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Abstract. Emissions from wildfires
:::::::
biomass

:::::::
burning are a significant source of air pollution, which can adversely impact air

quality and ecosystems thousands of kilometers downwind. These emissions can be estimated by a bottom-up approach that

relies on fuel consumed and standardized emission factors. Emissions are also commonly derived with a top-down approach,

using satellite observed fire radiative power (FRP) as proxy for fuel consumption. Wildfire
:::::::
biomass

::::::
burning

:
emissions can also

be estimated directly from satellite trace gas observations, including carbon monoxide (CO). Here, we explore the potential5

of satellite-derived CO emission rates from wildfires
:::::::
biomass

:::::::
burning and provide new insights into the understanding of

satellite-derived fire CO emissions globally, with respect to differences in regions and vegetation type. Specifically, we use

the TROPOMI (Tropospheric Monitoring Instrument) high spatial-resolution satellite datasets to derive burning CO emissions

directly for individual fires between 2019 and 2021 globally. Using synthetic data (with known emissions) we show that the

direct emission estimate methodology has a 34 % uncertainty for deriving CO emissions (and a total uncertainty of 44 %10

including wind and CO column uncertainty). From the TROPOMI-derived CO emissions we derive biome specific emission

coefficients (emissions relative to FRP) by combining the direct emission estimates and the satellite observed FRP from the

Moderate Resolution Imaging Spectrometer (MODIS). These emission coefficients are used to establish annual top-down CO

emission inventories from wildfires
::::::
biomass

:::::::
burning

:
showing that southern hemisphere Africa has the highest CO wildfire

:::::::
biomass

::::::
burning

:
emissions (over 25 % of global total of 300-390 Mt(CO)/yr between 2003-2021), and almost 25 % of global15

CO wildfire
:::::::
biomass

:::::::
burning

:
emissions are from broad-leaved evergreen tree fires. A comprehensive comparison between

direct estimates, top-down and bottom-up approaches, provides insight into the strengths and weaknesses of each method:

FINN2.5, has higher CO emissions, by a factor between two and five, compared to all other inventories assessed in this study.

Trends over the past two decades are examined for different regions around the globe showing that global CO wildfire
:::::::
biomass

::::::
burning

:
emissions have, on the whole, decreased (by 5.1 to 8.7 Mt(CO)/yr), where some regions experience increased and20

others decreased emissions.
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1 Introduction

Emissions from wildfires
::::::
biomass

:::::::
burning

:
are a significant source of air pollution in the global atmosphere. These emissions

are transported over large distances and, thus, can adversely impact air quality and ecosystems thousands of kilometers down-

wind (e.g., Landis et al., 2018; Meng et al., 2019). Health impacts are typically more severe in close proximity to the fires,25

however health impacts from transported smoke plumes have also been reported (Matz et al., 2020). In more recent years an

increase in fire activity in North America has been recorded (e.g., Romero-Lankao et al., 2014; Landis et al., 2018). The driv-

ing factors for this increase (in North America) include droughts, higher temperatures, and fuel loading caused by tree death

(Littell et al., 2009; Westerling, 2016). This trend may continue due to climate change (Liu et al., 2013; Wotton et al., 2017).

Wildfire
:::::::
Biomass

:::::::
burning emissions are associated with large uncertainties (Andreae, 2019), which lead to a growing demand30

for improved knowledge of wildfire
:::::::
biomass

::::::
burning

:
emissions.

Wildfire emissions
:::::::
Biomass

:::::::
burning

:::::::::
emissions,

::::
e.g.

::::
from

::::::::
wildfires

:
can be estimated by either a bottom-up or top-down ap-

proach. For the bottom-up estimates proxies, such as fuel type, area burned, and emission factors (EF), are used to determine

the emissions; these emissions are determined by35

Ei = Activity �EFi;f : (1)

Where the emissions (Ei) account for mass of fuel consumed in combustion (kg), which are based on fire activity (which

includes factors such as the burned area, fuel loading, fuel classification, and a combustion factor), and EFi;f (g/kg) is the

emission factor for a specific chemical species (i), which is typically a function of fuel type (f ) (sometimes it can be dependent

on the combustion type as well, i.e., flaming and smoldering). An example for this type of fire emission inventory is the Fire40

INventory from NCAR (FINN; Wiedinmyer et al., 2011). Wildfire
:::::::
Biomass

:::::::
Burning

:
emissions are also commonly derived

with a top-down approach, using satellite information to estimate forest fire
:::::::
biomass

::::::
burning

:
emissions, sometimes in near-real

time. The Global Fire Assimilation System (GFAS; Kaiser et al., 2012)) is an example of such a system, wherein satellite

observed fire radiative power (FRP, in units of W) or its time integral, fire radiative energy (FRE, in units of J) is used as as

proxy for fuel consumption. Using a satellite-remote sensing FRP together with a species specific emissions coefficient (ECi)45

is a common approach for top-down fire inventories: Ei = FRE � ECi. For many inventories, ECi (in units of g/MJ) is com-

monly estimated from EFi;f (dependant on species and fuel type, in units of g/kg) and a conversion factor �f (kg/MJ) based on

fuel type (Kaiser et al., 2012). The EFi;j is typically based on laboratory derived values and is a common factor used in both

top-down and bottom-up approaches. Other inventories make use of a combination of bottom-up and top-down information

(e.g. Global Fire Emissions Database (GFED; Giglio et al. (2013)). The Canadian Forest Fire Emissions Prediction System50

(CFFEPS; Chen et al. (2019)) and its global extension Global Forest Fire Prediction System (GFFEPS; under-development
:
,

::::::::::::::::::
(Anderson et al., 2024)), where satellite-derived hotspot data is linked to databases such as fuel type, previous statistics on area

burned per hotspot for a given fuel type, etc., to determine emissions, and may be run within an on-line air-quality model to

determine the effects of fire emissions on weather (Makar et al., 2020).

55
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Fire emission rates can also be derived directly from measurements without the proxy information of combustion processes.

