Comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA: Implications to atmospheric oxidative capacity

Meghna Soni1,2, Rolf Sander3, Lokesh K Sahu1, Domenico Taraborrelli4, Pengfei Liu5, Ankit Patel6, Imran A Girach7, Andrea Pozzer3,8, Sachin S Gunthe6,9, and Narendra Ojha1

1Physical Research Laboratory, Ahmedabad, India
2Indian Institute of Technology, Gandhinagar, India
3Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
4Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Jülich, Germany
5School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
6EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
7Space Applications Centre, Indian Space Research Organisation, Ahmedabad, India
8Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
9Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India

Correspondence: Meghna Soni (soni.meghna95@gmail.com) and Rolf Sander (rolf.sander@mpic.de)

Abstract. Tropospheric chlorine chemistry can strongly impact the atmospheric oxidation capacity and composition, especially in urban environments. To account for these reactions, the gas- and aqueous-phase Cl chemistry of the community atmospheric chemistry box model CAABA/MECCA has been extended. In particular, an explicit mechanism for ClNO2 formation following N2O5 uptake to aerosols has been developed. The updated model has been applied to two urban environments with different concentrations of NOx (NO and NO2): New Delhi (India) and Leicester (United Kingdom). The model shows a sharp build-up of Cl at sunrise through Cl2 photolysis in both environments. Besides Cl2 photolysis, ClO+NO reaction, and photolysis of ClNO2 and ClONO are prominent sources of Cl in Leicester. High-NOx conditions in Delhi tend to suppress the night-time build-up of N2O5 due to titration of O3 and thus lead to lower ClNO2, in contrast to Leicester. Major loss of ClNO2 is through its uptake on chloride, producing Cl2, which consequentially leads to the formation of Cl through photolysis.

The reactivities of Cl and OH are much higher in Delhi, however, the Cl/OH ratio is up to ≈7 times greater in Leicester. The contribution of Cl to the atmospheric oxidation capacity is significant and even exceeds (by ≈2.9 times) that of OH during the morning hours in Leicester. Sensitivity simulations suggest that the additional consumption of VOCs due to active gas- and aqueous-phase chlorine chemistry enhances OH, HO2, RO2 near the sunrise. The simulation results of the updated model have important implications for future studies on atmospheric chemistry and urban air quality.

1 Introduction

Chlorine (Cl) radicals are one of the most important players in the tropospheric chemistry (Seinfeld and Pandis, 2016; Ravishankara, 2009). Cl impacts the oxidative capacity of the atmosphere, radical cycling, and, therefore, can significantly alter the atmospheric composition (Seinfeld and Pandis, 2016; Faxon and Allen, 2013). In comparison with hydroxyl (OH) radicals, the
so-called atmospheric detergent, the much faster reaction rates of Cl with Volatile Organic Compounds (VOCs), enhance the peroxyl radicals (RO$_2$) formation and, thereby, the production of ozone (O$_3$) and secondary organic aerosols (SOA) (Qiu et al., 2019a; Choi et al., 2020). In addition, Cl radicals can also enhance the oxidation of climate-driving gases (such as methane and dimethyl sulphide) (Saiz-Lopez and von Glasow, 2012). Cl radicals are produced in the atmosphere through photochemistry involving heterogeneous reactions of Cl-containing gases and aerosols (Qiu et al., 2019a; Faxon and Allen, 2013). The major sources of Cl-containing species are anthropogenic activities in continental regions and sea salt aerosols in marine and coastal environments (von Glasow and Crutzen, 2007; Osthoff et al., 2008; Liao et al., 2014; Liu et al., 2017; Thornton et al., 2010; Gunthe et al., 2021; Zhang et al., 2022). The photolysis of reactive Cl-containing species, such as chlorine gas (Cl$_2$), hypochlorous acid (HOCl), nitryl chloride (ClNO$_2$), and chlorine nitrite (ClONO) and the reaction of hydrochloric acid (HCl) with OH are known to produce Cl radicals in the lower troposphere (Riedel et al., 2014). With the rise in anthropogenic activities, emissions of Cl-containing species have increased significantly around the globe (Lobert et al., 1999; Zhang et al., 2022), and hence the importance of Cl chemistry has become prominent.

Despite the aforementioned importance, Cl chemistry and associated mechanism, especially heterogeneous reactions in the lower troposphere are not yet fully understood, and the effects of Cl on atmospheric composition, air quality and oxidation capacity remain uncertain. Field measurements have revealed high concentrations of Cl species over inland regions in addition to coastal and polar regions (von Glasow and Crutzen, 2007; Osthoff et al., 2008; Liao et al., 2014; Liu et al., 2017; Thornton et al., 2010), however, quantitative understanding remains limited. This is mainly due to lack of the relevant heterogeneous and gas-phase chemistry in atmospheric photochemical models despite the range of chemical mechanisms complexity used in 3-D chemistry transport models (Xue et al., 2015; Pawar et al., 2023; Pozzer et al., 2022). Qiu et al. (2019b) showed that due to inadequate representation of heterogeneous Cl chemistry, the Community Multiscale Air Quality (CMAQ) model underestimated nitrate concentrations during daytime but overestimated during night-time in Beijing, China. In addition, the uncertainties associated with emission inventories of Cl species, can lead to inaccurate prediction of air composition (Zhang et al., 2022; Sharma et al., 2019). For example, Pawar et al. (2023) noticed that even after the inclusion of HCl emissions from trash burning the levels of nitrate, sulphate, nitrous acid (HONO) etc., still deviated from the observations in Delhi, India, highlighting the need to include emissions also from other sectors, such as industries. Few recent studies assessed the impacts of the gas phase Cl chemistry by including gas phase ClNO$_2$ reactions, for example, Xue et al. (2015) found about 25% enhancement in the daytime oxidation of carbon monoxide and VOCs at a coastal site in East Asia. In the same region, the model predicted a 5-16% enhancement in peak ozone with ClNO$_2$ (≈50–200 pmol/mol) at a mountain top in Hong Kong, China (Wang et al., 2016). The measurements of Cl$_2$ (up to ≈450 pmol/mol) and ClNO$_2$ (up to ≈3.5 nmol/mol) were reported from a rural site in the North China Plain and Cl chemistry was showed to enhance peroxy radicals (by 15%) and O$_3$ production rate (by 19%) (Liu et al., 2017).

