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Abstract. Emissions from wildfires are a significant source of air pollution, which can adversely impact air quality and ecosys-

tems thousands of kilometers downwind. These emissions can be estimated by a bottom-up approach, using inputs such fuel

type, burned area, and standardized emission factors. Emissions are also commonly derived with a top-down approach, us-

ing satellite observed fire radiative power (FRP) as proxy for fuel consumption. More recently, wildfire emissions have been

demonstrated to be estimated directly from satellite observations, including carbon monoxide (CO). Here, we explore the po-5

tential of satellite-derived CO emission rates from wildfires and provide new insights into the understanding of satellite-derived

fire CO emissions globally, with respect to differences in regions and vegetation type. Specifically, we use the TROPOMI (Tro-

pospheric Monitoring Instrument) high spatial-resolution satellite datasets to create an automated and a global database of

burning CO emissions between 2019 and 2021. Our retrieval methodology includes an analysis of conditions under which

emission estimates may be inaccurate and filters these accordingly. Additionally, we determine biome specific emission co-10

efficients (emissions relative to FRP) and show how combining the satellite derived CO emissions with satellite observed

FRP from the Moderate Resolution Imaging Spectrometer (MODIS) establishes an annual CO emission budget from wild-

fires. The resulting emissions totals are compared to other top-down and bottom-up emission inventories over the past two

decades. In general, the satellite-derived emissions inventory values and bottom-up emissions inventories have similar CO

emissions totals across different global regions, though the discrepancies may be large for some regions (Southern Hemisphere15

South America, Southern Hemisphere Africa, Southeast Asia) and for some bottom-up inventories (e.g. FINN2.5, where CO

emissions are a factor of 2 to 5 higher than other inventories). Overall, these estimates can help to validate emission inventories

and predictive air quality models, and help to identify limitations present in existing bottom-up emissions inventory estimates.
::
A

::::::::::::
comprehensive

::::::::::
comparison

:::::::
between

:::::
direct

:::::::::
estimates,

::::::::
top-down

:::
and

:::::::::
bottom-up

::::::::::
approaches,

:::::::
provides

::::::
insight

::::
into

:::
the

::::::::
strengths

:::
and

::::::::::
weaknesses

::
of

:::::
each

:::::::
method.

::::
The

:::
CO

::::::::
emission

:::::
totals

::::::
derived

:::::
from

:::::::
satellite

::::
data

:::::
align

:::::::::
reasonably

::::
well

::::
with

:::::
those

:::::
from20

::::::::
bottom-up

::::::::
emission

:::::::::
inventories

:::
for

::::::
various

::::::
global

::::::
regions.

:::::::::
However,

::::::
notable

:::::::::::
discrepancies

:::
are

::::::
evident

::
in

:::::::
specific

:::::::
regions,

::::
such

::
as

::::::::
Southern

::::::::::
Hemisphere

:::::
South

::::::::
America,

::::::::
Southern

::::::::::
Hemisphere

:::::::
Africa,

:::
and

:::::::::
Southeast

::::
Asia.

::::::::::::
Additionally,

::::::
certain

:::::::::
bottom-up
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:::::::::
inventories,

::::
such

::
as
:::::::::
FINN2.5,

::::::
exhibit

::::::::::
substantially

::::::
higher

:::
CO

:::::::::
emissions,

::
up

::
to

::
a

:::::
factor

::
of

:
2
::
to

::
5,

::::::::
compared

::
to
:::::
other

::::::::::
inventories.

:::::
These

:::::::
findings

::::::
provide

::::::::
valuable

:::::::
insights

:::
for

:::
the

::::::::
validation

::
of

::::::::
emission

::::::::::
inventories,

:::
the

:::::::::::
improvement

::
of

:::::::::
predictive

:::
air

::::::
quality

::::::
models,

::::
and

:::
the

:::::::::::
identification

::
of

:::::::::
limitations

:::::
within

:::::::
existing

:::::::::
bottom-up

::::::::
emissions

:::::::::
estimates.

::::::
Trends

:::
are

::::::::
examined

::::
over

:::
the

::::
past25

:::
two

:::::::
decades

:::
for

:::::::
different

:::::::
regions

::::::
around

:::
the

:::::
globe

:::::::
showing

::::
that

:::::
global

::::
CO

::::::
wildfire

:::::::::
emissions

:::::
have,

::
on

:::
the

::::::
whole,

:::::::::
decreased

:::
(by

:::
5.1

::
to

:::
8.7

::::::::::
Mt(CO)/yr)

:
.
::::
This

::::
trend

::
is

::::::
highly

:::::::::::::
region-specific.

1 Introduction

Emissions from wildfires are a significant source of air pollution in the global atmosphere. These emissions are transported

over large distances and, thus, can adversely impact air quality and ecosystems thousands of kilometers downwind (e.g., Landis30

et al., 2018; Meng et al., 2019). Health impacts are typically more severe in close proximity to the fires, however health impacts

from transported smoke plumes have also been reported (Matz et al., 2020). In more recent years an increase in fire activity in

North America has been recorded (e.g., Romero-Lankao et al., 2014; Landis et al., 2018). The driving factors for this increase

include droughts, higher temperatures, and fuel loading caused by tree death (Littell et al., 2009; Westerling, 2016). This trend

may continue due to climate change (Liu et al., 2013; Wotton et al., 2017). Given the increase in fire intensity and number of35

fires, there is a need to accurately model and forecast smoke plumes from wildfires to be able to predict the concentration of

harmful pollutants, and to issue necessary alerts on time (e.g., Yue et al., 2015). Wildfire emissions are associated with large

uncertainties (Andreae, 2019), which lead to a growing demand for improved knowledge of wildfire emissions.

