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Abstract. The open source Video In Situ Snowfall Sensor (VISSS) is introduced as a novel instrument for the characterization
of particle shape and size in snowfall. The VISSS consists of two cameras with LED backlights and telecentric lenses that al-
low accurate sizing and combine a large observation volume with relatively high pixel resolution and a design that limits wind
disturbance. VISSS data products include per-particteproperties-and-integrated-particle-size-distribution-various particle prop-
erties such as partiele-maximum extent, cross-sectional area, perimeter, complexity, and—in-the-future—sedimentation-and
sedimentation velocity. Initial analysis shows that the VISSS provides robust statistics based on up to +6610,000 particles
observed-unique particle observations per minute. Comparison of the VISSS with collocated PIP (Precipitation Imaging
Package) and Parsivel instruments at Hyytidld, Finland, shows excellent agreement with Parsivel, but reveals some differ-
ences for the PIP (PreeipitationImaging Package)-that are likely related to PIP data processing and limitations of the PIP with
respect to observing smaller particles. The open source nature of the VISSS hardware plans, data acquisition software, and
data processing libraries invites the community to contribute to the development of the instrument, which has many potential

applications in atmospheric science and beyond.

1 Introduction

It is well known that "every snowflake is unique". The shape of a snow crystal is very sensitive to the processes that were active
during its formation and growth. Vapor depositional growth leads to a myriad of crystal shapes depending on temperature,
humidity, and their turbulent fluctuations. Aggregation combines individual crystals into complex snowflakes. Riming describes
the freezing of small droplets onto ice crystals, causing them to rapidly gain mass and form a more rounded shape. In other
words, the shape of snow particles is a fingerprint of the dominant processes during the ifeeyetelife-cycle of snowfall.

Better observations of the fingerprints of snowfall formation processes are needed to advance our understanding of ice and
mixed-phase clouds and precipitation formation processes (Morrison et al., 2020). Given the importance of snowfall formation
processes for global precipitation (Miilmenstidt et al., 2015; Field and Heymsfield, 2015), the lack of process understanding

leads to gaps in the representation of these processes in numerical models. In a warming climate, precipitation amounts and
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extreme events, including heavy snowfall, are expected to increase (Quante et al., 2021), but the exact magnitudes are associated
with large uncertainties (Lopez-Cantu et al., 2020).

Remote sensing observations of snowfall are indirect, which limits their ability to identify snow particle shape by design.
Ground-based in situ observations of ice and snow particles can identify the fingerprints of the snowfall formation pro-

cesses and provide detailed information on particle size, shape, and fall-sedimentation velocity. Using assumptions about falt

sedimentation velocity or an aggregation and riming model as a reference, the particle mass-size and/or density relationship

can also be inferred from in situ observations. (Tiira et al., 2016; von Lerber et al., 2017; Pettersen et al., 2020; Tokay et al.,
2021; Leinonen et al., 2021; Vazquez-Martin et al., 2021a). Various attempts have been made to classify particle types and
identify active snowfall formation processes using various machine learning techniques (Nurzyriska et al., 2013; Grazioli et al.,
2014; Praz et al., 2017; Hicks and Notaro$, 2019; Leinonen and Berne, 2020; Del Guasta, 2022; Maherndl et al., 2023b); these
classifications are needed to support quantification of snowfall formation processes (Grazioli et al., 2017; Moisseev et al., 2017,
Dunnavan et al., 2019; Pasquier et al., 2023). In situ observations have also been used to characterize particle size distributions
(Kulie et al., 2021; Fitch and Garrett, 2022), investigate sedimentation velocity and turbulence of hydrometeors (Garrett et al.,
2012; Garrett and Yuter, 2014; Li et al., 2021; Vazquez-Martin et al., 2021b; Takami et al., 2022), and for model evaluation
(Vignon et al., 2019). In combination with ground-based remote sensing, in situ snowfall data have been used to validate or
better understand remote sensing observations (Gergely and Garrett, 2016; Li et al., 2018; Matrosov et al., 2020; Luke et al.,
2021), to develop joint radar in situ retrievals (Cooper et al., 2017, 2022), and to train remote sensing retrievals (Huang et al.,
2015; Vogl et al., 2022).

Different design concepts have been used for in situ snowfall instruments. Line scan cameras are commonly used by optical
disdrometers such as the OTT Parsivel (Loffler-Mang and Joss, 2000) and their relatively large observation volume reduces the
statistical uncertainty for estimating the particle size distribution (PSD). However, additional assumptions are required to size
irregularly shaped particles such as snow particles correctly due to the one-dimensional measurement concept (Battaglia et al.,
2010). This limitation can be overcome when adding a second line camera as for the 2DVD (2-dimensional video disdrometer,
Schonhuber et al., 2007), but particle shape estimates can still be biased by horizontal winds (Huang et al., 2015; Helms et al.,
2022). The 2DVD'’s pixel resolution of approx. 190 um per pixel (px) and the lack of grayseale-gray-scale information prohibits
resolving fine-scale details of snow particles.

To get high resolution images, a group of instruments uses various approaches to obtain particle images with microscopic
resolution at the expense of the measurement volume size. For example, the MASC (Multi-Angle Snowfall Camera, Garrett
et al., 2012) takes three highresolution{images with 30 pm px ! 34 s-pixel resolution of the same particle from different
angles. This allows for resolving very fine particle structures, but during a snowfall event Gergely and Garrett (2016) observed
only 10? - 10* particles which is not sufficient to reliably estimate a PSD on minute temporal scales needed to capture changes
in precipitation properties. Del Guasta (2022) have developed a flatbed scanner (ICE-CAMERA) that has a pixel resolution
of 7 um px~—' and can provide mass estimates by melting the particles, but this approach only works at low snowfall rates.

The images of the D-ICI (Dual Ice Crystal Imager, Kuhn and Vézquez-Martin, 2020) have even a pixel resolution of 4 um
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px~! and show particles from two perspectives, but similar to the MASC, the small sampling volume does not allow for the
measurement of PSDs with a sufficiently high accuracy.

The SVI (Snowfall Video Imager, Newman et al., 2009) and its successor the PIP (Precipitation Imaging Package, Pettersen
et al., 2020) use a camera pointed to a light source to image snow particles in free fall. The open design limits wind field
perturbations and the large measurement volume (4.8 x 6.4 x 5.5 cm for a 1 mm snow particle) Hmits-minimizes statistical
errors in deriving the PSD. However, the pixel resolution of 100 um px~! is not sufficient to study fine details. Further, the
open design requires that the depth of the observation volume is not constrained by the instrument itself. As a consequence,
particle blur needs to be used to determine whether a particle is in the observation volume or not which is potentially more
error prone than a closed instrument design. A similar design was used by Testik and Rahman (2016) to study the sphericity
oscillations of raindrops. Kennedy et al. (2022) developed the low-cost OSCRE (Open Snowflake Camera for Research and
Education) system that uses a strobe light to illuminate particles from the side allowing for the observation of particle type of
blowing and precipitating snow but the observation volume is not fully constrained.