Nevertheless, the heterogeneous chemistry of Cl species remains poorly represented in models, and often neglected in large scale numerical simulations. For example, in several models, the heterogeneous uptake of N$_2$O$_5$ on aqueous aerosols yielded
nitric acid (HNO₃) via reaction H1:

\[\text{N}_2\text{O}_5(g) + \text{H}_2\text{O}(aq) \rightarrow 2 \text{HNO}_3(aq) \] (H1)

However, recent studies suggest that N₂O₅ uptake on aqueous chloride can produce ClNO₂ (Thornton et al., 2010) especially in urban environments with strong NOx emissions (Osthoff et al., 2008; Young et al., 2012). Incorporating heterogeneous mechanism of ClNO₂ into the regional models led to 3–12% increase in O₃ over Northern China (Sarwar et al., 2014; Zhang et al., 2017; Liu et al., 2017). In addition, heterogeneous reactions of Cl-containing species including particulate chloride (pCl⁻), Cl₂, ClNO₂, chlorine nitrate (ClNO₃), and hypochlorous acid (HOCl) are suggested to result in the formation of Cl radicals as well as in recycling of NOx, and HOx (OH, and HO₂) (Ravishankara, 2009; Qiu et al., 2019a; Hossaini et al., 2016; Faxon and Allen, 2013). Very recent measurements suggest a reduction in ClNO₂ formation due to the competition of N₂O₅ uptake between chloride, sulphate and acetate aerosols (Staudt et al., 2019). These heterogeneous reactions can be of paramount significance in the Cl budget, however, to the best of our knowledge, these are not yet considered in model simulations.

The main goal of the present study is to investigate the role of chlorine chemistry in chemically contrasting urban environments. In this regard, we incorporate comprehensive gas-phase and heterogeneous Cl chemistry into a state of the art box model. Section 2 provides a detailed description of the Cl chemistry mechanism with gas-phase and heterogeneous reactions. Section 3 describes the model setup and Section 4 shows the simulation results which include a detailed investigation on (i) the production and loss of Cl and ClNO₂, (ii) the role of Cl for the Atmospheric Oxidative Capacity (AOC), and (iii) the sensitivity of air composition to chlorine chemistry.

2 Mechanism Development

The community box model “Chemistry As A Boxmodel Application/Module Efficiently Calculating the Chemistry of the Atmosphere” (CAABA/MECCA, Sander et al., 2019), has been used in this work. A comprehensive gas- and aqueous-phase mechanism of chlorine chemistry has been added to MECCA, here used within the box model CAABA. The gas-phase and heterogeneous chemistry implemented in MECCA is described in the following subsections.

2.1 Gas-phase chlorine chemistry

A total of 35 inorganic, organic and photolysis reactions which are key contributors of Cl radicals were added to the mechanism (Table 1). The mechanism includes the inorganic reactions of Cl with NOx, NO₃ (G1–G4), the reactions of Cl-containing species with OH and NO (G5–G7), and the reactions between Cl-containing species (G8–G9) (Qiu et al., 2019a; Burkholder et al., 2015; Atkinson et al., 2007). The Cl-initiated oxidation of organic species i.e. alkanes (C₃H₈, C₄H₁₀), aromatics (benzene (C₆H₆), toluene (C₇H₈) and xylene (C₈H₁₀)), alcohols (CH₃OH, C₂H₅OH), ketones (CH₃COCH₃, MEK), isoprene (C₅H₈), and other organic compounds (C₂H₅CHO, HOCH₂CHO, BENZAL, GLYOX, MGLYOX) have also been included.
The corresponding kinetic data are based on the International Union of Pure and Applied Chemistry and NASA Jet Propulsion Laboratory data evaluations (Atkinson et al., 2006, 2007; Burkholder et al., 2015), and from the literature (Niki et al., 1985, 1987; Green et al., 1990; Shi and Bernhard, 1997; Sokolov et al., 1999; Thiault et al., 2002; Wang et al., 2005; Rickard, 2009; Wennberg et al., 2018). In addition, photolysis reactions (G31–G35) resulting in production of Cl are also added to the module (Atkinson et al., 2007). The abbreviations of species mentioned in Table 1 are kept similar to that in the Master Chemical Mechanism (MCM) nomenclature (Rickard, 2009).

Table 1: Gas-phase chlorine reactions added to MECCA

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G1) Cl + NO +M \rightarrow CINO</td>
<td>7.6E(-32)*(T/300)^{-1.8}</td>
<td>Qiu et al. (2019a)</td>
</tr>
<tr>
<td>(G2) Cl + NO\textsubscript{2} +M \rightarrow ClONO</td>
<td>1.6E-11</td>
<td>Burkholder et al. (2015)</td>
</tr>
<tr>
<td>(G3) Cl + NO\textsubscript{2} +M \rightarrow ClNO\textsubscript{2}</td>
<td>3.6E-12</td>
<td>Burkholder et al. (2015)</td>
</tr>
<tr>
<td>(G4) Cl + NO\textsubscript{3} \rightarrow ClO + NO\textsubscript{2}</td>
<td>2.40E-11</td>
<td>Qiu et al. (2019a)</td>
</tr>
<tr>
<td>(G5) Cl\textsubscript{2} + OH \rightarrow HOCl + Cl</td>
<td>3.6E-12*exp(-1200/T)</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G6) ClNO\textsubscript{2} + OH \rightarrow HOCl + NO\textsubscript{2}</td>
<td>2.4E-12*exp(-1250/T)</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G7) OClO + NO \rightarrow NO\textsubscript{2} + ClO</td>
<td>1.1E-13*exp(350/T)</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G8) Cl + Cl\textsubscript{2}O \rightarrow Cl\textsubscript{2}O + ClO</td>
<td>6.2E-11*exp(130/T)</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G9) ClO + OClO +M \rightarrow Cl\textsubscript{2}O\textsubscript{3}</td>
<td>1.2E-12</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>Organic reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G10) Cl + C\textsubscript{3}H\textsubscript{8} \rightarrow iso-C\textsubscript{3}H\textsubscript{7}O\textsubscript{2} + HCl</td>
<td>1.4E-100.43exp(75/T)</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G11) Cl + C\textsubscript{3}H\textsubscript{8} \rightarrow n-C\textsubscript{3}H\textsubscript{7}O\textsubscript{2} + HCl</td>
<td>1.4E-100.59exp(-90/T)</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G12) Cl + iso-C\textsubscript{4}H\textsubscript{10} \rightarrow iso-C\textsubscript{4}H\textsubscript{9}O\textsubscript{2} + HCl</td>
<td>1.43E-10*0.564</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G13) Cl + iso-C\textsubscript{4}H\textsubscript{10} \rightarrow tert-C\textsubscript{4}H\textsubscript{9}O\textsubscript{2} + HCl</td>
<td>1.43E-10*0.436</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G14) Cl + n-C\textsubscript{4}H\textsubscript{10} \rightarrow LC\textsubscript{4}H\textsubscript{9}O\textsubscript{2} + HCl</td>
<td>2.05E-10</td>
<td>Atkinson et al. (2006), Rickard (2009)</td>
</tr>
<tr>
<td>(G15) Cl + benzene \rightarrow C\textsubscript{6}H\textsubscript{5}O\textsubscript{2} + HCl</td>
<td>1.3E-16</td>
<td>Sokolov et al. (1999)</td>
</tr>
<tr>
<td>(G16) Cl + toluene \rightarrow C\textsubscript{6}H\textsubscript{5}CH\textsubscript{2}O\textsubscript{2} + HCl</td>
<td>6.20E-11</td>
<td>Wang et al. (2005)</td>
</tr>
<tr>
<td>(G17) Cl + isoprene \rightarrow .63 LISOPAB + .30 LISOPCD + .07 LISOPEFO2 + HCl</td>
<td>7.6E-11*exp(500/T)1.1exp(-595/T)</td>
<td>Wennberg et al. (2018)</td>
</tr>
<tr>
<td>(G18) Cl + isoprene \rightarrow .63 LISOPAB + .30 LISOPCD + .07 LISOPEFO2 + LCHLORINE</td>
<td>7.6E-11exp(500/T)(1-1.1*exp(-595/T))</td>
<td>Wennberg et al. (2018)</td>
</tr>
</tbody>
</table>
(G19) Cl + xylene → C₆H₅CH₂O₂ + LCARBON + HCl 1.50E-10 Shi and Bernhard (1997)