Wildfire emissions can be estimated by either a bottom-up or top-down approach. For the bottom-up estimates proxies, such40

as fuel type, area burned, and emission factors (EF), are used to determine the emissions; these emissions are determined by

Ei = Activity×EFi,f . (1)

Where the emissions (Ei) account for mass of fuel consumed in combustion (kg), which are based on fire activity (which

includes factors such as the burned area, fuel loading, fuel classification, and a combustion factor), and EFi,f (g/kg) is the

emission factor for a specific chemical species (i), which is typically a function of fuel type (f ) (sometimes it can be dependent45

on the combustion type as well, i.e., flaming and smoldering). An example for this type of fire emission inventory is the Fire

INventory from NCAR (FINN; Wiedinmyer et al., 2011) . Wildfire emissions are also commonly derived with a top-down

approach, using satellite information to estimate forest fire emissions, sometimes in near-real time. The Global Fire Assimila-

tion System (GFAS; Kaiser et al., 2012)) is an example of such a system, wherein satellite observed fire radiative power (FRP,

in units of W) or its time integral, fire radiative energy (FRE, in units of J) is used as a proxy for fuel consumption. Using a50

satellite-remote sensing FRP together with a species specific emissions coefficient (ECi) is a common approach for top-down

fire inventories: Ei=FRE× ECi. For many inventories, ECi (in units of g/MJ) is commonly estimated from EFi,f (dependant on

species and fuel type, in units of g/kg) and a conversion factor βf (kg/MJ) based on fuel type (Wooster et al., 2005). The EFi,j

is typically based on laboratory derived values and is a common factor used in both top-down and bottom-up approaches. Other
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inventories make use of a combination of bottom-up and top-down information (e.g. Global Fire Emissions Database (GFED;55

Giglio et al. (2013)). The Canadian Forest Fire Emissions Prediction System (CFFEPS; Chen et al. (2019)) and its global ex-

tension Global Forest Fire Prediction System (GFFEPS; under-development), where satellite-derived hotspot data is linked to

databases such as fuel type, previous statistics on area burned per hotspot for a given fuel type, etc., to determine emissions,

and may be run within an on-line air-quality model to determine the effects of fire emissions on weather (Makar et al., 2020)

. Fire emission rates can also be derived directly from measurements without the proxy information of combustion processes.60

This is an alternative measure for evaluation of emission inventories and emission processing systems. In situ and aircraft

measurements are difficult to obtain close to fires and may be rare due to the expense of observations. However, satellite-borne

observations provide ongoing coverage using a common instrument platform, which can thus be used to constrain wildfire

emissions. Satellite-remote sensing observations also have the advantage of near-global coverage. With the recent advances in

satellite observations, wildfire emissions can be estimated directly, with past work showing the utility of these observations in65

estimating emissions of carbon monoxide (CO) (Adams et al., 2019; Stockwell et al., 2022), carbon dioxide (CO2) (Guo et al.,

2019), nitrogen oxides (NOx) (Jin et al., 2021; Griffin et al., 2021), and ammonia (NH3) (Adams et al., 2019). There are several

limitations to emission estimates from satellite observations: 1) direct satellite-based emissions estimates are only possible for

a few chemical species that are measured by satellite instruments; 2) current satellite-based instruments are on polar-orbiting

platforms that consequently only observe a location once or twice per day, a measurement frequency that will improve in the70

near future with new geostationary satellites; 3) many fires are missed due to cloud cover or even thick smoke that impacts the

quality of the satellite observation; 4) small fires that are below the satellite detection limit will be missed.

This study focuses on deriving the emissions directly from the satellite observations. Additionally, we explore using a satellite-

derived ECi (traditionally laboratory measurements are used for EFi and ultimately used for ECi) for a variety of biomes75

around the globe. Specifically, we use the TROPOMI (Tropospheric Monitoring Instrument) high spatial-resolution satellite

observations on CO and plume height information to produce biomass burning CO emission fluxes. The main advantage of the

TROPOMI dataset is the wealth of observations at higher horizontal resolution (with 7× 7 km2) compared to its predecessors

(e.g., the Infrared Atmospheric Sounding Interferometer (IASI; Clerbaux et al. (2009)), and Measurement of Pollution in the

Troposphere (MOPITT; Deeter et al. (2013)). Another advantage of TROPOMI over its predecessors is the high sensitivity near80

the surface (Schneising et al., 2020) which is beneficial when estimating emissions that occur close to the surface. TROPOMI

has previously been used to estimate CO emissions from wildfires and comparisons to aircraft-derived emissions showed very

good agreement for fires in North America (Stockwell et al., 2022).
::
It

:::
has

::::
also

::::
been

::::
used

::
to

::::::
derive

:::
fire

::::::::
emissions

::
in
::::::::
Portugal

:::::::::::::::::
(Magro et al., 2021).