This is an alternative measure for evaluation of emission inventories and emission processing systems. In situ and aircraft

measurements are difficult to obtain close to fires and may be rare due to the expense of observations. However, satellite-borne

observations provide ongoing coverage using a common instrument platform, which can thus be used to constrain wildfire

:::::::
biomass

::::::
burning

:
emissions. Satellite-remote sensing observations also have the advantage of near-global coverage. With the60

recent advances in satellite observations, wildfire
:::::::
biomass

::::::
burning

:
emissions can be estimated directly, with past work show-

ing the utility of these observations in estimating emissions of carbon monoxide (CO) (Adams et al., 2019; Stockwell et al.,

2022), carbon dioxide (CO2) (Guo et al., 2019), nitrogen oxides (NOx) (Jin et al., 2021; Griffin et al., 2021), and ammonia

(NH3) (Adams et al., 2019). There are several limitations to emission estimates from satellite observations: 1) direct satellite-

based emissions estimates are only possible for a few chemical species that are measured by satellite instruments; 2) current65

satellite-based instruments are on polar-orbiting platforms that consequently only observe a location once or twice per day, a

measurement frequency that will improve in the near future with new geostationary satellites; 3) many fires are missed due to

cloud cover or even thick smoke that impacts the quality of the satellite observation; 4) small fires that are below the satellite

detection limit will be missed. Thus, direct estimates are a great tool to derive emissions at the time of the overpass for specific

fires, but cannot be used alone to determine a total emission inventory (i.e., only one point per day, many missed fires).70

In this study CO wildfire
::::::
biomass

:::::::
burning

:
emissions are directly derived from the satellite observations using the TROPOMI

(Tropospheric Monitoring Instrument) high spatial-resolution satellite observations on CO and plume height information, and

the uncertainty of this method is assessed using synthetic CO columns (with known emissions). The main advantage of the

TROPOMI dataset is the wealth of observations at higher horizontal resolution (with
::::::::::
7 � 5:5 km2,

:
7 � 7 km2

:::::
before

:::::::
August75

::::
2019) compared to its predecessors (e.g., the Infrared Atmospheric Sounding Interferometer (IASI; Clerbaux et al. (2009)),

and Measurement of Pollution in the Troposphere (MOPITT; Deeter et al. (2013))). Another advantage of TROPOMI over its

predecessors is the high sensitivity near the surface (Schneising et al., 2020) which is beneficial when estimating emissions

that occur close to the surface. TROPOMI has previously been used to estimate CO emissions from wildfires and comparisons

to aircraft-derived emissions showed very good agreement for fires in North America (Stockwell et al., 2022). It has also been80

used to derive fire emissions in Portugal (Magro et al., 2021). Most recently, Goudar et al. (2023) published an automated

plume detection and emission estimation algorithm utilizing TROPOMI CO, in our study, an alternative approach is explored.

The aim of this study is to establish a database of direct satellite-derived biomass burning CO emissions globally; this ap-

proach has been entirely automated and has the capability to determine CO fire emissions in quasi near real time (as soon as85

TROPOMI CO and MODIS FRP observations are available). Additionally, we determine biome specific emission coefficients

(ECs; emissions relative to FRP), which are based on the direct emissions from TROPOMI relative to the amount of heat energy

released by the fire (FRP) from MODIS, and ultimately establish top-down annual total emissions based on these derived ECs.

These emission coefficients can provide insights into the efficiency of combustion, and help quantifying how emissions from a

particular ecological region or biome are related to the heat energy generated by wildfires
::::::
biomass

:::::::
burning

:
in that region. This90
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information can be valuable for understanding the environmental impact of wildfires
:::::::
biomass

:::::::
burning in different ecosystems

and for developing strategies to manage and mitigate their effects. Furthermore, FRP is often and more easily measured from

satellites compared to CO, and determining a biome specific CO-to-FRP ratio can help to determine the daily total emissions

of fires. We further show how combining the satellite derived CO emissions with satellite observed FRP from the Moderate

Resolution Imaging Spectrometer (MODIS) can establish an annual CO emission inventory from wildfires
::::::
biomass

:::::::
burning, by95

applying the derived emission coefficients to assimilated daily FRP based on MODIS measurements (available from GFAS).

As we show below, the direct emissions as well as the alternative annual inventory (from the here derived ECs) provides an

alternative measure that can be used to evaluate and improve fire emission inventories or fire emissions prediction systems.

This paper is structured as follows: Section 2 describes the datasets and the direct emission estimation algorithm used,100

and includes an evaluation of the method with synthetic columns. The direct TROPOMI-derived emissions are compared to

GFFEPS bottom-up emissions in Sect. 3. In Sect. 4, the emissions coefficients and burning efficiency from different biomes are

discussed. Annual global inventories of CO fire emissions from different inventories are compared and evaluated against the

satellite-derived CO emissions estimates (using ECs), including a trend analysis over the past two decades in Sect. 5, followed

by a summary and conclusions in Sect. 6.105

2 Datasets and Methods

2.1 Satellite CO Dataset

The TROPOMI instrument, on-board the Copernicus Sentinel-5 Precursor (S-5P) satellite (under ESA), orbits the globe with

a local overpass time of around 13:30 local time and near full-surface coverage on a daily basis (Veefkind et al., 2012; Hu

et al., 2018). It has four spectrometers that cover the solar spectrum between the short-wave infra-red (SWIR) and the ultra-110

violet (UV). Amongst other species, total column CO is retrieved from the SWIR spectrometer at a horizontal resolution

of roughly 5:5 � 7 km2 (7�7 km2 prior to August 6, 2019) using the Shortwave Infrared CO Retrieval algorithm (Borsdorff

et al., 2018, 2019). The TROPOMI CO columns have been validated with satellite observations (Martínez-Alonso et al.,

2020), as well as with ground-based remote sensing instruments (Borsdorff et al., 2019). Both studies showed that TROPOMI

exceeded its mission requirement on precision and concluded a precision error well below <10 %.
::::::::
Validation

::::::
against

::::::::
TCCON115

:::::::::::
measurements

:::::::
around

:::
the

:::::
world

:::::::
showed

::::
that

:::
the

:::::::::
TROPOMI

::::
CO

:::::::
columns

:::::
have

:
a
::::
high

::::
bias

:::
of

:::::
about

::::
10 %

:::::::::::::::
(Sha et al., 2021)

:
. For our analysis, we have utilized observations rated with a quality flag greater than 0.5, where 0 represents the lowest

quality and 1 denotes the highest quality. This choice aligns with the recommended quality threshold (Apituley et al., 2018).