(G20) Cl + CH₃OH → HOCH₂O₂ + HCl 7.1E-11*0.59*exp(-75/T) Atkinson et al. (2006)

(G21) Cl + C₂H₂O₆ → HOCH₂CH₂O₂ + HCl 6.0E-11*exp(155/T)*0.28*exp(-350/T) Atkinson et al. (2006)

(G22) Cl + C₂H₅OH → C₂H₅O₂ + HCl 6.0E-11*exp(155/T)*(1-0.28*exp(-350/T)) Atkinson et al. (2006)

(G23) Cl + HOCH₂CHO → HOCHCHO + HCl 8.0E-12/0.9*0.35 Atkinson et al. (2006), Niki et al. (1987)

(G24) Cl + HOCH₂CHO → HOCH₂CO + HCl 8.0E-12/0.9*(1-35)0.35 Atkinson et al. (2006), Niki et al. (1987)

(G25) Cl + GLYOX → HCOCO + HCl 3.8E-11 Niki et al. (1985)

(G26) Cl + MGLYOX → CH₃CO + CO + HCl 4.8E-11 Green et al. (1990)

(G27) Cl + C₂H₂CHO → C₂H₅CO₃ + HCl 1.3E-10 Atkinson et al. (2006)

(G28) Cl + CH₃COCH₃ → CH₃COCH₂O₂ + HCl 1.5E-11*exp(-590/T) Atkinson et al. (2006)

(G29) Cl + MEK → LMEKO₂ + HCl 3.05E-11*exp(80/T) Atkinson et al. (2006)

(G30) Cl + BENZAL → C₆H₅CO₃ + HCl 1.0E-10 Thiault et al. (2002)

Photolysis reactions

(G31) ClO → Cl + O₃P Atkinson et al. (2007)

(G32) Cl₂O → Cl + ClO Atkinson et al. (2007)

(G33) Cl₂O₃ → ClO + ClO₂ Atkinson et al. (2007)

(G34) ClNO → Cl + NO Atkinson et al. (2007)

(G35) ClONO → Cl + NO₂ Atkinson et al. (2007)

2.2 Heterogeneous chemistry

The aqueous-phase and heterogeneous chemistry of Cl compounds added to the MECCA is described in Table 2. In the present study, we assume that N₂O₅ is in equilibrium between the gas- and aqueous-phase (H2) according to Henry’s law and the dissociation of N₂O₅(aq) to nitronium ion (NO₂⁺) and nitrate (NO₃⁻), occurs according to reaction (A1). The rate constant for the recombination reaction of NO₂⁺ and NO₃⁻ is 2.7×10⁸ mol⁻¹ L s⁻¹, calculated based on Bertram and Thornton (2009); Staudt et al. (2019). The acid dissociation of nitric acid (HNO₃) in aqueous phase (A3) also results in formation of NO₂⁺ with (Sapoli et al., 1985).