::::
Most

::::::::
recently,

:::::::::::::::::
Goudar et al. (2023)

:::::::::
published

::
an

:::::::::
automated

::::::
plume

::::::::
detection

::::
and

::::::::
emission

:::::::::
estimation

::::::::
algorithm

:::::::
utilizing

:::::::::
TROPOMI

::::
CO,

::
in

:::
our

::::::
study,

::
an

:::::::::
alternative

::::::::
approach

:
is
::::::::
explored.85

The aim of this study is to establish a database of satellite-derived fire global fire CO emissions. This ;
::
as

::::
well

:::
as

::::::
annual

::::
total

::::::::
emissions

:::::
based

:::
on

:::::::
satellite

::::
data

:::::
alone.

::::
This

::::::::
approach

::::
has

::::
been

:::::::
entirely

:::::::::
automated

:::
and

:::
has

:::
the

:::::::::
capability

::
to

:::::::::
determine

:::
CO

:::
fire

::::::::
emissions

::
in

:::::
quasi

::::
near

:::
real

::::
time

:::
(as

::::
soon

:::
as

:::::::::
TROPOMI

:::
CO

:::
and

:::::::
MODIS

::::
FRP

:::::::::::
observations

:::
are

:::::::::
available).

::
As

:::
we

:::::
show

:::::
below,

::::
this

::::::::
inventory

::::::::
provides

::
an

:::::::::
alternative

:::::::
measure

::::
that

:
can be used to evaluate and improve fire emission inventories or
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fire emissions prediction systems. Additionally, we determine biome specific emission coefficients (emissions relative to fire90

radiative power). Combining the
:::::
FRP),

:::::
which

:::
are

:::
the

::::
CO

::::::::
emissions

::::::::
produced

:::::::
relative

::
to

:::
the

::::::
amount

:::
of

::::
heat

::::::
energy

:::::::
released

::
by

:::
the

:::
fire

::::::
(FRP).

:::::
These

::::::::
emission

:::::::::
coefficients

::::
can

::::::
provide

:::::::
insights

:::
into

:::
the

:::::::::
efficiency

::
of

::::::::::
combustion,

:::
and

::::
help

::::::::::
quantifying

::::
how

::::::::
emissions

::::
from

::
a

::::::::
particular

::::::::
ecological

::::::
region

::
or

::::::
biome

::
are

::::::
related

::
to
:::
the

::::
heat

::::::
energy

::::::::
generated

:::
by

:::::::
wildfires

::
in

::::
that

::::::
region.

::::
This

:::::::::
information

::::
can

::
be

:::::::
valuable

:::
for

::::::::::::
understanding

::
the

::::::::::::
environmental

::::::
impact

::
of

::::::::
wildfires

::
in

:::::::
different

:::::::::
ecosystems

::::
and

::
for

::::::::::
developing

::::::::
strategies

::
to

::::::
manage

::::
and

:::::::
mitigate

::::
their

::::::
effects.

:::::::::::
Furthermore,

::::
FRP

::
is
:::::
often

:::
and

:::::
more

:::::
easily

::::::::
measured

:::::
from

:::::::
satellites

:::::::::
compared95

::
to

:::
CO,

::::
and

::::::::::
determining

:
a
::::::

biome
:::::::
specific

::::::::::
CO-to-FRP

::::
ratio

:::
can

::::
help

::
to

:::::::::
determine

:::
the

::::
daily

::::
total

:::::::::
emissions

::
of

:::::
fires.

:::
We

::::::
further

::::
show

::::
how

:::::::::
combining

:::
the

:
satellite derived CO emissions with satellite observed FRP from the Moderate Resolution Imaging

Spectrometer (MODIS) can help to establish an annual CO emission budget from wildfires
:
,
::
by

::::::::
applying

:::
the

::::::
derived

::::::::
emission

:::::::::
coefficients

::
to

::::::::::
assimilated

::::
daily

::::
FRP

:::::
based

:::
on

:::::::
MODIS

::::::::::::
measurements

::::::::
(available

::::
from

:::::::
GFAS).

100

This paper is structured as follows: Section 2 describes the datasets and emission estimation algorithm used. Emissions from

different biomes are investigated in Sect. 3. In Sect. 4 the direct estimates are compared with bottom-up and top-down fire

emissions. Annual global budgets of CO fire emissions are evaluated
::::
from

:::::::
different

:::::::::
inventories

::::
are

::::::::
compared

::::
and

::::::::
evaluated

::::::
against

:::
the

:::::::::::::
satellite-derived

:::
CO

:::::::::
emissions

::::::::
estimates,

::::::::
including

::
a
::::
trend

:::::::
analysis

::::
over

:::
the

::::
past

::::
two

:::::::
decades in Sect. 5, followed

by a summary and conclusions in Sect. 6.105

2 Datasets and Methods

2.1 Satellite CO Dataset

The TROPOMI instrument, on-board the Copernicus Sentinel-5 Precursor (S-5P) satellite (under ESA), orbits the globe with

a local overpass time of around 13:30 local time and near full-surface coverage on a daily basis (Veefkind et al., 2012; Hu

et al., 2018). It has four spectrometers that cover the solar spectrum between the short-wave infra-red (SWIR) and the ultra-110

violet (UV). Amongst other species, total column CO is retrieved from the SWIR spectrometer at a horizontal resolution of

roughly 5.5×7 km2 (7×7 km2 prior to August 6, 2019) using the Shortwave Infrared CO Retrieval algorithm (Borsdorff et al.,

