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Abstract. The open source Video In Situ Snowfall Sensor (VISSS) is introduced as a novel instrument for the characterization

of particle shape and size in snowfall. The VISSS consists of two cameras with LED backlights and telecentric lenses that al-

low accurate sizing and combine a large observation volume with relatively high
::::
pixel resolution and a design that limits wind

disturbance. VISSS data products include per-particle properties and integrated particle size distribution
:::::
various

:::::::
particle prop-

erties such as particle maximum extent, cross-sectional area, perimeter, complexity, and—in the future—sedimentation
:::
and5

:::::::::::
sedimentation

:
velocity. Initial analysis shows that the VISSS provides robust statistics based on up to 100

::
10,000 particles

observed
:::::
unique

:::::::
particle

:::::::::::
observations

:
per minute. Comparison of the VISSS with collocated PIP

:::::::::::
(Precipitation

::::::::
Imaging

:::::::
Package)

:
and Parsivel instruments at Hyytiälä, Finland, shows excellent agreement with Parsivel, but reveals some differ-

ences for the PIP (Precipitation Imaging Package) that are likely related to PIP data processing and limitations of the PIP with

respect to observing smaller particles. The open source nature of the VISSS hardware plans, data acquisition software, and10

data processing libraries invites the community to contribute to the development of the instrument, which has many potential

applications in atmospheric science and beyond.

1 Introduction

It is well known that "every snowflake is unique". The shape of a snow crystal is very sensitive to the processes that were active

during its formation and growth. Vapor depositional growth leads to a myriad of crystal shapes depending on temperature,15

humidity, and their turbulent fluctuations. Aggregation combines individual crystals into complex snowflakes. Riming describes

the freezing of small droplets onto ice crystals, causing them to rapidly gain mass and form a more rounded shape. In other

words, the shape of snow particles is a fingerprint of the dominant processes during the lifecycle
::::::::
life-cycle

:
of snowfall.

Better observations of the fingerprints of snowfall formation processes are needed to advance our understanding of ice and

mixed-phase clouds and precipitation formation processes (Morrison et al., 2020). Given the importance of snowfall formation20

processes for global precipitation (Mülmenstädt et al., 2015; Field and Heymsfield, 2015), the lack of process understanding

leads to gaps in the representation of these processes in numerical models. In a warming climate, precipitation amounts and
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extreme events, including heavy snowfall, are expected to increase (Quante et al., 2021), but the exact magnitudes are associated

with large uncertainties (Lopez-Cantu et al., 2020).

Remote sensing observations of snowfall are indirect, which limits their ability to identify snow particle shape by design.25

Ground-based in situ observations of ice and snow particles can identify the fingerprints of the snowfall formation pro-

cesses and provide detailed information on particle size, shape, and fall
:::::::::::
sedimentation

:
velocity. Using assumptions about fall

:::::::::::
sedimentation

:
velocity or an aggregation and riming model as a reference, the particle mass-size and/or density relationship

can also be inferred from in situ observations. (Tiira et al., 2016; von Lerber et al., 2017; Pettersen et al., 2020; Tokay et al.,

2021; Leinonen et al., 2021; Vázquez-Martín et al., 2021a). Various attempts have been made to classify particle types and30

identify active snowfall formation processes using various machine learning techniques (Nurzyńska et al., 2013; Grazioli et al.,

2014; Praz et al., 2017; Hicks and Notaroš, 2019; Leinonen and Berne, 2020; Del Guasta, 2022; Maherndl et al., 2023b); these

classifications are needed to support quantification of snowfall formation processes (Grazioli et al., 2017; Moisseev et al., 2017;

Dunnavan et al., 2019; Pasquier et al., 2023). In situ observations have also been used to characterize particle size distributions

(Kulie et al., 2021; Fitch and Garrett, 2022), investigate sedimentation velocity and turbulence of hydrometeors (Garrett et al.,35

2012; Garrett and Yuter, 2014; Li et al., 2021; Vázquez-Martín et al., 2021b; Takami et al., 2022), and for model evaluation

(Vignon et al., 2019). In combination with ground-based remote sensing, in situ snowfall data have been used to validate or

better understand remote sensing observations (Gergely and Garrett, 2016; Li et al., 2018; Matrosov et al., 2020; Luke et al.,

2021), to develop joint radar in situ retrievals (Cooper et al., 2017, 2022), and to train remote sensing retrievals (Huang et al.,

2015; Vogl et al., 2022).40

Different design concepts have been used for in situ snowfall instruments. Line scan cameras are commonly used by optical

disdrometers such as the OTT Parsivel (Löffler-Mang and Joss, 2000) and their relatively large observation volume reduces the

statistical uncertainty for estimating the particle size distribution (PSD). However, additional assumptions are required to size

irregularly shaped particles such as snow particles correctly due to the one-dimensional measurement concept (Battaglia et al.,

2010). This limitation can be overcome when adding a second line camera as for the 2DVD (2-dimensional video disdrometer,45

Schönhuber et al., 2007), but particle shape estimates can still be biased by horizontal winds (Huang et al., 2015; Helms et al.,

2022). The 2DVD’s
::::
pixel

:
resolution of approx. 190 µm per pixel (px) and the lack of grayscale

::::::::
gray-scale

:
information prohibits

resolving fine-scale details of snow particles.

To get high resolution images, a group of instruments uses various approaches to obtain particle images with microscopic

resolution at the expense of the measurement volume size. For example, the MASC (Multi-Angle Snowfall Camera, Garrett50

et al., 2012) takes three high resolution (
::::::
images

::::
with

:
30 µm px−1 ) images

::::
pixel

:::::::::
resolution of the same particle from different

angles. This allows for resolving very fine particle structures, but during a snowfall event Gergely and Garrett (2016) observed

only 102 - 104 particles which is not sufficient to reliably estimate a PSD on minute temporal scales needed to capture changes

in precipitation properties. Del Guasta (2022) have developed a flatbed scanner (ICE-CAMERA) that has a
::::
pixel

:
resolution

of 7 µm px−1 and can provide mass estimates by melting the particles, but this approach only works at low snowfall rates.55

The images of the D-ICI (Dual Ice Crystal Imager, Kuhn and Vázquez-Martín, 2020) have even a
::::
pixel

:
resolution of 4 µm
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px−1 and show particles from two perspectives, but similar to the MASC, the small sampling volume does not allow for the

measurement of PSDs with a sufficiently high accuracy.

The SVI (Snowfall Video Imager, Newman et al., 2009) and its successor the PIP (Precipitation Imaging Package, Pettersen

et al., 2020) use a camera pointed to a light source to image snow particles in free fall. The open design limits wind field60

perturbations and the large measurement volume (4.8 x 6.4 x 5.5 cm for a 1 mm snow particle) limits
:::::::::
minimizes statistical

errors in deriving the PSD. However, the
::::
pixel

:
resolution of 100 µm px−1 is not sufficient to study fine details. Further, the

open design requires that the depth of the observation volume is not constrained by the instrument itself. As a consequence,

particle blur needs to be used to determine whether a particle is in the observation volume or not which is potentially more

error prone than a closed instrument design. A similar design was used by Testik and Rahman (2016) to study the sphericity65

oscillations of raindrops. Kennedy et al. (2022) developed the low-cost OSCRE (Open Snowflake Camera for Research and

Education) system that uses a strobe light to illuminate particles from the side allowing for the observation of particle type of

blowing and precipitating snow but the observation volume is not fully constrained.

This study presents the Video In Situ Snowfall Sensor (VISSS). The goal was to develop a sensor with an open instrument

design without sacrificing the quality of measurement volume definition or optical resolution. It uses the same general principle70

as the PIP (Fig. 1): grayscale
::::::::
gray-scale images of particles in free fall illuminated by a background light. Unlike the PIP, this

setup is duplicated with overlapping measurement volumes so that particles are observed simultaneously from two perspectives

at a 90° angle. This robustly constrains the observation volume without the need for further assumptions. In addition, having

two perspectives of the same particle increases the likelihood that the observed maximum dimension (Dmax) and aspect ratio

are representative of the particle. While the VISSS does not reach the microscopic resolution of the D-ICI or ICE-CAMERA,75

its
::::
pixel

:
resolution of 43 to 59 µm px−1 is significantly better than the PIP, and the use of telecentric lenses eliminates sizing

errors caused by the variable distance of snow particles to the cameras.

The VISSS was originally developed for the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Cli-

mate) experiment (Shupe et al., 2022) and deployed at MetCity and, after the sea ice became too unstable in April 2020, on the

P-deck of the research vessel Polarstern. After MOSAiC, the original VISSS was deployed at Hyytiälä, Finland (Petäjä et al.,80

2016) in 2021/22 and at Gothic, Colorado as part of the SAIL campaign
::
in

:::::::
2022/23 (Surface Atmosphere Integrated Field Lab-

oratory, Feldman et al., 2021). During a test setup in Leipzig, Germany, the VISSS was used to evaluate a radar-based riming

retrieval (Vogl et al., 2022). An improved second generation of VISSS was installed at the French-German Arctic research base

AWIPEV (the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research - AWI - and the French Polar Institute

Paul Emile Victor - PEV) in Ny-Ålesund, Svalbard (Nomokonova et al., 2019) in 2021. A further improved third generation85

VISSS is currently being built at the Leipzig University .
:::
and

::::
will

::
be

::::::::
deployed

::
in

::::::::
Hyytiälä

:::
end

::
of

:::::
2023.

:
The VISSS hardware

plans and software libraries have been released under an open source license (Maahn et al., 2023; Maahn, 2023a, b) so that the

community can replicate and further develop VISSS. The VISSS hardware design and data processing are described in Sects. 2

and 3, respectively. Example cases including a comparison with the PIP are given in Sect. 4 and concluding remarks are given

in Sect. 5.90
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2 Instrument design

The VISSS consists of two camera systems oriented at a 90° angle to the same measurement volume (Fig. 1). Both cameras

have
::::
work

:::::
using

::::
the

:::::::::::::
Complementary

::::::
Metal

:::::
Oxide

:::::::::::::
Semiconductor

::::::::
(CMOS)

:::::
global

::::::
shutter

::::::::
principle

::::
and

:::
use

::
a
::::::::
resolution

:::
of

1280x1024 grayscale pixels and operate at
:::::::::
gray-scale

:::::
pixels

:::
and

:
a frame rate of 140 Hz (250 Hz since the 2nd generation).

One camera acts as the leader, sending trigger signals to both the follower camera and the two LED backlights that illuminate95

the scenes from behind with
:
a
:
350,000 lux

::::
flash. Green backlights (530 nm) were chosen because the camera and lenses are

optimized for visual light. The leader-follower setup results in a slight delay in the start of exposure between the two cameras.

To compensate for this, the background LEDs are turned on for a duration of 60 µs only when the exposure of both cameras is

active. Thus, the 60 µs flash of the backlights determines the effective exposure time of the camera as long as there is no bright

sunlight, which is a rare condition during precipitation.100

The two camera-lens-backlight combinations are at a 90° angle so that particles are observed from two perspectives, reducing

sizing errors. Leinonen et al. (2021) found that using only a single perspective for sizing snow particles can lead to a normalized

root mean square error of 6% for Dmax and Wood et al. (2013) estimated the resulting bias in simulated radar reflectivity to

be 3.2 dB. For the VISSS, the accuracy of the measurements can potentially be further improved by taking advantage of the

fact that the VISSS typically observes 8 to 11 frames of each particle (assuming a fall
:::::::::::
sedimentation velocity of 1 m s−1 and a105

frame rate of 140 to 250 Hz), and additional perspectives can be obtained from the natural tumbling of the particle.

Telecentric lenses have a constant magnification within the usable depth of field, eliminating sizing errors. They also typically

have a greater depth of field than standard lenses. The disadvantage is that
::::::::::::
Consequently, the lens aperture must be as large as the

observation area, making the lens bulky, heavy and expensive. For the first VISSS (VISSS1), a lens with a magnification of 0.08

was chosen, resulting in a pixel resolution of 58.75 µm px−1 (Table 1). The working distance, i.e. the distance from the edge110

of the lens to the center of the observation volume, is 227 mm. This partly undermines the goal of having an instrument with

an observation volume that is not obstructed by turbulence induced by nearby structures, but was caused by budget limitations.