Table 2: Aqueous-phase and heterogeneous chlorine reactions added to MECCA

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous-phase reactions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5
\[\text{(A1) } \text{N}_2\text{O}_5^{\text{aq}} \rightarrow \text{NO}_2^+^{\text{aq}} + \text{NO}_3^-^{\text{aq}} \quad 1.5 \times 10^5 \text{ s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A2) } \text{NO}_2^+^{\text{aq}} + \text{NO}_3^-^{\text{aq}} \rightarrow \text{N}_2\text{O}_5^{\text{aq}} \quad 2.7 \times 10^8 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Bertram and Thornton (2009); Staudt et al. (2019)} \]
\[\text{(A3) } \text{HNO}_3^{\text{aq}} + \text{H}^+^{\text{aq}} \rightarrow \text{NO}_2^+^{\text{aq}} + \text{H}_2\text{O}^{\text{aq}} \quad 1.6 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Sapoli et al. (1985)} \]
\[\text{(A4) } \text{NO}_2^+^{\text{aq}} + \text{Cl}^-^{\text{aq}} \rightarrow \text{ClINO}_2^{\text{aq}} \quad 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A5) } \text{ClINO}_2^{\text{aq}} \rightarrow \text{NO}_2^+^{\text{aq}} + \text{Cl}^-^{\text{aq}} \quad 2.7 \times 10^2 \text{ s}^{-1} \quad \text{Behnke et al. (1997)} \]
\[\text{(A6) } \text{ClINO}_2^{\text{aq}} + \text{Cl}^-^{\text{aq}} \rightarrow \text{Cl}_2^{\text{aq}} + \text{NO}_2^-^{\text{aq}} \quad 10^7 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Roberts et al. (2008)} \]
\[\text{(A7) } \text{OH-Cl}^-^{\text{aq}} + \text{OH-Cl}^-^{\text{aq}} \rightarrow \text{Cl}_2^{\text{aq}} + 2 \text{OH}^-^{\text{aq}} \quad 1.8 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Knipping et al. (2000)} \]
\[\text{(A8) } \text{OH-Cl}^-^{\text{aq}} + \text{Cl}^-^{\text{aq}} \rightarrow \text{Cl}_2^{\text{aq}} + 2 \text{OH}^-^{\text{aq}} \quad 10^4 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Grigorev et al. (1987)} \]
\[\text{(A9) } \text{Cl}_2^-^{\text{aq}} + 2 \text{OH}^-^{\text{aq}} \rightarrow \text{OH-Cl}^-^{\text{aq}} + \text{Cl}^-^{\text{aq}} \quad 4.5 \times 10^7 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Grigorev et al. (1987)} \]
\[\text{(A10) } \text{NO}_2^+^{\text{aq}} + \text{H}_2\text{O}^{\text{aq}} \rightarrow \text{HNO}_3^{\text{aq}} + \text{H}^+^{\text{aq}} \quad 1.6 \times 10^7 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A11) } \text{NO}_2^+^{\text{aq}} + \text{SO}_4^{2-}^{\text{aq}} \rightarrow \text{SO}_4^{2-}^{\text{aq}} + \text{NO}_3^-^{\text{aq}} + 2 \text{H}^+^{\text{aq}} \quad 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A12) } \text{NO}_2^+^{\text{aq}} + \text{HCOO}^-^{\text{aq}} \rightarrow \text{HCOO}^-^{\text{aq}} + \text{NO}_3^-^{\text{aq}} + 2 \text{H}^+^{\text{aq}} \quad 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A13) } \text{NO}_2^+^{\text{aq}} + \text{CH}_3\text{COO}^-^{\text{aq}} \rightarrow \text{CH}_3\text{COO}^-^{\text{aq}} + \text{NO}_3^-^{\text{aq}} + 2 \text{H}^+^{\text{aq}} \quad 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Staudt et al. (2019)} \]
\[\text{(A14) } \text{NO}_2^+^{\text{aq}} + \text{phenol}^{\text{aq}} \rightarrow \text{HOC}_6\text{H}_4\text{NO}_2^{\text{aq}} + \text{H}^+^{\text{aq}} \quad 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Ryder et al. (2015); Heal et al. (2007)} \]
\[\text{(A15) } \text{NO}_2^+^{\text{aq}} + \text{CH}_3\text{OH}^{\text{aq}} \rightarrow \text{CH}_3\text{NO}_2^{\text{aq}} + \text{H}^+^{\text{aq}} \quad 4.5 \times 10^8 \text{ mol}^{-1} \text{ L s}^{-1} \quad \text{Iraci et al. (2007)} \]

Heterogeneous reactions

\[\text{(H2) } \text{N}_2\text{O}_5^{\text{g}} \rightarrow \text{N}_2\text{O}_5^{\text{aq}} \]
\[\text{(H3) } \text{ClINO}_2^{\text{g}} \rightarrow \text{ClINO}_2^{\text{aq}} \]
\[\text{(H4) } \text{HOC}_6\text{H}_4\text{NO}_2^{\text{aq}} \rightarrow \text{HOC}_6\text{H}_4\text{NO}_2^{\text{g}} \]
\[\text{(H5) } \text{CH}_3\text{NO}_3^{\text{aq}} \rightarrow \text{CH}_3\text{NO}_3^{\text{g}} \]

Thus produced nitronium ion \((\text{NO}_2^+)^\) reacts reversibly with chloride \((\text{Cl}^-)^\) yielding \text{ClINO}_2 \((\text{A4}, \text{A5})\) \text{Staudt et al., 2019; Behnke et al., 1997\)}. After outgassing according to Henry’s law \((\text{H3})\), \text{ClINO}_2 is photolyzed in the gas phase, producing \text{Cl} and \text{NO}_2 \((\text{Sander et al., 2014})\). \text{ClINO}_2 uptake on chloride containing aerosols results in formation of \text{Cl}_2 and nitrite ion \((\text{NO}_2^-)^\), as shown by the reaction \((\text{A6})\) \text{Roberts et al., 2008\)}. Chamber experiments suggest the formation of \text{Cl}_2 from the self reaction of \text{OH-Cl}^- \((\text{A7})\), which gets formed via the reaction of \text{OH} with \text{Cl}^- \((\text{Knipping et al., 2000})\). Through other channel of reversible reactions \((\text{A8}, \text{A9})\), \text{OH} \cdot \text{Cl}^- reacts with aqueous chloride and produces \text{Cl}_2, which can yield \text{Cl}_2 through subsequent reactions.
The NO$_2^+$ uptake on aqueous chloride to form ClNO$_2$ (A4) is ≈500 times faster than NO$_2^+$ reaction with H$_2$O (A10) (Staudt et al., 2019). At the same time, experimental studies revealed a strong competition of NO$_2^+$ to react with Cl$^-$ and with other nucleophiles (e.g. SO$_4^{2-}$) and aqueous organic compounds e.g. phenol, methanol (A11–A15) (Staudt et al., 2019; Ryder et al., 2015; Heal et al., 2007; Iraci et al., 2007). These reactions could suppress the formation of ClNO$_2$ and also the corresponding rate constants for reactions A11–A14 are similar to the NO$_2^+$ + Cl$^-$ reaction yielding ClNO$_2$ i.e. 7.5×10^9 mol$^{-1}$ L s$^{-1}$ (Staudt et al., 2019; Ryder et al., 2015; Heal et al., 2007). Methanol reacts with NO$_2^+$ (A15) and forms aqueous methyl nitrate (CH$_3$NO$_3$) (Iraci et al., 2007). Phase exchange for CH$_3$NO$_3$ and nitrophenol (HOC$_6$H$_4$NO$_2$) is shown by reactions H4 and H5, respectively. Above discussed heterogeneous chemistry implemented in MECCA is summarized in Fig. 1.