2018, 2019). The TROPOMI CO columns have been validated with satellite observations (Martínez-Alonso et al., 2020), as

well as with ground-based remote sensing instruments (Borsdorff et al., 2019). Both studies showed that TROPOMI exceeded

its mission requirement on precision and concluded a precision error well below <10 %. For our analysis, we have utilized115

observations rated with a quality flag greater than 0.5(,
::::::
where 0 the lowest

::::::::
represents

:::
the

::::::
lowest

::::::
quality and 1 being the best

quality). Note, this quality threshold is less stringent than typically used for studies in urban areas (quality flag >0.75). Since

there is typically a lot of smoke near fires impacting the quality of the retrieval, the stringent quality threshold had to be

lowered slightly to ensure enough data coverage near fire hotspots.
::::::
denotes

:::
the

::::::
highest

:::::::
quality.

::::
This

::::::
choice

:::::
aligns

:::::
with

:::
the

:::::::::::
recommended

::::::
quality

::::::::
threshold

::::::::::::::::::
(Apituley et al., 2018)

:
.
:::::::
Notably,

:::::
when

:::
we

:::::::::
investigate

:::::
areas

:::
near

::::::
active

::::
fires,

:::
the

::::::
quality

::::
flag

::
of120

::
the

::::::::
retrieval

:::
can

::
be

::::::::
impacted

:::
by

:::
the

::::::::
presence

::
of

::::::
smoke.

::::::::::::
Consequently,

::::::::
including

:::::::::::
observations

::::
with

::
a

::::::
quality

:::
flag

:::
of

:
1
::::::
would

::::
result

::
in
:::

the
:::::::::
exclusion

::
of

:
a
:::::::::
substantial

:::::::
number

::
of

::::
data

::::::
points,

::::::::
primarily

:::
due

::
to

:::
the

::::::::
influence

::
of

::::::
smoke.

:
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:::
The

:::
CO

:::::::::
averaging

:::::
kernel

::::
from

:::
the

:::::::::
TROPOMI

:::::::::::
observations

::::::::::::
predominantly

:::::::
registers

::::::
values

::::
close

::
to

::
1

:::::
within

:::
the

::::::::
boundary

:::::
layer,

:::::::::
specifically

::::::
around

:::::
0.95

::::
with

::
a
::::::
narrow

:::::
range

:::
of

:::::::::
variability

:::::::::::::
(approximately

::::::
±0.05)

:::::::::::::::::::::
(Schneising et al., 2020).

::::::::::::
Nevertheless,

::
the

::::::::
presence

:::
of

::::::
clouds

:::::::::
diminishes

:::
the

:::::::::
sensitivity

::
of

::::
the

::::::::
averaging

::::::
kernel

:::::::
beneath

:::::
them.

::
It

::
is

:::::::::
important

::
to

::::
note

::::
that

::::::
smoke125

:::::::
primarily

:::::::::
comprises

:::::::::
minuscule

:::::::
particles

::::::::
(∼1µm),

::::::
which

::
are

::::::::
invisible

::
at

:::
the

::::
2µm

::::::::::
wavelength.

:::
The

::::::::::
TROPOMI

::::::::
algorithm

:::::
lacks

::
the

:::::::::
capability

::
to

::::::::::
differentiate

::::::::
between

:::::
clouds

::::
and

::::::
smoke,

::::::
which

::
is

::::
why

:::::::::
attempting

::
to

::::::
correct

:::
the

:::::::::
averaging

:::::
kernel

::
in

:::::::
regions

:::
near

::::
fires

::::::
would

::::::::
introduce

::::::::
additional

::::::::::
uncertainty

::
to

:::
the

:::::::
analysis.

:::::
Thus,

:::
the

:::::::::
averaging

:::::
kernel

::
is

:::
not

:::::::::
considered

::
in

::::
this

:::::
study,

:::
but

:
is
:::::
taken

::::
into

::::::
account

::
in

:::
the

::::::
overall

:::::::::
uncertainty

:::::::::::
(uncertainty

::
of

::::::
VCDs)

::
of

:::
the

:::::::
emission

:::::::
estimate

::::
(see

:::::
Table

::
1).

::::::::::::::::
Rowe et al. (2022)

::::::::::
investigated

:::::::::
TROPOMI

:::
CO

:::
in

::::
thick

::::
fire

::::::
plumes

:::
and

::::::
found

:::::::::
agreement

:::::
within

:::::
10 %

::::
with

:::
the

:::::::
aircraft

:::::::::::
observations,

:::::
which

::::
has130

::::
been

::::
used

::
to

:::::::
estimate

:::
the

::::::
overall

::::::::::
uncertainty

::
of

:::
the

:::::::::
emissions.

2.2 Satellite-derived CO Emissions

To determine emissions from the satellite observations, a similar approachbased on Adams et al. (2019) and as described in

Stockwell et al. (2022) and Griffin et al. (2021) was applied. The basic underlying concept of the method is mass balance: that

the source rate Q must be equivalent to the product of the column plume transect and the wind speed (U). The mass within135

the box can be determined by integrating the enhanced vertical column densities (VCDs) over the background concentrations

and applying the molar mass of CO. The time of a mass clearing the box is based on the length of the box and the wind

speed. This methodology has been used previously to determine emissions from forest fire plumes using satellite observations

(e.g. Mebust et al., 2011; Mebust and Cohen, 2014; Adams et al., 2019; Griffin et al., 2021; Stockwell et al., 2022).