This study presents the Video In Situ Snowfall Sensor (VISSS). The goal was to develop a sensor with an open instrument
design without sacrificing the quality of measurement volume definition or eptieal-resolution. It uses the same general principle
as the PIP (Fig. 1): grayseale-gray-scale images of particles in free fall illuminated by a background light. Unlike the PIP, this
setup is duplicated with overlapping measurement volumes so that particles are observed simultaneously from two perspectives
at a 90° angle. This robustly constrains the observation volume without the need for further assumptions. In addition, having
two perspectives of the same particle increases the likelihood that the observed maximum dimension (D,,,,) and aspect ratio
are representative of the particle. While the VISSS does not reach the microscopic resolution of the D-ICI or ICE-CAMERA,

its pixel resolution of 43 to 59 pym px !

is significantly better than the PIP, and the use of telecentric lenses eliminates sizing
errors caused by the variable distance of snow particles to the cameras.

The VISSS was originally developed for the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Cli-
mate) experiment (Shupe et al., 2022) and deployed at MetCity and, after the sea ice became too unstable in April 2020, on the
P-deck of the research vessel Polarstern. After MOSAIC, the original VISSS was deployed at Hyytiél4, Finland (Petdji et al.,
2016) in 2021/22 and at Gothic, Colorado as part of the SAIL campaign in 2022/23 (Surface Atmosphere Integrated Field Lab-
oratory, Feldman et al., 2021). During a test setup in Leipzig, Germany, the VISSS was used to evaluate a radar-based riming
retrieval (Vogl et al., 2022). An improved second generation of VISSS was installed at the French-German Arctic research base
AWIPEYV (the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research - AWI - and the French Polar Institute
Paul Emile Victor - PEV) in Ny—Alesund, Svalbard (Nomokonova et al., 2019) in 2021. A further improved third generation
VISSS is currently being built at the Leipzig University —and will be deployed in Hyytidld end of 2023. The VISSS hardware
plans and software libraries have been released under an open source license (Maahn et al., 2023; Maahn, 2023a, b) so that the
community can replicate and further develop VISSS. The VISSS hardware design and data processing are described in Sects. 2
and 3, respectively. Example cases including a comparison with the PIP are given in Sect. 4 and concluding remarks are given

in Sect. 5.
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2 Instrument design

The VISSS consists of two camera systems oriented at a 90° angle to the same measurement volume (Fig. 1). Both cameras

have-work using the Complementary Metal Oxide Semiconductor (CMOS) global shutter principle and use a resolution of
1280x1024 grayseale-pixels-and-operate-at-gray-scale pixels and a frame rate of 140 Hz (250 Hz since the 2nd generation).
One camera acts as the leader, sending trigger signals to both the follower camera and the two LED backlights that illuminate

the scenes from behind with a 350,000 lux flash. Green backlights (530 nm) were chosen because the camera and lenses are
optimized for visual light. The leader-follower setup results in a slight delay in the start of exposure between the two cameras.
To compensate for this, the background LEDs are turned on for a duration of 60 ps only when the exposure of both cameras is
active. Thus, the 60 us flash of the backlights determines the effective exposure time of the camera as long as there is no bright
sunlight, which is a rare condition during precipitation.

The two camera-lens-backlight combinations are at a 90° angle so that particles are observed from two perspectives, reducing
sizing errors. Leinonen et al. (2021) found that using only a single perspective for sizing snow particles can lead to a normalized
root mean square error of 6% for D,,,, and Wood et al. (2013) estimated the resulting bias in simulated radar reflectivity to
be 3.2 dB. For the VISSS, the accuracy of the measurements can petentially-be further improved by taking advantage of the
fact that the VISSS typically observes 8 to 11 frames of each particle (assuming a falt-sedimentation velocity of 1 m s~! and a
frame rate of 140 to 250 Hz), and additional perspectives can be obtained from the natural tumbling of the particle.

Telecentric lenses have a constant magnification within the usable depth of field, eliminating sizing errors. They-also-typically

hatConsequently, the lens aperture must be as large as the
observation area, making the lens bulky, heavy and expensive. For the first VISSS (VISSS1), a lens with a magnification of 0.08
was chosen, resulting in a pixel resolution of 58.75 um px ' (Table 1). The working distance, i.e. the distance from the edge
of the lens to the center of the observation volume, is 227 mm. This partly undermines the goal of having an instrument with
an observation volume that is not obstructed by turbulence induced by nearby structures, but was caused by budget limitations.
It also does not allow for sufficiently large roofs over the camera windows to protect against snow accumulation in all weather
conditions. This problem was partially solved by the increased budget (22kEUR22 kEUR) for the second generation VISSS2,
which used a 600 mm working distance lens and-as well as a camera with an increased frame rate of 250 Hz ;-resultingin-a
and a pixel resolution of 43.125 um px~!. However, the optical quality of the lens proved to be borderline for the applications,
resulting in an estimated optical resolution of approximately 50 um and slightly blurred particle imagessse-. Consequently, the

lens was changed again for the third generation VISSS3 (currently under construction), which alse-has a working distance of

1300 mm. This was motivated by the result of Newman et al. (2009) that the air flow is undisturbed at a distance of 1 m from

the instrument. Image quality is potentially also impacted by motion blur and the exposure time of 60 us was selected to limit
motion blur of particles falling at 1 m/s to 1.02 and 1.44 pixels for VISSS1 and VISSS2, respectively. Particle blur can also

occur when particles are not exactly in focus of the lenses. The maximum circle of confusion is 1.3 pixels at the edges of the
observation volume.
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Figure 1. a) Concept drawing of the VISSS (not to scale with enlarged observation volume). See Sections 3.2 and 3.3 for a discussion of
the joint coordinate system and the transformation of the follower’s coordinate system, respectively. b) First generation VISSS deployed at
Gothic, Colorado during the SAIL campaign (Photo by Benn Schmatz), ¢) Randomly selected particles observed during MOSAIC on 15
November 2019 between 6:53 and 11:13 UTC.

The lens-camera combinations and backlights are housed in waterproof enclosures that are heated to -5—5°C and 10°C,
respectively. The low temperature in the camera housing is to prevent melting and refreezing of particles on the camera window.
The cameras of VISSS1 and VISSS2 are connected to the data acquisition systems via separate 1 Gbit and 5 Gbit Ethernet
connections, respectively. Due to the increased frame rate, two separate systems are required to record data in rea—timereal-time

for VISSS2.

3 Data processing

The cameras transmit every captured image to the data acquisition systems which are standard desktop computers running
Linux. Based on simple brightness changes, the computers save only moving images and discard all other data (this was not
implemented for MOSAIC yet). The raw data of the VISSS consists of the video files (mov or mkv video files with h264
compression), the first recorded frame as an image (jpg format) for quick evaluation of camera blocking, and a csv file with the
timestamps of the camera (capture_time) as well as the computer (record_time) and other meta information for each frame. The

cameras run continuously and new files are created every 10 minutes (5 minutes for MOSAIC). In addition, a daily status csv
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Table 1. Technical specifications of the three VISSS instruments.

VISSS1 VISSS2 VISSS3
58.75 43.125

[um px~]

Obs. volume (w x d x h)
[mm]

Used frame size [px]

Frame rate [Hz]

time [ps]
Working distance [mm]

Camera

Lens

Maker

Deployments

75.2x60.1 x 60.1

1280 x 1024
140
60

227 mm
Teledyne Genie Nano M1280
Mono

Opto Engineering TC12080

University of Colorado Boulder
MOSAIC 2019720,
2021/22, SAIL 2022/23

Hyytidla

552x442x44.2

1280 x 1024
250
60

600 mm

Teledyne Genie Nano 5G M2050
Mono

Sill SSLPJ1235 (with modified
working distance)

University of Cologne

Ny-Alesund since 2021

589x47.1x47.1

1280 x 1024
250
60

1300 mm

Teledyne Genie Nano 5G M2050
Mono

Sill SSLPJ1725 (with modified
working distance)

Leipzig University

Hyytidld winter
2023/24)

(planned  for

file is maintained that contains information about software start and stop times and when new files were created. Both cameras
record completely separately which requires an accurate synchronization of the camera and computer clocks for matching the
observations of a single particle.