3 Box model setup

The chemistry described in section 2 has been added into community box model CAABA/MECCA v4.4.2 (Sander et al., 2019). A comprehensive gas and aqueous phase tropospheric chemistry involving total 3326 reactions was utilized for the simulations, and the full set of reactions are presented in the electronic supplement. The gas-phase chemistry of organics like terpenes and aromatics is treated by the Mainz Organic Mechanism (MOM) (Taraborrelli et al., 2012; Nölscher et al., 2014; Hens et al., 2014; Taraborrelli et al., 2021). The aqueous-phase chemistry of oxygenated VOCs is treated by the Jülich Atmospheric Mechanism of Organic Chemistry (JAMOC) (Rosanka et al., 2021). The numerical integration of the chemical mechanism is performed by the kinetic preprocessor v2.1 (KPP) (Sandu and Sander, 2006). The photolysis rate constants (J values) are calculated by the submodel JV AL, based on the method by Landgraf and Crutzen (1998). The model is set-up for typical winter conditions of two different urban environments: Delhi (India, 28.6° N, 77.2° E) and Leicester (United Kingdom, 52.4° N, 01.1° W). Simulations are performed for a 5-day period (17–21 February 2018) and output of 5$^{\text{th}}$ day has been considered for the analysis; by then,
radicals had achieved almost a steady state. The set of environmental conditions in the simulations is summarized in Tab. 3 and Tab. S1, which is based on Tripathi et al. (2022) for Delhi and Sommariva et al. (2021) for Leicester. The Cl chemistry is expected to be more prominent during winter conditions due to higher concentration of Cl-containing species in the boundary layer, and therefore, simulations are performed for the winter season.

Table 3. Environmental conditions of Delhi and Leicester in the model simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Delhi</th>
<th>Leicester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>28.58° N</td>
<td>52.38° N</td>
</tr>
<tr>
<td>Longitude</td>
<td>77.22° E</td>
<td>01.08° W</td>
</tr>
<tr>
<td>Time-zone</td>
<td>GMT+5:30</td>
<td>GMT+0:00</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>292</td>
<td>278.1</td>
</tr>
<tr>
<td>Pressure (mbar)</td>
<td>1010</td>
<td>1004</td>
</tr>
<tr>
<td>Air number density (molecules cm$^{-3}$)</td>
<td>2.5×10^{19}</td>
<td>2.61×10^{19}</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>67 %</td>
<td>90 %</td>
</tr>
</tbody>
</table>

VOC emissions are taken from the CAMS inventory (Sindelarova et al., 2014; Granier et al., 2019) and are adjusted iteratively in magnitude for better agreement with observations. CAMS-GLOB-ANT v5.3 ($0.1° \times 0.1°$) (Granier et al., 2019) provides emissions of anthropogenic VOCs (e.g., benzene, toluene etc.), while emissions of natural VOCs (e.g., isoprene) are from CAMS-GLOB-BIO v3.1 ($0.25° \times 0.25°$) (Sindelarova et al., 2014). Emission of HCl and particulate chloride are included from Zhang et al. (2022) and adjusted iteratively towards reported levels of Cl-containing species (Gunthe et al., 2021; Sommariva et al., 2021). The Mainz Organic Mechanism (MOM) dry deposition scenario (Sander et al., 2019) is activated in the model. Ground-based lidar measurements of boundary layer height (BLH) during winter-time, performed as a part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, are utilized for the simulations at Delhi (Nakoudi et al., 2018). The diurnal variation in BLH in Leicester is extracted from the European centre for medium-range weather forecast’s (ECMWF) fifth-generation reanalysis dataset ERA5 (Hersbach et al., 2020). Air composition in the model has been initialized based on previous studies (Tab. S1; Zhang et al. (2007); Lanz et al. (2010); Lawler et al. (2011); Sommariva et al. (2018, 2021); Gunthe et al. (2021); Tripathi et al. (2022)). We constrained the model with the parameterized function best representing the observed diurnal variations of NOx (Fig. 2) (Tripathi et al. (2022); Sommariva et al. (2018, 2021), https://uk-air.defra.gov.uk/data/) which helped in better reproducing the diurnal variations of some VOCs (e.g. isoprene) and ozone. Diurnal observations of HONO from Sommariva et al. (2021) are used for Leicester. For Delhi, however, HONO couldn’t be constrained due to lack of observations.
4 Results and Discussion

The model captures the patterns in O_3 variability at both locations (Sommariva et al., 2018; Nelson et al., 2021; Chen et al., 2021; Sommariva et al., 2021) to an extent, as shown in Fig. 2. O_3 is underestimated after $\approx 16:00$ h LT in Leicester mainly due to titration by high NO and lack of adequate dynamics/transport of O_3 in the model. Entrainment seems to improve O_3 after mid-night, towards the observed values (Fig. 2k). Simulated isoprene is in agreement with diurnal observations in Delhi (Tripathi et al., 2022) and in accordance with observed mean level in Leicester (Sommariva et al., 2021). The nitrate radical (NO_3), which is a nighttime oxidant, is formed through reaction between NO_2 and O_3 (G36). NO_3 can react with NO_2 forming N_2O_5, which can again produce NO_3 and NO_2 through thermal dissociation (G37).

$$NO_2 + O_3 \rightarrow NO_3 + O_2 \quad \text{(G36)}$$

$$NO_3 + NO_2 + M \rightleftharpoons N_2O_5 + M \quad \text{(G37)}$$

As seen in Fig. 2e, NO_3 remains negligible during the night-time ($\approx 18:00-07:30$ h LT) in Delhi due to unavailability of O_3 under high-NO conditions (up to 200 nmol/mol). Interestingly, despite its very short lifetime (≈ 5 s), about ≈ 0.1 pmol/mol of NO_3 sustains during daytime. This is primarily due to prevailing levels of NO_2 (≈ 30 nmol/mol) and O_3 (≈ 40 nmol/mol). Such unusual daytime enhanced NO_3 have been reported in recent studies, for example, 5-31 pmol/mol of NO_3 in Texas, USA (Geyer et al., 2003). Aircraft measurements during the New England Air Quality Study showed ≈ 0.5 pmol/mol of NO_3 within boundary layer (≤ 1 km) during noon time (Brown et al., 2005). The calculated NO_3 levels using steady state approximation showed 0.01-0.06 pmol/mol of NO_3 for the 1997-2012 period at urban sites in the UK (Marylebone Road London, London Eltham, and Harwell) (Khan et al., 2015a). Horowitz et al. (2007) suggested that NO_3 in tenths of pmol/mol during daytime over the eastern United States results in formation of $\approx 50\%$ isoprene nitrates through oxidation of isoprene, which could further affect the formation of O_3 and SOA significantly (Horowitz et al., 2007). Following to higher NO_3, up to 8 pmol/mol of N_2O_5 is simulated during daytime in Delhi (Fig. 2f).