It also does not allow for sufficiently large roofs over the camera windows to protect against snow accumulation in all weather

conditions. This problem was partially solved by the increased budget (22kEUR
::
22

::::::
kEUR) for the second generation VISSS2,

which used a 600 mm working distance lens and
::
as

::::
well

::
as

:
a camera with an increased frame rate of 250 Hz , resulting in a115

:::
and

:
a
:::::
pixel resolution of 43.125 µm px−1. However, the optical quality of the lens proved to be borderline for the applications,

resulting in
::
an

:::::::::
estimated

:::::
optical

:::::::::
resolution

::
of

::::::::::::
approximately

:::
50 µ

::
m

:::
and slightly blurred particle images, so

:
.
::::::::::::
Consequently, the

lens was changed again for the third generation VISSS3 (currently under construction), which also has a working distance of

1300 mm. This was motivated by the result of Newman et al. (2009) that the air flow is undisturbed at a distance of 1 m from

the instrument.
:::::
Image

::::::
quality

:
is
::::::::::
potentially

:::
also

::::::::
impacted

:::
by

::::::
motion

::::
blur

:::
and

:::
the

::::::::
exposure

::::
time

::
of

::
60

:
µ
:
s
:::
was

:::::::
selected

::
to
:::::
limit120

::::::
motion

:::
blur

:::
of

:::::::
particles

::::::
falling

::
at

::
1

:::
m/s

::
to

::::
1.02

::::
and

::::
1.44

:::::
pixels

:::
for

:::::::
VISSS1

::::
and

:::::::
VISSS2,

:::::::::::
respectively.

:::::::
Particle

::::
blur

:::
can

::::
also

::::
occur

:::::
when

::::::::
particles

:::
are

:::
not

::::::
exactly

::
in

:::::
focus

::
of

:::
the

::::::
lenses.

::::
The

:::::::::
maximum

:::::
circle

::
of

::::::::
confusion

::
is

:::
1.3

:::::
pixels

::
at
:::
the

::::::
edges

::
of

:::
the

:::::::::
observation

:::::::
volume.

:
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Figure 1. a) Concept drawing of the VISSS (not to scale with enlarged observation volume). See Sections 3.2 and 3.3 for a discussion of

the joint coordinate system and the transformation of the follower’s coordinate system, respectively. b)
:::
First

::::::::
generation

:
VISSS deployed at

Gothic, Colorado during the SAIL campaign (Photo by Benn Schmatz), c) Randomly selected particles observed during MOSAiC on 15

November 2019 between 6:53 and 11:13 UTC.

The lens-camera combinations and backlights are housed in waterproof enclosures that are heated to -5
:::
−5°C and 10°C,

respectively. The low temperature in the camera housing is to prevent melting and refreezing of particles on the camera window.125

The cameras of VISSS1 and VISSS2 are connected to the data acquisition systems via separate 1 Gbit and 5 Gbit Ethernet

connections, respectively. Due to the increased frame rate, two separate systems are required to record data in rea- time
:::::::
real-time

for VISSS2.

3 Data processing

The cameras transmit every captured image to the data acquisition systems which are standard desktop computers running130

Linux. Based on simple brightness changes, the computers save only moving images and discard all other data (this was not

implemented for MOSAiC yet). The raw data of the VISSS consists of the video files (mov or mkv video files with h264

compression), the first recorded frame as an image (jpg format) for quick evaluation of camera blocking, and a csv file with the

timestamps of the camera (capture_time) as well as the computer (record_time) and other meta information for each frame. The

cameras run continuously and new files are created every 10 minutes (5 minutes for MOSAiC). In addition, a daily status csv135
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Table 1. Technical specifications of the three VISSS instruments.

VISSS1 VISSS2 VISSS3

Resolution
::::
Pixel

::::::::
resolution

[µm px−1]

58.75 43.125
46,0

:::
46.0

Obs. volume (w x d x h)

[mm]

75.2 x 60.1 x 60.1 55.2 x 44.2 x 44.2 58.9 x 47.1 x 47.1

Used frame size [px] 1280 x 1024 1280 x 1024 1280 x 1024

Frame rate [Hz] 140 250 250

Exposure
::::::

Effective
:::::::
exposure

time [µs]

60 60 60

Working distance [mm] 227 mm 600 mm 1300 mm

Camera Teledyne Genie Nano M1280

Mono

Teledyne Genie Nano 5G M2050

Mono

Teledyne Genie Nano 5G M2050

Mono

Lens Opto Engineering TC12080 Sill S5LPJ1235 (
:::
with

::
modified

working distance)

Sill S5LPJ1725 (
:::
with

::
modified

working distance)

Maker University of Colorado Boulder University of Cologne Leipzig University

Deployments MOSAiC 2019/20, Hyytiälä

2021/22, SAIL 2022/23

Ny-Ålesund since 2021 Hyytiälä (planned
:::
for

::::::
winter

::::::
2023/24)

file is maintained that contains information about software start and stop times and when new files were created. Both cameras

record completely separately which requires an accurate synchronization of the camera and computer clocks for matching the

observations of a single particle.

Obtaining particle properties from the individual VISSS video images requires (1) detecting the particles, (2) matching the

observations of the two cameras, and (3) tracking the particles over multiple frames to estimate the fall velocities. These three140

processing steps comprise the level1 products , which contain uncalibrated properties for each observed particle
:::
The

::::
level

::
1

:::::::
products

::::::
contain

::::::::::
per-particle

:::::::::
properties

::
in

::::
pixel

:::::
units

::::
using

:::
(1)

::
a

:::::
single

:::::::
camera,

:::
(2)

:::::::
matched

:::::::
particles

:::::
from

::::
both

:::::::
cameras,

::::
and

::
(3)

:::::::::
exploiting

:::::::
particles

::::::
tracked

::
in

::::
time. For the level2 product, the level1

:::
level

::
2

::::::::
products,

::
the

:::::
level

:
1 observations are calibrated

::::
(i.e.,

::::::::
converted

::::
from

::::
pixel

::
in

::::::
metric

:::::
units) and distributions of particle size, aspect ratio, and other properties are estimated based

on the per-particle properties. In addition to the level1 and level2
::::
level

:
1
::::

and
::::
level

::
2
:
products, there are metadata products:145

metaEvents is a netcdf version of the status files along with a camera blocking estimate based on the jpg images. metaFrames

is a netcdf version of the csv file. metaRotation keeps track of the camera alignment
:::::::::::
misalignment as detailed below. The

imagesL1detect product contains images of the detected particles which is required for creating quicklooks like Fig. 1.c.

In the following, the processing of the level1 and level2
::::
level

:
1
::::
and

::::
level

:
2
:
products is described in detail (Fig. 2).
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Figure 2. Flowchart of VISSS data processing. Daily products have rounded corners, 10-minute resolution products have square corners.

Completed and under development products are indicated by solid and dashed boxes, respectively.

Figure 3. Estimation of particle contour
:::::::
perimeter

:
p
:::
and

::::
area

::
A (cyan), maximum dimension Dmax (via smallest enclosing circle, magenta),

smallest rectangle (red), region of interest
:::
ROI

:
(green), and elliptical fits using openCV’s fitEllipseDirect (white) and fitEllipse functions

(blue,
::::::
covered

::
by

:::::
white

:::
line

::
if

::::::
identical

::
to

:::::::::::
fitEllipseDirect). The particles were observed during MOSAiC on 15 November 2019 05:25 UTC

except the particle on the right (Hyytiälä 23 January 2022 04:10 UTC).

3.1 Particle Detection150

Hydrometeors need to be detected and sized based on individual frames. First, video frames containing motion are identified

by a simple threshold-based filter. Except for the MOSAiC dataset, this is done in real-time, which significantly reduces the

data volume. Because snow may stick to the camera window, individual particles within a video frame cannot be identified

by image brightness. Instead, the moving region of interest (ROI) is identified by openCV’s BackgroundSubtractorCNT class

::::::::::::::::::::::
BackgroundSubtractorKNN

:::::
class (Zivkovic and van der Heijden, 2006) in the image coordinate system (horizontal dimension155

X , vertical dimension Y pointing to the ground). This routine is faster than commonly used background detection algorithms,

but still works well with the—relatively simple—detection problem of VISSS. The ROI
:::
The

:::::::
moving

:::::
mask identified by the

background subtraction methods cannot be used directly for particle sizing because it contains a few blurred pixels around the

particle that would introduce a bias. Therefore
:::::::
detection

:::::::
because

:::
the

:::::::
particles

::
in

:::
the

::::::
moving

:::::::::
foreground

:::::
mask

:::
are

::::::::::::
systematically
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:::
too

:::::
large.

:::
For

::::
each

::::::
particle, we select a 10 pixel padded box around the ROI and

:::::
region

::
of

::::::
interest

::::::
(ROI)

:::::
which

::
is

:::
the

:::::::
smallest160

:::::::::
non-rotated

::::::::::
rectangular

:::
box

::::::
around

:::
the

:::::::
particle

::::
(Fig.

:::
3).

:::::
Then,

:::
we use openCV’s Canny filter

::::
edge

::::::::
detection (after applying a

Gaussian blur with a standard deviation of 1.5 pixels) to identify the edges of the particles
::::::
particle

::::
and

::
the

::::::::::::
corresponding

:::::::
particle

:::::
masks. To fill in small gaps in the

::::::
particle

:
contour, we use dilate

:::::
dilate

:::
the contour by 1 pixel, fill the contour, erode by 1 pixel,

and identify the new contour. Since filling the contour also
::::
This

::::::
method

:
closes potential holes in the particles, the background

detection and Canny filter masks are combined
::::::
particle

:::::
mask

:::
that

::::::
should

:::
be

:::::::
retained

::
to

:::::
avoid

::::::::::::
overestimation

:::
of

::::::
particle

:::::
area.165

::::::::
Therefore,

:::
the

::::
final

:::::::
particle

:::::
mask

:::::::
contains

::::
only

:::::
values

:::::::::
confirmed

::
by

:::
the

::::::
Canny

::::
filter

::::
and

:::
the

::::::::::
background

:::::::
detection

:::::
mask. As a

result, VISSS can detect even relatively small particle structures, as shown in Fig. 3. The use of only 1 pixel (i.e., 43 to 59 µm)

for dilation was found to be sufficient and allows to potentially resolve more details of the particles than MASC and PIP, which

dilate by 200 µm (Garrett et al., 2012) and 300 µm (Helms et al., 2022), respectively. The particle contours
:::
final

:::::::
particle

:::::
mask

:::
and

::::::
contour

:
are used to estimate the particle’s maximum dimension (using openCV’s minEnclosingCircle function), perimeter170

p (arcLength), area A (contourArea) and aspect ratio AR
::::::
(defined

:::
as

:::
the

::::
ratio

:::::::
between

:::
the

:::::
major

::::
and

:::::
minor

:::::
axis), as well as

the canting angle α
:::::::
(defined

:::::::
between

:::::::
vertical

:::
axis

::::
and

:::::
major

::::
axis). AR and α are estimated in three different ways, from the

smallest rectangle fitted around the contour (minAreaRect) or from an ellipse fitted to the contour (fitEllipse and the more

stable fitEllipseDirect). Particle
:::
area

:::::::::
equivalent

:::::::
diameter

:::::
(Deq)

::
is
::::::::
obtained

::::
from

::
A.

:::::::
Particle

:
complexity c (Garrett et al., 2012;

Gergely et al., 2017) is derived from the ratio between particle perimeter p to the perimeter of a sphere
::::
circle

:
with same area A175

c=
p

2
√
πA

. (1)

In addition to these size variables, we store
::::::::
geometric

::::::::
variables,

:::
the

::::::::::
level1detect

:::::::
product

:::::::
contains

:
variables describing the

pixel brightness (min, max, standard deviation, mean, skewness), the position of the centroid, and the blur of the particle

estimated from the variance of the Laplacian of the ROI. All particles are processed for which Dmax ≥ 2 px and A≥ 2 px

holds. To avoid detection of particles completely out of focus, the brightness of the darkest pixel must be at least 20 steps180

darker than the median of the entire image .
:::
and

:::
the

:::::::
variance

::
of

:::
the

::::::::
Laplacian

::
of

:::
the

::::
ROI

:::::::::
brightness

::::
must

::
be

::
at

::::
least

:::
10.