Obtaining particle properties from the individual VISSS video images requires (1) detecting the particles, (2) matching the

observations of the two cameras, and (3) tracking the particles over multiple frames to estimate the fall velocities. These-three

3) exploiting particles tracked in time. For the level2preduet-thelevel-level 2 products, the level 1 observations are calibrated
i.e., converted from pixel in metric units) and distributions of particle size, aspect ratio, and other properties are estimated based

on the per-particle properties. In addition to the leveH-and-devel2-level 1 and level 2 products, there are metadata products:

metaEvents is a netcdf version of the status files along with a camera blocking estimate based on the jpg images. metaFrames
is a netcdf version of the csv file. metaRotation keeps track of the camera alignment-misalignment as detailed below. The
imagesL1detect product contains images of the detected particles which is required for creating quicklooks like Fig. 1.c.

In the following, the processing of the leveH-anddevel2-level | and level 2 products is described in detail (Fig. 2).
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Figure 2. Flowchart of VISSS data processing. Daily products have rounded corners, 10-minute resolution products have square corners.

Figure 3. Estimation of particle eentourperimeter p and area A (cyan), maximum dimension D, (via smallest enclosing circle, magenta),
smallest rectangle (red), region of interest ROI (green), and elliptical fits using openCV’s fitEllipseDirect (white) and fitEllipse functions
(blue, covered by white line if identical to fitEllipseDirect). The particles were observed during MOSAIC on 15 November 2019 05:25 UTC
except the particle on the right (Hyytidld 23 January 2022 04:10 UTC).

3.1 Particle Detection

Hydrometeors need to be detected and sized based on individual frames. First, video frames containing motion are identified
by a simple threshold-based filter. Except for the MOSAIC dataset, this is done in real-time, which significantly reduces the
data volume. Because snow may stick to the camera window, individual particles within a video frame cannot be identified

by image brightness. Instead, the moving region of interest (ROI) is identified by openCV’s BaekgroundSubtractorCNT¢lass
BackgroundSubtractorKNN class (Zivkovic and van der Heuden 2006) in the image coordinate system (horlzontal dimension

X, vertical dimension Y pointing to the ground).

OFThe moving mask identified by the
background subtraction methods cannot be used directly for particle sizing-beeause-itcontains-afew-blurred-pixels-around-the
particle-that-would-introduce-a-bias-Thereforedetection because the particles in the moving foreground mask are systematicall
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too large. For each particle, we select a 10 pixel padded box around the ROF-and-region of interest (ROI) which is the smallest

non-rotated rectangular box around the particle (Fig. 3). Then, we use openCV’s Canny filter-edge detection (after applying a
Gaussian blur with a standard deviation of 1.5 pixels) to identify the edges of the partielesparticle and the corresponding particle

masks. To fill in small gaps in the particle contour, we use-dilatedilate the contour by 1 pixel, fill the contour, erode by 1 pixel,

and identify the new contour. Sinee-filling-the-contour-alse-This method closes potential holes in the particles;-the-background
detection-and-Canny—filter-masks-are-combinedparticle mask that should be retained to avoid overestimation of particle area.
Therefore, the final particle mask contains only values confirmed by the Canny filter and the background detection mask. As a

result, VISSS can detect even relatively small particle structures, as shown in Fig. 3. The use of only 1 pixel (i.e., 43 to 59 um)
for dilation was found to be sufficient and allows to potentially resolve more details of the particles than MASC and PIP, which
dilate by 200 um (Garrett et al., 2012) and 300 pm (Helms et al., 2022), respectively. The particle-contours-final particle mask
and contour are used to estimate the particle’s maximum dimension (using openCV’s minEnclosingCircle function), perimeter
p (arcLength), area A (contourArea) and aspect ratio AR (defined as the ratio between the major and minor axis), as well as
the canting angle o (defined between vertical axis and major axis). AR and o are estimated in three different ways, from the
smallest rectangle fitted around the contour (minAreaRect) or from an ellipse fitted to the contour (fitEllipse and the more

stable fitEllipseDirect). Particle area equivalent diameter (D, ) is obtained from A. Particle complexity ¢ (Garrett et al., 2012;

Gergely et al., 2017) is derived from the ratio between particle perimeter p to the perimeter of a sphere-circle with same area A

In addition to these size-variables;-we-store-geometric variables, the levelldetect product contains variables describing the
pixel brightness (min, max, standard deviation, mean, skewness), the position of the centroid, and the blur of the particle
estimated from the variance of the Laplacian of the ROI. All particles are processed for which D4, > 2 px and A > 2 px
holds. To avoid detection of particles completely out of focus, the brightness of the darkest pixel must be at least 20 steps
darker than the median of the entire image —and the variance of the Laplacian of the ROI brightness must be at least 10. Particle
detection is the most computationally intensive processing step and is typically performed on a small cluster. Processing 10

minutes of heavy snowfall for a single VISSS camera can easily-take several hours on a single AMD EPYC 7302 core.
3.2 Particle Matching

The particle detection of each camera is completely separate, so the particles observed by each camera must be combined.
This particle combination allows for the particle position to be determined in a three-dimensional reference coordinate system.
As a side effect, this constrains the observation volume by discarding particles outside of the intersection of their observation
volumes, i.e. observed by only one camera. We use a right-handed reference coordinate system (z,y,z) with z pointing to the
ground to define the position of particles in the observation volume (Fig. 1). In the absence of an absolute reference, we attach
the coordinate system to the leader camera (i.e., (z1,yr,2r) = (x,y,2)) such that z = X and z = Y, where X and Y, are

the particle positions in the two dimensional leader images. Note that small letters describe the three dimensional coordinate
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system and capital letters describe the two dimensional position on the images of the individual camera images. The missing
dimension y is obtained from the follower camera with y = — X where X the vertical-horizontal position in the follower

image.

The matching of the particles from both cameras is based on the comparison of two variables: The vertical position of the
particles and their vertical extent. Due to measurement uncertainties, the agreement of these variables cannot be perfect and
they are treated probabilistically. That is, it is assumed that the difference in vertical extent Ah (vertical position Az) between
the two cameras follows a rermat-distribution—normally distributed probability density function (PDF) with mean zero and
standard deviation 1.7 px (1 2 px), based on an analys1s of manually matched particle pairs. The-minimumreselationof-pixel
Since pixel measurements are discrete with 1 px steps,

the PDF is integrated for an interval of +/—2 0.5 pixelspx.

This process requires matching the time-stamps_observations of both cameras in time. The internal clocks of the cameras
("capture time") of-both-cameras—The-follower-camera’s-elock-can-be-off can deviate by more than 1 frame per 10 minutes.
The time assigned by the computers ("recording-record time") is sometimes, but not always, distorted by computer load.