Notably, when we investigate areas near active fires, the quality flag of the retrieval can be impacted by the presence of smoke.

Consequently, only including observations with a quality flag of 1 would result in the exclusion of a substantial number of data120

points, primarily due to the influence of smoke (we found most pixels inside smoke plumes have a quality flag value of 0.7).

The CO averaging kernel from the TROPOMI observations predominantly registers values close to 1 within the boundary layer

for cloud-free conditions, specifically around 0.95 with a narrow range of variability (approximately �0.05) (Schneising et al.,
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2020). Nevertheless, the presence of clouds diminishes the sensitivity of the averaging kernel beneath them. It is important

to note that smoke is primarily comprised of �ne minuscule particles (� 0.25�m or smaller (Junghenn Noyes et al., 2022)).125

At a wavelength of 2.3� m these particles scatter minimal light. Looking at the TROPOMI averaging kernel, we found that

in case of �res the sensitivity close to the surface is typically lower than 1. Rowe et al. (2022) investigated TROPOMI CO

in thick �re plumes and found agreement within 13-16 % (Table 3) without considering the averaging kernel which has been

used to estimate the overall uncertainty of the emissions. The effect of the averaging kernel depends on 1) the shape of the

averaging kernel and 2) on the CO pro�le, looking at different pro�les and averaging kernels, we found the largest effect is130

for an averaging kernel that is close to 0 at the surface and for a strong enhancement of the CO pro�le, the magnitude of this

enhancement determines the magnitude of the averaging kernel corrected columns. We found that the effect that applying the

averaging kernel inside the smoke plume always increases the CO columns. Other than Rowe et al. (2022) (who investigated

�res during FIREX-AQ) we do not have pro�les (globally) that can be applied for an averaging kernel correction. Testing

the effect on the emissions we used GEM-MACH model pro�les and applied the averaging kernel correction (see Appendix135

Fig. B1) which showed a 17 % increase of the emissions, andthuswe attribute17 % uncertaintydueto the uncertaintiesof

TROPOMICOcolumns(theuncertaintiesarefurtherdiscussedin Sect.2.3).
::
for

::::
one

::::::
speci�c

::::
�re.

:

2.2 Satellite-derived CO Emissions

To determine emissions from the satellite observations, a similar approach based on Adams et al. (2019) and as described in

Stockwell et al. (2022) and Grif�n et al. (2021) was applied. The basic underlying concept of the method is mass balance: that140

the source rate Q must be equivalent to the product of the column plume transect and the wind speed (U). The mass within

the box can be determined by integrating the enhanced vertical column densities (VCDs) over the background concentrations

and applying the molar mass of CO. The time of a mass clearing the box is based on the length of the box and the wind speed.

This methodology has been used previously to determine emissions fromforest �re
:::::::
biomass

::::::
burning

:
plumes using satellite

observations (e.g. Mebust et al., 2011; Mebust and Cohen, 2014; Adams et al., 2019; Grif�n et al., 2021; Stockwell et al.,145

2022).

The �ux methodology employed here is best applied to emitted species with slow chemical loss rates such as CO, because

the �ux method is insensitive to the plume shape (often the plumes are not �awless Gaussian distributions, especially for long-

lived gases). Further, speci�cally for estimating �re emissions at a time when the �re activity is increasing (i.e. TROPOMI150

overpass time at 1:30 pm) will impact any attempt to estimate the chemical life-time for shorter-lived species like NO2 (Grif�n

et al., 2021) from the �ux method, this however will not impact the analysis for a long-lived species like CO, as the lifetime is

known. The removal of the background CO is, however, very important in the �ux method, and may otherwise in�uence the

estimated emission rate signi�cantly, as the CO background is relatively high.

155

The approach described as the �tting method, is summarized here. New improvements with regards to the plume rotation

and plume widths aredetailed
:::::::
included, and illustrated in Fig. 1

:::::
where

:::::::::
Gaussians

:::
are

:::::
�tted

::::::
across

:::
the

::::::
plume

::
to

::
be

::::
able

:::
to
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Figure 1. Illustration of the method to derive CO emissions: (a) the unmodi�ed TROPOMI CO VCDs in a longitude-latitude domain, (b)

simple Gaussians are �tted across wind in 4-km wide boxes up to 40 km downwind of the �re
::
to

:::
�nd

:::
the

:::::
plume

:::::
width,

:::::
correct

:::
the

::::
wind

::::::
direction

:::
and

:::
�re

:::::::
location,

:
(c) the peakx0 (blue dot) and 3-� (blue bars) from the Gaussian �t are used to �nd the plume width and correct

the wind, (d) the VCDs are rotated with the corrected wind direction and the VCDs are integrated in boxes of 4-km by 3-� , (e) the wind speed

is applied to �nd the emission �uxes downwind of the �re, and (f) shows the same as (e) but projected in time since emissions occurred.

:::::::
automate

:::
the

:::::::::
estimation

:::
by

::::::::::
determining

:::
the

:::::
plume

::::::
width,

::::::
correct

:::
the

::::
wind

::::::::
direction

:::
and

:::::::
correct

:::
the

:::::
centre

:::::::
location

::
of

:::
the

:::
�re.

First, a binned upwind/downwind domain of a regular grid size (4 km x 4km) is established by a wind-rotation about the

approximate center of the �re from the satellite observations of CO VCD (Fig. 1 a). Since the grid size is slightly smaller than160

the TROPOMI pixels the satellite observations are weighted by the actual pixel size and over-sampled by 7 km (Adams et al.,

2019). Then, along the binned VCDs, Gaussian distributions are �tted across the plume in all downwind boxes (Figs. 1 b,c),

to aligned the wind direction and determine the extend of the plume. The third standard deviation out from the plume center

(i.e. 99 % con�dence limit, Fig. 1 c) is used to de�ne the plume lateral boundaries (typically between 10-30 km), and the wind

direction correction is found by �tting a linear function through the centre of the peaks (Fig. 1 c). This new and corrected165
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wind direction is then used to rotate the observations around the �re centre again (step 1 is repeated with the corrected wind

direction). This approach is able to de�ne the smoke plume in an automated way. A series of �ux boxes of dimensions 4km in

the wind direction, and 3� in the direction perpendicular to the wind are superimposed on the binned VCD image (Fig. 1 d).