:
Particle

detection is the most computationally intensive processing step and is typically performed on a small cluster. Processing 10

minutes of heavy snowfall for a single VISSS camera can easily take several hours on a single AMD EPYC 7302 core.

3.2 Particle Matching

The particle detection of each camera is completely separate, so the particles observed by each camera must be combined.185

This particle combination allows for the particle position to be determined in a three-dimensional reference coordinate system.

As a side effect, this constrains the observation volume by discarding particles
:::::
outside

:::
of

:::
the

:::::::::
intersection

:::
of

::::
their

::::::::::
observation

:::::::
volumes,

:::
i.e.

:
observed by only one camera. We use a right-handed reference coordinate system (x,y,z) with z pointing to the

ground to define the position of particles in the observation volume (Fig. 1). In the absence of an absolute reference, we attach

the coordinate system to the leader camera (i.e., (xL,yL,zL) = (x,y,z)) such that x=XL and z = YL, where XL and YL are190

the particle positions in the two dimensional leader images.
::::
Note

:::
that

:::::
small

::::::
letters

:::::::
describe

:::
the

::::
three

:::::::::::
dimensional

:::::::::
coordinate
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::::::
system

:::
and

::::::
capital

:::::
letters

::::::::
describe

:::
the

:::
two

::::::::::
dimensional

::::::::
position

::
on

:::
the

::::::
images

:::
of

:::
the

::::::::
individual

:::::::
camera

::::::
images.

:
The missing

dimension y is obtained from the follower camera with y =−XF where XF the vertical
::::::::
horizontal

:
position in the follower

image.

The matching of the particles from both cameras is based on the comparison of two variables: The vertical position of the195

particles and their vertical extent. Due to measurement uncertainties, the agreement of these variables cannot be perfect and

they are treated probabilistically. That is, it is assumed that the difference in vertical extent ∆h (vertical position ∆z) between

the two cameras follows a normal distribution
::::::::
normally

:::::::::
distributed

:::::::::
probability

:::::::
density

:::::::
function

::::::
(PDF) with mean zero and

standard deviation 1.7 px (1.2 px), based on an analysis of manually matched particle pairs. The minimum resolution of 1 pixel

is accounted for by integrating the probability density function (PDF )
::::
Since

:::::
pixel

::::::::::::
measurements

:::
are

:::::::
discrete

::::
with

:
1
:::
px

:::::
steps,200

::
the

:::::
PDF

:
is
:::::::::
integrated for an interval of +/-

::
± 0.5 pixels

::
px.

This process requires matching the time stamps
::::::::::
observations

:::
of

::::
both

:::::::
cameras

::
in

:::::
time.

::::
The

::::::
internal

::::::
clocks

::
of
::::

the
:::::::
cameras

("capture time") of both cameras. The follower camera’s clock can be off
:::
can

::::::
deviate

:
by more than 1 frame per 10 minutes.

The time assigned by the computers ("recording
:::::
record

:
time") is sometimes, but not always, distorted by computer load.

Therefore, the continuous frame index (capture id
::::::
"capture

:::
id") is used for matching, but this requires determining the index205

offset between both cameras . This takes advantage of the fact that only moving frames are recorded. If particles are present in

the joint observation volume, both cameras will record a frame. Therefore, for a subset of 500 leader frames,
::
at

:::
the

::::
start

::
of

::::
each

:::::::::::
measurement

::::::::
(typically

::
10

::::::::
minutes).

:::
For

::::
this,

:::
the

::::::::
algorithm

::::
uses

:
pairs of frames

::::
with

:::::::
observed

::::::::
particles

:::
that

:::
are

:
less than 1 ms

apart in recording time are identified and the
:::
(i.e.

:::
less

::::
than

:::
1/4

:::
of

:::
the

:::::::::::
measurement

:::::::::
resolution)

:::::
apart

::
in

:::::
record

:::::
time

::::::::
assuming

:::
that

:::
the

:::
lag

::::
due

::
to

::::::::
computer

::::
load

::
is

::::
only

::::::::::
sporadically

:::::::::
increased.

::::
This

:::::
allow

::
to

:::::::
identify

:::
the

:
most common capture id offset is210

used.
:
of

:::
the

::::::
frame

:::::
pairs.

:::
We

:::::
found

::::
that

:::
this

:::::::
method

:::::
gives

::::::
already

:::::
stable

::::::
results

:::
for

::
a
:::::
subset

:::
of

:::
500

:::::::
frames. Similar to h and

z, the capture id offset ∆i is used as the mean of a normal distribution with a standard deviation value of 0.01, which ensures

that only particles observed at the same time are matched. During MOSAiC, the data acquisition computer CPUs turned out

to be too slow to keep up with processing during heavy snowfall. With the additional impact of a bug in the data acquisition

code and drifting computer clocks when the network connection to the ship’s reference clock were interrupted, the particle215

matching for the MOSAiC data set often requires manual adjustment.
::::
These

::::::::
problems

:::::
have

::::
been

:::::::
resolved

:::
for

::::
later

:::::::::
campaign

::
so

:::
that

::::::::
matching

::::
now

:::::
works

:::::
fully

:::::::::
automatic.

The joint product of the integrated PDF intervals derived
::::::::::
probabilities from ∆h, ∆z, and ∆i is considered a match score,

which describes the quality of the particle match. Manual inspection revealed that the number of false matches increases

strongly for match scores less than 0.001, which is used as a cut-off criterion. Assuming that the probabilities for ∆h and ∆y220

are correctly determined, this implies that 0.1% of particle matches are falsely rejected, resulting in a negligible bias.

For each particle, its three-dimensional position is provided and all per-particle variables from the detection are carried

forward to the matched particle product
:::::::::
level1match. The ratio of matched to observed particles from a single camera varies

with the average particle size, since larger particles can be identified even when they are out of focus, and varies between

approximately 10% and 90%.225
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3.3 Correction for camera alignment

Although vertical alignment of both observation volumes is a priority during installation, the cameras can be rotated or dis-

placed
:
,
:::
i.e.,

::::::::::
misaligned. As a result, the same particle may be observed at different heights and z = YL = YF does not hold.

The observed offsets are not constant and can change due to wind load
:::::::
unstable

:::::::
surfaces

:
or pressure of accumulated snow on

the VISSS frame. We could simply ignore the rotation
:::::::::::
misalignment

:
and continue to take z from the leader, but this would230

make it impossible to
::
not

:::::
allow

::
to
::::::::

generally
:
use the vertical position to match particles from both cameras (see above). Also,

offsets in z reduce the common observation volume of both cameras, which could lead to biases when calibrating the PSDs if

not accounted for.

Besides a constant offset in the vertical z dimension Ofz , one of the cameras can also be rotated around the optical axis

(expressed analogously to aircraft coordinate systems with roll φ), around the horizontal axis perpendicular to the optical axis235

(pitch θ), or around the vertical axis (yaw ψ). As a consequence, ∆z = YL −YF depends on the position of the particle in the

observation volume.

To account for the rotation
:::::::::::
misalignment, we attach the coordinate system to the reader

:::::
leader (i.e., we assume that the leader

is perfectly aligned (xL,yL,zL) = (x,y,z)) and retrieve the rotation
:::::::::::
misalignment

:
of the follower with respect to the leader in

terms of φ, θ and Ofz . We neglect
:::::
cannot

::::::
derive ψ because it is not expected to affect the matching significantly

::::
from

:::
the240

:::::::::
observation

::::
and

:::
we

::::
have

:::
no

:::::
choice

::::
but

::
to

::::::
neglect

::
it

::
by

::::::::
assuming

::::::
ψ = 0

::
to

::::::
reduce

:::
the

:::::::
number

::
of

:::::::::
unknowns. Mathematically,

we need to transform the follower coordinate system (xF ,yF ,zF ) to our leader reference coordinate system (xL,yL,zL) using

rotation and shear matrices. In the appendix A, we show how the transformation matrices can be arranged so that the follower’s

vertical measure zF can be converted to zL depending on φ and θ with

zL =− sinθ

cosθ cosψ

sinθ

cosθ
::::

xL−
sinθ sinψ cosφ− cosψ sinφ

cosθ cosψ
+
sinφ

cosθ
::::::

yF +
sinθ sinψ sinφ+cosψ cosφ

cosθ cosψ

cosφ

cosθ
::::

(zF +Ofz). (2)245

This equation can be considered as a forward operator that calculates the expected leader observation zL based on a rotation

:::::::::::
misalignment state (Ofz , φ, and θ) and additional parameters (xL, yF , zF ). While we assume that the rotation

:::::::::::
misalignment

state is constant for each 10 minute observation period, the other variables (xL, yF , zF ) are available on a per-particle basis,

combining observations from both cameras. Therefore, we can use a Bayesian inverse Optimal Estimation retrieval (Rodgers,

2000) implemented by the pyOptimalEstimation library (Maahn et al., 2020) to retrieve the rotation
:::::::::::
misalignment

:
state from250

the actual observed zL. Since the dimension of the rotation state is three, this retrieval is overconstrained when solving for

more than three observed particles at a time.

The retrieved rotation
:::::::::::
misalignment parameters are required for matching, but retrieving the rotation

::::::::::
misalignment

:
param-

eters requires matched particlesto allow comparison of observed and retrieved particles. To solve this dilemma, the matching

algorithm is applied to manually selected cases for data where only a single, relatively large (>
::
we

:::
use

:::
an

:::::::
iterative

:::::::
method255

::::::::
assuming

:::
that

:::::::::::
misalignment

::::
does

:::
not

::::::
change

::::::::
suddenly.

::::
The

::::::
method

:::::
starts

::
by

:::::
using

:::
the

:::::::::::
misalignment

::::::::
estimates

:::
and

:::::::::::
uncertainties

:::::::
(inflated

::
by

:
a
::::::
factor

::
of 10px) particle is detected, so that the matching can be done based on ∆h alone, ignoring ∆z. The found

matched
:
)
:::::
from

:::
the

:::::::
previous

::::
time

::::::
period

:::
(10

::::::::
minutes)

::
to

:::::
match

::::::::
particles

::
of

:::
the

::::::
current

::::
time

:::::::
period.

:::::
These

:
particles are used

10



to retrieve the rotation parameters, assuming a priori values of zero for the rotation coefficients
:::::
values

:::
for φ, θ, and Ofz , and

a large a priori uncertainty of 5°, 5°, and 50 px, respectively. Then, all particles are considered for matching using the normal260

configuration based on both ∆h and ∆z. In an iterative process, the retrieved values for φ, θ, and Ofz including uncertainties

are
:::::
which

:::
are

:
used as a priori input for the next iteration of rotation retrievaluntil the change

:::::::::::
misalignment

::::::::
retrieval.

::::
The

:::::::
iteration

:
is
:::::::

stopped
:::::
when

:::
the

:::::::
changes in φ, θ, and Ofz is

::
are

:
less than the estimated uncertainties.

The rotation parameters must be estimated manually after the instrument frames are set up or adjusted, but fluctuations

in time are automatically retrieved by the following procedure: the rotation estimates and uncertainties (inflated by a factor265

of 10) estimated during the previous time step (either automatically or manually obtained) are used to match a subset of the

data, estimate the current rotation parameters, and re-match the data until stable rotation parameters are obtained, as discussed

above
::
For

:::::::::
efficiency,

:::
the

:::::::
iterative

:::::::
method

::
is

:::::::
applied

::::
only

::
to

:::
the

::::
first

:::
300

::::::::
observed

::::::::
particles

:::
and

:::
the

::::::::
resulting

::::::::::
coefficients

:::
are

:::::
stored

::
in

:::
the

:::::::::::
metaRotation

:::::::
product. A drawback of the method is that this processing step requires processing the 10-minute

measurement chunks in chronological order, creating a serial bottleneck in the otherwise parallel VISSS processing chain.270

:::::::::
Obviously,

:::
this

:::::::
method

::::
does

:::
not

:::::
work

::::
when

:::
no

::::::::::
information

::
is

:::::::
available

:::::
from

:::
the

:::::::
previous

::::
time

:::::
step,

:::
e.g.,

:::::
after

:::
the

:::::::::
instrument

:::
was

:::
set

:::
up

::
or

::::::::
adjusted.