140

The flux methodology employed here is best applied to emitted species with slow chemical loss rates such as CO, because

the flux method is insensitive to the plume shape (often the plumes are not flawless Gaussian distributions, especially for long-

lived gases). Further, specifically for estimating fire emissions at a time when the fire activity is increasing (i.e. TROPOMI

overpass time at 1:30 pm) will impact any attempt to estimate the chemical life-time for shorter-lived species like NO2 (Griffin

et al., 2021) from the flux method, this however will not impact the analysis for a long-lived species like CO, as the lifetime is145

known. The removal of the background CO is, however, very important in the flux method, and may otherwise influence the

estimated emission rate significantly, as the CO background is relatively high.

The approach described as the fitting method, is summarized here. New improvements with regards to the plume rotation

and plume widths are detailed, and illustrated in Fig. 1. First, a binned upwind/downwind domain of a regular grid size ( 4km x150

4km) is established by a wind-rotation about the approximate center of the fire from the satellite observations of CO VCD (Fig.

1 a). Since the grid size is slightly smaller than the TROPOMI pixels the satellite observations are weighted by the actual pixel

size and over-sampled by 7 km (Adams et al., 2019). Then, along the binned VCDs, Gaussian distributions are fitted across

the plume in all downwind boxes (Figs. 1 b,c), to aligned the wind direction and determine the extend of the plume. The third

standard deviation out from the plume center (i.e. 99 % confidence limit, Fig. 1 c) is used to define the plume lateral boundaries155

(typically between 10-30 km), and the wind direction correction is found by fitting a linear function through the centre of the

5



Figure 1. Illustration of the method to derive CO emissions: (a) the unmodified TROPOMI CO VCDs in a longitude-latitude domain, (b)

simple Gaussians are fitted across wind in 4-km wide boxes up to 40 km downwind of the fire, (c) the peak x0 (blue dot) and 3-σ (blue bars)

from the Gaussian fit are used to find the plume width and correct the wind, (d) the VCDs are rotated with the corrected wind direction and

the VCDs are integrated in boxes of 4-km by 3-σ, (e) the wind speed is applied to find the emission fluxes downwind of the fire, and (f)

shows the same as (e) but projected in time since emissions occurred.

peaks (Fig. 1 c). This new and corrected wind direction is then used to rotate the observations around the fire centre again (step

1 is repeated with the corrected wind direction). This approach is able to define the smoke plume in an automated way and

helps to minimize the impact of other nearby sources of CO. The plume width is typically between 10-30 km.

A series of flux boxes of dimensions 4km in the wind direction, and 3σ in the direction perpendicular to the wind are160

superimposed on the binned VCD image (Fig. 1 d). Making use of the wind fields and VCD field, the flux is then calculated (

Fig. 1 e), following Mebust et al. (2011):

Ey =
∑

(∆V CD)×u×A, (2)
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Where ∆VCD are the flux differences with background levels removed, u is the horizontal wind velocity, and A is the area of the

box. Background CO levels are taken from averages 20 to 50 km upwind of the fire. As recommended by Griffin et al. (2021)165

, and based on model simulation tests (in Sect. 2.3), we define the average upwind concentrations as this CO background

concentration. The grey areas in Fig. 1(a,d) thus correspond to concentrations at or below this background concentration level.

Individual box fluxes can be used to provide estimates of the source CO emissions several hours prior to the overpass. This

also provides insight into the diurnal variability of fire emissions. To be successful, meteorological conditions must have been

stable several hours prior to the overpass. Figure 1 shows a very good example of such a plume for which the diurnal variability170

could be determined; however, this is not the topic of this study, since its approach for estimating emissions several hours in

the past is currently not automated or fully validated. For our final source emission estimate we use boxes within the first 20

km downwind of the fire to ensure that the time of the emission is close to the time of the overpass thus less influenced by the

diurnal pattern. Since the average wind speed is roughly 20 km/h it is expected that the fire emission algorithm provides emis-

sion rates within 1 h of the overpass time. Thus, the time at which the emissions were released is expected to be approximately175

-30±30 min from the time of the TROPOMI overpass. Due to diurnal variability of fire emissions, the emissions estimate from

this algorithm are time specific and do not represent a daily average. Any comparisons to emissions from other observations

or inventories need to be made for the same time period. Any comparisons to emissions from other observations or inventories

need to be made for the same time period.

180

For input parameters, we utilize the wind fields (U, V) from the European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA5 reanalysis dataset at a resolution of 0.25◦ × 0.25◦ with an hourly output, between 1000 and 300 hPa at a

resolution of 50 hPa, and interpolated spatio-temporally to the TROPOMI observations. For large fires, the rotation of observa-

tions around a single point will cause imperfections, as they are not true point sources but are spread over large areas. However,

the flux methodology captures the width of the plume in these cases, with the main effect the addition of some variability185

in the emissions at the first box of the overpass. To find the appropriate wind speed to use for emission transport, we use

the average TROPOMI aerosol height (AER_LH) for each fire, which is a good proxy for the average height of fire plumes

(Griffin et al., 2019). If there are no good quality plume heights near the fire, we use 2 km (or 800 hPa) (Griffin et al., 2020) for

the plume height. This approach to find appropriate altitudes for wind fields has previously been successfully used to improve

the accuracy of satellite-derived NOx emissions from wildfires (Griffin et al., 2021).190

As this method assumes steady state and relies on stable meteorology appropriate quality criteria need to be applied to fil-

ter any cases when the emission estimate might be deficient. The quality criteria to filter emission estimates as well as the total

uncertainty of the emission estimates are further examined in the next section.