Making use of the wind �elds and VCD �eld, the �ux is then calculated (Fig. 1 e), following Mebust et al. (2011)):

Ey =
X

(� V CD) � u � A; (2)170

Where� VCD are the �ux differences with background levels removed, u is the horizontal wind velocity, and A is the area

of the box. Background CO levels are taken from averages 20 to 50 km upwind of the �re. As recommended by Grif�n et al.

(2021), and based on model simulation tests (in Sect. 2.3), we de�ne the average upwind concentrations as this CO background

concentration. The grey areas in Fig. 1(a,d) thus correspond to concentrations at or below this background concentration level.

175

Individual box �uxes can be used to provide estimates of the source CO emissions several hours prior to the overpass. This

also provides insight into the diurnal variability of �re emissions. To be successful, meteorological conditions must have been

stable several hours prior to the overpass. Figure 1 shows a very good example of such a plume for which the diurnal variability

could be determined; however, this is not the topic of this study, since its approach for estimating emissions several hours in the

past is currently not automated or fully validated. For our �nal source emission estimate we use boxes within the �rst 20 km180

downwind of the �re to ensure that the time of the emission is close to the time of the overpass thus less in�uenced by the

diurnal pattern. Since the average wind speed is roughly 20 km/h it is expected that the �re emission algorithm provides emis-

sion rates within 1 h of the overpass time. Thus, the time at which the emissions were released is expected to be approximately

-30� 30 min from the time of the TROPOMI overpass. Due to diurnal variability of �re emissions, the emissions estimate from

this algorithm are time speci�c and do not represent a daily average. Any comparisons to emissions from other observations185

or inventories need to be made for the same time period.Any comparisonsto emissionsfrom otherobservationsor inventories

needto bemadefor thesametimeperiod.(Schaaf and Wang, 2015)

For input parameters, we utilize the wind �elds (U, V) from the European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA5 reanalysis dataset at a resolution of0:25� � 0:25� with an hourly output, between 1000 and 300 hPa at a190

resolution of 50 hPa, and interpolated spatio-temporally to the TROPOMI observations. For large �res, the rotation of observa-

tions around a single point will cause imperfections, as they are not true point sources but are spread over large areas. However,

the �ux methodology captures the width of the plume in these cases, with the main effect the addition of some variability in

the emissions at the �rst box of the overpass. To �nd the appropriate wind speed to use for emission transport, we use the

average TROPOMI aerosol height (AER_LH) for each �re, which is a good proxy for the average height of �re plumes (Grif�n195

et al., 2019). If there are no good quality plume heights near the �re, we use 2 km (or 800 hPa) (Grif�n et al., 2020) for the

plume height. This approach to �nd appropriate altitudes for wind �elds has previously been successfully used to improve the

accuracy of satellite-derived NOx emissions fromwild�res
::::::
biomass

:::::::
burning (Grif�n et al., 2021).
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As this method assumes steady state and relies on stable meteorology appropriate quality criteria need to be applied to �l-200

ter any cases when the emission estimate might be de�cient. The quality criteria to �lter emission estimates as well as the total

uncertainty of the emission estimates are further examined in the next section.

2.3 Accuracy of the emission estimates using synthetic data

Similar to Grif�n et al. (2021), we conducted a sensitivity test using a regional air-quality model to create synthetic CO VCDs.

Applying the �tting method used for satellite observations (as described in the previous section), source emissions retrieved205

from plumes generated within a model domain can then be compared directed to the original source emissions used by the

model. For these tests all emissions are known, thus allowing us to: 1) test if the �tting method is able to regenerate the original

emissions; 2) obtain a better idea of the uncertainties of the method; and 3) examine the extent to which quality �lters should

be applied to the satellite-derived emissions. For this sensitivity test, we use the Global Environmental Multiscale - Modelling

Air-quality and CHemistry (GEM-MACH; Makar et al. (2015b, a); Chen et al. (2019)) air quality model to obtain the synthetic210

VCDs. The operational version of GEM-MACH that employsforest�re
:::::::
biomass

::::::
burning

:
emissions using CFFEPS (Chen et al.,

2019), was used. This has a10� 10km2 grid cell size for the North American domain, and 80 vertical levels (from the surface to

approximately 0.1 hPa), further details can be found in Makar et al. (2015b, a). Although GEM-MACH's resolution is coarser

than the 4 km pixel size used here, the higher pixel resolution becomes available as the pixels are binned using a distance

weighted average. GEM-MACH provides hourly output, with an internal “physics” time step of 7.5 min. The meteorological215

component of GEM-MACH is within the physics module of the Global Environmental Multiscale (GEM) weather forecast

model (Côté et al., 1998; Girard et al., 2014). GEM-MACH contains a detailed atmospheric chemistry scheme, which includes

the emission and removal processes of 42 gaseous species and 8 particle species. The operational model run is initialized every

12 hours, at 00 and 12 UTC. Original input �re emissions are estimated based on hotspot location using the CFFEPS (Chen

et al., 2019)), which links the hotspot locations to ecozone-speci�c databases of �re area per hotspot per unit time, �re stage220

(crown, duff layer, residual), and estimates plume height using plume rise calculations based on meteorological lapse rates

and similar considerations. For a time period between May to September 2019, the model CO pro�les are integrated over the

�rst 39 layers (approximately the lowest 10 km of the atmosphere) to obtain VCDs over the model domain, in North America

(Canada and US). The wind speed and wind direction used in this sensitivity test are based on forecast winds that drive the

model simulations. The wind altitude for the synthetic retrieval is from the nearest model wind level to the predicted the aerosol225

layer peak concentration. For this time period (May to September 2019,in the US and Canada) a total emissions of 208 �res

were “successfully” retrieved (a solution was found by the �tting algorithm). The results of all the retrieved emissions using

the GEM-MACH output at 20UTC versus the original (synthetic) source are illustrated in Fig. 2 a. While the majority of

the retrieved emissions is in close agreement with the original values (and are following the 1-to-1 line), there are noticeable

outliers (about 10 out of 105), where the retrieved values are below the original emissions. An underlying requirement of the230

�tting methodology is the assumption that a steady-state in the meteorological conditions has been maintained during the time

of the retrieval – previous work has shown that when this assumption is incorrect, the retrieved emissions may be in error (Fathi

et al., 2021). Changes in meteorological state during the retrieval period (such as a change in wind direction or speed, changes

8



in atmospheric stability) may in�uence retrieval accuracy, as may the presence of other sources nearby to the �re of interest.