::
To

:::
get

:::
the

:::::::
starting

:::::
point

:::
for

:::
the

::::::::
iteration,

:::
the

::::::::
matching

::::::::
algorithm

::
is

:::::::
applied

::
for

:::::::
frames

:::::
where

::::
only

::
a

:::::
single,

::::::::
relatively

:::::
large

::
(>

:::
10

:::
px)

::::::
particle

::
is
::::::::
detected,

::
so

:::
that

:::
the

::::::::
matching

::::
can

::
be

::::
done

:::::
based

:::
on

::::::
particle

::::::
height

::::::::
difference

:::::
(∆h)

:::::
alone,

:::::::
ignoring

:::::::
vertical

:::::
offset

:::::
(∆z).

3.4 Particle Tracking275
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Hyytiälä on 5 January 2022 00:00-14:30 UTC. The velocity parameterizations of for unrimed and rimed aggregates are

indicated by the solid and dashed lines, respectively.

Tracking a matched particle over time provides its three-dimensional trajectory, from which sedimentation velocity and

interaction with turbulence can be determined. Since the natural tumbling of the particles provides new particle perspectives,280

the estimates of Dmax and AR can be further improved. A proof of concept showing the potential of VISSS for velocity

measurements is shown in Fig. X for a case with both needles and small rimed particles (Hyytiälä, 5 January 2022, 00:00-14:30

UTC). Needles and graupel can be distinguished using the particle complexity c (Eq. 1) which is higher for needles than for

graupel. In this example, the particle velocity is simply estimated by pairing the particles closest in space of consecutive

frames. Still, it can be clearly seen that more complex particles (i.e. needles) fall slower than less complex particles (i.e.285

graupel) at the same particle size. Despite the large uncertainty of the simple velocity estimate, needle particles roughly follow

a parameterization of found in for unrimed aggregates, while graupel exceeds the velocity for rimed particles in the same study.
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 4. Composit of a snow particle recorded by leader (left
:
a) and follower (right

:
b) during MOSAiC on 15 November 2019 05:31 UTC.

:::::
Result

::
of

::::::
particle

::::::
tracking

:::
for

::
the

:::::
leader

:::
(c)

:::
and

::::::
follower

:::
(d)

::
of

:
a
::::
snow

:::::::
particles

:::::::
recorded

::
in

::::::
Hyytiälä

:::
on

::
23

::::::
January

::::
2022

:::::
04:10

::::
UTC.

::::
The

::::
tracks

:::::::
indicate

:::
past

:::
and

:::::
future

:::::::
positions

:::
of

:
a
::::::
particle

:::
and

:::
are

::::::
labeled.

::::
with

:::
the

::::
track

::
id
:::::::

number
::::::
starting

:::
with

::
T.
:::::

Only
::::
parts

::
of

:::
the

:::::
tracks

::::::
observed

:::
by

:::
both

:::::::
cameras

::
are

::::::::
displayed.

:::
The

::::::
number

::
at
:::
the

::::::
particles

::::::
denote

:::::
particle

:::
id,

:::
time

::
of
::::::::::
observation,

:::
and

::::
match

:::::
score.

The final tracking algorithm (under development) will follow a probabilistic approach similar to particle matching. It will take

into account that certain properties of a particle,
::::::
particle

::::::::
properties

:
such as Dmax, particle complexity c, or average brightness,

only change to a certain extent from one frame to the next. Also, the fact that the particle trajectory is typically a smooth290

curve instead of a zigzag line can be exploited
::
A,

::
p,

::::
and

:::
AR

::::
can

::
be

::::::
further

:::::::::
improved. This can be seen in a composite of a

particle (Fig. 4
:::
.a-b) observed during MOSAiC, which also shows how the multiple perspectives of the particle help to identify

its true shape. The example also shows that during MOSAiC the alignment of the cameras was not perfect, resulting in some

of the measurements being slightly out of focus; this has been resolved for later campaigns.
:::
The

::::::::
tracking

::::::::
algorithm

::::
uses

::
a
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::::::::::
probabilistic

::::::::
approach

::::::
similar

::
to
:::::::

particle
::::::::
matching

::::::
taking

:::
into

:::::::
account

::::
that

:::
the

::::::::
particles’

::::::::
velocities

:::::
only

::::::
change

::
to

::
a

::::::
certain295

:::::
extent

::::
from

::::
one

:::::
frame

:::
to

:::
the

::::
next.

:::::
That

::::::
change

:::
can

:::
be

:::::::::
quantified

::
as

::
a

:::
cost

:::::::
derived

:::::
from

:::
the

::::::::
particles’

::::::::
distances

:::
and

::::::
shape

:::::::::
differences

:::::::
between

::::
two

::::
time

:::::
steps.

::::
This

::::::
allows

::
to

:::
use

:::
the

:::::::::
Hungarian

:::::::
method (Kuhn, 1955)

:
to

::::::
assign

:::
the

::::::::
individual

::::::::
matched

:::::::
particles

::
to

::::::
particle

:::::
tracks

:::
for

::::
each

::::
time

::::
step

::
in

:
a
::::
way

:::
that

:::::::::
minimizes

:::
the

:::::
costs,

:::
i.e.

::
to

:::::
solve

:::
the

:::::::::
assignment

::::::::
problem.

::
To

:::::::
account

::
for

:::
the

::::
fact

:::
that

:::
the

::::::::
particle’s

:::::::
position

::
is
::::::::
expected

::
to

::::::
change

:::::::
between

::::::::::::
observations,

::
we

::::
use

:
a
:::::::
Kalman

::::
filter

:
(Kalman, 1960)

::
to

::::::
predict

:
a
::::::::
particle’s

:::::::
position

:::::
based

:::
on

:::
the

:::
past

:::::::::
trajectory

:::
and

:::
use

:::
the

::::::::
distance

::
δl

:::::::
between

::::::::
predicted

:::
and

::::::
actual

:::::::
position

:::
for

:::
the300

:::
cost

::::::::
estimate.

:::::::
Without

:
a
::::
past

:::::::::
trajectory,

:::
the

:::::::
Kalman

::::
filter

::::
uses

:
a
::::

first
:::::
guess

::::::
which

::
we

::::::
derive

::::
from

:::
the

:::::::::
velocities

::
of

:::::::::
previously

::::::
tracked

::::::::
particles.

:::
We

:::::
found

:::
that

:::::::
tracking

:::::
based

::::
only

:::
on

:::::::
position

:
is
::::::::
unstable

:::
and

:::::
added

:::
the

::::::::
difference

:::
of

::::::
particle

::::
area

::::
(δA,

:::::
mean

::
of

::::
both

:::::::
cameras)

::
to
:::
the

::::
cost

:::::::
estimate

::
to

:::::::
promote

:::::::::
continuity

::
of

:::::::
particle

:::::
shape.

::::
The

::::::::
combined

::::
cost

::
is

::::::::
estimated

::::
from

:::
the

:::::::
product

::
of

::
δl

:::
and

:::
δA

::::::::
weighted

:::
by

::::
their

::::::::
expected

:::::::
variance.

::::
The

:::::::::::
performance

::
of

:::
the

::::::::
algorithm

::::
can

::
be

::::
seen

:::
for

::
an

::::::::::
observation

::::::::
obtained

::
in

:::::::
Hyytiälä

:::
on

::
23

:::::::
January

:::::
2022

:::::
04:10

::::
UTC

::::::
where

:::::::
multiple

:::::::
particles

:::
are

:::::::
tracked

::
at

:::
the

:::::
same

::::
time

::::
(Fig.

::::::
4.c-d).

::::
The

:::::
results

:::
of305

::
the

::::::::
tracking

::::::::
algorithm

:::
are

:::::
stored

::
in
::::

the
:::::::::
level1track

:::::::
product

:::::
which

:::::::
contains

:::
the

:::::
track

::
id

:::
and

:::
the

:::::
same

:::
per

:::::::
particle

:::::::
variables

:::
as

::
the

:::::
other

::::
level

::
1
::::::::
products.

3.5 Particle
:::
size distributions

To estimate particle distributions, the
:::
the

::::::
particle

::::
size

::::::::::
distribution

::::::
(PSD),

:::
i.e.,

:::
the

:::::::
particle

::::::
number

::::::::::::
concentration

::
as

::
a

:::::::
function

::
of

::::
size,

:::
the

:
individual particle data are binned by particle size (1 px spacing, i.e. 43.125 or 58.75 µm) and averaged to one310

minute resolution for particle properties such as size, area, and perimeter. These
::::
level

:
2
::::::::

products
:::
are

::::::::
available

:::::
based

:::
on

:::
the

::::::::::
level1match

:::
and

:::::::::
level1track

::::::::
products.

::::
For

::::::::::
level2match,

:
binned particle properties are available either from one of the cameras

or using the minimum, mean,
::::::
average or maximum from both cameras for each observed particle property. PSDs, cross section

area
::::
This

:::::
means

::::
that

:::
the

::::::::
multiple

::::::::::
observations

:::
of

:::
the

:::::
same

:::::::
particle

::
all

:::::::::
contribute

::
to

:::
the

:::::
PSD.

:::::
This

::::
does

:::
not

::::
bias

:::
the

:::::
PSD

::::::
because

:::
the

:::::::
number

::
of

::::::::
observed

:::::::
particles

::
is
:::::::
divided

::
by

:::
the

:::::::
number

::
of

:::::::
frames,

:::
and

:::
the

::::
PSD

::::::::
describes

::::
how

:::::
many

::::::::
particles

:::
are315

::
on

:::::::
average

::
in

:::
the

::::::::::
observation

:::::::
volume.

:::
For

::::::::::
level2track,

:::
the

::::::::::
distributions

:::
are

:::::
based

:::
on

:::
the

:::::::
observed

::::::
tracks

::::::
instead

::
of

:::::::::
individual

:::::::
particles,

::::
and

:::
are

::::::::
calculated

:::::
using

:::
the

:::::::::
minimum,

:::::::::
maximum,

::::::
mean,

::
or

:::::::
standard

::::::::
deviation

:::::
along

:::
the

::::::::
observed

:::::
track

:::::
using

::::
both

:::::::
cameras.

::::
The

:::
use

::
of

:::
the

::::::::
maximum

::::::::::
(minimum)

:::::
value

:::::
along

:
a
:::::
track

:
is
:::::::::
motivated

::
by

:::
the

::::::::::
assumption

:::
that

:::
the

::::::::
estimated

:::::::::
properties

::
of

:
a
:::::::
particle

::::
such

::
as

:::::
Dmax:::::

(AR)
::
of

::
a

::::::
particle

::::
will

::
be

:::::
closer

::
to
:::
the

::::
true

:::::
value

::::
than

::::
when

::::::::
ignoring

:::
the

:::::::
different

::::::::::
perspectives

::
of

::
a

::::::
particle

:::::
along

:::
the

::::
track

::::::::
obtained

::
by

:::
the

::::
two

:::::::
cameras.

:
320

:::
For

::::
both

:::::
level2

:::::::
variants,

:::
the

::::::
binned

::::
PSD

:::
and

:
A, perimeter p, and particle complexity c are binned with both

:::::::
available

::::::
binned

::::
with Dmax and the particle area equivalent diameter (Deq )

::
to

::::
allow

::::::::::
comparison

::::
with

::::::::::
instruments

:::::
using

:::::
either

::::
size

::::::::
definition.

In addition
::
to

:::
the

::::::::::
distributions, PSD-weighted mean values are available for A, AR, and c in addition to the first to fourth and

sixth moments of the distribution
::::
PSD that can be used to describe normalized size distributions (Delanoë et al., 2005; Maahn

et al., 2015).325

The particle distribution level2 product is currently only available based on matched particles (level2match), but will be

available for tracked particles in the future. This means that the multiple observations of the same particle all contribute to the
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Figure 5.
::::::::
Calibration

::
of

:::::
Dmax::::

(first
::::
row),

::::
Deq ::::::

(second
::::
row),

:::
and

:::::::
perimeter

::
p

::::
(third

::::
row)

::::
using

:::::
metal

:::::
spheres

:::
for

::
the

::::::
VISSS

:
1
::::
(first

:::::::
column),

::::
using

::::
metal

::::::
spheres

:::
for

::
the

:::::
VISSS

::
2
::::::
(second

:::::::
column),

::::
using

::::::
artificial

:::::
sphere

::::::
images

::::
(third

:::::::
column),

:::
and

::::
using

:::::::
artificial

:::::
square

:::::
images

::::::
(fourth

::::::
column).