2.3 Accuracy of the emission estimates using synthetic data195

Similar to Griffin et al. (2021), we conducted a sensitivity test using a regional air-quality model to create synthetic CO VCDs.

Applying the fitting method used for satellite observations (as described in the previous section), source emissions retrieved
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from plumes generated within a model domain can then be compared directed to the original source emissions used by the

model. For these tests all emissions are known, thus allowing us to: 1) test if the fitting method is able to regenerate the

original emissions; 2) obtain a better idea of the uncertainties of the method; and 3) examine the extent to which quality filters200

should be applied to the satellite-derived emissions. For this sensitivity test, we use the Global Environmental Multiscale -

Modelling Air-quality and CHemistry (GEM-MACH; (Makar et al., 2015b, a; Chen et al., 2019)) air quality model to obtain the

synthetic VCDs. The operational version of GEM-MACH that employs forest fire emissions using CFFEPS (Chen et al., 2019)

, was used. This has a 10× 10 km2 grid cell size for the North American domain, and 80 vertical levels (from the surface to

approximately 0.1 hPa), further details can be found in Makar et al. (2015b, a). Although GEM-MACH’s resolution is coarser205

than the 4 km pixel size used here, the higher pixel resolution becomes available as the pixels are binned using a distance

weighted average. GEM-MACH provides hourly output, with an internal “physics” time step of 7.5 min. The meteorological

component of GEM-MACH is within the physics module of the Global Environmental Multiscale (GEM) weather forecast

model (Côté et al., 1998; Girard et al., 2014). GEM-MACH contains a detailed atmospheric chemistry scheme, which includes

the emission and removal processes of 42 gaseous species and 8 particle species. The operational model run is initialized210

every 12 hours, at 00 and 12 UTC. Original input fire emissions are estimated based on hotspot location using the CFFEPS

(Chen et al., 2019)), which links the hotspot locations to ecozone-specific databases of fire area per hotspot per unit time, fire

stage (crown, duff layer, residual), and estimates plume height using plume rise calculations based on meteorological lapse

rates and similar considerations. For a time period between May to September 2019, the model CO profiles are integrated

over the first 39 layers (approximately the lowest 10 km of the atmosphere) to obtain VCDs over the model domain, in North215

America (Canada and US). The wind speed and wind direction used for the estimate is based on in this sensitivity test are based

on forecast winds that drive the model simulations. The wind altitude for the synthetic retrieval is from the nearest model wind

level to the predicted the aerosol layer peak concentration. For this time period (May to September 2019,in the US and Canada)

a total emissions of 208 fires were “successfully” retrieved (a solution was found by the fitting algorithm). The results of all

the retrieved emissions using the GEM-MACH output at 20UTC versus the original (synthetic) source are illustrated in Fig. 2220

a. Many of the fitted emissions are very close to the input emissions, however, many outliers can be seen, where most likely the

fitted emissions
:::::
While

:
a
:::::::::
substantial

:::::::
portion

::
of

:::
the

:::::::
retrieved

:::::::::
emissions

::::::
closely

:::::::
matches

:::
the

:::::::
original

::::::
values,

::::
there

:::
are

:::::::::
noticeable

::::::
outliers,

::::::
where

:::
the

::::::::
retrieved

:::::
values

:
are below the original emissions. An underlying requirement of the fitting methodology

is the assumption that a steady-state in the meteorological conditions has been maintained during the time of the retrieval –

previous work has shown that when this assumption is incorrect, the retrieved emissions may be in error (Fathi et al., 2021).225

Changes in meteorological state during the retrieval period (such as a change in wind direction or speed, changes in atmospheric

stability) may influence retrieval accuracy, as may the presence of other sources nearby to the fire of interest. Examining these

cases more closely we identified certain unfavorable conditions as follows (the filtered values due to these specific conditions

are illustrated in Fig. 2:

1. The background (“B”) is too high (>0.7×1019 molec/cm2): this indicates potentially upwind sources, of large enough230

magnitude that the plume may be difficult to distinguish, or a misplacement of the fire centre, and thus these cases should

be filtered (two estimates were filtered that way).
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2. The variation in the wind direction (“wd”) should to be less than 15◦: changes in wind direction during the retrieval allow

for potential convergence / divergence to occur within the model grid cell, violating the requirement of steady-state flow

(78 estimates were filtered that way).235

3. The plume width (“width”) should be no larger than 50 km: the method cannot be used for very large fires, as the

assumption of a point source breaks down; a width larger than 50 km could also be associated with interference from

other nearby other sources (five estimates were filtered that way).

4. The difference of the emissions from individual cross-sections (∆ xsect) considered for the estimate (within 20 km of

the fire) should be no larger than 100 %, and cases are also filtered where only one cross-section is used for the estimate:240

cases with high variability of the individual cross-sections indicate high variability of emissions within a very short time

frame or unstable conditions (30 estimates were filtered that way).

