Comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA: Implications to atmospheric oxidative capacity

Meghna Soni¹, Rolf Sander³, Lokesh K Sahu¹, Domenico Taraborrelli⁴, Pengfei Liu⁵, Ankit Patel⁶, Imran A Girach⁷, Andrea Pozzer³,⁸, Sachin S Gunthe⁶,⁹, and Narendra Ojha¹

¹Physical Research Laboratory, Ahmedabad, India
²Indian Institute of Technology, Gandhinagar, India
³Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
⁴Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Jülich, Germany
⁵School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
⁶EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
⁷Space Applications Centre, Indian Space Research Organisation, Ahmedabad, India
⁸Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
⁹Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India

Correspondence: Meghna Soni (soni.meghna95@gmail.com) and Rolf Sander (rolf.sander@mpic.de)

Abstract. Tropospheric chlorine chemistry can strongly impact the atmospheric oxidation capacity and composition, especially in urban environments. To account for these reactions, the gas- and aqueous-phase Cl chemistry of the community atmospheric chemistry box model CAABA/MECCA has been extended. In particular, an explicit mechanism for ClNO₂ formation following N₂O₅ uptake to aerosols has been developed. The updated model has been applied to two urban environments with different concentrations of NOₓ (NO + NO₂): New Delhi (India) and Leicester (United Kingdom). The model shows a sharp build-up of Cl at sunrise through Cl₂ photolysis in both the urban environments. Besides Cl₂ photolysis, ClO+NO reaction, and photolysis of ClNO₂ and ClONO are also prominent sources of Cl in Leicester. High-NOₓ conditions in Delhi tend to suppress the night-time build-up of N₂O₅ due to titration of O₃ and thus lead to lower ClNO₂, in contrast to Leicester. Major loss of ClNO₂ is through its uptake on chloride, producing Cl₂, which consequently leads to the formation of Cl through photolysis. The reactivities of Cl and OH are much higher in Delhi, however, the Cl/OH reactivity ratio is up to ≈9 times greater in Leicester. The contribution of Cl to the atmospheric oxidation capacity is significant and even exceeds (by ≈2.9 times) that of OH during the morning hours in Leicester. Sensitivity simulations suggest that the additional consumption of VOCs due to active gas- and aqueous-phase chlorine chemistry enhances OH, HO₂, and RO₂ near sunrise. The simulation results of the updated model have important implications for future studies on atmospheric chemistry and urban air quality.

1 Introduction

Chlorine (Cl) radicals are one of the most important players in the tropospheric chemistry (Seinfeld and Pandis, 2016; Ravishankara, 2009). Cl impacts the oxidative capacity of the atmosphere and radical cycling, and, therefore, can significantly alter the atmospheric composition (Seinfeld and Pandis, 2016; Faxon and Allen, 2013). In comparison with hydroxyl (OH) radicals,
the so-called atmospheric detergent, the much faster reaction rates of Cl with volatile organic compounds (VOCs), enhance the peroxy radicals (RO$_2$) formation and, thereby, the production of ozone (O$_3$) and secondary organic aerosols (SOA) (Qiu et al., 2019a; Choi et al., 2020). In addition, Cl radicals can also enhance the oxidation of climate-driving gases (such as methane and dimethyl sulphide) (Saiz-Lopez and von Glasow, 2012). Cl radicals are produced in the atmosphere through photochemistry involving heterogeneous reactions of Cl-containing gases and aerosols (Qiu et al., 2019a; Faxon and Allen, 2013). The major sources of Cl-containing species are anthropogenic activities in continental regions and sea salt aerosols in marine and coastal environments (von Glasow and Crutzen, 2007; Osthoff et al., 2008; Liao et al., 2014; Liu et al., 2017; Thornton et al., 2010; Gunthe et al., 2021; Zhang et al., 2022). The photolysis of reactive Cl-containing species, such as chlorine gas (Cl$_2$), hypochlorous acid (HOCl), nitryl chloride (ClNO$_2$), and chlorine nitrite (ClONO) and the reaction of hydrochloric acid (HCl) with OH are known to produce Cl radicals in the lower troposphere (Atkinson et al., 2007; Riedel et al., 2014). With the rise in anthropogenic activities, emissions of Cl-containing species have increased significantly across the globe (Lober et al., 1999; Zhang et al., 2022), and hence the importance of Cl in local as well as regional atmospheric chemistry has become prominent.

Despite the aforementioned importance, Cl chemistry and associated mechanisms, especially heterogeneous reactions in the lower troposphere, are not yet fully understood, and the effects of Cl on atmospheric composition, air quality and oxidation capacity remain uncertain. Field measurements have revealed high concentrations of Cl species over inland regions in addition to coastal and polar regions (von Glasow and Crutzen, 2007; Osthoff et al., 2008; Liao et al., 2014; Liu et al., 2017; Thornton et al., 2010), however, quantitative understanding of continental sources remains poorly understood. This is due to lack of the relevant heterogeneous and gas-phase chemistry in atmospheric photochemical models despite the range of chemical mechanisms complexity used in 3-D chemistry transport models (Xue et al., 2015; Pawar et al., 2023; Pozzer et al., 2022). In addition, the chemistry of Cl compounds has been less studied using the laboratory/chamber experiments. Qiu et al. (2019b) showed that due to inadequate representation of heterogeneous Cl chemistry, the Community Multiscale Air Quality (CMAQ) model underestimated nitrate concentrations during daytime but overestimated during night-time in Beijing, China. In addition, the uncertainties associated with emission inventories of Cl species, can lead to inaccurate estimation of air composition (Zhang et al., 2022; Sharma et al., 2019). For example, Pawar et al. (2023) noticed that even after the inclusion of HCl emissions from trash burning the levels of nitrate, sulphate, nitrous acid (HONO) etc., still deviated from the observations in Delhi, India, highlighting the need to include emissions from other sectors, such as industries. A few recent studies assessed the impacts of the gas phase Cl chemistry by including gas phase ClNO$_2$ reactions, for example, Xue et al. (2015) reported about 25% enhancement in the daytime oxidation of carbon monoxide and VOCs at a coastal site in East Asia. In the same region, the model predicted a 5-16% enhancement in peak ozone with ClNO$_2$ (∼50–200 pmol/mol) at a mountain top in Hong Kong, China (Wang et al., 2016). The measurements of Cl$_2$ (up to ∼450 pmol/mol) and ClNO$_2$ (up to ∼3.5 nmol/mol) were reported from a rural site in the North China Plain and Cl chemistry was showed to enhance the formation of per oxy radicals (by 15%) and O$_3$ production rate (by 19%) (Liu et al., 2017).
Nevertheless, the heterogeneous chemistry of Cl species remains poorly represented in models, and often neglected in large scale numerical simulations. For example, in several models, the heterogeneous uptake of N$_2$O$_5$ on aqueous aerosols yielded nitric acid (HNO$_3$) via reaction HET1:

\[\text{N}_2\text{O}_5(g) + \text{H}_2\text{O}(aq) \rightarrow 2 \text{HNO}_3(aq) \]

(HET1)

However, N$_2$O$_5$ uptake on chloride-containing particles can produce ClNO$_2$ (Behnke et al., 1997; Thornton et al., 2010) especially in urban environments with strong NOx emissions (Osthoff et al., 2008; Young et al., 2012). Incorporating heterogeneous mechanism of ClNO$_2$ into the regional models led to 3–12 % increase in O$_3$ over Northern China (Sarwar et al., 2014; Zhang et al., 2017; Liu et al., 2017). In addition, heterogeneous reactions of Cl-containing species including particulate chloride (pCl$^-$), Cl$_2$, ClNO$_2$, chlorine nitrate (ClNO$_3$), and hypochlorous acid (HOCl) are suggested to result in the formation of Cl radicals as well as in recycling of NOx, and HOx (OH, and HO$_2$) (Ravishankara, 2009; Qiu et al., 2019a; Hossaini et al., 2016; Faxon and Allen, 2013). Very recent measurements suggest a reduction in ClNO$_2$ formation due to the competition of N$_2$O$_5$ uptake among chloride, sulphate and acetate aerosols (Staudt et al., 2019). These heterogeneous reactions can be of paramount significance in the Cl budget, however, to the best of our knowledge, these are not yet considered in model simulations.