Enhanced $NO_3 \approx 2.6$ pmol/mol and $N_2O_5 \approx 330$ pmol/mol are simulated after mid-night in Leicester (Fig. 2k, 2l). In contrast to Delhi, the daytime simulated levels of NO_3 are negligible as it gets removed fast during the daytime by photolysis and through its reactions with NO, HO_2, RO_2, and VOCs (Khan et al., 2015b). In conjunction with high NO from $\approx 16:00$ h LT to near midnight that titrates O_3, the corresponding NO_3 and N_2O_5 is zero (following reactions G36 and G37). Night-time high and negligible day-time levels of NO_3 and N_2O_5 are their typical features which are generally reported in the literature (Brown et al., 2001; Seinfeld and Pandis, 2016).

The Delhi environment is mainly characterized by two peaks in Cl, a predominant sharp peak just after the sunrise followed by a broad shallow peak during noontime, corresponding to different mechanisms as discussed in the next section. A sharp peak in Cl is seen near the sunrise, with the maximum values attained is ≈ 3.5 fmol/mol (8.75×10^4 molec cm$^{-3}$) in Delhi.
Figure 2. Diurnal variations of NO, NO$_2$, O$_3$, C$_5$H$_8$, NO$_3$, N$_2$O$_5$, Cl and ClONO + ClNO$_2$ mixing ratios in Delhi (left) and Leicester (right). Mean value of C$_5$H$_8$ in Leicester is shown by red colored long dashed line.
(Fig. 2g). A broad smaller peak with magnitude of ≈0.8 fmol/mol maximizing around noontime is seen, which is ≈4 times smaller than the first morning peak. Similar to Cl, a peak is seen in ClONO + ClNO₂ of ≈100 pmol/mol with sunrise, which gradually decreases and attain ≈7 pmol/mol from nearly 11:00–16:00 h LT. Afterwards it increases to ≈20 pmol/mol from late evening as shown by Fig. 2h. The model-predicted Cl peaks at ≈2 fmol/mol (5.2×10⁴ molec cm⁻³) during sunrise in Leicester (Fig. 2a). In contrast to negligible night-time ClONO + ClNO₂ in Delhi, it shows a strong build-up over Leicester during 0-4 hours with a maximum of ≈40 pmol/mol, with higher levels (up to 50 pmol/mol) prevailing until about sunrise. ClONO + ClNO₂ is negligible during mid-day until mid-night, in accordance with N₂O₅ in Leicester as shown in Fig. 2p. In the following section, we have analysed the observed behaviour of Cl radical in more detail.

4.1 Production and loss of Cl and ClNO₂

The sources and sinks of Cl in Leicester and Delhi are presented in Fig. 3. The left-upper panels (a) delineates the sources and sinks of Cl radical on diurnal scale in Delhi. The morning sharp peak in Cl radical is caused mainly by the photolysis of Cl₂ with a maximum rate of 1.2×10⁷ molec cm⁻³ s⁻¹. The shallow secondary peak is due to the reaction HCl + OH with a noon time rate of ≈0.4×10⁷ molec cm⁻³ s⁻¹. However, there is a smaller contribution from other reactions (photolysis of ClNO₂, ClONO and reaction of ClO with NO) to the morning peak, while have negligible contributions during the daytime.

Interestingly, there is a strong consumption of Cl to oxidize VOCs (peak rate ≈2.4×10⁷ molec cm⁻³ s⁻¹) during sunrise, and a lesser consumption during the rest of the day. Cl + NO₂ is also a Cl sink during the morning time in Delhi. The Cl-initiated oxidation of VOCs in the morning hours in Delhi may lead to formation of secondary organic aerosols and new particle formation, which opens up pathways of future research in this direction. In addition to Cl₂ photolysis (≈1.0×10⁶ molec cm⁻³ s⁻¹), photolysis of ClNO₂ and ClONO, and ClO + NO reaction (total rate ≈0.8×10⁶ molec cm⁻³ s⁻¹) are other prominent sources of Cl in Leicester. VOCs are the major sink for Cl (rate ≈1.3×10⁶ molec cm⁻³ s⁻¹), followed by NO₂ (rate ≈0.6×10⁶ molec cm⁻³ s⁻¹).

We further analyzed the production and loss pathways of ClNO₂, as shown in Fig. 3c,d. While the major source of ClNO₂ is through the Cl + NO₂ reaction with a reaction rate ≈3×10⁵ molec cm⁻³ s⁻¹ in Delhi, the aqueous phase reaction Cl⁻ + NO₂⁺ (≈3.4×10⁵ molec cm⁻³ s⁻¹) is the prominent source in Leicester corresponding to the peak ClNO₂ (Fig. 2h,p). The reaction of Cl with NO₂ (≈1.1×10⁵ molec cm⁻³ s⁻¹) is the major ClNO₂ source during the sunrise in Leicester. The prominent sink for ClNO₂ is through its heterogeneous reaction with Cl⁻ (≈1.8×10⁵ molec cm⁻³ s⁻¹) in Delhi almost throughout the day, while its loss through the photolysis (≈0.5×10⁵ molec cm⁻³ s⁻¹) is also an important sink during the daytime. ClNO₂ loss through the reaction ClNO₂ + Cl⁻ (≈2.7×10⁵ molec cm⁻³ s⁻¹) is its major sink in Leicester from mid-night to mid-day, while photolysis (≈0.3×10⁵ molec cm⁻³ s⁻¹) is smaller sink from sunrise to mid-day here. The diurnal variation in Cl₂, and its production and loss mechanisms over Delhi and Leicester are shown by Fig. S1 and Fig. S2. In conjunction with major loss of ClNO₂, ClNO₂ + Cl⁻ reaction is the major contributor to Cl₂ formation over Delhi and Leicester.
Figure 3. Production and loss of (a, b) Cl and (c, d) ClNO₂ in Delhi (left panel) and Leicester (right panel).