Other parameters were also tested but were not included as part of the quality filter, such as variation in wind speed, maximum

and minimum wind speed, height of the aerosol layer, the Richardson number and the wind shear. It should be noted that for all

cases the minimum wind speed was above 2 m/s and the maximum wind speed was 11 m/s. We would expect that the method245

is not reliable for very high or very low wind speeds (approximately >2 m/s), as found by other studies (e.g. de Foy et al.,

2014). After applying the quality filter (black points in Fig. 2) 105 fires remain (some filters overlap). The correlation is high

between the retrieved and original source emissions with R= 0.92 and a slope of best-fit (using geometrical mean) of 1.1. The

relative difference is 34 % (fitted-input) which is used in our uncertainty analysis (Table 1).

250

The four established quality controls noted above were then used to filter the satellite-derived emissions estimates, and

are recommended in retrievals of this nature. In addition, for the satellite-derived emissions, a filter that requires at least five

observations for the estimate has also been applied. These tests using synthetic data can also help to establish the uncertainties

for the estimated emissions. The total uncertainty of the satellite-derived emissions (see Table 1), is based on the uncertainty

of the satellite VCDs (10 % (Sha et al., 2021)), uncertainties of the wind speed (≈ 10 %), the effect of the altitude used for255

the wind speed (≈ 20 %), and the uncertainty of the method itself (based on the relative difference between the true and

fitted emissions of 34 % after applying the above mentioned quality filters). The uncertainty of the wind speed caused by the

uncertain altitude of the plume is based on the mean difference of the wind speed when comparing the winds 50 hPa above

and below the aerosol layer height. These errors are added in quadrature, leading to a total uncertainty of approximately 42 %.

The uncertainty of the wind speed is based on Gualtieri (2022) who found approximately 0.5 m/s for the 90 % confidence260

interval for ERA5, with the average wind speed of approximately 5 m/s (for our dataset), we assume a 10 % uncertainty for the

wind speed. Overall, the sensitivity tests suggest that the fitting method is robust once filters have been applied to ensure that

the underlying assumptions of steady-state meteorological conditions is maintained for the observed data, and can be used to

estimate the CO fire emissions. The total uncertainty of the CO emission estimates (after the above mentioned filters have been

applied) is approximately 42 % based on the uncertainty of the wind speed, CO VCDs and methodology. Throughout Sects.265
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Table 1. Summary of uncertainties for the satellite emission estimates.

Type Uncertainty

Satellite VCDs 3-10 %∗

Method 34 %

Wind 10 %∗∗

Wind altitude 20 %

Total 40-42 %

∗Sha et al. (2021),
::::::::::
Rowe et al. (2022)

∗∗Gualtieri (2022)

Figure 2. The results of the sensitivity test with synthetic VCDs are illustrated (see text for additional details). The filtering low quality

results are illustrated in panel (a), where different parameters have been tested, including the maximum value of the background (“B”), the

deviation of the wind direction (“wd”), the maximum width of the plume (“width”), and the difference between the individual cross-sections

(“∆xsect”). The filtered fitted emissions versus the model input emissions are plotted in panel (b) together with the statistics (slope of best-fit

using the geometric mean, s; correlation coefficient, R; the number of points, n; and the mean and standard deviation of the relative difference,

rel. Diff: fitted-input).

4 and 3 these same filters that ensure steady-state meteorological conditions and low interference from nearby sources were

applied to the satellite-derived emission estimates.
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2.4 Satellite FRP and Hotspot Identification

To find the locations of fires around the globe we use MODIS instrument thermal anomalies and FRP products. MODIS was

used in this study for two purposes: (1) to obtain the fire locations and fire centres using MODIS thermal anomalies that are270

then used to attempt deriving CO emissions from TROPOMI; (2) to obtain the FRP for each fire to determine the emissions

coefficient (EC; see Sect. 4). The MODIS instruments, on board the NASA Earth Observation System Terra and Aqua satel-

lites, detect fires using data collected in the infrared and spectral channels (Kaufman et al., 1998). Typical overpass times occur

at approximately 10:30 AM/PM and 1:30 AM/PM local time for the TERRA and AQUA platforms of which MODIS is a

component, respectively.275

The MODIS thermal anomaly product (MOD14) (Giglio et al., 2003, 2006, 2016) from Aqua (13:30 local time) is used in

this study to locate the forest fires. These thermal anomalies are clustered, with the criterion of a minimum summed FRP

(within a 5 km radius) of 1000 MJ/s and a confidence of at least 75 %. These thresholds have been applied to remove fire that

are too small, as the TROPOMI CO emission estimate very likely fails for very small hotspots and to reduce the influence280

of other (smaller) sources causing thermal anomalies (e.g. flares). Depending on the size of the fire, we aggregate on average

30 thermal anomalies, based on Freeborn et al. (2014) this is associated with a 6 % uncertainty of the FRP, much lower com-

pared to the uncertainty of the CO emissions estimates (42 %). Again, we would like to highlight that not all fires are captured

by satellites (including MODIS), fires can potentially be missed for several reasons: if the FRP signal is too low (e.g. small

fires), due to cloud cover, and under thick smoke plumes. These locations are used to attempt a CO emission estimate with285

TROPOMI, however, it is not always possible to derive emissions from the fire hotspot location and many locations will fail

or are filtered (as mentioned in Sect. 2.3) after the emission estimate. The most common reasons for failed emission estimates

include variables winds, low CO columns that are too close to the background concentrations, nearby CO sources (such as a

second fire plume), and cloud cover.

