are illuminated by LED backlights (see Table 1 for specifications). The goal of the VISSS design was to combine

a large, well defined observation volume and relatively high pixel resolution with a design that limits wind disturbance and495

allows accurate sizing. The VISSS was initially developed for MOSAiC, but additional deployments at Hyytiälä, Finland

and Gothic, Colorado USA followed. An advanced version of the instrument has been installed at Ny-Ålesund, Svalbard.

The VISSS level
:::::
Level 1 processing steps for obtaining per-particle properties include particle detection and sizing, particle

matching between the two cameras considering the exact alignment of the cameras to each other, and tracking of individual

particles to estimate sedimentation velocity and improve particle property estimates. For level
::::
Level

:
2 products, the temporally500

averaged particle properties and size distributions are available in calibrated metric units.

The initial analysis shows the potential of the instrument. The relatively large observation volume of the VISSS leads to

robust statistics based on up to 10,000 individual particle observations per minute. The data set from Hyytiälä obtained in the

winter of 2021/22 is used to compare the VISSS with collocated PIP and Parsivel instruments. While the comparison with the

Parsivel shows—given the known limitations of the instrument for snowfall (Battaglia et al., 2010)—excellent agreement, the505

comparison with the PIP is more complicated. The differences in the observed PSDs increase with increasing particle complex-

ity c (e.g., needles), but differences remain even for non-needle cases and for a case with a relatively high concentration of large,

relatively spherical particles, agreement was only found for sizes larger than 1 mm. Because the Parsivel is well characterized

for liquid precipitation (Tokay et al., 2014), a drizzle case is also used for comparison. The case shows an excellent agreement

between Parsivel and VISSS for droplets larger than 0.5 mm, confirming the general accuracy of VISSS. Compared to both510

PIP and Parsivel, VISSS observes a larger number of small particles that can drastically change the retrieved PSD coefficients

in some cases. However, the first generation VISSS pixel resolution of 0.06 mm is likely to introduce discretization errors

for particles smaller than 0.3 mm (i.e. 5 px), potentially leading to errors in the sizing of very small particles. Furthermore,

we analyzed the advantage of the VISSS due to the availability of a second camera. Depending on the particle type, mean

Dmax ::::
Dmax increases up to 16% and mean aspect ratio AR decreases by 12%. For the analyzed case, the VISSS observes515

each particle on average 8.5 times which can further improve estimates of particle properties due to the natural rotation of the

particle during sedimentation. In comparison to using only a single camera, this can increase mean Dmax ::::
Dmax:by up to 24%

and reduce AR by up to 31%.

VISSS product development will continue, e.g., by implementing machine learning based particle classifications (Praz et al.,

2017; Leinonen and Berne, 2020; Leinonen et al., 2021). Also, we will work on making VISSS data acquisition and processing520

more efficient by handling some processing steps on the data acquisition system in real-time. We invite also the community to

contribute to the development of the open source instrument. This applies not only to the software products, but allows also

for other groups to build and improve the instrument. It could even mean to advance the VISSS hardware concept further,

by e.g. adding a third camera to observe snow particles from below or—given the extended 1300 mm working distance of

VISSS3—from above. The VISSS hardware plans (2nd generation VISSS, Maahn et al., 2023b), data acquisition software525

(Maahn, 2023a), and data processing libraries (Maahn, 2023b) have been released under an open source license so that reverse

engineering as done by Helms et al. (2022) is not required to analyze the VISSS data processing. The only limitation of the
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used licenses is that modification of the VISSS need to be made publicly available under the same license. Hardware plans for

the third VISSS generation will be published on completion of the instrument end of the year.

There are many potential applications for VISSS observations. It can be used for model evaluation with advanced micro-530

physics (e.g., Hashino and Tripoli, 2011; Milbrandt and Morrison, 2015), characterization of PSDs as a function of snowfall

formation processes, or retrievals combining in situ and remote sensing observations. Tracking of a particle in three dimensions

can be used to understand the impact of turbulence on particle trajectories. Beyond atmospheric science, the VISSS shows po-

tential for quantifying the occurrence of flying insects, as standard insect counting techniques such as suction traps are typically

destructive and labor-intensive.535

Code and data availability. VISSS hardware plans (Maahn et al., 2023b), data acquisition software (Maahn, 2023a), and data

processing libraries (version 2023.1.6, Maahn, 2023b) have been released under an open source license.
::::::::
Processed VISSS, PIP,

and Parsivel observations used for the pilot study are available at https://zenodo.org/record/7797286 (Maahn and Moisseev,

2023b).
:::::
VISSS

::::
raw

::::
data

::
is

::::::::
available

:::
for

::::::::
MOSAiC

:::::::
2019/20

:
(Maahn et al., 2023a)