Examining these cases more closely we identi�ed certain unfavorable conditions as follows (the �ltered values due to these235

speci�c conditions are illustrated in Fig. 2:

1. The background (“B”) is too high (>0.7� 1019 molec/cm2): this indicates potentially upwind sources, of large enough

magnitude that the plume may be dif�cult to distinguish, or a misplacement of the �re centre, and thus these cases should

be �ltered (two estimates were �ltered that way).

2. The variation in the wind direction (“wd”) should to be less than 15� : changes in wind direction during the retrieval allow240

for potential convergence / divergence to occur within the model grid cell, violating the requirement of steady-state �ow

(78 estimates were �ltered that way).

3. The plume width (“width”) should be no larger than 50 km: the method cannot be used for very large �res, as the

assumption of a point source breaks down; a width larger than 50 km could also be associated with interference from

other nearby other sources (�ve estimates were �ltered that way).245

4. The difference of the emissions from individual cross-sections (� xsect) considered for the estimate (within 20 km of

the �re) should be no larger than 100 %, and cases are also �ltered where only one cross-section is used for the estimate:

cases with high variability of the individual cross-sections indicate high variability of emissions within a very short time

frame or unstable conditions (30 estimates were �ltered that way).

Other parameters were also tested but were not included as part of the quality �lter, such as variation in wind speed, maximum250

and minimum wind speed, height of the aerosol layer, the Richardson number and the wind shear. It should be noted that for all

cases the minimum wind speed was above 2 m/s and the maximum wind speed was 11 m/s. We would expect that the method

is not reliable for very high or very low wind speeds (approximately >2 m/s), as found by other studies (e.g. de Foy et al.,

2014). After applying the quality �lter (black points in Fig. 2) 105 �res remain (some �lters overlap). The correlation is high

between the retrieved and original source emissions withR = 0 :92and a slope of best-�t (using geometrical mean) of 1.1. The255

relative difference is 34 % (�tted-input) which is used in our uncertainty analysis (Table 1).

The four established quality controls noted above were then used to �lter the satellite-derived emissions estimates, and are

recommended in retrievals of this nature. In addition, for the satellite-derived emissions, a �lter that requires at least �ve ob-

servations for the estimate has also been applied. These tests using synthetic data can also help to establish the uncertainties260

for the estimated emissions. The total uncertainty of the satellite-derived emissions (see Table 1), is based on theuncertainty

of thesatelliteVCDs (17 %(Rowe et al., 2022)andaveragingkernelanalysisin Sect.2.1),uncertainties
::::::::
systematic

::::
bias

::::
and

::::::
random

::::::::::
uncertainty.

::::
The

::::::
random

:::::::::::
uncertainties

::::::
consist

:
of the wind speed (� 10 %), the effect of the altitude used for the wind

speed (� 20 %), and the uncertainty of the method itself (based on the relative difference between the true and �tted emissions

of 34 % after applying the above mentioned quality �lters). The uncertainty of the wind speed caused by the uncertain altitude265

of the plume is based on the mean difference of the wind speed when comparing the winds 50 hPa above and below the aerosol
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Table 1.Summary of uncertainties for the satellite emission estimates.

Type UncertaintySatelliteVCDs 17 %�
:::
Type

:

Method 34 %
::::::
Random

:

Wind 10 %�� �
: ::::::

Random
:

Wind altitude 20 %
::::::
Random

:

::::::::
Averaging

:::::
Kernel

::::::
+6 %��

::::::::
Systematic

::::::
Satellite

::::
VCD

: :::::::
+10 %���

::::::::
Systematic

::::
Total

::::::
Random

: :::
41 %

Total 44
::
57 %

� Gualtieri (2022),�� Rowe et al. (2022),��� Sha et al. (2021)

layer height.Theseerrorsareaddedin quadrature,leadingto a total uncertaintyof 44 %.The uncertainty of the wind speed is

based on Gualtieri (2022) who found approximately 0.5 m/s for the 90 % con�dence interval for ERA5, with the average wind

speed of approximately 5 m/s (for our dataset), we assume a 10 % uncertainty for the wind speed.
:::::
These

:::::
errors

:::
are

::::::
added

::
in

:::::::::
quadrature,

::::::
leading

::
to

::
a

::::
total

::::::
random

::::::::::
uncertainty

::
of

:::::
41 %.

:::::::::::
Additionally,

:::
the

:::::::::
TROPOMI

:::
CO

::::::
VCDs

::::::::::
(comparison

::
to

::::::::
TCCON)

:::
are270

:::::
biased

::::
high

:::
by

:::::
about

::::
10 %

:::::::::::::::
(Sha et al., 2021),

:::
and

::::
not

:::::::::
accounting

:::
for

:::
the

::::::::
averaging

::::::
kernel

::::::::
correction

::::
due

::
to

:::
the

::::
lack

::
of

::::::
pro�le

::::::::::
observations

:::
for

:::
the

::::
�res

::::
will

:::
add

::::::
another

::::
6 %

::::::::::::::::
(Rowe et al., 2022)

:::::
(Table

::
3,

:::::::::
difference

:::::::
between

::::::::::
accounting

:::
and

:::::::::
neglecting

:::
the

::::::::
averaging

:::::::
kernel).