Therefore, the continuous frame index (eapture-id'capture id") is used for matching, but this requires determining the index

offset between both cameras - This takes-advantage ol the {act-that only movine {rames are recorded- 1 particles are presenti

measurement (typically 10 minutes). For this, the algorithm uses pairs of frames with observed particles that are less than 1 ms
apart-inrecording-time-are-identified-and-the-(i.e. less than 1/4 of the measurement resolution) apart in record time assumin,
that the lag due to computer load is only sporadically increased. This allow to identify the most common capture id offset is

used—of the frame pairs. We found that this method gives already stable results for a subset of 500 frames. Similar to A and
z, the capture id offset Ai is used as the mean of a normal distribution with a standard deviation value of 0.01, which ensures

that only particles observed at the same time are matched. During MOSAIC, the data acquisition computer CPUs turned out
to be too slow to keep up with processing during heavy snowfall. With the additional impact of a bug in the data acquisition
code and drifting computer clocks when the network connection to the ship’s reference clock were interrupted, the particle

matching for the MOSAIC data set often requires manual adjustment. These problems have been resolved for later campaign

so that matching now works fully automatic.
The joint product of the integrated-PDF-intervals-derived-probabilities from Ah, Az, and A is considered a match score,
which describes the quality of the particle match. Manual inspection revealed that the number of false matches increases

strongly for match scores less than 0.001, which is used as a cut-off criterion. Assuming that the probabilities ferAh-and-Aw
are correctly determined, this implies that 0.1% of particle matches are falsely rejected, resulting in a negligible bias.

For each particle, its three-dimensional position is provided and all per-particle variables from the detection are carried
forward to the matched particle product levellmatch. The ratio of matched to observed particles from a single camera varies
with the average particle size, since larger particles can be identified even when they are out of focus, and varies between

approximately 10% and 90%.
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3.3 Correction for camera alignment

Although vertieal-alignment of both observation volumes is a priority during installation, the cameras can be rotated or dis-
placed, i.e., misaligned. As a result, the same particle may be observed at different heights and z = Y7, = Y does not hold.
The observed offsets are not constant and can change due to wind-lead-unstable surfaces or pressure of accumulated snow on
the VISSS frame. We could simply ignore the rotation-misalignment and continue to take z from the leader, but this would
make-itimpossible-to-not allow to generally use the vertical position to match particles from both cameras (see above). Also,
offsets in z reduce the common observation volume of both cameras, which could lead to biases when calibrating the PSDs if
not accounted for.

Besides a constant offset in the vertical z dimension Oy, one of the cameras can also be rotated around the optical axis
(expressed analogously to aircraft coordinate systems with roll ¢), around the horizontal axis perpendicular to the optical axis
(pitch ), or around the vertical axis (yaw ). As a consequence, Az = Y7, — Y depends on the position of the particle in the
observation volume.

To account for the rotattonmisalignment, we attach the coordinate system to the readerleader (i.e., we assume that the leader
is perfectly aligned (zr,yr.21) = (2,y,%)) and retrieve the retation-misalignment of the follower with respect to the leader in
terms of ¢, 6 and Oy,. We negleet-cannot derive 9 it : ing-signifi
observation and we have no choice but to neglect it by assuming ¥ = 0 to reduce the number of unknowns. Mathematically,

we need to transform the follower coordinate system (zr,yr,2F) to our leader reference coordinate system (xr,,y1,,21) using

from the

rotation and shear matrices. In the appendix A, we show how the transformation matrices can be arranged so that the follower’s

vertical measure zp can be converted to z;, depending on ¢ and 6 with

sinf  sinf sinfsiny cosp — cosysing  sing sin#sin siny + cos 1 cosy cose
2, = — ‘ rr— +——yr+ : (zr+0p:). (2
cosfcos) cosl cosfcos _cosf cosf cos cosf

This equation can be considered as a forward operator that calculates the expected leader observation zy, based on a retation
misalignment state (O¢., ¢, and ) and additional parameters (1, yr, 2r). While we assume that the retation-misalignment
state is constant for each 10 minute observation period, the other variables (z1, yr, zF) are available on a per-particle basis,
combining observations from both cameras. Therefore, we can use a Bayesian inverse Optimal Estimation retrieval (Rodgers,
2000) implemented by the pyOptlmalEstlmatlon library (Maahn et al., 2020) to retrieve the f@%&ﬁmmtate from
the actual observed zj,. St i i i

The retrieved retation-misalignment parameters are required for matching, but retrieving the retation-misalighment param-
eters requires matched pamcleste%Hweempaﬁseﬁef—ebeeﬁfedﬁmeéwﬁele% To solve this dilemma, the-matehing

we use an iterative method

matehed-) from the previous time period (10 minutes) to match particles of the current time period. These particles are used

10



260

265

270

275

280

285

are-which are used as a priori input for the next iteration of rotation—retrievatuntil-the-change-misalignment retrieval. The
iteration is stopped when the changes in ¢, 0, and Oy, is-are less than the estimated uncertainties.

abeveFor efficiency, the iterative method is applied only to the first 300 observed particles and the resulting coefficients are
stored in the metaRotation product. A drawback of the method is that this processing step requires processing the 10-minute

measurement chunks in chronological order, creating a serial bottleneck in the otherwise parallel VISSS processing chain.
Obviously, this method does not work when no information is available from the previous time step, e.g., after the instrument
was set up or adjusted. To get the starting point for the iteration, the matching algorithm is applied for frames where only a
alone, ignoring vertical offset (Az2).

3.4 Particle Tracking

Hyytidla, 2021-01-05

Tracking a matched particle over time provides its three-dimensional trajectory, from which sedimentation velocity and
interaction with turbulence can be determined. Since the natural tumbling of the particles provides new particle perspectives,

the estimates of
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Figure 4. Composit of a snow particle recorded by leader (fefta) and follower (rightb) during MOSAIC on 15 November 2019 05:31 UTC.
Result of particle tracking for the leader (c) and follower (d) of a snow particles recorded in Hyytiédld on 23 January 2022 04:10 UTC. The

tracks indicate past and future positions of a particle and are labeled. with the track id number starting with T. Only parts of the tracks
observed by both cameras are displayed. The number at the particles denote particle id, time of observation, and match score.

290 only o i 1t from one :

S —a-zi i ited A, p, and AR can be further improved. This can be seen in a composite of a
particle (Fig. 4.a-b) observed during MOSAIC, which also shows how the multiple perspectives of the particle help to identify

its true shape. The example also shows that during MOSAIC the alignment of the cameras was not perfect, resulting in some

of the measurements being slightly out of focus; this has been resolved for later campaigns. The tracking algorithm uses a
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probabilistic approach similar to particle matching taking into account that the particles’ velocities only change to a certain
extent from one frame to the next. That change can be quantified as a cost derived from the particles’ distances and shape
differences between two time steps. This allows to use the Hungarian method (Kuhn, 1955) to assign the individual matched
particles to particle tracks for each time step in a way that minimizes the costs, i.e. to solve the assignment problem. To account
for the fact that the particle’s position is expected to change between observations, we use a Kalman filter (Kalman, 1960) to
predict a particle’s position based on the past trajectory and use the distance 9/ between predicted and actual position for the
cost estimate. Without a past trajectory, the Kalman filter uses a first guess which we derive from the velocities of previously
tracked particles. We found that tracking based only on position is unstable and added the difference of particle area (94, mean
of both cameras) to the cost estimate to promote continuity of particle shape. The combined cost is estimated from the product
of 0l and 9 A weighted by their expected variance. The performance of the algorithm can be seen for an observation obtained
in Hyytidld on 23 January 2022 04:10 UTC where multiple particles are tracked at the same time (Fig. 4.c-d). The results of
the tracking algorithm are stored in the levelltrack product which contains the track id and the same per particle variables as
the other level 1 products.