We also calculate ClNO₂ yield from NO₂⁺ (Fig. S3), which is the ratio of $P_{\text{ClNO}_2}/L_{\text{total}}$, where P_{ClNO_2} is the rate of ClNO₂ production through Cl⁻ + NO₂⁺ reaction and L_{total} denotes the loss rate of NO₂⁺ through it’s reaction with Cl⁻, H₂O, SO₄²⁻.
HCOO\(^-\), CH\(_3\)COO\(^-\), phenol, and CH\(_3\)OH (A4, A10–A15). ClNO\(_2\) yield is \(\approx 0.9\) over Delhi, representing the strongest loss of NO\(_2\)\(^+\) is through it’s reaction with Cl\(^-\), which is also mimicked in Fig. S4a showing the same concentrations of ClNO\(_2\) as in base+added Cl chem and when other NO\(_2\)\(^+\) reactions (A10–A15) are turned off (simulation: without other NO\(_2\)\(^+\) reactions). ClNO\(_2\) yield over Leicester is between \(\approx 0.4\)-0.5, which is about half the yield in Delhi. Stronger ClNO\(_2\) yield in Delhi could be attributed to \(\approx 2\) times higher Cl\(^-\) than Leicester. Lesser ClNO\(_2\) yield in Leicester portrays the importance of NO\(_2\)\(^+\) loss reactions (A10–A15) other than with Cl\(^-\), which could be seen through Fig. S4b where ClNO\(_2\) is increased by more than twice during early morning hours when A10–A15 reactions are kept inactive in the model. The determination of ClNO\(_2\) yield using cavity ring-down spectroscopy and chemical ionization mass spectrometry, shows yield ranging between 0.2 to 0.8 for Cl\(^-\) of 0.02 to 0.5 mol/L (Roberts et al., 2009). The measurements of ClNO\(_2\) yield for coastal and open ocean waters were found to be between 0.16-0.30 which is suppressed by up to 5 times than equivalent salt containing solutions, due to the addition of aromatic organic compounds (e.g., phenol and humic acid) to synthetic seawater matrices (Ryder et al., 2015).

4.2 Role of Cl in Atmospheric Oxidative Capacity (AOC)

In order to understand the role of Cl as oxidising agent with respect to the OH radical, we define the reactivity of Cl and OH as \(\Sigma X_i \left(k_{\text{radical} + X_i} \times [X_i] \right)\), where radical is Cl or OH, and [X\(_i\)] is the concentration of specie X\(_i\) (here X\(_i\) includes CO, CH\(_4\), primary VOCs and NMHCs which are initialized in the model) (Fig. 4). The corresponding rate constants for Cl + X reactions are from MECCA model and for OH + X reactions are based on Madronich (2006); Soni et al. (2022). The reactivity of both Cl and OH decreases rapidly nearly from sunrise to noon time and afterwards increases gradually at both locations. The magnitude of reactivities of Cl and OH are higher in Delhi, by up to \(\approx 2\) times for Cl and \(\approx 12\) times for OH, as compared to Leicester. However, the Cl/OH reactivity ratio is higher (up to \(\approx 7\) times) in Leicester than in Delhi. Cl reactivity is lower (Delhi: \(\approx 605\) s\(^-1\), Leicester: \(\approx 362\) s\(^-1\)) during noontime and higher (Delhi: \(\approx 658\) s\(^-1\), Leicester: \(\approx 363\) s\(^-1\)) during nighttime and early morning hours at both locations. The OH reactivity follows a similar pattern as that of Cl in Delhi. In Leicester, however, the OH reactivity shows a morning peak. The ratio of Cl to OH reactivity starts increasing after sunrise, reaching a maximum value of \(\approx 31\) at nearly 16:00 h LT and then decreases further in Delhi. As mentioned above, Cl/OH reactivity ratio in Leicester shows a double peak pattern, with one peak during early morning \(\approx 04:00\) h LT with a value \(\approx 160\) and other one with value \(\approx 162\) at about 16:00 h LT.

We quantified the relative contribution of Cl in atmospheric oxidative capacity (AOC) using the model. AOC represents the sum of oxidation rates of specie X\(_i\) by oxidants Y (OH, Cl, and other radicals: NO\(_3\) and O\(_3\)) (Elshorbany et al., 2009):

\[
\text{AOC} = \sum k_{X_i} [X_i] [Y] \tag{1}
\]

where, \(k_{X_i}\) is the corresponding rate constant for \(X_i + Y\) reaction. Figure 5 shows the contribution of individual oxidants in AOC at both locations. Besides OH, Cl is the second most important oxidant in Delhi, with a significant contribution of 23.4 \% during morning time (averaged over 07:00-09:00 h LT), and 8.2 \% throughout the day (06:00-16:00 h LT). In Leicester, Cl is
Figure 4. Reactivity of Cl and OH with VOCs and Cl/OH reactivity ratio during the simulation period in (a) Delhi and (b) Leicester.

Figure 5. Atmospheric oxidative capacity (AOC) of radicals during (a, b) early morning time (7-9 h LT) and (c, d) daytime mean (6-16 h LT) in Delhi (left panel) and Leicester (right panel).
the highest contributor (74.0 %) towards AOC during morning time. In fact, with 34.1 % contribution, Cl is major oxidant after OH, during the daytime. Such a substantial contribution of Cl in AOC lead to enhancing RO2 as seen in Fig. 6(e,j). Especially, a prominent peak in RO2 during early morning time (07:00-09:00 h LT) is imparted to strong participation of Cl in atmospheric oxidation during this time. Notably strongest contribution of Cl in AOC during early morning in Leicester, strengthens RO2 peak by up to a factor of 8 (Fig. 6j). The role of Cl is predominant in Leicester as well as in Delhi during early morning time, compared to a polluted environment of Hong Kong, China where Cl contribution was estimated to be 21.5 % (Xue et al., 2015). NO3 and O3 were found to play a relatively minor role in AOC at both urban environments.

4.3 Sensitivity of air composition to chlorine chemistry

To investigate the effects of Cl chemistry on air composition, other than comprehensive chemistry simulation discussed in previous section (base+added Cl chem i.e. default chemistry + newly added gas and aqueous phase chlorine chemistry), two additional simulations have been performed, which are: (1) base – this includes default chemistry already present in the model, and (2) without Cl chemistry – base minus chlorine chemistry. Figure 6 shows the comparison of Cl, ClONO + ClNO2, OH, HO2, and RO2 variations among the three simulations in Delhi and Leicester. Figure S5 shows the differences in diurnal variations of Cl, ClONO + ClNO2, OH, HO2, and RO2 in base+added Cl chem simulation with: without Cl chem and base simulations.