:::
For

:::::::
artificial

::::::
images,

:
a
::::::::

Gaussian
:::
blur

::::
filter

::
is

::::::
applied

:::
with

::
a
::::::
standard

::::::::
deviation

:::::::
according

::
to

:::
the

::::::::
embedded

::::::
legends.

::::
The

::::::
legends

:::
also

::::
show

:::
the

:::::
results

::
of

::::
linear

::::
least

::::::
squares

:::
fits.

:

PSD. This does not bias the PSD because the number of particles observed is divided by the number of frames, and the PSD

describes how many particles are on average in the observation volume. For cases

:::
For

::::::
VISSS

:::::::::::
observations

:
where only a single camera is available,

:
it

::::::
would

::::
also

::
be

::::::::
possible

::
to

:::::::
develop

:
a product based330

on particles detected by a single camerais also possible, using a threshold based on particle blur for defining
::
to

::::::
define the

observation volume,
:
similar to the PIP (Newman et al., 2009).

3.6 Calibration

The VISSS calibration is tested

:::::::::
Calibration

::
is

:::::::
required

::
to

:::::::
convert

::::::
Dmax,

::::
Deq ,

:::
and

::
p
::::
from

::::::
pixels

::
to µ

::
m.

::
It
:::::::
depends

:::
not

::::
only

:::
on

:::
the

::::::
optical

:::::::::
properties

::
of

:::
the335

:::
lens

:::
but

::::
also

:::
on

:::
the

:::::
used

::::::::
computer

:::::
vision

::::::::
routines.

::::::::::
Calibration

::
is

:::::::
obtained

:
using reference steel or ceramic spheres with 1

to 3 mm diameter
:::
that

:::
are

:::::::
dropped

::::
into

:::
the

::::::
VISSS

::::::::::
observation

::::::
volume. After processing using the standard VISSS routines,

the estimated sizes are compared to the expected ones. A linear least square fit is applied to the 276
:::
604 reference sphere

observations
::::::
obtained

::
at
::::::::
Hyytiälä

:::
and

:::::
SAIL

:
resulting in
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Dpxmax[px]
::::::

= (0.0169710.01700
::::::

± 0.000015.00001
:::::

) ·Dµmmax[µm]
:::::::

+(0.3493030.49301
::::::

± 0.027170.02101
:::::

), (3)340

for the VISSS1
::::
(Fig.

:::
5.a)

:
and

Dpxmax[px]
::::::

= (0.0230470.02311
::::::

± 0.000050.00003
:::::

) ·Dµmmax[µm]
:::::::

+(0.9005930.81569
::::::

± 0.078123.06997
:::::

), (4)

for the VISSS2 based on 182 samples .
:::
372

:::::::
samples

:::::
from

::::::::::
Ny-Ålesund

::::
(Fig.

:::::
5.b). The inverse of the slope is 58.92

::::::
58.832

µm px−1 (43.389
:::::
43.266

:
µm px−1) and is close to the manufacturer’s specification of 58.75 µm px−1 (43.125 µm px−1) for

the VISSS1 (VISSS2). The
::::::
random

::::
error

::::::::
estimated

:::::
from

:::
the

:::::::::
normalized

::::
root

:::::
mean

::::::
square

::::
error

::::::::
obtained

::::
from

:::
the

:::::::::
difference345

:::::::
between

:::::::
observed

::::
and

::::::::
expected

:::
size

::
is
::::
less

::::
than

:::::
0.8%

::::::::
indicating

::::
that

:::::::
random

:::::
errors

:::
are

:::::::::
negligible.

:::
To

:::::::::
investigate

:::
the

::::::
source

::
of

:::
the non-zero interceptis caused by the fact that the ,

:::
we

::::
also

:::::
tested

::::
the

::::::
VISSS

::::::::
computer

:::::
vision

::::::::
routines

::::
with

:::::::::
artificially

::::::
created

::::::
VISSS

::::::
images

::::
with

:::::
drawn

:::::::
spheres

:::
and

::::::::
compared

:::
the

::::::::
expected

::
to

::::::::
measuredDmax estimator used to process the images

often rounds up to the next full pixel. For VISSS2, this effect is exacerbated by the slightly blurrier images. Eqs.3 and 4 are

used to calibrate
::
by

:
a
:::::
least

::::::
squares

:::
fit

::::
(Fig.

::::
5.c).

::::::::
Gaussian

::::
blur

::::
with

:
a
::::::::

standard
::::::::
deviation

:::::::
between

::
0

:::
and

::
3

::
px

::::
was

:::::::
applied

::
to350

::::::
account

:::
for

:
a
:::::::
realistic

:::::
range

::
of

:::::::
blurring

::::
due

::
to

::::
e.g.,

::::::
motion

::::
blur

::
or

:::::::
particles

::::
that

:::
are

::::::
slightly

:::
out

::
of

::::::
focus.

::::
Note

::::
that

::
in

:::::::
addition

::
to

::::
that,

:
a
::::::::
Gaussian

::::
blur

::::
filter

::::
with

::
a
:::::::
standard

::::::::
deviation

:::
of

:::
1.5

::
px

:::::
needs

:::
to

::
be

:::::::
applied

:::::
during

::::::
image

:::::::::
processing

:::
for

:::
the

::::::
Canny

::::
edge

::::::::
detection

::
as

::::::::
discussed

::::::
above.

:::
For

:::
the

:::::::
artificial

:::::::
spheres,

:::
the

::::::::
obtained

::::
slope

:::::::
deviates

::::
less

::::
than

:::
2%

::::
from

:::
the

::::::::
expected

:::::
slope

::
of

:::
1.0,

:::
but

:::
the

:::::
offset

::::::
ranges

:::::
from

:::
0.6

::
to

:::
1.5

:::
px

::::::
caused

::
by

:::
the

:::::::
seeming

:::::::::::
enlargement

::
of

:::
the

:::::::
particle

:::
due

::
to
:::
the

:::::::
applied

::::
blur.

:::
To

:::::::::
investigate

:::
the

:::::
shape

::::::::::
dependency

::
of

:::
the

::::::
results,

:::
we

:::::::
repeated

:::
the

::::::::::
experiment

::::
with

::::::
squares

:::::
(Fig.

::::
5.d).

::::::
Again,

:::
the

:::::
slope

:::::::
deviates355

:::
less

::::
than

:::
2%

::::
from

::::
1.0,

:::
but

:::
the

:::::
offset

:
is
::::
this

::::
time

:::::::
negative

::::
with

:::::
values

:::::::
ranging

:::::::
between

:::::
−1.4

::
px

:::
and

:::::
−2.9

::
px

:::::::::
depending

:::
on

::::
blur.

::::
This

:
is
:::::::
because

:::
the

:::::::
corners

::
of

:::
the

::::::
square

:::
are

:::::::
rounded

:::::
when

:::::::
applying

::::::::
Gaussian

::::
blur

::
so

::::
that

:::
the

:::
true

:
Dmax , but only the slope

is used
:::
can

:::
no

:::::
longer

:::
be

::::::::
obtained.

::
In

::::::::
summary,

:::
the

:::::::
VISSS

:::::::
routines

::::::::::
overestimate

::::::
Dmax::

of
:::::::
spheres,

:::
but

::::::::::::
underestimate

::::::
Dmax

::
of

:::::::
squares.

::
In

::::::
reality,

:::
the

::::::
VISSS

:::::::
observes

::
a
::::
wide

:::::
range

::
of

::::::::
different

::::::
shapes

:::
that

:::
can

:::
be

::::
both

:::::
rather

::::::::
spherical

::
or

:::::
rather

::::::::
complex

::::
with

:::::::
"pointy"

:::::::
corners.

:::::::::
Therefore,

::
we

:::::::
decided

::
to

:::
set

:::
the

:::::::
intercept

::
to
::
0
:::::
when

:::::::::
calibrating

:::::
Dmax::::::

which
:::
can

:::::
cause

:
a
:::::::
particle

:::::
shape360

::::::::
dependent

::::
bias

::
of

:::
±4

:
to calibrate Deq , perimeter

::::
±6%.

::::
For

:::::::
particles

::::::
smaller

::::
than

:::
10

:::
px,

:::
this

::::
bias

:::
can

:::
be

::::::
slightly

:::::
larger

::::
due

::
to

:::::::::::
discretization

:::::
errors

::
as

:::
can

:::
be

::::
seen

::::
from

:::
the

:::::
larger

::::::
impact

::
of

::::
blur

:::
for

:::::
small

::::::
squares

:::::
(Fig.

::::
5.d).

:::
For

:::::
better

::::::::::
comparison

::::
with

::::::
Dmax, and area because potential biases from the image processing routines have not been

characterized. Analyzing reference spheres would not be helpful because the shape complexity of spheres is much smaller than

for real snow particles
:::
Deq::

is
::::
used

::::::
instead

::
of

::
A
:::
for

::::::
testing

:::
the

::::::::
computer

:::::
vision

:::::::
method

::
for

:::::::::
estimating

::
A

::::
(Fig

::::::
5.e-h).

:::
The

::::::
results365

::
are

::::::
almost

::::::::
identical

::
to

:::::
Dmax::

so
::::
that

:::
the

:::::
slopes

:::::::
derived

::::
from

::::::
Dmax :::

are
::::::
applied

::
to

::::
Deq ::::

(and
:::::::::::
consequently

:::
A)

::
as

::::
well.

:

:::
For

:::
the

::::::::
perimeter

:
p
:::::
(Fig.

:::::
5.i-l),

::
the

::::::
slopes

::::::
derived

:::::
from

:::
the

::::::::
reference

::::::
spheres

:::
are

:::::
about

:::
5%

::::::
steeper

::::
than

:::
for

:::::
Dmax:::::::::

indicating

:::
that

::::::
VISSS

:
p
:::
are

::::::
biased

::::
high.

::::
This

::::
bias

::
is

:::
also

::::::
found

::
for

:::::::
artificial

:::::::
spheres

::::::::::
independent

::
of

:::
the

::::::
applied

:::::::::
additional

::::
blur.

:::::::::
Therefore,

:::
this

::::
bias

:
is
::::::
related

::
to
:::
the

::::::
image

:::::::::
processing

:::
and

:::::
most

:::::
likely

::::::
caused

::
by

:::
the

::::::::
Gaussian

::::
blur

:::::::
required

::
for

:::
the

::::::
Canny

::::
edge

:::::::::
detection.

:::
For

:::::::
squares,

:::::::
however,

:::
the

:::::
slope

::
is

::::
close

::
to

::
1

:::::
likely

:::
due

::
to

::::::::::::
compensating

:::::
effects

::::::
caused

:::
by

:::::::
"cutting

:::::::
corners"

::
of

:::
the

:::::::::
algorithm.

::
In370
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:::::
reality,

:::
the

::::::
VISSS

::::::::
observes

::::
more

::::::::
complex

:::::::
particles

:::
for

:::::
which

:::
the

::::::::
perimeter

::::::::
increases

::::
with

:::::::::
decreasing

:::::
scale.

:
(compare to coast

line paradox, Mandelbrot, 1967).
:::::::::

Therefore,
:::

we
::::::::

conclude
::::
that

::
it

::
is

::::::::
extremely

:::::::
unlikely

::::
that

:::
the

::::::::
perimeter

:::
of

:::
real

::::::::
particles

::
is

:::::
biased

::::
high

::::
like

:::
for

:::::::
artificial

::::::
spheres

:::
but

::::::
rather

:::::
biased

::::
low

:::::::::
depending

::
on

::::::::::
complexity.

:::
As

:
a
:::::::::
pragmatic

::::::::
approach,

:::
we

::::
also

:::::
apply

::
the

::::::
Dmax:::::

slope
::
to

:
p
:::
but

:::::
stress

::::
that

:
p
:::
has

::
a
::::::::::
considerably

::::::
higher

::::::::::
uncertainty

:::
than

::::::
Dmax::

or
::::
Deq .