3.5 Particle size distributions

To estimate particle-distributions;-the-the particle size distribution (PSD), i.e., the particle number concentration as a function
of size, the individual particle data are binned by particle size (1 px spacing, i.e. 43.125 or 58.75 um) and averaged to one

minute resolution for particle properties such as size, area, and perimeter. These level 2 products are available based on the
level1match and levelltrack products. For level2match, binned particle properties are available either from one of the cameras

or using the minimum, mean;-average or maximum from both cameras for each observed particle property. PSPs;-erosssection

areaThis means that the multiple observations of the same particle all contribute to the PSD. This does not bias the PSD.
because the number of observed particles is divided by the number of frames, and the PSD describes how many particles are
particles, and are calculated using the minimum, maximum, mean, or standard deviation along the observed track using both
cameras. The use of the maximum (minimum) value along a track is motivated by the assumption that the estimated properties
of a particle such as Dy, (AR) of a particle will be closer to the true value than when ignoring the different perspectives of a
particle along the track obtained by the two cameras.

For both level2 variants, the binned PSD and A, perimeter p, and particle complexity c are binned-with-beth-available binned
With Dina, and the-partiele-area-equivalent diameter 1.4 Jto allow comparison with instruments using either size definition.
In addition to the distributions, PSD-weighted mean values are available for A, AR, and c in addition to the first to fourth and
sixth moments of the distribution-PSD that can be used to describe normalized size distributions (Delanog et al., 2005; Maahn
et al., 2015).
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Figure 5. Calibration of D, (first row), D., (second row), and perimeter p (third row) using metal spheres for the VISSS 1 (first column),

using metal spheres for the VISSS 2 (second column), using artificial sphere images (third column), and using artificial square images (fourth

column). For artificial images, a Gaussian blur filter is applied with a standard deviation according to the embedded legends. The legends

also show the results of linear least squares fits.

For VISSS observations where only a single camera is available, it would also be possible to develop a product based
on particles detected by a single camerais-also-possible, using a threshold based on particle blur for-defining-to define the

observation volume, similar to the PIP (Newman et al., 2009).

3.6 Calibration

Calibration is required to convert D D.,, and p from pixels to um. It depends not only on the optical properties of the

lens but also on the used computer vision routines. Calibration is obtained using reference steel or ceramic spheres with 1
to 3 mm diameter that are dropped into the VISSS observation volume. After processing using the standard VISSS routines,

the estimated sizes are compared to the expected ones. A linear least square fit is applied to the 276-604 reference sphere

observations obtained at Hyytiéld and SAIL resulting in
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Dpimaz[pz] = (0.0169710,01700 = 0.000015.00001) - Dpeimynag [m] + (0.3493030.49301 £ 0.027170,02101), 3)

for the VISSS1 (Fig. 5.a) and

Dpimaz [pr] = (0.0230470,02311 % 0.000050.00003) - D 1m0 [1m] + (0.9005930.81569 % 0.078123.06997), (4)

for the VISSS2 based on +82-samples—372 samples from Ny-Alesund (Fig. 5.b). The inverse of the slope is 58:92-58.832
pm px ! (43:389-43.266 um px ') and is close to the manufacturer’s specification of 58.75 pm px~! (43.125 um px~1) for
the VISSS1 (VISSS2). The random error estimated from the normalized root mean square error obtained from the difference
between observed and expected size is less than 0.8% indicating that random errors are negligible. To investigate the source
of the non-zero interceptis-eatsed-by-the-fact-that-the-, we also tested the VISSS computer vision routines with artificially
created VISSS images with drawn spheres and compared the expected to measured Diq, estimatorused-to-process-the images

used-to-ealibrate-by a least squares fit (Fig. 5.¢). Gaussian blur with a standard deviation between 0 and 3 px was applied to
account for a realistic range of blurring due to e.g., motion blur or particles that are slightly out of focus. Note that in addition
to that, a Gaussian blur filter with a standard deviation of 1.5 px needs to be applied during image processing for the Canny
edge detection as discussed above. For the artificial spheres, the obtained slope deviates less than 2% from the expected slope
of 1.0, but the offset ranges from 0.6 to 1.5 px caused by the seeming enlargement of the particle due to the applied blur. To
investigate the shape dependency of the results, we repeated the experiment with squares (Fig. 5.d). Again, the slope deviates
less than 2% from 1.0, but the offset is this time negative with values ranging between —1.4 px and —2.9 px depending on blur.
This is because the corners of the square are rounded when applying Gaussian blur so that the true D, but-onty-the stope
is-used-can no longer be obtained. In summary, the VISSS routines overestimate Dy, Of spheres, but underestimate Dyyqy
of squares. In reality, the VISSS observes a wide range of different shapes that can be both rather spherical or rather complex
with “pointy” corners. Therefore, we decided to set the intercept to O when calibrating Dy, which can cause a particle shape
dependent bias of 4 to eatibrate Deg;perimeter£6%. For particles smaller than 10 px, this bias can be slightly larger due to
discretization errors as can be seen from the larger impact of blur for small squares (Fig. 5.d).

For better comparison with Dy, @ tal-bi rag

ferrealsnow-partieles-D,., is used instead of A for testing the computer vision method for estimating A (Fig 5.e-h). The results
are almost identical to D,, ... so that the slopes derived from D are applied to D, (and consequently A) as well.

For the perimeter p (Fig. 5.i-1), the slopes derived from the reference spheres are about 5% steeper than for D indicatin

that VISSS p are biased high. This bias is also found for artificial spheres independent of the applied additional blur. Therefore
this bias is related to the image processing and most likely caused by the Gaussian blur required for the Canny edge detection.
For squares, however, the slope is close to 1 likely due to compensating effects caused by "cutting corners" of the algorithm. In
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reality, the VISSS observes more complex particles for which the perimeter increases with decreasing scale. (compare to coast
line paradox, Mandelbrot, 1967). Therefore, we conclude that it is extremely unlikely that the perimeter of real particles is
biased high like for artificial spheres but rather biased low depending on complexity. As a pragmatic approach, we also appl

the D slope to p but stress that p has a considerably higher uncertainty than D or D.,.
The calibration is also checked by holding a millimeter pattern in the camera and measuring the pixel distance in the images,

the found difference to the reference spheres is less than 2%. The millimeter pattern calibration did not reveal any dependence
on the position in the obseryation volume so that errors related to imperfect telecentricity of the lenses can be likely neglected.

Part-of-the-calibration-is-to-characterize-the-Calibration of the PSD also requires to obtain the exact size of the observation
volume. For perfectly aligned cameras, this would simply be the volume of a rectangular bex-cuboid with a base of 1280
px x 1280 px and a height of 1024 px. However, due to the-imperfect-alignment-misalignment of the cameras, the actual
joint observation volume is slightly smaller than therectangular-euboid-a rectangular cuboid and can have an irregular shape.