The main goal of the present study is to investigate the role of chlorine chemistry in chemically contrasting urban environments. In this regard, we incorporate comprehensive gas-phase and heterogeneous Cl chemistry into a state of the art box model. Section 2 provides a detailed description of the Cl chemistry mechanism with gas-phase and heterogeneous reactions. Section 3 describes the model setup and Section 4 shows the simulation results which include a detailed investigation on (i) the sensitivity of air composition to chlorine chemistry, (ii) the production and loss of Cl and ClNO$_2$, (iii) the role of Cl in the Atmospheric Oxidative Capacity (AOC), and (iv) the sensitivity to ClNO$_2$ + Cl$^-$ reaction.

2 Mechanism Development

The community box model “Chemistry As A Boxmodel Application/Module Efficiently Calculating the Chemistry of the Atmosphere” (CAABA/MECCA, Sander et al., 2019), has been used in this work. A comprehensive gas- and aqueous-phase mechanism of chlorine chemistry has been added to MECCA, here used within the box model CAABA. The gas-phase and heterogeneous chemistry implemented in MECCA is described in the following subsections and the full mechanism is shown in the supplementary section.

2.1 Gas-phase chlorine chemistry

A total of 36 inorganic, organic and photolysis reactions which are key contributors of Cl radicals were added to the mechanism (Table 1). The mechanism includes the inorganic reactions of Cl with NOx, NO$_3$ (G1–G4), the reactions of Cl-containing species with OH and NO (G5–G7), and the reactions between Cl-containing species (G8–G9) (Qiu et al., 2019a; Burkholder et al., 2015; Atkinson et al., 2007). ClONO is formed through reaction of Cl with NO$_2$ (G2), and exists as a metastable
intermediate (Janowski et al., 1977; Niki et al., 1978; Golden, 2007). This intermediate subsequently transforms into ClNO₂ (G10), with an average conversion time of \(\approx 12 \text{ h} \) (ranging from 4 to 20 h), and the corresponding rate constant is \(2.3 \times 10^{-5} \text{ s}^{-1} \) (Janowski et al., 1977). The Cl-initiated oxidation of organic species i.e. alkanes (\(\text{C}_n\text{H}_2 \)), aromatics (benzene (\(\text{C}_6\text{H}_6 \)), toluene (\(\text{C}_7\text{H}_8 \)) and xylene (\(\text{C}_8\text{H}_{10} \)), alcohols (\(\text{CH}_3\text{OH}, \text{C}_2\text{H}_5\text{OH} \)), ketones (\(\text{CH}_3\text{COCH}_3, \text{MEK} \)), isoprene (\(\text{C}_5\text{H}_8 \)), and other organic compounds (\(\text{C}_2\text{H}_3\text{CHO}, \text{HOCH}_2\text{CHO}, \text{BENZAL}, \text{GLYOX}, \text{MGLYOX} \)) have also been included (G11–G31). The corresponding kinetic data are based on the International Union of Pure and Applied Chemistry and NASA Jet Propulsion Laboratory data evaluations (Atkinson et al., 2006, 2007; Burkholder et al., 2015), and from the literature (Niki et al., 1985, 1987; Green et al., 1990; Shi and Bernhard, 1997; Sokolov et al., 1999; Thiault et al., 2002; Wang et al., 2005; Rickard, 2009; Wennberg et al., 2018). In addition, photolysis reactions (G32–G36) resulting in production of Cl are also added to the module (Atkinson et al., 2007). The abbreviations of species mentioned in Table 1 are kept similar to that in the Master Chemical Mechanism (MCM) nomenclature (Rickard, 2009).

Table 1: Gas-phase chlorine reactions and corresponding rate constants added to MECCA. The rate constants are expressed in units of \(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) unless otherwise specified. Model-simulated maximum noontime \(J \)-values for Delhi are provided.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G1) Cl + NO + M (\rightarrow) ClNO</td>
<td>(7.6 \times 10^{-32} \times (T/300)^{-1.8})</td>
<td>Qiu et al. (2019a)</td>
</tr>
<tr>
<td>(G2) Cl + NO₂ + M (\rightarrow) ClONO</td>
<td>(1.6 \times 10^{-11})</td>
<td>Burkholder et al. (2015)</td>
</tr>
<tr>
<td>(G3) Cl + NO₂ + M (\rightarrow) ClNO₂</td>
<td>(3.6 \times 10^{-12})</td>
<td>Burkholder et al. (2015)</td>
</tr>
<tr>
<td>(G4) Cl + NO₃ (\rightarrow) ClO + NO₂</td>
<td>(2.40 \times 10^{-11}) Qiu et al. (2019a)</td>
<td></td>
</tr>
<tr>
<td>(G5) Cl₂ + OH (\rightarrow) HOCl + Cl</td>
<td>(3.6 \times 10^{-12} \times \exp(-1200/T))</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G6) ClNO₂ + OH (\rightarrow) HOCl + NO2</td>
<td>(2.4 \times 10^{-12} \times \exp(-1250/T))</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G7) OCIO + NO (\rightarrow) NO₂ + ClO</td>
<td>(1.1 \times 10^{-13} \times \exp(350/T))</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G8) Cl + Cl₂O (\rightarrow) Cl₂ + ClO</td>
<td>(6.2 \times 10^{-11} \times \exp(130/T))</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G9) ClO + OCIO + M (\rightarrow) Cl₂O₃</td>
<td>(1.2 \times 10^{-12})</td>
<td>Atkinson et al. (2007)</td>
</tr>
<tr>
<td>(G10) ClONO (\rightarrow) ClNO₂</td>
<td>(2.3 \times 10^{-5} \text{ s}^{-1}) Janowski et al. (1977)</td>
<td></td>
</tr>
<tr>
<td>Organic reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G11) Cl + C₃H₈ (\rightarrow) iso-C₃H₉O₂ + HCl</td>
<td>(1.4 \times 10^{-10} \times 0.43 \times \exp(75/T))</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G12) Cl + C₃H₈ (\rightarrow) n-C₃H₇O₂ + HCl</td>
<td>(1.4 \times 10^{-10} \times 0.59 \times \exp(-90/T))</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G13) Cl + iso-C₄H₁₀ (\rightarrow) iso-C₄H₉O₂ + HCl</td>
<td>(1.43 \times 10^{-10} \times 0.564)</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G14) Cl + iso-C₄H₁₀ (\rightarrow) tert-C₄H₉O₂ + HCl</td>
<td>(1.43 \times 10^{-10} \times 0.436)</td>
<td>Rickard (2009)</td>
</tr>
<tr>
<td>(G15) Cl + n-C₄H₁₀ (\rightarrow) LC₄H₉O₂ + HCl</td>
<td>(2.05 \times 10^{-10})</td>
<td>Atkinson et al. (2006), Rickard (2009)</td>
</tr>
<tr>
<td>(G16) Cl + benzene (\rightarrow) C₆H₅O₂ + HCl</td>
<td>(1.3 \times 10^{-16})</td>
<td>Sokolov et al. (1999)</td>
</tr>
</tbody>
</table>
Cl + toluene \rightarrow C$_6$H$_5$CH$_2$O$_2$ + HCl \[6.20 \times 10^{-11} \] Wang et al. (2005)

Cl + isoprene \rightarrow .63 LISOPAB + .30 LISOPCD + .07 LISOPEFO$_2$ + HCl \[7.6 \times 10^{-11} \times \exp(500/T) \times 1.1 \times \exp(-595/T) \] Wennberg et al. (2018)