The calibration is also checked by holding a millimeter pattern in the camera and measuring the pixel distance in the images,375

the found difference to the reference spheres is less than 2%.
:::
The

:::::::::
millimeter

::::::
pattern

:::::::::
calibration

:::
did

:::
not

:::::
reveal

::::
any

::::::::::
dependence

::
on

:::
the

:::::::
position

::
in

:::
the

:::::::::
observation

:::::::
volume

::
so

::::
that

:::::
errors

::::::
related

::
to

::::::::
imperfect

:::::::::::
telecentricity

::
of

:::
the

:::::
lenses

:::
can

:::
be

:::::
likely

::::::::
neglected.

:

Part of the calibration is to characterize the
:::::::::
Calibration

:::
of

:::
the

::::
PSD

::::
also

:::::::
requires

::
to

:::::
obtain

:::
the

:::::
exact

::::
size

::
of

:::
the observation

volume. For perfectly aligned cameras, this would simply be the volume of a rectangular box
::::::
cuboid with a base of 1280

px x 1280 px and a height of 1024 px. However, due to the imperfect alignment
:::::::::::
misalignment of the cameras, the actual380

::::
joint observation volume is slightly smaller than the rectangular cuboid

:
a
:::::::::
rectangular

::::::
cuboid

::::
and

:::
can

::::
have

:::
an

:::::::
irregular

:::::
shape.

Therefore, the observation volumes are
:::
first

:
calculated separately for leader and follower.

:::
To

::::::::
calculate

:::
the

:::::::::
intersection

:::
of

:::
the

:::
two

:::::::::
individual

:::::::::
observation

::::::::
volumes, the eight vertices of the follower observation volume are rotated to the leader coordinate

system, and the
::::::::::
OpenSCAD

::::::
library

::
is

::::
used

::
to

::::::::
calculate

:::
the intersection of the two bodies is calculated using the OpenSCAD

library
:::::::
separate

::::::::::
observation

:::::::
volumes. To account for the removal of

:::::::
partially

::::::::
observed particles detected at the edge of the385

image, a buffer of Dmax/2 to the edges of the image is used and the
:::
the

:::::::
effective observation volume is reduced accordingly

::
by

:::::::
Dmax/2

::
px

:::
on

::
all

:::::
sides. Finally, the volume is converted from pixels

::::
pixel

:::::
units to m3 using the calibration factor estimated

above.

4 Pilot studies

Here, we analyze first generation VISSS (VISSS1) data collected in winter 2021/22 at the Hyytiälä Forestry Field Station390

(61.845◦N, 24.287◦E, 150 m MSL) operated by the University of Helsinki, Finland to show the potential of the instrument.

For comparison, we use a co-located PIP (von Lerber et al., 2017; Pettersen et al., 2020) and OTT Parsivel2 laser disdrometer

(Löffler-Mang and Joss, 2000; Tokay et al., 2014). The distance between the VISSS and PIP was 20 m. The Parsivel was

located inside of the double fence intercomparison reference, which was located 35 m from VISSS.

4.1 Case study comparing VISSS, PIP, and Parsivel395

VISSS level2match data are compared with PIP and Parsivel observations for a snowfall case on 26 January 2022.
:::
For

:
a
::::
fair

:::::::::
comparison

::::
with

::::
PIP

:::
and

:::::::
Parsivel

::::
that

::::::
observe

::::::::
particles

::::
from

:
a
::::::
single

::::::::::
perspective,

::::
only

::::
data

::
of

:
a
:::::
single

::::::
VISSS

:::::::
camera

::
is

::::
used

::
in

:::
this

:::::::
section.

:
Because Parsivel uses something similar to Deq (see discussion in Battaglia et al., 2010, for the predecessor

instrument), Deq is also used as a PIP and VISSS size descriptor in the following. Also, Deq is not affected by the problems of

the PIP particle sizing algorithm identified by (Helms et al., 2022). The PSD is characterized by the two variables N∗
0 and D32400

used to describe the normalized size distributionsN(D) =N∗
0F (D/D32) (Testud et al., 2001; Delanoë et al., 2005) whereN∗

0

is a scaling parameter and D32 normalizes the size distribution by size. Assuming a typical value of 2 for the exponent b of
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the mass-size relation (e.g., Mitchell, 1996), D32 is the proxy for the mean mass-weighted diameter defined as the ratio of the

third to the second measured PSD moments M3/M2. Assuming the same value for b, N∗
0 can be calculated with

N∗
0 =

M4
2

M3
3

27

2
(5)405

as shown in Maahn et al. (2015). The variability ofN∗
0 andD32 as well as the particle complexity c and the number of particles

observed throughout the day are depicted in Fig. 6.
:::
The

:::::::
spectral

:::::::
variable

:
c is a spectral variable

::
is available for each size

bin. Because using a PSD-weighted average over all sizes for c would be heavily weighted to smaller ,
:::::::
particles

::::::
which

:::
are

:::
less

:::::::
complex

:
due to the finite resolutionpotentially less complex particles, we use the 95th percentile for c in the following.

The main precipitation event lasted from 10:00 to 17:30 UTC and shows an anticorrelation between N∗
0 and D32: the former410

increases up to 105 m−3 mm−1 until 13:00 UTC before decreasing to 103 m−3 mm−1 at the end of the event. The number

of particles observed ranges between 10,000 and 100,000 per minute, showing that estimates of N∗
0 and D32 are based on

sufficient number of observations to limit the impact of random errors. The particle complexity c divides the core period of the

event into two parts with c≈ 2 before 13:00 UTC and c≈ 2.8 after 13:00 UTC. This transition can also be seen in the random

selection of matched particles observed by the VISSS (Fig. 7) retrieved from the imagesL1detect product. For each particle, a415

pair of images is available from the two VISSS cameras. Before 13:00 UTC, a wide variety of different particle types has been

observed, including plates, small aggregates and small rimed particles. Since particle shape and mean brightness are not used

to match particles, the observed image pairs also confirm the ability of VISSS to correctly match data from the two cameras.

After 13:00 UTC, needles and needle aggregates dominate the observations explaining the increase in observed complexity.

Towards the end of the event, particles become smaller and more irregularly shaped. Around 18:30 UTC, even some ice lolly420

shaped particles (Keppas et al., 2017) are observed by the VISSS.

N∗
0 and D32 are also calculated from the PSDs observed by PIP and Parsivel. For the core event, N∗

0 measured by the PIP

is about an order of magnitude smaller than that measured by VISSS and Parsivel. The agreement of VISSS and Parsivel is

better, but some peaks in N∗
0 are not resolved by the Parsivel when D32 is large. This discrepancy may be related to problems

of the Parsivel with larger particles reported before (Battaglia et al., 2010). The reason for the observed differences between425

PIP and VISSS is
:::::
likely more complex. Overall the measured D32 agrees better than N∗

0 . Because D32 is a proxy for the mass-

weighted mean diameter, larger more massive snowflakes have a larger impact on D32 than more numerous smaller particles.

This implies that PIP is not capturing as many small ice particles as VISSS, while measurements of larger particles seem to

be less affected. Tiira et al. (2016) have studied the effect of the left-side PSD truncation on PIP observations (see Fig. 6 in

Tiira et al., 2016), but the observed VISSS - PIP difference seems to be somewhat larger than expected, namely the difference430

extends to larger D32 values. This may be due to the PIP image processing which dilates each picture twice using a 3-pixel by

3-pixel kernel . This means that a needle with a width of 4 px or 0.4 mm is completely removed by the PIP processing scheme

resulting in an underestimation in the PIP number concentration in the presence of needles. During this event, a large number

of needles was observed as shown in

:::
The

:::::::
number

::
of

::::::
particle

:::::::::::
observations

:::::
ranges

:::::::
between

::::::
10,000

::::
and

:::::::
100,000

::
per

:::::::
minute,

:::::::
showing

::::
that

:::::::
estimates

::
of
::::
N∗

0 ,
::::
D32,

::::
and435

:
c
:::
are

:::::
based

::
on

::::::::
sufficient

::::::
number

::
of

:::::::::::
observations

::
to

::::
limit

:::
the

::::::
impact

::
of

::::::
random

::::::
errors.

::::
This

:
is
:::::
about

:::
1.5

:::::
orders

::
of

:::::::::
magnitude

:::::
more
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:::::::
particles

::::
than

:::::::
observed

:::
by

:::::::
Parsivel

:::
and

::::
PIP

:
(Fig. 7.This effect is not limited to needles, but is expected to affect particleswith

large aspect ratios, and particles which have sub-parts with large aspect ratios. Around 10:10 UTC, PIP underestimates D32

while theN∗
0 difference appears to be smaller. During this time, VISSS observed the presence of radiating assemblage of plates

(Fig. 7). It is possible that PIPs image processing removes some parts of these particles, resulting in underestimation of their440

size
::::
6.d),

:::
but

:::
this

::
is
:::
not

::
a
:::
fair

::::::::::
comparison

:::::::
because

:::::::
Parsivel

::::
and

:::
PIP

:::::
report

:::
the

:::::::
number

::
of

::::::
unique

::::::::
particles,

::::
and

:::
the

::::::
number

:::
of

::::::
particle

:::::::::::
observations

:
is
::::
used

::::
here

:::
for

:::
the

::::::
VISSS.

::::::
When

:::::::
applying

:::
the

:::::::
tracking

::::::::
algorithm

::
to
:::
the

::::::
VISSS

::::
and

:::::::
consider

::::
only

::::::
unique

::::::
particle

:::::::::::
observations

::::::::
consistent

::
to

:::
the

:::::
other

:::::::
sensors,

:::
the

::::::::
advantage

:::
of

:::
the

::::::
VISSS

::
is

::::::
reduced

:::
to

::::
50%.

::::
The

:::::::
average

::::
track

::::::
length

::
of

:::
the

::::::
VISSS

:::::
varies

:::::::::
throughout

:::
the

:::
day

::::::::
between

:
5
:::
and

:::
20

::::::
frames

::::
with

::
an

::::::
overall

:::::::
average

::
of

:::
8.5

::::::
frames.

To further investigate the differences between the instruments, we compare VISSS, PIP, and Parsivel spectra
::::
PSDs

:
(Fig. 8)445

for the three discussed times during the snowfall case. While Parsivel and VISSS mostly agree forD > 1 mm for all three cases,

Parsivel observes more particles for 0.6 mm<D < 1 mm (as previously reported by Battaglia et al., 2010) before dropping for

D < 0.6 mm, which is likely related to limitations associated with the Parsivel
::::
pixel

:
resolution of 125 µm. The comparison of

VISSS and PIP shows larger discrepancies as explained above. The PSDs tend to agree for Deq > 1 mm for cases where larger

ice particles are more spherical (11:24 UTC). For the needle case (13:00 UTC), PIP reports lower number concentrations than450

VISSS and Parsivel for almost all sizes. At 10:10 UTC, VISSS and PIP approximately agree for sizes between 0.4 and 0.8 mm,

but PIP reports lower values for other sizes. Although no needles are observed at 10:10 UTC, Fig. 7 shows that there were also

small columns that could be affected by the dilation of structures less than 0.4 mm wide by the PIP software, or some parts of

radiating assemblage of plates were removed by the image processing.

All three instruments have different sensitivities to small particles. This can be seen for the drop in D32 around 17:45 UTC455

(Fig. 6) where the Parsivel does not report any values, and the PIP N∗
0 estimates differ strongly from the VISSS when D32 < 1

mm. The VISSS reports D32 values as low as 0.16 mm around 19:00 UTC. Although the sample sizes are sufficient (> 10,000

particles per minute), the errors are likely large due to the VISSS
::::
pixel resolution of ~0.06 mm. In the absence of an instrument

designed to observe small particles, it is not possible to determine how reliably VISSS detects and sizes small particles.

Additional insight is provided by comparing the drop size distributions (DSD) observed by the three instruments during460

a drizzle event on 16 October 2021 (Fig. 8.d). The use of drizzle allows Parsivel to be used as a reference instrument as it

has been shown to provide accurate DSDs for sizes between 0.5 and 5 mm (Tokay et al., 2014). In fact, Parsivel and VISSS

DSDs differ no more than 10% for 0.55 mm >D > 0.9 mm both showing a dip in the distribution around 0.55 mm. For larger

droplets, differences are likely related to the small sample size
:::
their

::::
low

::::::::
frequency

:::
of

:::::::::
occurrence

:::::::::
increasing

::::::::
statistical

:::::
errors.