:
,
:::::::
Hyytiälä

::::::::
2021/22 (Maahn and Moisseev,

2023a),
:::
and

:::::::::::
Ny-Ålesund

:::::::
2021/22 (Maahn and Maherndl, 2023)

::
on

:::::::
Pangaea

::
at
:
https://www.pangaea.de

:
.540

Appendix A: Coordinate system transformation

We use a right handed coordinate system (x,y,z) to define the position of particles in the observation volume, where z points

to the ground (see Fig. 1). The follower coordinate system (xF ,yF ,zF:::::::
xF,yF,zF) can be transformed into the leader coordinate

system (xL,yL,zL:::::::
xL,yL,zL) by the standard transformation matrix


xL

yL

zL

=


cosθ cosψ sinφsinθ cosψ− cosφsinψ cosφsinθ cosψ+sinφsinψ

cosθ sinψ sinφsinθ sinψ+cosφcosψ cosφsinθ sinψ− sinφcosψ

−sinθ sinφcosθ cosφcosθ



x′F

y′F

z′F

 (A1)545

using the follower’s rollφ, yawψ, and pitch θ, analogous to airborne measurements, and with x′F = xF +Ofx, y′F = yF +Ofy ,

and z′F = zF +Ofz , where Ofx, Ofy , and Ofz :::::::::::::
x′F = xF +Ofx,

::::::::::::
y′F = yF +Ofy ,

::::
and

::::::::::::
z′F = zF +Ofz ,

:::::
where

:::::
Ofx,

::::
Ofy ,

:::
and

::::
Ofz

are the offsets of the follower coordinate system in the x, y, and z directions, respectively (see Fig. 1) Offsets in Ofx and

Ofy :::
Ofx::::

and
:::
Ofy:are neglected, because they would only materialize in reduced particle sharpness, but not in the retrieved

three-dimensional position. The opposite transformation can be described by:550


x′F

y′F

z′F

=


cosθ cosψ cosθ sinψ −sinθ

sinφsinθ cosψ− cosφsinψ sinφsinθ sinψ+cosφcosψ sinφcosθ

cosφsinθ cosψ+sinφsinψ cosφsinθ sinψ− sinφcosψ cosφcosθ



xL

yL

zL

 (A2)
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Since we have only one measurement in the x and y dimensions, but two in z, we use the difference between the measured

zL ::
zL and the estimated zL ::

zL:
from matched particles to retrieve the misalignment angles and offsets

zLL =−sinθxF F
′ +sinφcosθyF F

′ +cosφcosθzF F
′. (A3)

In this equation, x′F ::
x′F:is unknown so it is derived from555

xF F
′ = cosθ cosψxLL +cosθ sinψyLL − sinθzLL (A4)

where, in turn yL::
yL:is not observed. Therefore, yL::

yL:is obtained from

yLL = cosθ sinψxF F
′ +(sinφsinθ sinψ+cosφcosψ)yF F

′ +(cosφsinθ sinψ− sinφcosψ)zF F
′. (A5)

Inserting equations A5 into A4 yields after a couple of simplifications

xF F
′ =

cosθ cosψ

1− cos2 θ sin2ψ
xLL

+
(cosθ sinφsinθ sin2ψ+cosφcosψ cosθ sinψ)

1− cos2 θ sin2ψ
yF F

′

+
(cosθ cosφsinθ sin2ψ− sinφcosψ cosθ sinψ)

1− cos2 θ sin2ψ
zF F

′

560

− sinθ

1− cos2 θ sin2ψ
zLL. (A6)

Inserting equations A6 into A3 yields:

zLL =− sinθ

cosθ cosψ
xLL

− sinθ sinψ cosφ− cosψ sinφ

cosθ cosψ
yF F

′

+
sinθ sinψ sinφ+cosψ cosφ

cosθ cosψ
zF F

′. (A7)

We have no information about ψ, therefore we have no choice but assuming ψ = 0 leading to565

zLL =− sinθ

cosθ
xLL +

sinφ

cosθ
yF F

′ +
cosφ

cosθ
zF F

′. (A8)
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Nurzyńska, K., Kubo, M., and Muramoto, K.-i.: Shape Parameters for Automatic Classification of Snow Particles into Snowflake and Grau-730

pel, Meteor. Appl., 20, 257–265, https://doi.org/10.1002/met.299, 2013.

Pasquier, J. T., Henneberger, J., Korolev, A., Ramelli, F., Wieder, J., Lauber, A., Li, G., David, R. O., Carlsen, T., Gierens, R., Maturilli, M.,

and Lohmann, U.: Understanding the History of Two Complex Ice Crystal Habits Deduced From a Holographic Imager, Geophys. Res.