Cl + isoprene \rightarrow .63 LISOPAB + .30 LISOPCD + .07 LISOPEFO$_2$ + LCHLORINE \[7.6 \times 10^{-11} \times \exp(500/T) \times (1-1.1 \times \exp(-595/T)) \] Wennberg et al. (2018)

Cl + xylene \rightarrow C$_6$H$_5$CH$_2$O$_2$ + LCAR-BON + HCl \[1.50 \times 10^{-10} \] Shi and Bernhard (1997)

Cl + CH$_3$OH \rightarrow HOCH$_2$O$_2$ + HCl \[7.1 \times 10^{-11} \times 0.59 \times \exp(-75/T) \] Atkinson et al. (2006)

Cl + C$_2$H$_5$OH \rightarrow HOCH$_2$H$_2$O$_2$ + HCl \[6.0 \times 10^{-11} \times \exp(155/T) \times 0.28 \times \exp(-350/T) \] Atkinson et al. (2006)

Cl + C$_2$H$_5$OH \rightarrow C$_2$H$_5$O$_2$ + HCl \[6.0 \times 10^{-11} \times \exp(155/T) \times (1-0.28 \times \exp(-350/T)) \] Atkinson et al. (2006)

Cl + HOCH$_2$CHO \rightarrow HOCHCHO + HCl \[8.0 \times 10^{-12} \times 0.35 \] Atkinson et al. (2006), Niki et al. (1987)

Cl + HOCH$_2$CHO \rightarrow HOCH$_2$CO + HCl \[8.0 \times 10^{-12} \times (1-0.35) \] Atkinson et al. (2006), Niki et al. (1987)

Cl + GLYOX \rightarrow HCOCO + HCl \[3.8 \times 10^{-11} \] Niki et al. (1985)

Cl + MGLYOX \rightarrow CH$_3$CO + CO + HCl \[4.8 \times 10^{-11} \] Green et al. (1990)

Cl + C$_2$H$_5$CHO \rightarrow C$_2$H$_5$CO$_3$ + HCl \[1.3 \times 10^{-10} \] Atkinson et al. (2006)

Cl + CH$_3$COCH$_3$ \rightarrow CH$_3$COCH$_2$O$_2$ + HCl \[1.5 \times 10^{-11} \times \exp(-590/T) \] Atkinson et al. (2006)

Cl + MEK \rightarrow LMEKO$_2$ + HCl \[3.05 \times 10^{-11} \times \exp(80/T) \] Atkinson et al. (2006)

Cl + BENZAL \rightarrow C$_6$H$_5$CO$_3$ + HCl \[1.0 \times 10^{-10} \] Thiault et al. (2002)

Photolysis reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>J-value (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClO \rightarrow Cl + O3P</td>
<td>1.45E-4</td>
</tr>
<tr>
<td>Cl$_2$O \rightarrow Cl + ClO</td>
<td>9.20E-4</td>
</tr>
<tr>
<td>Cl$_2$O$_3$ \rightarrow ClO + ClO$_2$</td>
<td>5.50E-4</td>
</tr>
<tr>
<td>ClINO \rightarrow Cl + NO</td>
<td>2.89E-3</td>
</tr>
<tr>
<td>ClONO \rightarrow Cl + NO$_2$</td>
<td>3.81E-3</td>
</tr>
</tbody>
</table>

2.2 Heterogeneous chemistry

The aqueous-phase and heterogeneous chemistry of Cl compounds added to the MECCA is described in Table 2. In the present study, we assume that N$_2$O$_5$ is in equilibrium between the gas- and aqueous-phase (H2) according to Henry’s law and the dissociation of N$_2$O$_5$(aq) to nitronium ion (NO$_2^+$) and nitrate (NO$_3^-$), occurs according to reaction (A1). The rate constant for the recombination reaction of NO$_2^+$ and NO$_3^-$ is 2.7×10^8 mol$^{-1}$ L s$^{-1}$, calculated based on Bertram and Thornton (2009);
Staudt et al. (2019). The acid dissociation of nitric acid (HNO₃) in aqueous phase (A3) also results in formation of NO₂⁺ (Sapoli et al., 1985).