For smaller droplets, VISSS (and PIP) report about an order of magnitude higher concentrations than the Parsivel. Similarly,465

(Thurai et al., 2019) found that a 50 µm optical array probe observed more small drizzle droplets than a Parsivel. For these

small particle sizes close to the VISSS camera
::::
pixel resolution, discretization errors likely play a role which we investigate by

comparing Dmax and Deq for the VISSS. As drizzle droplets can be considered sufficiently spherical (i.e. AR >0.9) for D <1

mm (Beard et al., 2010), we can evaluate whether Dmax =Deq holds as expected (Fig. 8.d). As expected, VISSS Dmax and

Deq are in almost perfect agreement for D >0.5 mm, but larger differences occur for D <0.3 mm indicating that discretization470

errors can become substantial for D <0.3 mm.
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::
In

:::
the

:::::::
absence

::
of

:
a
::::::::
reference

:::::::::
instrument

:::
for

:::::::
smaller

:::::::
particles

::
in
::::::::
Hyytiälä

::
or

::::::::
reference

:::::::
spheres

::::
with

::::::::
diameters

:::::::
smaller

::::
than

:::
0.5

::::
mm,

:::
the

::::::::::
performance

:::
of

:::
the

::::::
VISSS

::
for

:::::::::
observing

:::::
small

:::::::
particles

::::
with

:::::::
D <0.5

::::
mm

::
is

::::::
difficult

:::
to

::::::
assess.

:::::::
Particles

:::::
close

::
to

::
the

:::::::::
thresholds

:::
for

::::
size,

::::
area,

::::
and

:::
blur

::::::
might

::
be

:::::::
rejected

:::
for

::::
parts

::
of

:::
the

::::::::
observed

::::::::
trajectory

:::::
which

:::::
could

::::::
explain

:::
the

::::::::
decrease

::
in

:::::
VISSS

:::::::
number

:::::::::::
concentration

:::
for

:::::
small

:::::::
particle

::::
sizes.

:
475
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Figure 6. Comparison of VISSS (blue), PIP (orange), and Parsivel (green) for a snowfall case on 26 January 2022 at Hyytiälä using N∗
0 (a),

D23 (b), complexity c (c), and the number of observed particles (d).
:::
For

::
the

::::::
VISSS,

:::
the

::::
latter

:
is
::::::
shown

:::::
without

:::::
(blue)

:::
and

::::
with

::::
(red)

::::::
particle

::::::
tracking.

:
The three vertical black lines indicate the sample PSDs shown in Fig. 8.
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 7. Image pairs of particles observed by the two VISSS cameras on 26 January 2022 between 10:00 and 19:00 UTC
:
in
:::::::

original

:::::::
resolution. The (R) indicates that more particles than shown were observed by the VISSS and only a random selection is presented in the

panel. Only
::::
Even

:::::
though

:
particles

:
≥

:
2
:::

px
:::
are

::::::::
processed,

::::
only

::::::
particles

:
with Dmax ≥ 0.59 mm (10 px

::::
(0.59

:::
mm) are shown

::::::
because

:::
the

:::::
particle

:::::
shape

::
of

::::::
smaller

::::::
particles

:::::
cannot

:::
be

:::::::
identified.
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Figure 8. (a-c) Particle size distributions of VISSS, PIP, and Parsivel for the three cases indicated in Fig. 6 on 26 January 2022.
::::
2022

:::::::
integrated

::::
over

:
1
::::::
minute.

:
Deq is used as a size descriptor. (d) Same as (a-c), but showing the drop size distribution of a drizzle case on 16

October 2021. In addition, the VISSS drop size distribution is also shown with Dmax as the size descriptor.

4.2 Statistical comparison of VISSS, PIP, and Parsivel

The results of the case study comparison of VISSS, PIP, and Parsivel also hold when comparing 6661 minutes of joint snowfall

observations during the winter of 2021/22 (Fig. 9). The ratio of N∗
0 observed by VISSS and PIP (Parsivel) is compared to D32,

N∗
0, and complexity c. For D32 < 1 mm, the VISSS to PIP (Parsivel) N∗

0 ratio increases strongly and can reach a value of

10,000 (10). Therefore, the comparison of the N∗
0 ratio with N∗

0 itself and c is limited to data withD32 > 1 mm. For the PIP, the480

difference in N∗
0 does not depend on N∗

0 but—as suggested by the needle case above—on complexity c, with higher c values

indicating larger N∗
0 differences, probably related to the image dilation problem discussed above

:::::::
problems

:::
of

:::
the

:::
PIP

::::::
image

:::::::::
processing. For the VISSS to Parsivel comparison, the N∗

0 difference depends rather on N∗
0 instead of c. Because D32 and N∗

0

are often anti-correlated, this could be related to size-dependent errors of the Parsivel as identified by Battaglia et al. (2010).

4.3 Advantage of the second VISSS camera485

The two-camera VISSS setup allows for quantification of the errors in

::::
Here,

:::
we

:::::::
quantify

:::
the

:::::::::
advantage

::
of

:::::::::
observing

:::::::
multiple

::::::::::
orientations

::
of

::
a

::::::
particle

::::
with

:::
the

:::::::
VISSS.

:::
For

::::
this,

:::
we

:::::::
compare

::::
one

::::::
minute

:::::
values

::
of

:::::
mean

:
Dmax, aspect ratio AR, cross-sectional area A, and perimeter

::::
Deq ,

::::
and p that would be made if only
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Figure 9. Statistical analysis of the ratio of VISSS to PIP N∗
0 as a function of (a) VISSS D23, (b) VISSS N∗

0, and (c) VISSS complexity c.

(d-f) Same as (a-c), but comparing the VISSS to the Parsivel. The color indicates the number of particles observed by VISSS, the orange line

indicates the mean ratio. The analysis for N∗
0 (b, e) and c (c, f) is restricted to cases with D23 >1 mm.

:::::::
obtained

::::
from

:
a single camerawere used (Fig. 10). The errors are defined as the normalized difference between the maximum

observation of Dmax, A, and p from the pair of camerasand the observation of the leader camera alone.,
:::::
using

:::
the

:::::::::
maximum490

::::
value

::::::::
obtained

::::
from

::::
both

::::::::
cameras,

:::
and

:::
the

:::::::::
maximum

:::::
value

:::::::
obtained

::::::
during

:::
the

:::::::
observed

:::::::
particle

::::
track

:::::
(Fig.

::::::
10.a-c).

:
For AR,

the minimum of both observations
::
the

::::
two

:::::::
cameras

::::
and

:::::
along

:::
the

:::::
track is used instead . A positive error indicates that the

observation of a single camera would be too small. For this assessment
::
of

:::
the

::::::::
maximum

:::::
(Fig.

:::::
10.d).

:::
To

:::::::
evaluate

::::
the

:::::
effect

::
of

::::::
particle

::::
type, three cases with mostly dendritic-aggregates

::::::::
dendritic

:::::::::
aggregates (6 December 2021, 07:19 - 12:30 UTC),

needles (5 January 2022, 00:00 - 14:30 UTC), and graupel (6 December 2021, 00:00 - 04:50; 13:30 - 14:20; 21:15-24:00 and495

5 January 2022, 15:00 - 16:40; 19:40 -20:50 UTC) are analyzed using the level1match product, which contains properties for

each observed matched particle. As expected from the highly irregular shape, the errors are largest for needles. The errors

peak around 0.7 mm for
::::
used.

::::
The

::::::
change

::
in
::::::::
observed

::::::
values

::
is

:::::::
strongest

:::
for

:::::::
needles,

::::::
which

:::
are

:::
the

::::
most

::::::::
complex

::::::::
particles,

:::::
where

:::::
when

:::::
using

:::
two

:::::::
cameras

:
Dmax, AR

:::
Deq , A, and pwith mean values of 15, -88, 18, and

:
,
:::
and

::::
AR

::::::
change

::
by

:::::
16%,

:::::
10%,

14
::
%,

::::
and

::::::
−12%,

::::::::::
respectively,

::::
and

:::::
when

::::::::::
additionally

::::::::::
considering

:::::::
tracking

:::
the

:::::
values

::::::
change

:::
by

:::::
24%,

::::
19%,

:::::
24%,

:::
and

:::::
−27%,500

respectively. Due to aggregation forming more spherical needle aggregates, the error decreases for larger sizes. For graupel

particles, the error is typically less than 10% (for
:::::::
Changes

::
for

::::::::
dendritic

:::::::::
aggregates

:::
and

:::::::
graupel

::
are

::::
less

:::
and

::::::::::
surprisingly

:::::::
similar:

:::::
Dmax::::::::

increases
:::
by

:::
8%

:::
and

::::
7%

:::::
(13%

:::
and

::::::
16%),

::::
Deq :::::::

increases
:::

by
:::
6%

::::
and

:::
6%

:::::
(14%

::::
and

:::::
14%),

::::
and

:
p
::::::::
increases

:::
by

:::
7%

::::
and
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:::
7%

::::
(19%

::::
and

:::::
16%),

:::::::::::
respectively,

::::
when

:::::
using

::::
two

:::::::
cameras

::::
(two

:::::::
cameras

::::
with

::::::::
tracking).

::::
The

::::::::::
dependency

::
of

::::::
particle

:::::::::
properties

::
to

:::::::::
orientation

:::
can

:::
be

::::
also

::::
seen

::::
from

:::
the

::::
fact

:::
that

:::::
mean

:
AR about -30% )

::::::::
decreases

::::
from

::::
0.62

::
to

::::
0.54

:
and slightly larger for505

dendritic aggregates
:::
0.42

:::
for

:::::::::
aggregates

::::
and

::::
from

::::
0.73

::
to

::::
0.67

::::
and

::::
0.54

::
for

:::::::
graupel

::::::::::
highlighting

::::
that

:::::::::
orientating

::::::
matters

:::::
even

::
for

:::::::
graupel.

:::::::::::::
Underestimating

::::::
Dmax :::

can
::::
lead

::
to

:::::
biases

:::::
when

:::::
using

:::::::::
commonly

::::
used

::::::
Dmax :::::

based
:::::
power

::::
laws

:::
for

:::::::
particle

::::
mass

:
(Mitchell,

1996)
::
or

::::
when

:::::
using

::
in

:::
situ

:::::::::::
observations

::
to

::::::
forward

::::::
model

::::
radar

:::::::::::
observations.

::::
This

::
is

:::::::
because

::::::::
scattering

::::::::
properties

::
of

:::::::::::
non-spherical

:::::::
particles

:::
are

::::::::
typically

:::::::::::
parameterized

:::
as

:
a
::::::::
function

::
of

::::::
Dmax (Mishchenko et al., 1996; Hogan et al., 2012).

:::::::
Further,

:::::::
particle510

::::::::
scattering

::::::::
properties

::::
are

:::
also

::::::::
impacted

:::
by

:::
the

::::::::::
distribution

::
of

:::::::
particle

:::::
mass

:::::
along

:::
the

::::
path

::
of

::::::::::
propagation

:
(Hogan and West-

brook, 2014)
:::::
which

::
is

::::::::
impacted

::
by

::::
AR.

:
To analyze how the error in

:::::::
different Dmax :::

and
:::
AR

::::::::
estimates

:
affects the simulated

radar reflectivity
::
for

::::::::
vertically

:::::::
pointing

:::::
cloud

:::::
radar

::::::::::
observations

::
at
:::
94

::::
GHz, we use the the PAMTRA radar simulator (Passive

and Active Microwave radiative TRAnsfer tool, Mech et al., 2020) with the riming-dependent parameterization of the particle

scattering properties (Maherndl et al., 2023a) . The error in
:::::::
assuming

:::::::::
horizontal

::::::
particle

:::::::::
orientation

:
(Sassen, 1977; Hogan et al.,515

2002).
:::::
Using

::::
two

:::::::
cameras

::::
(i.e.,

:::::
max(Dmaxtranslates into mean errors between 0.8 dB (aggregates)and 2.11 dB (needles). This

is less than the
:
,
::::::::
min(AR))

::::::::
increases

:::::
mean

:::
Ze :::::

values
:::
by

:::
2.1,

:::
2.5

::::
and

:::
1.8

:::
dB

::
for

::::::::::
aggregates,

:::::::
needles,

:::
and

:::::::
graupel,

:::::::::::
respectively.