Lett., 50, e2022GL100 247, https://doi.org/10.1029/2022GL100247, 2023.

Petäjä, T., O’Connor, E. J., Moisseev, D., Sinclair, V. A., Manninen, A. J., Väänänen, R., von Lerber, A., Thornton, J. A., Nicoll, K., Petersen,735

W., Chandrasekar, V., Smith, J. N., Winkler, P. M., Krüger, O., Hakola, H., Timonen, H., Brus, D., Laurila, T., Asmi, E., Riekkola, M.-L.,

Mona, L., Massoli, P., Engelmann, R., Komppula, M., Wang, J., Kuang, C., Bäck, J., Virtanen, A., Levula, J., Ritsche, M., and Hickmon,

30

https://doi.org/10.1175/JAMC-D-20-0052.1
https://doi.org/10.5194/gmd-13-4229-2020
https://doi.org/10.1175/JAS-D-15-0204.1
https://doi.org/10.1016/0022-4073(96)00002-7
https://doi.org/10.1175/1520-0469(1996)053%3C1710:UOMAAD%3E2.0.CO;2
https://doi.org/10.1002/2016JD026272
https://doi.org/10.1029/2019MS001689
https://doi.org/10.1002/2015GL064604
https://doi.org/10.1175/2008JTECHA1148.1
https://doi.org/10.5281/zenodo.5541624
https://doi.org/10.5194/acp-19-4105-2019
https://doi.org/10.1002/met.299
https://doi.org/10.1029/2022GL100247


N.: BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate, Bull. Am. Meteorol. Soc., 97,

1909–1928, https://doi.org/10.1175/BAMS-D-14-00199.1, 2016.

Pettersen, C., Bliven, L. F., von Lerber, A., Wood, N. B., Kulie, M. S., Mateling, M. E., Moisseev, D. N., Munchak, S. J., Petersen, W. A.,740

and Wolff, D. B.: The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow, Atmosphere, 11,

785, https://doi.org/10.3390/atmos11080785, 2020.

Praz, C., Roulet, Y.-A., and Berne, A.: Solid Hydrometeor Classification and Riming Degree Estimation from Pictures Collected with a

Multi-Angle Snowflake Camera, Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, 2017.

Quante, L., Willner, S. N., Middelanis, R., and Levermann, A.: Regions of Intensification of Extreme Snowfall under Future Warming, Sci745

Rep, 11, 16 621, https://doi.org/10.1038/s41598-021-95979-4, 2021.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding : Theory and Practice, World Scientific Publishing Company, 2000.

Sassen, K.: Ice Crystal Habit Discrimination with the Optical Backscatter Depolarization Technique, J. Appl. Meteorol. Climatol., 16, 425–

431, https://doi.org/10.1175/1520-0450(1977)016<0425:ICHDWT>2.0.CO;2, 1977.

Schönhuber, M., Lammer, G., and Randeu, W. L.: One Decade of Imaging Precipitation Measurement by 2D-video-distrometer, Adv. Geosci.,750

10, 85–90, https://doi.org/10.5194/adgeo-10-85-2007, 2007.

Shupe, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I.,

Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J.,

Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., Dütsch, M., Ebell, K., Ehrlich, A., Ellis,

J., Engelmann, R., Fong, A. A., Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H.,755

Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuzé, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H.-

W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A.,

Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., Lüpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli,

M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., Pätzold, F., Perovich, D. K., Petäjä, T., Pilz, C., Pirazzini, R.,

Posman, K., Powers, H., Pratt, K. A., Preußer, A., Quéléver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva,760

T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J., Viegas, J., Voigt, C., von der Gathen, P.,

Wehner, B., Welker, J. M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC Expedition—Atmosphere, Elem

Sci Anth, 10, 00 060, https://doi.org/10.1525/elementa.2021.00060, 2022.

Takami, K., Kamamoto, R., Suzuki, K., Yamaguchi, K., and Nakakita, E.: Relationship between Newly Fallen Snow Density and

Degree of Riming Estimated by Particles’ Fall Speed in Niigata Prefecture, Japan, Hydrological Research Letters, 16, 87–92,765

https://doi.org/10.3178/hrl.16.87, 2022.

Testik, F. Y. and Rahman, M. K.: High-Speed Optical Disdrometer for Rainfall Microphysical Observations, J. Atmospheric Ocean. Technol.,

33, 231–243, https://doi.org/10.1175/JTECH-D-15-0098.1, 2016.

Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.: The Concept of Normalized Distribution to Describe Raindrop

Spectra: A Tool for Cloud Physics and Cloud Remote Sensing, J. Appl. Meteorol., 40, 1118–1140, https://doi.org/10.1175/1520-770

0450(2001)040<1118:TCONDT>2.0.CO;2, 2001.