Therefore, the observation volumes are first calculated separately for leader and follower. To calculate the intersection of the
two individual observation volumes, the eight vertices of the follower observation volume are rotated to the leader coordinate

system, and the OpenSCAD library is used to calculate the intersection of the two bedies-is-caleulated-usingthe OpenSCAD
tibraryseparate observation volumes. To account for the removal of partially observed particles detected at the edge of the

image, a-butfer-of Diaz/2-to-the-edges-of the-image-is-used-and-the-the effective observation volume is reduced aceordinglyby
Dpaz/2 px on all sides. Finally, the volume is converted from pixels-pixel units to m® using the calibration factor estimated

above.

4 Pilot studies

Here, we analyze first generation VISSS (VISSS1) data collected in winter 2021/22 at the Hyytidld Forestry Field Station
(61.845°N, 24.287°E, 150 m MSL) operated by the University of Helsinki, Finland to show the potential of the instrument.
For comparison, we use a co-located PIP (von Lerber et al., 2017; Pettersen et al., 2020) and OTT Parsivel? laser disdrometer
(Loffler-Mang and Joss, 2000; Tokay et al., 2014). The distance between the VISSS and PIP was 20 m. The Parsivel was

located inside of the double fence intercomparison reference, which was located 35 m from VISSS.
4.1 Case study comparing VISSS, PIP, and Parsivel

VISSS level2match data are compared with PIP and Parsivel observations for a snowfall case on 26 January 2022. For a fair
comparison with PIP and Parsivel that observe particles from a single perspective, only data of a single VISSS camera is used
in this section. Because Parsivel uses something similar to D, (see discussion in Battaglia et al., 2010, for the predecessor
instrument), D, is also used as a PIP and VISSS size descriptor in the following. Also, D, is not affected by the problems of
the PIP particle sizing algorithm identified by (Helms et al., 2022). The PSD is characterized by the two variables N and Dss
used to describe the normalized size distributions N(D) = N F(D/Ds32) (Testud et al., 2001; Delanog et al., 2005) where N

is a scaling parameter and D3, normalizes the size distribution by size. Assuming a typical value of 2 for the exponent b of
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the mass-size relation (e.g., Mitchell, 1996), D3, is the proxy for the mean mass-weighted diameter defined as the ratio of the
third to the second measured PSD moments M3/Ms. Assuming the same value for b, N can be calculated with
M3 27
«_ My 27 5
0T M3 2 )

as shown in Maahn et al. (2015). The variability of N and D39 as well as the particle complexity ¢ and the number of particles

observed throughout the day are depicted in Fig. 6. The spectral variable c is-a-speetral-variable-is available for each size
bin. Because using a PSD-weighted average over all sizes for ¢ would be heavily weighted to smaller ;-particles which are

less complex due to the finite resolutionpotentiatty-less-—complexparticles, we use the 95th percentile for ¢ in the following.
The main precipitation event lasted from 10:00 to 17:30 UTC and shows an anticorrelation between N and Dss: the former

increases up to 10° m~2 mm~! until 13:00 UTC before decreasing to 10> m~2 mm™" at the end of the event. The aumber

he-particle complexity c divides the core period of the

event into two parts with ¢ = 2 before 13:00 UTC and ¢ ~ 2.8 after 13:00 UTC. This transition can also be seen in the random
selection of matched particles observed by the VISSS (Fig. 7) retrieved from the imagesL 1detect product. For each particle, a
pair of images is available from the two VISSS cameras. Before 13:00 UTC, a wide variety of different particle types has been
observed, including plates, small aggregates and small rimed particles. Since particle shape and mean brightness are not used
to match particles, the observed image pairs also confirm the ability of VISSS to correctly match data from the two cameras.
After 13:00 UTC, needles and needle aggregates dominate the observations explaining the increase in observed complexity.
Towards the end of the event, particles become smaller and more irregularly shaped. Around 18:30 UTC, even some ice lolly
shaped particles (Keppas et al., 2017) are observed by the VISSS.

N{ and Dgg are also calculated from the PSDs observed by PIP and Parsivel. For the core event, /N measured by the PIP
is about an order of magnitude smaller than that measured by VISSS and Parsivel. The agreement of VISSS and Parsivel is
better, but some peaks in /N are not resolved by the Parsivel when Dss is large. This discrepancy may be related to problems
of the Parsivel with larger particles reported before (Battaglia et al., 2010). The reason for the observed differences between
PIP and VISSS is likely more complex. Overall the measured D3, agrees better than V. Because D3, is a proxy for the mass-
weighted mean diameter, larger more massive snowflakes have a larger impact on D39 than more numerous smaller particles.
This implies that PIP is not capturing as many small ice particles as VISSS, while measurements of larger particles seem to
be less affected. Tiira et al. (2016) have studied the effect of the left-side PSD truncation on PIP observations (see Fig. 6 in
Tiira et al., 2016), but the observed VISSS - PIP difference seems to be somewhat larger than expected, namely the difference

extends to larger D3 values.

The number of particle observations ranges between 10,000 and 100,000 per minute, showing that estimates of N7, D3o, and
c are based on sufficient number of observations to limit the impact of random errors. This is about 1.5 orders of magnitude more
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articles than observed by Parsivel and PIP (Fig.

size6.d), but this is not a fair comparison because Parsivel and PIP report the number of unique particles, and the number of
article observations is used here for the VISSS. When applying the tracking algorithm to the VISSS and consider only unique
article observations consistent to the other sensors, the advantage of the VISSS is reduced to 50%. The average track length

of the VISSS varies throughout the day between 5 and 20 frames with an overall average of 8.5 frames.
To further investigate the differences between the instruments, we compare VISSS, PIP, and Parsivel speetraPSDs (Fig. 8)

for the three discussed times during the snowfall case. While Parsivel and VISSS mostly agree for D > 1 mm for all three cases,
Parsivel observes more particles for 0.6 mm < D < 1 mm (as previously reported by Battaglia et al., 2010) before dropping for
D < 0.6 mm, which is likely related to limitations associated with the Parsivel pixel resolution of 125 pm. The comparison of
VISSS and PIP shows larger discrepancies as explained above. The PSDs tend to agree for D., > 1 mm for cases where larger
ice particles are more spherical (11:24 UTC). For the needle case (13:00 UTC), PIP reports lower number concentrations than
VISSS and Parsivel for almost all sizes. At 10:10 UTC, VISSS and PIP approximately agree for sizes between 0.4 and 0.8 mm,
but PIP reports lower values for other sizes. Although no needles are observed at 10:10 UTC, Fig. 7 shows that there were also
small columns that could be affected by the dilation of structures less than 0.4 mm wide by the PIP software, or some parts of
radiating assemblage of plates were removed by the image processing.

All three instruments have different sensitivities to small particles. This can be seen for the drop in D39 around 17:45 UTC
(Fig. 6) where the Parsivel does not report any values, and the PIP [V estimates differ strongly from the VISSS when D3y < 1
mm. The VISSS reports D35 values as low as 0.16 mm around 19:00 UTC. Although the sample sizes are sufficient (> 10,000
particles per minute), the errors are likely large due to the VISSS pixel resolution of ~0.06 mm. In the absence of an instrument
designed to observe small particles, it is not possible to determine how reliably VISSS detects and sizes small particles.