:::::
When

::::::::
exploiting

::::
also

:::
the

:::::::
varying

::::::::::
orientations

:::::
during

::::::::
tracking,

:::
the

::::::
offsets

:::::::
increase

::
to

:::
4.5,

::::
4.6,

:::
and

:::
3.7

::::
dB,

::::::::::
respectively,

::::::
which

:
is
:::::::::::
considerably

:::::
larger

::::
than

:::
the

:::::::::
commonly

::::
used

::::::::::::
measurement

:::::::::
uncertainty

::
of

::
1

:::
dB

::
for

:::::
cloud

::::::
radars.

::::
The

::::::
change

::
in

:::
Ze::

is
::::::
similar

::
to

:::
the 3.2 dB found by Wood et al. (2013) using idealized particles, but this is likely related to the fact that two perspectives520

as provided by the VISSS are not sufficient to provide the true Dmax. Also, the use of idealized particles might lead to an

overestimation of the bias. .
:

5 Conclusions

The hardware and data processing of the open source Video In Situ Snowfall Sensor (VISSS) has been introduced. The VISSS

consists of two cameras with telecentric lenses oriented at a 90° angle to
::::
each

:::::
other

:::
and

::::::
observe

:
a common observation volume.525

Both cameras are illuminated by LED backlights (see Table 1 for specifications). The goal of the VISSS design was to combine

a large, well defined observation volume and relatively high
::::
pixel resolution with a design that limits wind disturbance and

allows accurate sizing. The VISSS was initially developed for MOSAiC, but additional deployments at Hyytiälä, Finland and

Gothic, Colorado USA followed. An advanced version of the instrument has been installed at Ny-Ålesund, Svalbard. The

VISSS processing scheme consists of a series of products with per-particle (level 1 ) and size distribution (level 2) properties.530

Required processing steps
::::::::
processing

:::::
steps

:::
for

::::::::
obtaining

:::::::::
per-particle

:::::::::
properties

:
include particle detection and sizing, particle

matching between the two cameras considering the exact alignment of the cameras to each other, and integration of particle

properties over a size distribution. For estimating sedimentation velocity, particle tracking over time is required as well (under

development)
::::::
tracking

:::
of

::::::::
individual

::::::::
particles

::
to

:::::::
estimate

::::::::::::
sedimentation

:::::::
velocity

::::
and

:::::::
improve

::::::
particle

::::::::
property

::::::::
estimates.

::::
For

::::
level

:
2
::::::::
products,

:::
the

:::::::::
temporally

::::::::
averaged

::::::
particle

:::::::::
properties

:::
and

::::
size

::::::::::
distributions

:::
are

::::::::
available

::
in

::::::::
calibrated

::::::
metric

::::
units.535
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Figure 10. Mean errors of (a) Dmax, (b) aspect ratio AR
:::
Deq , (c) cross-sectional area A

:::::::
perimeter

::
p, and (d) perimeter p as a function of

Dmax when using only a single VISSS camera instead of combining the two cameras. Three
::::
aspect

::::
ratio

::::
AR,

:::
and

:::
(e)

::::
radar

:::::::::
reflectivity

::::
factor

:::
Ze ::

for
:

cases with mostly observations of graupel
::::::::
aggregates (blue), needles (orange), and aggregates

:::::
graupel

:
(green) are used

::::
when

::::
using

::::
only

:
a
:::::
single

:::::
VISSS

::::::
camera,

::::
both

::::::
cameras,

:::
and

::::
both

::::::
cameras

:::::::::
considering

::::::
particle

:::::::
tracking. The shaded area indicates the 10th to 90th

percentile range
:::

areas
:::::
denote

::::
one

::::::
standard

:::::::
deviation.

The initial analysis shows the potential of the instrument. The relatively large observation volume of the VISSS leads to

robust statistics based on up to 100
::
10,000 particles observed

::::::::
individual

:::::::
particle

:::::::::::
observations per minute. The data set from

Hyytiälä obtained in the winter of 2021/22 is used to compare the VISSS with collocated PIP and Parsivel instruments. While

the comparison with the Parsivel shows—given the known limitations of the instrument for snowfall (Battaglia et al., 2010)—

excellent agreement, the comparison with the PIP is more complicated. The differences in the observed PSDs increase with540

increasing particle complexity c (Eq. 1)which may be related to the image dilation used during particle sizing for the PIP,

which inadvertently removes needle particles. But
::::
e.g.,

:::::::
needles),

::::
but differences remain even for non-needle cases and for a

case with a relatively high concentration of large, relatively spherical particles, agreement was only found for sizes larger than

1 mm. Because the Parsivel is well characterized for liquid precipitation (Tokay et al., 2014), a drizzle case is also used for

comparison. The case shows an excellent agreement between Parsivel and VISSS for droplets larger than 0.5 mm, confirming545
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the general accuracy of VISSS. Compared to both PIP and Parsivel, VISSS observes a larger number of small particles that

can drastically change the retrieved PSD coefficients in some cases. However, the first generation VISSS
::::
pixel resolution of

0.06 mm is likely to introduce discretization errors for particles smaller than 0.3 mm (i.e. 5 px), potentially leading to errors

in the sizing of very small particles. Furthermore, we analyzed the advantage of the VISSS due to the availability of a second

camera. Depending on the particle type, the availability of a second cameraavoids underestimation errors in
:::::
mean Dmax of up550

to 15% and overestimation errors in aspect ratio
:::::::
increases

:::
up

::
to

::::
16%

:::
and

:::::
mean

:::::
aspect

:::::
ratio AR of up to -88

::::::::
decreases

::
by

:::::
12%.

:::
For

:::
the

:::::::
analyzed

:::::
case,

:::
the

::::::
VISSS

:::::::
observes

:::::
each

::::::
particle

:::
on

::::::
average

:::
8.5

:::::
times

::::::
which

:::
can

::::::
further

:::::::
improve

::::::::
estimates

::
of

:::::::
particle

::::::::
properties

::::
due

::
to

:::
the

::::::
natural

:::::::
rotation

::
of

:::
the

:::::::
particle

::::::
during

::::::::::::
sedimentation.

::
In

::::::::::
comparison

::
to

:::::
using

::::
only

::
a
:::::
single

:::::::
camera,

::::
this

:::
can

:::::::
increase

:::::
mean

:::::
Dmax:::

by
::
up

::
to

::::
24%

::::
and

::::::
reduce

:::
AR

:::
by

::
up

::
to

:::
31%.

VISSS product development will continue. After finalizing the particle tracking algorithm to estimate particle sedimentation555

velocity,
:
,
::::
e.g.,

::
by

::::::::::::
implementing machine learning based particle classifications (Praz et al., 2017; Leinonen and Berne, 2020;

Leinonen et al., 2021)will be implemented. Also, we will work on making VISSS data acquisition and processing more efficient

by handling some processing steps on the data acquisition system in real-time. We invite also the community to contribute to

the development of the open source instrument. This applies not only to the software products, but allows also for other groups

to build the instrument for approximately 22,000 EUR
:::
and

:::::::
improve

:::
the

:::::::::
instrument. It could even mean to advance the VISSS560

hardware concept further, by e.g. adding a third camera to observe snow particles from below or—given the extended 1300

mm working distance of VISSS3—from above. The VISSS hardware plans (2nd generation VISSS, Maahn et al., 2023), data

acquisition software (Maahn, 2023a), and data processing libraries (Maahn, 2023b) have been released under an open source

license so that reverse engineering as done by Helms et al. (2022) is not required to analyze the VISSS data processing. The

only limitation of the used licenses is that modification of the VISSS need to be made publicly available under the same license.565

::::::::
Hardware

:::::
plans

::
for

:::
the

:::::
third

::::::
VISSS

:::::::::
generation

:::
will

:::
be

::::::::
published

::
on

::::::::::
completion

::
of

:::
the

:::::::::
instrument

:::
end

:::
of

::
the

:::::
year.

There are many potential applications for VISSS observations. It can be used for model evaluation with advanced micro-

physics (e.g., Hashino and Tripoli, 2011; Milbrandt and Morrison, 2015), characterization of PSDs as a function of snowfall

formation processes, or retrievals combining in situ and remote sensing observations. Tracking of a particle in three dimensions

can be used to understand the impact of turbulence on particle trajectories. Beyond atmospheric science, the VISSS shows po-570

tential for quantifying the occurrence of flying insects, as standard insect counting techniques (e.g., suction traps )
:::
such

:::
as

::::::
suction

::::
traps

:
are typically destructive and labor-intensive.

Code and data availability. VISSS hardware plans (Maahn et al., 2023), data acquisition software (Maahn, 2023a), and data processing

libraries (Maahn, 2023b) have been released under an open source license. VISSS, PIP, and Parsivel observations used for the pilot study are

available at https://zenodo.org/record/7797286 (Maahn and Moisseev, 2023).575
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Appendix A: Coordinate system transformation

We use a right handed coordinate system (x,y,z) to define the position of particles in the observation volume, where z points

to the ground (see Fig. 1). The follower coordinate system (xF ,yF ,zF ) can be transformed into the leader coordinate system

(xL,yL,zL) by the standard transformation matrix


xL

yL

zL

=


cosθ cosψ sinφsinθ cosψ− cosφsinψ cosφsinθ cosψ+sinφsinψ

cosθ sinψ sinφsinθ sinψ+cosφcosψ cosφsinθ sinψ− sinφcosψ

−sinθ sinφcosθ cosφcosθ



x′F

y′F

z′F

 (A1)580

using the follower’s roll φ, yaw ψ, and pitch θ, analogous to airborne measurements, and with x′F = xF +Ofx, y′F =

yF +Ofy , and z′F = zF +Ofz , where Ofx, Ofy , and Ofz are the offsets of the follower coordinate system in the x, y, and

z directions, respectively (see Fig. 1) Offsets in Ofx and Ofy are neglected, because they would only materialize in reduced

particle sharpness, but not in the retrieved three-dimensional position. The opposite transformation can be described by:


x′F

y′F

z′F

=


cosθ cosψ cosθ sinψ −sinθ

sinφsinθ cosψ− cosφsinψ sinφsinθ sinψ+cosφcosψ sinφcosθ

cosφsinθ cosψ+sinφsinψ cosφsinθ sinψ− sinφcosψ cosφcosθ



xL

yL

zL

 (A2)585

Since we have only one measurement in the x and y dimensions, but two in z, we use the difference between the measured

zL and the estimated zL from matched particles to retrieve the rotation
:::::::::::
misalignment angles and offsets

zL =−sinθx′F +sinφcosθy′F +cosφcosθz′F . (A3)

In this equation, x′F is unknown so it is derived from

x′F = cosθ cosψxL +cosθ sinψyL − sinθzL (A4)590

where, in turn yL is not observed. Therefore, yL is obtained from

yL = cosθ sinψx′F +(sinφsinθ sinψ+cosφcosψ)y′F +(cosφsinθ sinψ− sinφcosψ)z′F . (A5)

Inserting equations A5 into A4 yields after a couple of simplifications

x′F =
cosθ cosψ

1− cos2 θ sin2ψ
xL

+
(cosθ sinφsinθ sin2ψ+cosφcosψ cosθ sinψ)

1− cos2 θ sin2ψ
y′F

+
(cosθ cosφsinθ sin2ψ− sinφcosψ cosθ sinψ)

1− cos2 θ sin2ψ
z′F
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− sinθ

1− cos2 θ sin2ψ
zL. (A6)595

Inserting equations A6 into A3 yields:

zL =− sinθ

cosθ cosψ
xL

− sinθ sinψ cosφ− cosψ sinφ

cosθ cosψ
y′F

+
sinθ sinψ sinφ+cosψ cosφ

cosθ cosψ
z′F . (A7)

:::
We

::::
have

::
no

::::::::::
information

:::::
about

:::
ψ,

:::::::
therefore

:::
we

::::
have

:::
no

::::::
choice

:::
but

::::::::
assuming

:::::
ψ = 0

::::::
leading

::
to
:

600

zL =−
::::::

sinθ

cosθ
xL +

sinφ

cosθ
y′F +

cosφ

cosθ
z′F .

:::::::::::::::::::::::::

(A8)
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