:::::
While

:::
the

:::::
total

::::::::
emissions

:::
(or

:::::::
VCDs)

:::::
could

::
be

::::::
scaled

:::
by

:::
the

:::::::::
systematic

::::
bias,

::::
the

:::::
effect

::
of

:::
the

:::::::::
averaging

:::::
kernel

:::::::::
correction

:::::::
depends

::
on

:::
the

::::::
pro�le

::
as

::::
well

::
as

:::::::::
averaging

:::::
kernel

:::::
shape

:::::
(also

:::
see

::::::::
averaging

::::::
kernel

:::::::
analysis

::
in

::::
Sect.

:::
2.1

::::
and

:::
Fig.

::::
B1).

:::::::
Adding

:::
the

:::::::::
systematic

:::
and

:::::::
random

::::
error

:::::
leads

::
to

:
a

::::
total

::::::::::
uncertainty

::
of

:::::
57 %.275

Overall, the sensitivity tests suggest that the �tting method is robust once �lters have been applied to ensure that the under-

lying assumptions of steady-state meteorological conditions is maintained for the observed data, and can be used to estimate

the CO �re emissions. The total uncertainty of the CO emission estimates (after the above mentioned �lters have been applied)

is approximately44%
::::
41%

::::::::
(random)

::::
and

::::
57 %

::::::
(total) based on the uncertainty of the wind speed, CO VCDs and methodol-280

ogy. Throughout Sects. 4 and 3 these same �lters that ensure steady-state meteorological conditions and low interference from

nearby sources were applied to the satellite-derived emission estimates.

2.4 Satellite FRP and Hotspot Identi�cation

To �nd the locations of �res around the globe we use MODIS instrument thermal anomalies and FRP products. MODIS was

used in this study for two purposes: (1) to obtain the �re locations and �re centres using MODIS thermal anomalies that are285

then used to attempt deriving CO emissions from TROPOMI; (2) to obtain the FRP for each �re to determine the emissions

coef�cient (EC; see Sect. 4). The MODIS instruments, on board the NASA Earth Observation System Terra and Aqua satel-
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Figure 2. The results of the sensitivity test with synthetic VCDs are illustrated (see text for additional details). The �ltering low quality

results are illustrated in panel (a), where different parameters have been tested, including the maximum value of the background (“B”), the

deviation of the wind direction (“wd”), the maximum width of the plume (“width”), and the difference between the individual cross-sections

(“ � xsect”). The �ltered �tted emissions versus the model input emissions are plotted in panel (b) together with the statistics (slope of best-�t

using the geometric mean, s; correlation coef�cient, R; the number of points, n; and the mean and standard deviation of the relative difference,

rel. Diff: �tted-input).

lites, detect �res using data collected in the infrared and spectral channels (Kaufman et al., 1998). Typical overpass times occur

at approximately 10:30 AM/PM and 1:30 AM/PM local time for the TERRA and AQUA platforms of which MODIS is a

component, respectively.290

The MODIS thermal anomaly product (MOD14) (Giglio et al., 2003, 2006, 2016) from Aqua (13:30 local time) is used in

this study to locate theforest �res. These thermal anomalies are clustered, with the criterion of a minimum summed FRP

(within a 5 km radius) of 1 GW (note, this threshold is not for individual hotspots but for the �re cluster) and a con�dence

of at least 75 % (for individual hotspots). These thresholds have been applied to remove �res that are too small, as the direct295

TROPOMI CO emission estimate very likely fails for very small hotspots and to reduce the in�uence of other (smaller) sources

causing thermal anomalies (e.g. �ares). Depending on the size of the �re, we aggregate on average 30 thermal anomalies, based

on Freeborn et al. (2014) this is associated with a 6 % uncertainty of the FRP, much lower compared to the uncertainty of the CO

emissions estimates (44
::
57 %). Again, we would like to highlight that not all �res are captured by satellites (including MODIS),

�res can potentially be missed for several reasons: if the FRP signal is too low (e.g. small �res), due to cloud cover, and under300

thick smoke plumes. These locations are used to attempt an automated CO emission estimate with TROPOMI, however, it is not
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always possible to derive emissions from the �re hotspot location and many locations will fail or are �ltered (as mentioned in

Sect. 2.3) after the emission estimate. For a typical year using the described MODIS clustering, we are left with approximately

13-18 thousand �re clusters globally for which we attempt an emission estimate. For about 3-4 thousand �res the estimate fails

entirely. And further 9-12 thousand �re emissions are �ltered due to poor quality, leaving 4-6 thousand successful �re emis-305

sions globally per year. The most common reasons for failed or �ltered emission estimates include variables winds, low CO

columns that are too close to the background concentrations, nearby CO sources (such as a second �re plume), and cloud cover.

MODIS FRP is also used to estimate the ECs, presented in Sects. 3. For our CO emission inventory we use our estimated

ECCO (Sect. 4) and apply these to the assimilated daily GFAS FRP on a 0.1� 0:1� grid to estimate a global inventory of310

CO emissions. GFAS is a top-down emission estimation system from ECMWF. The GFAS assimilated FRP is based on the

MODIS Aqua and Terra FRP that provide typically one daytime and one nighttime overpass each. This dataset provides a

guidance on total daily FRP that can then be combined with the derived ratio between TROPOMI CO emissions and MODIS

FRP. Since TROPOMI only provides an emission estimate around 1:30PM (local time) accounting for diurnal variability is not

feasible with TROPOMI alone. Thus, a secondary dataset such as MODIS, with multiple overpasses per day at various times, is315

necessary to get an approximation and of diurnal �re activity and ultimately to obtain a total emission inventory. This emission

inventory is used in Sect. 5 to compare the here estimated CO emissions with �re emission inventories. It should be noted that

some smaller �res might be below the MODIS detection limit, and will be missed and in the presence of clouds or thick smoke

the instruments may not be able to observe the Earth's surface. The retrieved emissions generated here may therefore be lower

limits.320

2.5 Emission inventories

We compare our retrieved CO emissions to several existing biomass burning CO inventories, namely GFAS, GFED, FINN v1.5

and v2.5, as well as GFFEPS. GFED (van der Werf et al., 2017) and FINN are both based on bottom-up approach. Here, we

use GFEDv4.1 which has a 0.25� resolution, developed by NASA, in Sect. 5 we use the annual total emissions for different

geographical regions. The FINN inventory (Wiedinmyer et al., 2006, 2011) by NCAR is not on a regular grid but based on325

the location of the MODIS or VIIRS detected hot spots, these are then summed to obtain annual totals in Sect.5. The GFAS