Additional insight is provided by comparing the drop size distributions (DSD) observed by the three instruments during
a drizzle event on 16 October 2021 (Fig. 8.d). The use of drizzle allows Parsivel to be used as a reference instrument as it
has been shown to provide accurate DSDs for sizes between 0.5 and 5 mm (Tokay et al., 2014). In fact, Parsivel and VISSS
DSDs differ no more than 10% for 0.55 mm > D > 0.9 mm both showing a dip in the distribution around 0.55 mm. For larger
droplets, differences are likely related to the-small-sample-sizetheir low frequency of occurrence increasing statistical errors.
For smaller droplets, VISSS (and PIP) report about an order of magnitude higher concentrations than the Parsivel. Similarly,
(Thurai et al., 2019) found that a 50 pm optical array probe observed more small drizzle droplets than a Parsivel. For these
small particle sizes close to the VISSS camera pixel resolution, discretization errors likely play a role which we investigate by
comparing D, and D, for the VISSS. As drizzle droplets can be considered sufficiently spherical (i.e. AR >0.9) for D <1
mm (Beard et al., 2010), we can evaluate whether D,,,,,, = D4 holds as expected (Fig. 8.d). As expected, VISSS D, and
D, are in almost perfect agreement for D >0.5 mm, but larger differences occur for D <0.3 mm indicating that discretization

errors can become substantial for D <0.3 mm.
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In the absence of a reference instrument for smaller particles in Hyytidld or reference spheres with diameters smaller than
0.5 mm, the performance of the VISSS for observing small particles with D) <0.5 mm is difficult to assess. Particles close to
the thresholds for size, area, and blur might be rejected for parts of the observed trajectory which could explain the decrease in
475 VISSS number concentration for small particle sizes.
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Figure 6. Comparison of VISSS (blue), PIP (orange), and Parsivel (green) for a snowfall case on 26 January 2022 at Hyytiéld using N§ (a),

D23 (b), complexity c (c), and the number of observed particles (d). For the VISSS, the latter is shown without (blue) and with (red) particle
tracking. The three vertical black lines indicate the sample PSDs shown in Fig. 8.
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Figure 8. (a-c) Particle size distributions of VISSS, PIP, and Parsivel for the three cases indicated in Fig. 6 on 26 January 26222022
integrated over 1 minute. D, is used as a size descriptor. (d) Same as (a-c), but showing the drop size distribution of a drizzle case on 16
October 2021. In addition, the VISSS drop size distribution is also shown with Dy, 4, as the size descriptor.

4.2 Statistical comparison of VISSS, PIP, and Parsivel

The results of the case study comparison of VISSS, PIP, and Parsivel also hold when comparing 6661 minutes of joint snowfall
observations during the winter of 2021/22 (Fig. 9). The ratio of Njj observed by VISSS and PIP (Parsivel) is compared to D3g,
N§, and complexity c. For D32 < 1 mm, the VISSS to PIP (Parsivel) N§ ratio increases strongly and can reach a value of
10,000 (10). Therefore, the comparison of the N ratio with Nj itself and c is limited to data with D3 > 1 mm. For the PIP, the
difference in N{j does not depend on N{j but—as suggested by the needle case above—on complexity ¢, with higher ¢ values
indicating larger N differences, probably related to the-image-dilation-problem-discussed-abeveproblems of the PIP image
processing. For the VISSS to Parsivel comparison, the N difference depends rather on N instead of c. Because D32 and N§

are often anti-correlated, this could be related to size-dependent errors of the Parsivel as identified by Battaglia et al. (2010).

4.3 Advantage of the second VISSS camera

Here, we quantify the advantage of observing multiple orientations of a particle with the VISSS. For this, we compare one
minute values of mean Dinaz, @ i i i
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indicates the mean ratio. The analysis for N§ (b, e) and ¢ (c, f) is restricted to cases with D2z >1 mm.

» using the maximum
%@w@%@%ﬁ AR,

the minimum of beﬂfebsefvaﬁeﬂ%mwggmwmm is used instead %pesmv&eﬁefﬂﬁdw—a{e&%ha&%he
;

of particle type, three cases with mostly dendritic-aggregates-dendritic aggregates (6 December 2021, 07:19 - 12:30 UTC),
needles (5 January 2022, 00:00 - 14:30 UTC), and graupel (6 December 2021, 00:00 - 04:50; 13:30 - 14:20; 21:15-24:00 and

5 January 2022, 15:00 - 16:40; 19:40 -20:50 UTC) are analy

peakaround-0-7-mm-forused. The change in observed values is strongest for needles, which are the most complex particles
where when using two cameras D, gy, AR D, , Ar-and-pwith-mean-values-of 15:—88;18;-and-, and AR change by 16%, 10%

14%, and —12%, respectively, and when additionally considering tracking the values change by 24%, 19%, 24%, and —27%,

respectively. Bu

partieles-the-erroristypicallyless-than10%(fer-Changes for dendritic aggregates and graupel are less and surprisingly similar:
D increases by 8% and 7% (13% and 16%), D, increases by 6% and 6% (14% and 14%), and p increases by 7% and
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1% (19% and 16%), respectively, when using two cameras (two cameras with tracking). The dependency of particle properties
505  to orientation can be also seen from the fact that mean AR about—36% )-decreases from 0.62 to 0.54 and skightly targerfor
dendritie-aggregates0.42 for aggregates and from 0.73 to 0.67 and 0.54 for graupel highlighting that orientating matters even
for graupel.
Underestimating D, can lead to biases when using commonly used Dy, based power laws for particle mass (Mitchell,
1996) or when using in situ observations to forward model radar observations. This is because scattering properties of non-spherical
510 particles are typically parameterized as a function of D,,,, (Mishchenko et al., 1996; Hogan et al., 2012). Further, particle

scattering properties are also impacted by the distribution of particle mass along the path of propagation (Hogan and West-
brook, 2014) which is impacted by AR. To analyze how the errer-in-different D, and AR estimates affects the simulated

radar reflectivity for vertically pointing cloud radar observations at 94 GHz, we use the the-PAMTRA radar simulator (Passive
and Active Microwave radiative TR Ansfer tool, Mech et al., 2020) with the riming-dependent parameterization of the particle

515 scattering properties (Maherndl et al., 2023a) MW{MMMM(S%SW 1977; Hogan et al.,

2002). Using two cameras (.., max(Dy,q transtates s
istess-than-the-, min(AR)) increases mean Z, values by 2.1, 2.5 and 1.8 dB for aggregates, needles, and graupel, respectively.
When exploiting also the varying orientations during tracking, the offsets increase to 4.5, 4.6, and 3.7 dB, respectively, which

is considerably larger than the commonly used measurement uncertainty of 1 dB for cloud radars. The change in Z. is similar
520 to the 3.2 dB found by Wood et al. (2013) using idealized particles ts—ts-H ¢ e ¢ speeti

5 Conclusions

The hardware and data processing of the open source Video In Situ Snowfall Sensor (VISSS) has been introduced. The VISSS
525 consists of two cameras with telecentric lenses oriented at a 90° angle to each other and observe a common observation volume.
Both cameras are illuminated by LED backlights (see Table 1 for specifications). The goal of the VISSS design was to combine
a large, well defined observation volume and relatively high pixel resolution with a design that limits wind disturbance and
allows accurate sizing. The VISSS was initially developed for MOSAIC, but additional deployments at Hyytiéld, Finland and
Gothic, Colorado USA followed. An advanced version of the instrument has been installed at Ny-Alesund, Svalbard. The