Table 2: Aqueous-phase and heterogeneous chlorine reactions added to MECCA

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous-phase reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A1) N₂O₅(aq) → NO₂⁺(aq) + NO₃⁻(aq)</td>
<td>1.5×10⁵ s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A2) NO₂⁺(aq) + NO₃⁻(aq) → N₂O₅(aq)</td>
<td>2.7×10⁸ mol⁻¹ L s⁻¹</td>
<td>Bertram and Thornton (2009); Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A3) HNO₃(aq) + H⁺(aq) → NO₂⁺(aq) + H₂O(aq)</td>
<td>1.6×10⁹ mol⁻¹ L s⁻¹</td>
<td>Sapoli et al. (1985)</td>
</tr>
<tr>
<td>(A4) NO₂⁺(aq) + Cl⁻(aq) → ClNO₂(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A5) ClNO₂(aq) → NO₂⁺(aq) + Cl⁻(aq)</td>
<td>2.7×10² s⁻¹</td>
<td>Behnke et al. (1997)</td>
</tr>
<tr>
<td>(A6) ClNO₂(aq) + Cl⁻(aq) → Cl₂(aq) + NO₂⁻(aq)</td>
<td>10⁷ mol⁻¹ L s⁻¹</td>
<td>Roberts et al. (2008)</td>
</tr>
<tr>
<td>(A7) OH⁻Cl⁻(aq) + OH⁻Cl⁻(aq) → Cl₂(aq) + 2 OH⁻(aq)</td>
<td>1.8×10⁹ mol⁻¹ L s⁻¹</td>
<td>Knipping et al. (2000)</td>
</tr>
<tr>
<td>(A8) OH⁻Cl⁻(aq) + Cl⁻(aq) → Cl₂⁻(aq) + 2 OH⁻(aq)</td>
<td>10⁴ mol⁻¹ L s⁻¹</td>
<td>Grigorev et al. (1987)</td>
</tr>
<tr>
<td>(A9) Cl₂⁻(aq) + 2 OH⁻(aq) → OH⁻Cl⁻(aq) + Cl⁻(aq)</td>
<td>4.5×10⁷ mol⁻¹ L s⁻¹</td>
<td>Grigorev et al. (1987)</td>
</tr>
<tr>
<td>(A10) NO₂⁺(aq) + H₂O(aq) → HNO₃(aq) + H⁺(aq)</td>
<td>1.6×10⁷ mol⁻¹ L s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A11) NO₂⁺(aq) + SO₄²⁻(aq) → SO₄²⁻(aq) + NO₃⁻(aq) + 2 H⁺(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A12) NO₂⁺(aq) + HCOO⁻(aq) → HCOO⁻(aq) + NO₂⁻(aq) + 2 H⁺(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A13) NO₂⁺(aq) + CH₃COO⁻(aq) → CH₃COO⁻(aq) + NO₂⁻(aq) + 2 H⁺(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Staudt et al. (2019)</td>
</tr>
<tr>
<td>(A14) NO₂⁺(aq) + phenol(aq) → HOC₆H₄NO₂(aq) + H⁺(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Ryder et al. (2015); Heal et al. (2007)</td>
</tr>
<tr>
<td>(A15) NO₂⁺(aq) + CH₃OH(aq) → CH₃NO₃(aq) + H⁺(aq)</td>
<td>4.5×10⁸ mol⁻¹ L s⁻¹</td>
<td>Iraci et al. (2007)</td>
</tr>
<tr>
<td>(A16) NO₂⁺(aq) + CRESOL(aq) → TOL1OHNO₂(aq) + H⁺(aq)</td>
<td>7.5×10⁹ mol⁻¹ L s⁻¹</td>
<td>Coombes et al. (1979)</td>
</tr>
<tr>
<td>Heterogeneous reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H2) N₂O₅(g) ⇌ N₂O₅(aq)</td>
<td>8.8E-2</td>
<td>Fried et al. (1994)</td>
</tr>
<tr>
<td>(H3) ClNO₂(g) ⇌ ClNO₂(aq)</td>
<td>4.5E-2</td>
<td>Frenzel et al. (1998)</td>
</tr>
</tbody>
</table>
Thus produced nitronium ion \((\text{NO}_2^+)\) reacts reversibly with chloride \((\text{Cl}^-)\) yielding \(\text{ClNO}_2\) \((\text{A4, A5})\) \((\text{Staudt et al., 2019; Behnke et al., 1997})\). After outgassing according to Henry’s law \((\text{H3})\), \(\text{ClNO}_2\) is photolyzed in the gas phase, producing \(\text{Cl}\) and \(\text{NO}_2\) \((\text{Ghosh et al., 2012; Sander et al., 2014})\). \(\text{ClNO}_2\) uptake on chloride containing aerosols results in formation of \(\text{Cl}_2\) and nitrite ion \((\text{NO}_2^-)\), as shown by the reaction \((\text{A6})\) \((\text{Roberts et al., 2008})\). Chamber experiments suggest the formation of \(\text{Cl}_2\) from the self reaction of \(\text{OH} \cdot \text{Cl}^-\) \((\text{A7})\), which gets formed via the reaction of \(\text{OH}\) with \(\text{Cl}^-\) \((\text{Knipping et al., 2000})\). Through other channel of reversible reactions \((\text{A8, A9})\), \(\text{OH} \cdot \text{Cl}^-\) reacts with aqueous chloride and produces \(\text{Cl}_2^-\), which can yield \(\text{Cl}_2\) through subsequent reactions \((\text{Grigorev et al., 1987})\). The \(\text{NO}_2^+\) uptake on aqueous chloride to form \(\text{ClNO}_2\) \((\text{A4})\) is \(\approx 500\) times faster than \(\text{NO}_2^+\) reaction with \(\text{H}_2\text{O}\) \((\text{A10})\) \((\text{Staudt et al., 2019})\). At the same time, experimental studies revealed a strong competition of \(\text{NO}_2^+\) to react with \(\text{Cl}^-\) and with other nucleophiles \((\text{e.g. SO}_4^{2-})\) and aqueous organic compounds \(\text{e.g. phenol, methanol, cresol (A11–A16)}\) \((\text{Staudt et al., 2019; Ryder et al., 2015; Heal et al., 2007; Iraci et al., 2007; Coombes et al., 1979})\). These reactions could suppress the formation of \(\text{ClNO}_2\) and also the corresponding rate constants for reactions \(\text{A11–A14}\) are similar to the \(\text{NO}_2^+ + \text{Cl}^-\) reaction yielding \(\text{ClNO}_2\) \(\text{i.e. } 7.5 \times 10^9 \text{ mol}^{-1} \text{ L s}^{-1}\) \((\text{Staudt et al., 2019; Ryder et al., 2015; Heal et al., 2007})\). Methanol reacts with \(\text{NO}_2^+\) \((\text{A15})\) and forms aqueous methyl nitrate \((\text{CH}_3\text{NO}_3)\) \((\text{Iraci et al., 2007})\). Phase exchange for \(\text{CH}_3\text{NO}_3\) and nitrophenol \((\text{HOC}_6\text{H}_4\text{NO}_2)\) is shown by reactions \(\text{H4 and H5, respectively})\. The heterogeneous chemistry just discussed is implemented in MECCA and is summarized in Fig. 1. The rate constant for \(\text{NO}_2^+\) reaction with methoxyphenol is about \(\approx 10000\) times smaller than \(\text{NO}_2^+ + \text{phenol}\) reaction \((\text{Kroflič et al., 2015})\), so it is not considered in this study. In addition, nitration reactions of other alcohols \(\text{e.g. catechol and polyphenols}\) could be potentially important, however due to unavailability of corresponding rate constants, these reactions are not considered in this study, nonetheless future studies calculating the kinetics of these reactions are recommended.

![Figure 1. Aqueous-phase and heterogeneous chemistry added to MECCA.](image-url)
In this study, Cl reacts with hydrocarbons and acetone via H-abstraction, and hence does not lead to the formation of any Cl-containing molecules, such as chloroacetone. This means that there are no such reactions in MECCA in which the Cl atom becomes part of the organic molecule. The reaction of Cl atoms with isoprene proceeds mainly via addition, and it produces chlorine-containing organics (Ragains and Finlayson-Pitts, 1997; Fan and Zhang, 2004). However, here we have simplified the mechanism by not considering the fate of organohalogens. Therefore, for future research, it would be valuable to investigate the chemical kinetics of such reactions kinetics and their importance in the formation of organohalogen compounds.

3 Box model setup

The chemistry described in section 2 has been added into community box model CAABA/MECCA v4.4.2 (Sander et al., 2019). A comprehensive gas and aqueous phase tropospheric chemistry involving total 3330 reactions was utilized for the simulations, and the full set of reactions are presented in the electronic supplement. The gas-phase chemistry of organics like terpenes and aromatics is treated by the Mainz Organic Mechanism (MOM) (Taraborrelli et al., 2012; Nölscher et al., 2014; Hens et al., 2014; Taraborrelli et al., 2021). The aqueous-phase chemistry of oxygenated VOCs is treated by the Jülich Atmospheric Mechanism of Organic Chemistry (JAMOC) (Rosanka et al., 2021). The numerical integration of the chemical mechanism is performed by the kinetic preprocessor v2.1 (KPP) (Sandu and Sander, 2006). The photolysis rate constants (J values) are calculated by the submodel JVAL, based on the method by Landgraf and Crutzen (1998). The Cl chemistry is expected to be more prominent during winter conditions due to higher concentration of Cl-containing species in the boundary layer (Thornton et al., 2010; Gunthe et al., 2021; Sommariva et al., 2021), and therefore, simulations are performed for the winter season. Hence, the model is set-up for typical winter conditions of two different urban environments: Delhi (28.6° N, 77.2° E), India and Leicester (52.4° N, 01.1° W), United Kingdom. Simulations are performed for a 5-day period (17–21 February 2018) and output of 5th day has been considered for the analysis; by then, radicals had achieved almost a steady state. The typical environmental conditions used in the simulations for Delhi (Tripathi et al., 2022) and Leicester (Sommariva et al., 2021) are summarized in Tab. 3 and Tab. S1.

VOC emissions are taken from the CAMS inventory (Sindelarova et al., 2014; Granier et al., 2019) and are adjusted iteratively in magnitude for better agreement with observations. CAMS-GLOB-ANT v5.3 (0.1° × 0.1°) (Granier et al., 2019) provides emissions of anthropogenic VOCs (e.g., benzene, toluene etc.), while emissions of biogenic VOCs (e.g., isoprene) are from CAMS-GLOB-BIO v3.1 (0.25° × 0.25°) (Sindelarova et al., 2014). Emission of HCl and particulate chloride are included from Zhang et al. (2022) and adjusted iteratively towards reported levels of Cl-containing species (Gunthe et al., 2021; Sommariva et al., 2021). The Mainz Organic Mechanism (MOM) dry deposition scenario (Sander et al., 2019) is activated in the model. Ground-based lidar measurements of boundary layer height (BLH) during winter-time, performed as a part of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, are utilized for the simulations at Delhi (Nakoudi et al., 2018). The diurnal variation in BLH in Leicester is extracted from the European centre for medium-range weather forecast’s (ECMWF) fifth-generation reanalysis dataset ERA5 (Hersbach et al., 2020). Air compo-
Table 3. Environmental conditions of Delhi and Leicester in the model simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Delhi</th>
<th>Leicester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude (°)</td>
<td>28.58 N</td>
<td>52.38 N</td>
</tr>
<tr>
<td>Longitude (°)</td>
<td>77.22 E</td>
<td>01.08 W</td>
</tr>
<tr>
<td>Time-zone</td>
<td>GMT+5:30</td>
<td>GMT+0:00</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>292</td>
<td>278.1</td>
</tr>
<tr>
<td>Pressure (mbar)</td>
<td>1010</td>
<td>1004</td>
</tr>
<tr>
<td>Air number density</td>
<td>2.5×10^{19}</td>
<td>2.61×10^{19}</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>67 %</td>
<td>90 %</td>
</tr>
</tbody>
</table>