Thurai, M., Bringi, V., Gatlin, P. N., Petersen, W. A., and Wingo, M. T.: Measurements and Modeling of the Full Rain Drop Size Distribution,

Atmosphere, 10, 39, https://doi.org/10.3390/atmos10010039, 2019.

31

https://doi.org/10.1175/BAMS-D-14-00199.1
https://doi.org/10.3390/atmos11080785
https://doi.org/10.5194/amt-10-1335-2017
https://doi.org/10.1038/s41598-021-95979-4
https://doi.org/10.1175/1520-0450(1977)016%3C0425:ICHDWT%3E2.0.CO;2
https://doi.org/10.5194/adgeo-10-85-2007
https://doi.org/10.1525/elementa.2021.00060
https://doi.org/10.3178/hrl.16.87
https://doi.org/10.1175/JTECH-D-15-0098.1
https://doi.org/10.1175/1520-0450(2001)040%3C1118:TCONDT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3C1118:TCONDT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3C1118:TCONDT%3E2.0.CO;2
https://doi.org/10.3390/atmos10010039


Tiira, J., Moisseev, D. N., von Lerber, A., Ori, D., Tokay, A., Bliven, L. F., and Petersen, W.: Ensemble Mean Density and Its Con-

nection to Other Microphysical Properties of Falling Snow as Observed in Southern Finland, Atmos. Meas. Tech., 9, 4825–4841,775

https://doi.org/10.5194/amt-9-4825-2016, 2016.

Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2, J. Atmospheric

Ocean. Technol., 31, 1276–1288, https://doi.org/10.1175/JTECH-D-13-00174.1, 2014.

Tokay, A., von Lerber, A., Pettersen, C., Kulie, M. S., Moisseev, D. N., and Wolff, D. B.: Retrieval of Snow Water Equivalent by the

Precipitation Imaging Package (PIP) in the Northern Great Lakes, J. Atmospheric Ocean. Technol., -1, https://doi.org/10.1175/JTECH-D-780

20-0216.1, 2021.

Vázquez-Martín, S., Kuhn, T., and Eliasson, S.: Mass of Different Snow Crystal Shapes Derived from Fall Speed Measurements, Atmospheric

Chem. Phys., 21, 18 669–18 688, https://doi.org/10.5194/acp-21-18669-2021, 2021a.

Vázquez-Martín, S., Kuhn, T., and Eliasson, S.: Shape Dependence of Snow Crystal Fall Speed, Atmos. Chem. Phys., 21, 7545–7565,

https://doi.org/10.5194/acp-21-7545-2021, 2021b.785

Vignon, E., Besic, N., Jullien, N., Gehring, J., and Berne, A.: Microphysics of Snowfall Over Coastal East Antarctica Simulated by Polar

WRF and Observed by Radar, J. Geophys. Res. Atmos., 124, 11 452–11 476, https://doi.org/10.1029/2019JD031028, 2019.

Vogl, T., Maahn, M., Kneifel, S., Schimmel, W., Moisseev, D., and Kalesse-Los, H.: Using Artificial Neural Networks to Predict Riming

from Doppler Cloud Radar Observations, Atmospheric Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, 2022.

von Lerber, A., Moisseev, D., Bliven, L. F., Petersen, W., Harri, A.-M., and Chandrasekar, V.: Microphysical Properties of Snow and Their790

Link to Ze–S Relations during BAECC 2014, J. Appl. Meteor. Climatol., 56, 1561–1582, https://doi.org/10.1175/JAMC-D-16-0379.1,

2017.

Wood, N. B., L’Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of Video Disdrometer Uncertainties and Impacts on

Estimates of Snowfall Rate and Radar Reflectivity, Atmospheric Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013,

2013.795

Zivkovic, Z. and van der Heijden, F.: Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction, Pattern

Recognition Letters, 27, 773–780, https://doi.org/10.1016/j.patrec.2005.11.005, 2006.

32

https://doi.org/10.5194/amt-9-4825-2016
https://doi.org/10.1175/JTECH-D-13-00174.1
https://doi.org/10.1175/JTECH-D-20-0216.1
https://doi.org/10.1175/JTECH-D-20-0216.1
https://doi.org/10.1175/JTECH-D-20-0216.1
https://doi.org/10.5194/acp-21-18669-2021
https://doi.org/10.5194/acp-21-7545-2021
https://doi.org/10.1029/2019JD031028
https://doi.org/10.5194/amt-15-365-2022
https://doi.org/10.1175/JAMC-D-16-0379.1
https://doi.org/10.5194/amt-6-3635-2013
https://doi.org/10.1016/j.patrec.2005.11.005