530 VISSS level 1 Y-and-size-distribution-evel-2)-properties:

Required-proeessing-steps-processing steps for obtaining per-particle properties include particle detection and sizing, particle
matching between the two cameras considering the exact alignment of the cameras to each other, and integration-ofparticle

developmentitracking of individual particles to estimate sedimentation velocity and improve particle property estimates. For
535 level 2 products, the temporally averaged particle properties and size distributions are available in calibrated metric units.
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using only a single VISSS camera, both cameras, and both cameras considering particle tracking. The shaded area-indicates-the+0th-+to-90th

The initial analysis shows the potential of the instrument. The relatively large observation volume of the VISSS leads to
robust statistics based on up to +0610,000 particles-observed-individual particle observations per minute. The data set from
Hyytidld obtained in the winter of 2021/22 is used to compare the VISSS with collocated PIP and Parsivel instruments. While
the comparison with the Parsivel shows—given the known limitations of the instrument for snowfall (Battaglia et al., 2010)—

excellent agreement, the comparison with the PIP is more complicated. The differences in the observed PSDs increase with

increasing particle complexity ¢ (

which-inadvertently removesneedleparticles—But-e.g., needles), but differences remain even for non-needle cases and for a

case with a relatively high concentration of large, relatively spherical particles, agreement was only found for sizes larger than
1 mm. Because the Parsivel is well characterized for liquid precipitation (Tokay et al., 2014), a drizzle case is also used for

comparison. The case shows an excellent agreement between Parsivel and VISSS for droplets larger than 0.5 mm, confirming
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560

565

570

575

the general accuracy of VISSS. Compared to both PIP and Parsivel, VISSS observes a larger number of small particles that
can drastically change the retrieved PSD coefficients in some cases. However, the first generation VISSS pixel resolution of
0.06 mm is likely to introduce discretization errors for particles smaller than 0.3 mm (i.e. 5 px), potentially leading to errors

in the sizing of very small particles. Furthermore, we analyzed the advantage of the VISSS due to the availability of a second

trmean Dz oftp
to-15% and-overestimation-errors in-aspect ratio-increases up to 16% and mean aspect ratio AR ofup-to—88decreases by 12%.
For the analyzed case, the VISSS observes each particle on average 8.5 times which can further improve estimates of particle
properties due to the natural rotation of the particle during sedimentation. In comparison to using only a single camera, this
can increase mean Dyyqq by up to 24% and reduce AR by up to 31%.

VISSS product development will continue—Afterfinalizing-thepa

camera. Depending on the particle type,

veloeity,, e.g., by implementing machine learning based particle classifications (Praz et al., 2017; Leinonen and Berne, 2020;
Leinonen et al., 2021)will-beimplemented. Also, we will work on making VISSS data acquisition and processing more efficient
by handling some processing steps on the data acquisition system in real-time. We invite also the community to contribute to
the development of the open source instrument. This applies not only to the software products, but allows also for other groups
to build the-instrumentfor-approximately22;0660-EURand improve the instrument. It could even mean to advance the VISSS
hardware concept further, by e.g. adding a third camera to observe snow particles from below or—given the extended 1300
mm working distance of VISSS3—from above. The VISSS hardware plans (2nd generation VISSS, Maahn et al., 2023), data
acquisition software (Maahn, 2023a), and data processing libraries (Maahn, 2023b) have been released under an open source
license so that reverse engineering as done by Helms et al. (2022) is not required to analyze the VISSS data processing. The
only limitation of the used licenses is that modification of the VISSS need to be made publicly available under the same license.
Hardware plans for the third VISSS generation will be published on completion of the instrument end of the year.

There are many potential applications for VISSS observations. It can be used for model evaluation with advanced micro-
physics (e.g., Hashino and Tripoli, 2011; Milbrandt and Morrison, 2015), characterization of PSDs as a function of snowfall
formation processes, or retrievals combining in situ and remote sensing observations. Tracking of a particle in three dimensions
can be used to understand the impact of turbulence on particle trajectories. Beyond atmospheric science, the VISSS shows po-
tential for quantifying the occurrence of flying insects, as standard insect counting techniques (e-g—stetion—traps—)-such as
suction traps are typically destructive and labor-intensive.

Code and data availability. VISSS hardware plans (Maahn et al., 2023), data acquisition software (Maahn, 2023a), and data processing
libraries (Maahn, 2023b) have been released under an open source license. VISSS, PIP, and Parsivel observations used for the pilot study are

available at https://zenodo.org/record/7797286 (Maahn and Moisseev, 2023).
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Appendix A: Coordinate system transformation

We use a right handed coordinate system (x,y,2) to define the position of particles in the observation volume, where z points
to the ground (see Fig. 1). The follower coordinate system (xr,yr,2F) can be transformed into the leader coordinate system

(x1,yr,21) by the standard transformation matrix

T cosfcosyy  singsinfcosty —cospsiny  cospsinfcosy + sinpsiny s
580 yr | = | cosfsiny sinpsinfsiniy + cospcosy cospsinfsiny — sinpcos) Y (Al
ZL —sinf sinpcosf cospcosf 2

using the follower’s roll ¢, yaw 1, and pitch 6, analogous to airborne measurements, and with 2% = xp + Oy, Yp =
yr + Ojy, and 25 = zp + Oy, where Oy,, Oy, and Oy, are the offsets of the follower coordinate system in the z, y, and
z directions, respectively (see Fig. 1) Offsets in Oy, and Oy, are neglected, because they would only materialize in reduced

particle sharpness, but not in the retrieved three-dimensional position. The opposite transformation can be described by:

s cosfcos) cosfsiny —sinf Ty
585 yw | = | sinpsinfcosy) —cospsiny  sinpsinfsiny + cosgcosty)  singpcosh YL (A2)
2 cospsinfcosy +sinpsiny  cosysinfsiny —singpcosy cospcosf ZL

Since we have only one measurement in the x and y dimensions, but two in z, we use the difference between the measured

zr, and the estimated z7, from matched particles to retrieve the rotation-misalignment angles and offsets
zp, = —sinfzr'y + sin p cos Oy + cospcos 2. (A3)
In this equation, x}, is unknown so it is derived from
590 x'p = cosfcostxy, + cosOsinpyy, —sinfzy, (A4)
where, in turn yz, is not observed. Therefore, ¥, is obtained from
yr, = cosfsinyx’y + (sinpsinfsiny + cos pcos )y + (cos psinfsiny — sinpcosh) 2. (A5)

Inserting equations A5 into A4 yields after a couple of simplifications

, _ cosfcost
= 1 —cos2@sin®v oL
n (cosBsin @sinfsin? 1) + cos p costpcosfsinyy)
1 —cos2fsin®¢ Yr
(cosf cos psinfsin? i — sin @ cos 1 cos fsin))
1 —cos2@sin®y

2
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sinf
- Zr. A6
1 —cos2fsin®¢ L (46)

Inserting equations A6 into A3 yields:

sinf
7
cosf cosp

sinf@siny cosp — cosysing
- F

zZr =

cosf cosv)

sinfsinysinp + cosz/;coscpz%. (A7)

cosf cosv)

We have no information about 1, therefore we have no choice but assuming 1) = 0 leading to

sinf sing , cosy ,
xr y 25
cosf " cosf7T " cosf

(A8)
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