The model has been initialized based on previous studies (Tab. S1; Zhang et al. (2007); Lanz et al. (2010); Lawler et al. (2011); Sommariva et al. (2018, 2021); Gunthe et al. (2021); Tripathi et al. (2022)). The values of aerosol properties (e.g., radius, liquid water content, and chemical composition) incorporated in the simulations for both Delhi and Leicester as provided in Table. S1. We constrained the model with the parameterized function best representing the observed diurnal variations of NOx (Fig. 2) (Tripathi et al. (2022); Sommariva et al. (2018, 2021), https://uk-air.defra.gov.uk/data/) which helped in better reproducing the diurnal variations of some VOCs (e.g. isoprene) and ozone. Diurnal observations of HONO from Sommariva et al. (2021) are used for Leicester. For Delhi, however, HONO couldn’t be constrained due to lack of observations.

4 Results and Discussion

The model captures the patterns in O_3 variability at both locations (Sommariva et al., 2018; Nelson et al., 2021; Chen et al., 2021; Sommariva et al., 2021; Nelson et al., 2023) to an extent, as shown in Fig. 2. O_3 is underestimated after $\approx 16:00$ h LT in Leicester mainly due to titration by high NO and lack of adequate dynamics/transport of O_3 in the model. Entrainment seems to improve O_3 after mid-night, towards the observed values (Fig. 2i). Simulated isoprene is in agreement with diurnal observations in Delhi (Tripathi et al., 2022) and in accordance with observed mean level in Leicester (Sommariva et al., 2021).

The nitrate radical (NO_3), which is a nighttime oxidant, is formed through reaction between NO$_2$ and O_3 (G37). NO_3 can react with NO$_2$ forming N_2O_5, which can again produce NO_3 and NO$_2$ through thermal dissociation (G38).

\[
NO_2 + O_3 \rightarrow NO_3 + O_2 \quad (G37)
\]
\[
NO_3 + NO_2 + M \rightleftharpoons N_2O_5 + M \quad (G38)
\]

As seen in Fig. 2e, NO_3 remains negligible during the night-time ($\approx 18:00$–07:30 h LT) in Delhi due to unavailability of O_3 under high-NO conditions (up to 200 nmol/mol). Interestingly, despite its very short lifetime (≈ 5 s), about ≈ 0.1 pmol/mol of NO_3 sustains during daytime. This is primarily due to prevailing levels of NO$_2$ (≈ 30 nmol/mol) and O_3 (≈ 40 nmol/mol).
Figure 2. Diurnal variations of NO, NO$_2$, O$_3$, C$_5$H$_8$, NO$_3$, and N$_2$O$_5$ mixing ratios in Delhi (left) and Leicester (right). The unusual and negligible nighttime NO$_3$ in Delhi is attributed to the nearly non-existent O$_3$, due to titration by higher concentrations of NO. This leads to the negligible nighttime N$_2$O$_5$ in this region. Although mixing ratios of NO$_3$ and N$_2$O$_5$ peak during the daytime, their levels remain quite low. Mean value of observed C$_5$H$_8$ in Leicester is shown by red colored long dashed line.

Such unusual daytime enhanced NO$_3$ have been reported in recent studies, for example, 5-31 pmol/mol of NO$_3$ in Texas, USA (Geyer et al., 2003). Aircraft measurements during the New England Air Quality Study showed \approx0.5 pmol/mol of NO$_3$ within boundary layer (\leq1 km) during noon time (Brown et al., 2005). The calculated NO$_3$ levels using steady state approximation showed 0.01-0.06 pmol/mol of NO$_3$ for the 1997-2012 period at urban sites in the UK (Marylebone Road London, London Eltham, and Harwell) (Khan et al., 2015a). Horowitz et al. (2007) suggested that NO$_3$ in tenths of pmol/mol during daytime over the eastern United States results in formation of \approx50% isoprene nitrates through oxidation of isoprene, which could
further affect the formation of O₃ and SOA significantly (Horowitz et al., 2007). Following to higher NO₃, up to 8 pmol/mol of N₂O₅ is simulated during daytime in Delhi (Fig. 2f). Similar unusual daytime high levels of N₂O₅ (≈21.9±29.3 pptv) during wintertime were recently measured at Delhi using a high-resolution iodide adduct chemical ionization mass spectrometer (Haslett et al., 2023).

Enhanced NO₃ ≈ 2.6 pmol/mol and N₂O₅ ≈ 330 pmol/mol are simulated after mid-night in Leicester (Fig. 2k, 2l). In contrast to Delhi, the daytime simulated levels of NO₃ are negligible as it gets removed rapidly during the daytime by photolysis and through its reactions with NO, HO₂, RO₂, and VOCs (Khan et al., 2015b). In conjunction with high NO from ≈16:00 h LT to near midnight that titrates O₃, the corresponding NO₃ and N₂O₅ is negligible (following reactions G37 and G38). Night-time high and negligible day-time levels of NO₃ and N₂O₅ are their typical features which are generally reported in the literature (Brown et al., 2001; Seinfeld and Pandis, 2016).

4.1 Sensitivity of air composition to chlorine chemistry

To investigate the effects of Cl chemistry on air composition, other than comprehensive chemistry simulation discussed in previous section (simulation: NEW i.e. chemistry already present in the model + newly added gas and aqueous phase chlorine chemistry), two additional simulations have been performed, which are: (1) OLD – this includes default chemistry already present in the model, and (2) NOCL – OLD minus chlorine chemistry (i.e. without Cl chemistry). OLD simulation also encompassed some basic chlorine chemistry that was part of the model prior to its update (full mechanism is also shown in supplement). Figure 3 shows the comparison of Cl, ClONO₂, ClNO₂, OH, HO₂, and RO₂ variations among the three simulations in Delhi and Leicester. Figure S5 shows the differences in diurnal variations of Cl, ClONO + ClNO₂, OH, HO₂, and RO₂ in NEW simulation with: NOCL and OLD simulations.

The Delhi environment is mainly characterized by two peaks in Cl, a predominant sharp peak just after sunrise followed by a broad shallow peak during noontime, corresponding to different mechanisms as discussed in the next section. With newly added chemistry (NEW simulation), a sharp peak in Cl is seen near sunrise, with the maximum values attained is ≈3.5 fmol/mol (8.75x10⁴ molec cm⁻³) in Delhi (Fig. 3a). A broad smaller peak with magnitude of ≈0.8 fmol/mol maximizing around noontime is seen, which is ≈4 times smaller than the first morning peak. OLD simulation also show a sharp peak in Cl near sunrise in Delhi, with a maximum of ≈11 fmol/mol (2.75 x 10⁵ molec cm⁻³). Cl get suppressed by up to ≈ 0.01 pmol/mol of maximum value in the OLD simulation, in the presence of added chlorine chemistry (NEW) as shown in Fig. S5. Similar to Cl, a peak is seen in ClONO + ClNO₂ of ≈100 pmol/mol with sunrise, which gradually decreases and attain ≈7 pmol/mol from nearly 11:00–16:00 h LT. Afterwards it increases to ≈20 pmol/mol from late evening as shown by Fig. 3b,c. The pathways for the formation of ClNO₂ and ClONO were absent in earlier version of the model (OLD). Simulated OH, HO₂, and RO₂ show a prominent peak just after sunrise in the presence of Cl chemistry for both the OLD and NEW simulations (Fig. 3d,e,f). As a consequence of greater oxidation of VOCs by Cl, enhanced levels of OH by 0.05 pmol/mol (up to a factor of ≈1.8), HO₂
Figure 3. Model simulated diurnal variations of Cl, ClNO₂, ClONO, OH, HO₂, and RO₂ at Delhi (left panel) and Leicester (right panel).

by 0.21 pmol/mol and RO₂ by 0.1 pmol/mol are noted with added Cl chemistry compared to NOCL case (see Fig. S5). No significant changes are seen in noon-time levels of OH and HO₂, whereas ≈ 1.1 times more RO₂ is produced with added Cl
chemistry (NEW) compared to the OLD simulation.