A sharp peak in Cl is seen near sunrise in Delhi, with a maximum of ≈11 fmol/mol (2.75 x 10^5 molec cm^-3) in the base simulation. Cl get suppressed by up to ≈ 0.01 pmol/mol of maximum value in the base simulation, in the presence of added chlorine chemistry (base+added Cl chem) as shown in Fig. S5. The pathways for the formation of ClNO2 and ClONO were absent in earlier version of the model (base case). Simulated OH, HO2, and RO2 show a prominent peak just after sunrise in the presence of Cl chemistry for both the base and base+added Cl chem simulations. As a consequence of greater oxidation of VOCs by Cl, enhanced levels of OH by 0.05 pmol/mol (up to a factor of ≈1.8), HO2 by 0.21 pmol/mol and RO2 by 0.1 pmol/mol are noted with added Cl chemistry compared to without Cl case. No significant changes are seen in noon-time levels of OH and HO2, whereas ≈ 1.1 times more RO2 is produced with added Cl chemistry compared to the base simulation.

In contrast to Delhi, suppressed Cl (up to ≈ 3.2 times) with a narrow peak is simulated by base simulation in comparison with base+added Cl chem simulation at Leicester. The effects of added Cl chemistry on OH, HO2, and RO2 are more prominent in Leicester compared to Delhi. Base+added Cl chem simulation show strong enhancements in OH (up to ≈ 2 times), HO2 (up to ≈ 5 times), and RO2 (up to ≈ 8 times) after sunrise which is gradually progressive, resulting in higher levels during noon-time as well (Fig. 6, Fig. S5). Remarkably elevated levels of RO2 (by a factor of ≈ 2) are prominent during the noon hours. Such elevated levels of RO2 could favour enhanced levels of secondary organic aerosols in Leicester. The impact of Cl chemistry on aerosols (NO2^+, NO3^−, and oxalic acid) is discussed in Supplementary section 2.2 (Fig. S6). Though significant differences in NO2^+, NO3^−, and oxalic acid are seen due to Cl chemistry but further measurements are required for validation.
5 Summary and Conclusions

Extended gas- and aqueous-phase chemistry of chlorine compounds has been added to the MECCA mechanism. It consists of 35 gas-phase reactions (inorganic, organic, and photolysis reactions). A total of 23 aqueous-phase and heterogeneous reactions have been added, containing detailed chemistry of N$_2$O$_5$ uptake on aerosols to yield ClNO$_2$ and various other competing reactions. The updated model is applied to two different urban environments: Delhi (India) and Leicester (United Kingdom) during winter time. The major conclusions are:

Figure 6. Model simulated diurnal variations in Cl, ClNO$_2$ + ClONO, OH, HO$_2$, and RO$_2$ in Delhi (left panel) and Leicester (right panel).
1. The model predicts up to 0.1 pmol/mol of NO_3 and up to 8 pmol/mol of N_2O_5 during daytime in Delhi. However, night-time production of NO_3 and N_2O_5 is seen to be negligible primarily due to the unavailability of O_3. In contrast to Delhi, NO_3 and N_2O_5 after mid-night in Leicester is \approx2.6 pmol/mol and \approx330 pmol/mol, respectively. N_2O_5 uptake on aerosols yields ClNO_2, which produces Cl via photolysis.

2. A sharp build-up of Cl with sunrise is mainly through Cl_2 photolysis in Delhi. Besides Cl_2, photolysis of ClNO_2 and ClONO and the reaction of ClO with NO are prominent Cl sources in Leicester. VOCs are the main sink for Cl at both locations, whereas NO_2 is also an important sink for Cl in Leicester. The latter results in the formation of ClNO_2 with a major contribution in Delhi, while $\text{Cl}^- + \text{NO}_2^+$ is a stronger source in Leicester. Photolysis is the major sink for ClNO_2 in Delhi, however, its uptake on chloride aerosols is a prominent sink in Leicester.

3. The higher magnitude of Cl (\approx658 s$^{-1}$) and OH (\approx27 s$^{-1}$) reactivities in Delhi, manifest stronger capability of oxidation of chemical species (X_i), being intense during morning hours. However, pronounced ratio (\approx162) of Cl to OH reactivity in Leicester shows a much higher oxidation potential of Cl compared to OH.

4. Sensitivity simulations reveal substantial post-sunrise enhancements of in OH, HO_2, and RO_2 radicals, with a prominent secondary peak due to Cl chemistry. Up to 8 times higher RO_2 is simulated in Leicester primarily because of leading role of Cl in AOC potential.

This study highlights the vital role of Cl chemistry in governing the oxidation capacity of the atmosphere and air quality, and therefore it is important to account for it in detailed photochemical as well as in 3-D chemical transport models. This will lead to better quantify the importance of radicals in atmospheric oxidation and hence, the formation of ozone as well as secondary aerosols, over regional to global scale. Future studies focusing on secondary aerosol formation and new particle formation from heterogeneous reactions are needed to deepen the understanding of transformation of trace gases to aerosols.

Code and data availability. CAABA/MECCA is a community box model published under the GNU General Public Licence, available from the Gitlab repository (https://gitlab.com/RolfSander/caaba-mecca). The version of CAABA/MECCA updated in this study is available through https://gitlab.com/RolfSander/caaba-mecca/-/tree/delhi?ref_type=heads. All the model outputs associated with this study are archived at zenodo (https://zenodo.org/record/7795263; Soni et al. (2023)).

Author contributions. M. Soni, R. Sander, and D. Taraborrelli designed the study with inputs from S. S. Gunthe, P. Liu, and N. Ojha. M. Soni, R. Sander, and D. Taraborrelli developed and analyzed the chemical mechanism and M. Soni performed the simulations. A. Pozzer, R. Sander, L. K. Sahu, D. Taraborrelli, I. A. Girach, and N. Ojha helped M. Soni in the analyses and interpretations of the results. A. Patel assisted M. Soni in compiling literature and some input dataset. M. Soni wrote the manuscript and all the co-authors contributed to the review and editing.
Competing interests. The authors declare no conflicts of interest.

Acknowledgements. The authors gratefully acknowledge the use of CAMS inventory for VOCs emissions data available from ECCAD (https://eccad3.sedoo.fr/catalogue). We thank ECMWF for the ERA5 dataset. We acknowledge UK AIR Air Information Resource for the chemical species data through https://uk-air.defra.gov.uk/data/. Authors thank J. M. Roberts (NOAA Chemical Sciences Laboratory, USA), Tao Wang (The Hong Kong Polytechnic University, Hong Kong), Men Xia (University of Helsinki, Finland), and Renuka Soni for valuable inputs on kinetics. M. Soni, N. Ojha, and L. K. Sahu acknowledge support from the Physical Research Laboratory, Ahmedabad, funded by the Department of Space, Government of India.
References