�re emission inventory (Kaiser et al., 2012) by ECMWF utilizes a top-down approach based on MODIS FRP and is on a

0.1� regular grid, here we use v1.2. Additionally, we also compare to a new global biomass burning algorithm, GFFEPS,

developed by Environment and Climate Change Canada. GFFEPS is a global extension of the CFFEPS model described in

Chen et al. (2019). Similar to CFFEPS, GFFEPS is a bottom-up approach utilizing satellite-detected hotspots to calculate330

smoke emissions. The resulting emissions are not gridded, but distributed to the location of the detected �re-hotspots. The

model uses the Visible Infrared Imaging Radiometer Suite (VIIRS) that then predicts emissions based on the Canadian Forest

Fire Danger Rating System (CFFDRS, Stocks et al. (1989)). Fuel types were assigned using the Global Land Cover (GLC)

2000 (European Commission, 2003). Area burned per hotspot was estimated based on eight years of satellite hotspot data

(2012-2019) and reported area-burned statistics for the same time periods and locations using MCD64CMQ (Giglio et al.,335
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Figure 3. Comparison between TROPOMI-derived CO (black triangle), and GFFEPS (yellow) CO emissions on the example of a �re in

Arizona, US (TENA, 33.5� N, 111.14� W) on 21 June 2019. Also shown are the time-interpolated GFFEPS emissions to the time of the

TROPOMI overpass (red, “GFFEPS-int”).

2020). Daily �re weather conditions based on the Canadian Forest Fire Weather Index (FWI) System (van Wagner, 1987) were

calculated in the global version of ECCC's Global Environmental Multiscale (GEM) model (Côté et al., 1998) and interpolated

to hotspot locations. Fire behaviour conditions at each hotspot were based on the Canadian Forest Fire Behaviour (FBP) System

(Forestry Canada Fire Danger Group, 1992) and calculated in the Canadian Wildland Fire Information System (Lee et al., 2002)

operated by the Canadian Forest Service, Natural Resources Canada (https://cw�s.cfs.nrcan.gc.ca/; last access: Feb. 7, 2023).340

Surface and crown fuel consumption rates are translated directly into smoke emissions. Emissions rates per species per stage of

combustion are based on Urbanski (2014). A �x diurnal pro�le is applied to the daily estimated burn area to obtain an hourly

fraction with peak activity at 5 pm local time. Note that assignment of GLC 2000 land classi�cations to Canadian Fuel types

and adjustments to �t global conditions continues to be an area of development in the model. Fuel loads were largely taken

from van Leeuwen et al. (2014) and van der Werf et al. (2017) as used in GFED.345

3 Evaluation of direct vs bottom-up emissions

CO �re emission can be estimated from TROPOMI single overpass observations. Stockwell et al. (2022) have shown good

agreement between the TROPOMI-derived to aircraft-derived CO �re emissions as part of the FIREX-AQ campaign (Warneke

et al., 2023). The sensitivity tests (Sect. 2.3) using synthetic total columns also suggest that emissions can be reliably estimated

using the �ux method within44
::
57 % uncertainty. In this section, TROPOMI-derived emission estimates are used to evaluate350
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the GFFEPS emissions processing system. Figure 3 shows an example of a �re in Arizona on June 21, 2019 in the Temperate

Forest North America (TENA) region (33.5� N, 111.14� W). GFFEPS emissions are given in 3 h intervals and shown as orange

dots. GFFEPS estimates daily emissions based on area burned, and utilizes a prescribed diurnal pattern with a peak in �re

intensity and emissions in the late afternoon. The peak in emissions always occurs a few hours after the TROPOMI overpass.

TROPOMI overpass time was around 20:30 UTC and the emission estimate is shown as a black triangle. The GFFEPS emis-355

sions are interpolated to the TROPOMI overpass time (shown as a red dot), and for this exampleGFEEPS
:::::::
GFFEPS

:
aligns with

the satellite-derived emissions very well.

The TROPOMI-derived emissions can be used more broadly to examine the performance of the GFFEPS emissions. Figure 4

(a) shows the comparison between TROPOMI and GFFEPS (at the overpass time of TROPOMI, equivalent to theorange
:::
red

dot in Fig 3) for roughly 4000 �res globally in 2019 (all �res where TROPOMI could successfully estimate CO �re emissions,360

appropriate �lters as described in Sect. 2.3 have been applied). The results show that the model captures the order of magni-

tude and some of the variability, however, on average GFFEPS tends to predict lower emissions than the satellite-derived CO

emissions. This discrepancy is likely due to an underestimation from GFFEPS rather than an overestimation of TROPOMI

emissions: TROPOMI offers high-quality data over �res and smoke plumes (see Fig 5) and the effect of applying an averaging

kernel correction would lead to even higher emissions (see Sect. 2.1 and Fig. B1). It is important to note that the TROPOMI365

CO emissions approach has been validated (Stockwell et al., 2022) and has a44
::
57 % total uncertainty see Sect. 2.3), while

GFFEPS still requires validation and associated uncertainty estimates.

The causefor this biasis
::
of

:::
the

:::::::::
differences

::::::::
between

:::
the

::::::::::::::::
TROPOMI-derived

:::
and

::::::::
GFFEPS

::::::::
emissions

:::
are

:
being investigated;

possible reasons for this could be the following: 1) misrepresentation of fuel type and/or its associated emissions factors; 2) the370

estimated area burned could incorrect; 3) the diurnal variability is not accurately represented; or 4) the time assumed for the

TROPOMI-derived emissions is not correctly represented. To examine the reasons more closely and to pinpoint the issues, spe-

ci�c areas and fuel types were examined individually (see Tables D1 and D2). The region classi�cation relies on the de�nition

used in GFED (Giglio et al., 2003), which divides the world into 14 distinct areas: boreal North America (BONA), temper-

ate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), Southern Hemisphere375