The model-predicted Cl peaks at \(\approx 2 \) fmol/mol (5.2\(\times \)10\(^4\) molec cm\(^{-3}\)) during sunrise in Leicester (Fig. 3g). In contrast to Delhi, suppressed Cl (up to \(\approx 3.2 \) times) with a narrow peak is simulated by OLD simulation in comparison with NEW simulation containing newly added Cl chemistry, at Leicester. In contrast to negligible night-time ClONO + ClNO\(_2\) in Delhi, it shows a strong build-up over Leicester during 0-4 hours with a maximum of \(\approx 40 \) pmol/mol, with higher levels (up to 50 pmol/mol) prevailing until about sunrise. ClONO + ClNO\(_2\) is negligible during mid-day until mid-night, in accordance with \(\text{N}_2\text{O}_5\) in Leicester as shown in Fig. 2l. Previous studies have demonstrated that the formation of ClNO\(_2\) occurs within the nocturnal residual layer, which contains lower levels of NO compared to the surface layer. Subsequently, ClNO\(_2\) mixes downward during the morning when the convective mixed layer develops (Bannan et al., 2015; Tham et al., 2016). However, the present study does not account the the effect of transport processes due to the limitations of the box model. The effects of added Cl chemistry on OH, HO\(_2\), and RO\(_2\) are more prominent in Leicester compared to Delhi. NEW simulation show strong enhancements in OH (up to \(\approx 2 \) times), HO\(_2\) (up to \(\approx 5 \) times), and RO\(_2\) (up to \(\approx 8 \) times) after sunrise which is gradually progressive, resulting in higher levels during noon-time as well (Fig. 3, Fig. S5). Remarkably elevated levels of RO\(_2\) (by a factor of \(\approx 2 \)) are prominent during the noon hours. Such elevated levels of RO\(_2\) could favour enhanced levels of secondary organic aerosols in Leicester. The impact of Cl chemistry on aerosols (\(\text{NO}_2^+, \text{NO}_3^- \), and oxalic acid) is discussed in Supplementary section 2.2 (Fig. S6). Though significant differences in \(\text{NO}_2^+, \text{NO}_3^- \), and oxalic acid are seen due to Cl chemistry, further measurements are required for validation. In the next sections, we have analysed the observed behaviour of Cl and ClNO\(_2\) in the NEW simulation over both the locations in more detail.

4.2 Production and loss of Cl and ClNO\(_2\)

The sources and sinks of Cl in Leicester and Delhi are presented in Fig. 4. The left-upper panel (a) delineates the sources and sinks of Cl radical on diurnal scale in Delhi. The morning sharp peak in Cl radical is caused mainly by the photolysis of Cl\(_2\) with a maximum rate of 1.2 \(\times \)10\(^7\) molec cm\(^{-3}\) s\(^{-1}\). The shallow secondary peak is due to the reaction HCl + OH with a noon time rate of \(\approx 0.4 \) \(\times \)10\(^7\) molec cm\(^{-3}\) s\(^{-1}\). However, there is a smaller contribution from other reactions (photolysis of ClNO\(_2\), ClONO, and reaction of ClO with NO) to the morning peak, which have negligible contributions during the daytime. Interestingly, there is a strong consumption of Cl to oxidize VOCs (peak rate \(\approx 2.4 \) \(\times \)10\(^7\) molec cm\(^{-3}\) s\(^{-1}\)) during sunrise, and a lesser consumption during the rest of the day. Cl + NO\(_2\) is also a Cl sink during the morning time in Delhi. The Cl-initiated oxidation of VOCs in the morning hours in Delhi may lead to formation of secondary organic aerosols and new particle formation, which opens up pathways of future research in this direction. In addition to Cl\(_2\) photolysis (\(\approx 1.0 \) \(\times \)10\(^6\) molec cm\(^{-3}\) s\(^{-1}\)), photolysis of ClNO\(_2\) and ClONO, and ClO + NO reaction (total rate \(\approx 0.8 \) \(\times \)10\(^6\) molec cm\(^{-3}\) s\(^{-1}\)) are other prominent sources of Cl in Leicester. VOCs are the major sink for Cl (rate \(\approx 1.3 \) \(\times \)10\(^6\) molec cm\(^{-3}\) s\(^{-1}\)), followed by NO\(_2\) (rate \(\approx 0.6 \) \(\times \)10\(^6\) molec cm\(^{-3}\) s\(^{-1}\)).
Figure 4. Production and loss rates of (a, b) Cl and (c, d) ClNO₂ in Delhi (left panel) and Leicester (right panel).

We further analyzed the production and loss pathways of ClNO₂, as shown in Fig. 4c,d. While the major source of ClNO₂ is through the Cl + NO₂ reaction with a reaction rate ≈3 × 10⁵ molec cm⁻³ s⁻¹ in Delhi, the aqueous phase reaction Cl⁻ + NO₂⁺
ClNO

In conjunction with major loss of Leicester. The reaction of Cl with NO2 ($\approx 1.1 \times 10^5$ molec cm$^{-3}$ s$^{-1}$) is the major ClNO2 source during sunrise in Leicester. In contrast, there is lesser contribution of Cl$^- + NO_2^+$ reaction (rate $\approx 1 \times 10^3$ molec cm$^{-3}$ s$^{-1}$) in ClNO2 production in Delhi. The prominent sink for ClNO2 is through its heterogeneous reaction with Cl$^-$ ($\approx 1.8 \times 10^5$ molec cm$^{-3}$ s$^{-1}$ or 7.2×10^{-15} mol mol$^{-1}$ s$^{-1}$) in Delhi almost throughout the day, while it’s loss through the photolysis ($\approx 0.5 \times 10^5$ molec cm$^{-3}$ s$^{-1}$ or 2×10^{-15} mol mol$^{-1}$ s$^{-1}$) is also an important sink during the daytime. We are using ClNO2 uptake coefficient, $\gamma = 9E-3$ from Fickert et al. (1998) in the simulation. Sensitivity simulation with $\gamma = 1E-5$ (Haskins et al., 2019) results in considerably slower (by a factor of ≈ 270 and ≈ 17, near sunrise and during mid-day, respectively) loss rate of ClNO2 with Cl$^-$ than in the NEW simulation over Delhi. ClNO2 loss through the reaction ClNO2 + Cl$^-$ ($\approx 2.7 \times 10^5$ molec cm$^{-3}$ s$^{-1}$ or 1.0×10^{-14} mol mol$^{-1}$ s$^{-1}$) is its major sink in Leicester from mid-night to mid-day, while photolysis ($\approx 0.3 \times 10^5$ molec cm$^{-3}$ s$^{-1}$ or 1.1×10^{-15} mol mol$^{-1}$ s$^{-1}$) is smaller sink from sunrise to mid-day here. The diurnal variation in Cl2, and its production and loss mechanisms over Delhi and Leicester are shown by Fig. S1 and Fig. S2. In conjunction with major loss of ClNO2, ClNO2 + Cl$^-$ reaction is the major contributor to Cl2 formation over Delhi and Leicester.

We also calculated ClNO2 yield from NO2$^+$ (Fig. S3), which is the ratio of P_{ClNO2}/L_{total}, where P_{ClNO2} is the rate of ClNO2 production through Cl$^- + NO_2^+$ reaction and L_{total} denotes the loss rate of NO2$^+$ through it’s reactions with Cl$^-$, H2O, SO4$^{2-}$, HCOO$^-$, CH3COO$^-$, phenol, CH3OH, and cresol (A4, A10–A16). ClNO2 yield is ≈ 0.9 over Delhi, indicating the strongest loss of NO2$^+$ is through it’s reaction with Cl$^-$, which is also mimicked in Fig. S4a showing the same concentrations of ClNO2 as in NEW simulation and when other NO2$^+$ reactions (A10–A16) are turned off (simulation: without other NO2$^+$ reactions). ClNO2 yield over Leicester is between $\approx 0.40-0.55$, which is about half the yield in Delhi. Stronger ClNO2 yield in Delhi could be attributed to ≈ 2 times higher Cl$^-$ than Leicester. Lesser ClNO2 yield in Leicester portrays the importance of NO2$^+$ loss reactions (A10–A15) other than with Cl$^-$, which could be seen through Fig. S4b where ClNO2 is increased by more than twice during early morning hours when A10–A15 reactions are kept inactive in the model. The determination of ClNO2 yield using cavity ring-down spectroscopy and chemical ionization mass spectrometry, shows yield ranging between 0.2 to 0.8 for Cl$^-$ concentrations of 0.02 to 0.5 mol/L (Roberts et al., 2009). The measurements of ClNO2 yield for coastal and open ocean waters were found to be between 0.16-0.30 which is suppressed by up to 5 times than equivalent salt containing solutions, due to the addition of aromatic organic compounds (e.g., phenol and humic acid) to synthetic seawater matrices (Ryder et al., 2015).

4.3 Role of Cl in Atmospheric Oxidative Capacity (AOC)

In order to understand the role of Cl as oxidising agent with respect to the OH radical, we calculated the reactivity of Cl and OH as $\Sigma X_i (k_{radical+X_i} \times [X_i])$, where radical is Cl or OH, and [X$_i$] is the concentration of specie X$_i$ (here X$_i$ includes CO,
CH₄, primary VOCs and NMHCs which are initialized in the model) (Fig. 5). The corresponding rate constants for Cl + X and OH + X reactions are taken from the MECCA. The reactivity of both Cl and OH decreases rapidly nearly from sunrise to noon time and afterwards increases gradually at both locations. In comparison to Leicester, the magnitudes of Cl and OH reactivity in Delhi are higher by up to ≈1.4 and ≈12 times, respectively. However, the Cl/OH reactivity ratio in Leicester is up to ≈9 times higher than that in Delhi. Cl reactivity is lower (Delhi: ≈685 s⁻¹, Leicester: ≈553 s⁻¹) during noontime and higher (Delhi: ≈750 s⁻¹, Leicester: ≈554 s⁻¹) during nighttime and early morning hours at both locations. The OH reactivity follows a similar pattern as that of Cl in Delhi and Leicester. The ratio of Cl to OH reactivity starts increasing after sunrise, reaching a maximum value of ≈42 at nearly 16:00 h LT and then decreases further in Delhi. As mentioned above, Cl/OH reactivity ratio in Leicester shows a double peak pattern, with one peak (≈270) during early morning ≈04:00 h LT and other peak (≈276) at about 16:00 h LT.

Figure 5. Reactivity of Cl and OH with CO, CH₄, and VOCs, and Cl/OH reactivity ratio during the simulation period in (a) Delhi and (b) Leicester.

We quantified the relative contribution of Cl in atmospheric oxidative capacity (AOC) using the model. AOC represents the sum of oxidation rates of specie Xᵢ by oxidants Y (OH, Cl, and other radicals: NO₃ and O₃) (Elshorbany et al., 2009):

\[
\text{AOC} = \sum k_{X_i} [X_i][Y]
\]

where, \(k_{X_i}\) is the corresponding rate constant for \(X_i + Y\) reaction. Accordingly, the magnitude of AOC depends upon the concentration and reactivity of Cl. Figure 6 shows the contribution of individual oxidants in AOC at both locations. Besides OH, Cl is the second most important oxidant in Delhi, with a significant contribution of 23.4 % during morning (averaged over 07:00-09:00 h LT), and 8.2 % throughout the day (06:00-16:00 h LT). In Leicester, Cl is the highest contributor (74.0 %) towards AOC during morning. In fact, with 34.1 % contribution, Cl is major oxidant after OH, during the daytime. Besides the abundance of Cl, higher reactivity enhances the contribution of Cl in AOC, which is further substantiated by the ratio of Cl reactivity to OH reactivity (Fig. 5b). This ratio indicates that Cl reactivity exceeds OH reactivity by a significant margin,
Figure 6. Atmospheric oxidative capacity (AOC) of radicals during (a, b) early morning mean (7-9 h LT) and (c, d) daytime mean (6-16 h LT) in Delhi (left panel) and Leicester (right panel).

ranging from 265 to 276 times greater throughout the day in Leicester. Such a substantial contribution of Cl in AOC leads to enhancements of RO₂ as seen in Fig. 3(f,l). Especially, a prominent peak in RO₂ during early morning (07:00-09:00 h LT) is imparted to strong participation of Cl in atmospheric oxidation during this time. Notably strongest contribution of Cl in AOC during early morning in Leicester, strengthens RO₂ peak by up to a factor of 8 (Fig. 3l). The role of Cl is predominant in Leicester as well as in Delhi during early morning, compared to a polluted environment of Hong Kong, China where Cl contribution was estimated to be 21.5 % (Xue et al., 2015). NO₃ and O₃ were found to play a relatively minor role in AOC at both urban environments.

4.4 Sensitivity to ClNO₂ + Cl⁻ reaction

In a study conducted by Haskins et al. (2019), using the reacto-diffusive length-scale framework, it was demonstrated that field and laboratory observations could be reconciled by considering an aqueous-phase reaction rate constant for the ClNO₂ + Cl⁻ reaction on the order of \(\approx 10^4 \text{ s}^{-1} \). This reaction rate constant is considerably lower (by \(\approx 179 \) times) than reported in
Roberts et al. (2008). In this context, sensitivity simulation (NEWrate) is performed using a reaction rate coefficient of 5.6×10^4 mol$^{-1}$ L s$^{-1}$ (Haskins et al., 2019) for the ClNO$_2$ + Cl$^-$ reaction, for both Delhi and Leicester. As depicted in Figure S7a, the concentration of Cl remains nearly the same in the NEWrate simulation compared to the NEW simulation over Delhi. However, there are significant changes in the concentration of ClNO$_2$, as shown in Fig. S7b. The simulated ClNO$_2$ exhibits a broader peak and is approximately 30 pmol/mol higher near sunrise in the NEWrate simulation when compared to the NEW simulation. During the nighttime, approximately 20 pmol/mol of ClNO$_2$ is simulated in the NEWrate simulation, whereas it is negligible in the NEW simulation (see Fig. 3b). Since the Cl concentration is almost similar in both the NEW and NEWrate simulations, the differences in the simulated concentrations of OH, HO$_2$, and RO$_2$ remain consistent between the NEWrate or NEW simulations and the OLD and NOCL simulations (refer to Fig. S7d, e, f, and Fig. 3d, e, f). The production and loss mechanisms of Cl are similar in both the NEW and NEWrate simulations (see Fig. S8a and Fig. 4a). The contributions from ClNO$_2$ formation reactions are also similar. However, in contrast to the NEW simulation, the loss of ClNO$_2$ through photolysis becomes dominant and is ≈ 6 times greater than its loss through ClNO$_2$ + Cl$^-$ reaction, in NEWrate simulation. The contribution of radicals to AOC is also similar between the NEW and NEWrate simulation, as depicted in Fig. 6a,c and Fig. S9a,c respectively, over Delhi.