South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere

Africa (SHAF), boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), equatorial Asia (EQAS), and Australia

and New Zealand (AUST). The extend of these regions is illustrated in Fig. C1. Considering factors like slope, R (correlation

coef�cient), and RMSE (root mean square error), the model demonstrates strong agreement with satellite-derived emissions

for speci�c regions, namely CEAM, NHSA, EURO, and MIDE (see Table D1). Other regions, like AUST have a very poor380

correlation, slope and RMSE, indicating a need to improve the modelling of that region, which is currently still under devel-

opment
:
,
:::::
such

::
as

:::::::::
improving

:::
the

:::::::
emission

:::::::
factors,

::::::::
correcting

:::
the

::::
fuel

::::::::::
consumption

::::
and

::::::::::
combustion

:::::::::::
completeness

:::
for

:::::::::
eucalyptus

::::::::::::::::::
(Anderson et al., 2024). In terms of biomes (see Table D2), the results are less clear, as biome 1 dominates the AUST region

for �res in 2019 and also shows a very poor correlation.

385
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We also examine individual �res contributing to this issue in Figure 5 which depicts an example of a �re where the GF-

FEPS and TROPOMI values compare well (top row of panels) and a �re where the GFFEPS values are much lower than the

satellite observations. Shown are the TROPOMI CO VCDs (Figs. 5 a and d), the GEM-MACH VCDs (using GFFEPS emis-

sions) in Figs. 5 b and e, and the true color image together with the MODIS hotspots (Figs. 5 c and f). The �res that tend to

be lower compared to the directly-derived CO emissions signi�cantly are predominantly the ones that are in�uenced by thick390

smoke (and/or clouds). Some of the lower emissions from GFFEPS may suggest that �res emitting thick smoke may have

underestimated hotspot values – a correction for �res in�uenced by thick smoke reducing the number of observable hotspots

may be necessary.

Speci�cally at the overpass time, the emissions are often underestimated by GFFEPS when comparing individual �res (at the395

time of the TROPOMI overpass). The TROPOMI overpass time (1:30 pm local time) is exactly at a time when �res typically

experience signi�cant growth, one or two hours either side of the overpass time make a difference of approximately 30-50 %

(see Fig. 3). Thus, the lower emissions could also be the result of a timing issue, either from GFFEPS or the time assumed for

the TROPOMI-derived emissions. GFFEPS prescribes a diurnal emission pro�le, whereas the TROPOMI emissions provide

an emission rate speci�c to a satellite overpass time. As can be seen in Fig. 3, the diurnal variation in GFFEPS emissions can be400

substantial, more than a factor of ten between peak and minimum. While the satellite data only allows evaluation of GFFEPS at

the overpass time (and hence an evaluation over all times of emissions is not possible). We can conclude that model emissions

(speci�cally at the overpass time) capture at least some of the variation in CO emissions at overpass time (R = 0 :22), but are

general biased low compared to the satellite derived emissions in the early afternoon. The total daily emissions and the diurnal

variability are still a large uncertainty, and cannot be readily evaluated using polar orbiting satellites such as TROPOMI alone405

(since TROPOMI can only provide limited times to obtain CO �re emissions).

Overall, TROPOMI CO emission estimates can be used to help with the evaluation of the emission model and help pinpoint

certain areas that need further improvement.

4 Emission Coef�cients for Different Vegetation Types from Satellite-Derived Emissions410

The TROPOMI-derived CO emissions alone cannot be used to obtain annual total emissions because: 1) emissions of many

�res will not be possible to be derived directly (e.g. due to unfavorable meteorology, cloud cover, size of the �re etc.); and

2) TROPOMI is in a low earth orbit observing each location once or twice per day and the TROPOMI-derived emissions

are limited to the time of these overpasses. Therefore, to obtain annual total emissions to be able to compare this to other

�re inventories the FRP measurements from MODIS and MODIS-based gridded FRE (from GFAS) are used to obtain a415

TROPOMI/MODIS top-down inventory. Emission coef�cients, here de�ned as the ratio between the direct TROPOMI-derived

CO emissions and MODIS FRP, are applied to the FRE to obtain annual total emissions by region, and can then be compared

to study trends over time (see Sect. 5). The emission coef�cients are a measure of the burning ef�ciency of different vegetation
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Figure 4. Comparison between approximately 4000 TROPOMI-derived CO emissions and (a) GFFEPS for 2019 �res. The colours indicate

the density of the points (yellow being high density and blue being outliers). Note that the axis are in logarithmic scale, showing the 1-to-1

line (black) and the 1-to-2 lines (red). GFFEPS tends to be lower than the directly-derived TROPOMI emissions.

types. The emissions coef�cients can be determined from the correlation and slope of best-�t between the CO emissions and

coincident FRP observations (Mebust et al., 2011; Mebust and Cohen, 2014; Adams et al., 2019).420

Emissions factors will change with different stages of a �re (�aming to smoldering); however, it is challenging to separate

the different burning stages from �res (Andreae, 2019). For the emission coef�cients derived in this study we did not separate

the burning stages; instead, a single emission coef�cient is used for each biome for the following reasons: 1) The MODIS-

based GFAS FRE (total daily FRP) is a binned product, trying to project any assumptions of burning stages will introduce425

more uncertainty; 2) �res will most likely be �aming at the time of the TROPOMI overpass (1:30 pm local time). It is likely

that these different burning stages have different CO emission coef�cients (EC). For example, Hayden et al. (2022) identi�ed

that the CO EC is almost twice that during smoldering compared to �aming (this does not mean that emissions might be

underestimated by the same amount, the FRP is signi�cantly lower during smoldering stages and thusreducesthe induced

error
:::
has

:
a

::::::
smaller

:::::
effect

:::
on

:::
the

::::
total

::::::::
emissions). In that case study it was possible to roughly differentiate between smoldering430

and �aming; however, for large sample of �res it is very dif�cult to do so. The point is, that a mix of �aming and smoldering

�res will reduce the correlation coef�cient (e.g. Fig. 6), the overall EC will result in an average of �aming and smoldering EC.

When applying these ratios globally to binned MODIS FRE to obtain annual emissions it is likely to average out overall, but

all information on smoldering and �aming is lost in these averages. It is the norm for top-down inventories to apply a single
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