In contrast to Delhi, significant differences are seen in atmospheric composition in Leicester when the rate coefficient of the ClNO$_2$ + Cl$^-$ reaction is altered (as shown in Fig. S7). The peak concentration of Cl becomes ≈ 0.6 fmol/mol during the morning hours of NEWrate simulation (Fig. S7g), which is about 4 times lower than the concentration of Cl in NEW simulation (Fig. 3g). However, due to slower rate of ClNO$_2$ consumption with Cl$^-$, the simulated ClNO$_2$ using the NEWrate is significantly enhanced (by ≈ 5 times) compared to NEW simulation, reaching a maximum of about 210 pmol/mol around sunrise (see Fig. S7h). Due to lower Cl concentrations, the levels of ClONO also decrease by 3.5 times in NEWrate simulation (as shown in Fig. S7i) compared to NEW simulation (Fig. 3i). The dominant peak seen at sunrise in the NEW simulation for OH, HO$_2$, and RO$_2$ is significantly reduced with the lower rate of the ClNO$_2$ + Cl$^-$ reaction, as illustrated in Fig S7j,k,l. Significant changes in the production and loss mechanisms of Cl and ClNO$_2$ are seen in Leicester when the reaction rate of A6 is changed, as shown in Fig. S8 and Fig. 4b. For example, in the NEWrate simulation, other reactions, including the photolysis of ClNO$_2$ and ClONO, and ClO + NO reaction, become prominent sources of Cl (with a rate of approximately 6.0 x 10^5 molec cm$^{-3}$ s$^{-1}$), whereas in the NEW simulation, the major source for Cl is photolysis of Cl$_2$. The primary source for ClNO$_2$ production remains the Cl$^-$ + NO$_2^+$ reaction in both the NEW and NEWrate simulations. However, in the NEWrate simulation, ClNO$_2$ loss from photolysis becomes the major sink, whereas in the NEW simulation, loss from the ClNO$_2$ + Cl$^-$ reaction is prominent. In addition, remarkable changes in AOC are seen between the NEWrate (Fig. S9b, d) and the NEW simulation (Fig. 6b,d). In the NEWrate simulation, even though Cl remains the major oxidant its contribution is notably reduced from 74% (in NEW simulation) to 58.1% during the early morning hours.
Extended gas- and aqueous-phase chemistry of chlorine compounds has been added to the MECCA mechanism. It consists of 36 gas-phase reactions (inorganic, organic, and photolysis reactions). A total of 24 aqueous-phase and heterogeneous reactions have been added, containing detailed chemistry of \(\text{N}_2\text{O}_5 \) uptake on aerosols to yield \(\text{ClNO}_2 \) and various other competing reactions. The updated model is applied to two different urban environments: Delhi (India) and Leicester (United Kingdom) during winter time. The major conclusions are:

1. The model predicts up to 0.1 pmol/mol of \(\text{NO}_3 \) and up to 8 pmol/mol of \(\text{N}_2\text{O}_5 \) during daytime in Delhi. However, night-time production of \(\text{NO}_3 \) and \(\text{N}_2\text{O}_5 \) is seen to be negligible primarily due to the unavailability of \(\text{O}_3 \). In contrast to Delhi, \(\text{NO}_3 \) and \(\text{N}_2\text{O}_5 \) after mid-night in Leicester is \(\approx \) 2.6 pmol/mol and \(\approx \) 330 pmol/mol, respectively. \(\text{N}_2\text{O}_5 \) uptake on aerosols yields \(\text{ClNO}_2 \), which produces Cl via photolysis.

2. A sharp build-up of Cl with sunrise is mainly through \(\text{Cl}_2 \) photolysis in Delhi. Besides \(\text{Cl}_2 \), photolysis of \(\text{ClNO}_2 \) and \(\text{ClONO} \) and the reaction of \(\text{ClO} \) with NO are prominent Cl sources in Leicester. VOCs are the main sink for Cl at both locations, whereas \(\text{NO}_2 \) is also an important sink for Cl in Leicester. The latter results in the formation of \(\text{ClNO}_2 \) with a major contribution in Delhi, while \(\text{Cl}^- + \text{NO}_2^+ \) is a stronger source in Leicester. Photolysis is the major sink for \(\text{ClNO}_2 \) in Delhi, however, its uptake on chloride aerosols is a prominent sink in Leicester.

3. The magnitude of Cl (\(\approx 750 \text{ s}^{-1} \)) and OH (\(\approx 25 \text{ s}^{-1} \)) reactivities are significantly greater in Delhi, particularly during the morning hours, when compared to Leicester. However, Cl to OH reactivity ratio (\(\approx 270 \)) is pronounced in Leicester coinciding with higher contribution of Cl in AOC.

4. Sensitivity simulations reveal substantial post-sunrise enhancements of in OH, \(\text{HO}_2 \), and \(\text{RO}_2 \) radicals, with a prominent secondary peak due to Cl chemistry. Up to 8 times higher \(\text{RO}_2 \) is simulated in Leicester primarily because of leading role of Cl in AOC potential.

It is important to note that box models, despite their general limitation of neglecting transport phenomena and assuming species to be well mixed, do include highly detailed chemical mechanisms. Furthermore, because the model is initialized with measurements of chemical species at both locations and the modeled levels align with observed data, significant discrepancies in model estimates would be unexpected. Future studies focussing on modeling vertical gradients, in particular for radical reservoir species such as HONO, and \(\text{ClNO}_2 \) (Young et al., 2012) are recommended.

This study highlights the vital role of Cl chemistry in governing the oxidation capacity of the atmosphere and air quality, and therefore it is important to account for it in detailed photochemical as well as in 3-D chemical transport models. This will lead to better quantification of the importance of radicals in atmospheric oxidation and hence, the formation of ozone as well as secondary aerosols, over regional to global scale. Future studies focusing on secondary aerosol formation and new particle formation from heterogeneous reactions are needed to deepen the understanding of transformation of trace gases to aerosols.
Code and data availability. CAABA/MECCA is a community box model published under the GNU General Public Licence, available from the Gitlab repository (https://gitlab.com/RolfSander/caaba-mecca). The version of CAABA/MECCA updated in this study is currently available in the ‘delhi’ branch of the repository. The new chlorine mechanism will be included in the next release of CAABA/MECCA. All the model outputs associated with this study are archived at zenodo (https://zenodo.org/record/8332131; Soni et al. (2023)).

Author contributions. M. Soni, R. Sander, and D. Taraborrelli designed the study with inputs from S. S. Gunthe, P. Liu, and N. Ojha. M. Soni, R. Sander, and D. Taraborrelli developed and analyzed the chemical mechanism and M. Soni performed the simulations. A. Pozzer, R. Sander, L. K. Sahu, D. Taraborrelli, I. A. Girach, and N. Ojha helped M. Soni in the analyses and interpretations of the results. A. Patel assisted M. Soni in compiling literature and some input dataset. M. Soni wrote the manuscript and all the co-authors contributed to the review and editing.

Competing interests. At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

Acknowledgements. The authors gratefully acknowledge the use of CAMS inventory for VOCs emissions data available from ECCAD (https://eccad3.sedoo.fr/catalogue). We thank ECMWF for the ERA5 dataset. We acknowledge UK AIR Air Information Resource for the chemical species data through https://uk-air.defra.gov.uk/data/. Authors thank J. M. Roberts (NOAA Chemical Sciences Laboratory, USA), Tao Wang (The Hong Kong Polytechnic University, Hong Kong), Men Xia (University of Helsinki, Finland), and Renuka Soni for valuable inputs on kinetics. M. Soni, N. Ojha, and L. K. Sahu acknowledge support from the Physical Research Laboratory, Ahmedabad, funded by the Department of Space, Government of India.
References

Zhang, L., Li, Q., Wang, T., Ahmadov, R., Zhang, Q., Li, M., and Lv, M.: Combined impacts of nitrous acid and nitryl chloride on lower-
tropospheric ozone: new module development in WRF-Chem and application to China, Atmospheric Chemistry and Physics, 17, 9733–
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S.,
Takegawa, N., Kono, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R.,
in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34, L13801,