290

MODIS FRP has also been used to estimate the emission budget, presented in Sects. 3 and 5. For the CO emission budget we

use our estimated ECCO (Sect. 4) and apply these to the assimilated daily GFAS FRP on a 0.1×0.1◦ grid to estimate a global

budget of CO emissions. GFAS is a top-down emission estimation system from ECMWF. The GFAS assimilated FRP is based

on the MODIS Aqua and Terra FRP that provide typically one daytime and one nighttime overpass each. This dataset provides

a guidance on total daily FRP that can then be combined with the derived ratio between TROPOMI CO emissions and MODIS295

FRP. Since TROPOMI only provides an emission estimate around 1:30PM (local time) accounting for diurnal variability is not

feasible with TROPOMI alone. Thus, a secondary dataset such as MODIS, with multiple overpasses per day at various times,

is necessary to get an approximation and of diurnal fire activity and ultimately to obtain a total emission budget. This emission

budget is used in Sect. 5 to compare the here estimated CO emissions with fire emission inventories. It should be noted that

some smaller fires might be below the MODIS detection limit, and will be missed and in the presence of clouds or thick smoke300
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the instruments may not be able to observe the Earth’s surface. The retrieved emissions generated here may therefore be lower

limits.

2.5 GFFEPS

We compare our retrieved CO emissions to several existing biomass burning CO inventories and emissions estimation method-

ologies, as noted above, including a new global biomass burning algorithm, GFFEPS, described here. GFFEPS is a global305

extension of the CFFEPS model described in Chen et al. (2019). Similar to CFFEPS, GFFEPS is a bottom-up approach uti-

lizing satellite-detected hotspots to calculate smoke emissions. The model uses the Visible Infrared Imaging Radiometer Suite

(VIIRS) that then predicts emissions based on the Canadian Forest Fire Danger Rating System (CFFDRS, Stocks et al. (1989)

). Fuel types were assigned using the Global Land Cover (GLC) 2000 (European Commission, 2003). Area burned per hotspot

was estimated based on eight years of satellite hotspot data (2012-2019) and reported area-burned statistics for the same time310

periods and locations using MCD64CMQ (Giglio et al., 2020). Daily fire weather conditions based on the Canadian Forest

Fire Weather Index (FWI) System (van Wagner, 1987) were calculated in the global version of ECCC’s Global Environmental

Multiscale (GEM) model (Côté et al., 1998) and interpolated to hotspot locations. Fire behaviour conditions at each hotspot

were based on the Canadian Forest Fire Behaviour (FBP) System (Forestry Canada Fire Danger Group, 1992) and calculated in

the Canadian Wildland Fire Information System (Lee et al., 2002) operated by the Canadian Forest Service, Natural Resources315

Canada (https://cwfis.cfs.nrcan.gc.ca, last access: Feb. 7, 2023). Surface and crown fuel consumption rates are translated di-

rectly into smoke emissions. Emissions rates per species per stage of combustion are based on Urbanski (2014). A fix diurnal

profile is applied to the daily estimated burn area to obtain an hourly fraction with peak activity at 5pm local time. Note that

assignment of GLC 2000 land classifications to Canadian Fuel types and adjustments to fit global conditions continues to be an

area of development in the model. Fuel loads were largely taken from van Leeuwen et al. (2014) and van der Werf et al. (2017)320

as used in GFED.

3 Evaluation of direct vs bottom-up emissions

CO fire emission can be estimated from TROPOMI single overpass observations. Stockwell et al. (2022) have shown when

comparing satellite derived CO fire emissions to aircraft derived fire emissions from measurements as part of the FIREX-AQ

campaign (Warneke et al., 2023) in the US. Sensitivity tests in Sect. 2.3 also suggest that emissions can be reliably estimated325

using the flux method within 42 % uncertainty. In this section, TROPOMI-derived emission estimates are used to evaluate the

GFFEPS emissions processing system. Figure 3 shows an example of a fire in Arizona on June 21, 2019 in the Temperate

Forest North America (TENA) region (33.5◦N, 111.14◦W). GFFEPS emissions are given in 3 h intervals and shown as orange

dots. GFFEPS estimates daily emissions based on area burned, and utilizes a prescribed diurnal pattern with a peak in fire

intensity and emissions in the late afternoon. The peak in emissions always occurs a few hours after the TROPOMI overpass.330

TROPOMI overpass time was around 20:30 UTC and the emission estimate is shown as a black triangle. The GFFEPS emis-

sions are interpolated to the TROPOMI overpass time (shown as a red dot), and for this example GFEEPS aligns with the
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Figure 3. Comparison between TROPOMI-derived CO (black triangle), and GFFEPS (yellow) CO emissions on the example of a fire in

Arizona, US (TENA, 33.5◦N, 111.14◦W) on 21 June 2019. Also shown are the time-interpolated GFFEPS emissions to the time of the

TROPOMI overpass (red, “GFFEPS-int”).

satellite-derived emissions very well.

The TROPOMI-derived emissions can be used more broadly to examine the performance of the GFFEPS emissions. Figure 4

(a) shows the comparison between TROPOMI and GFFEPS (at the overpass time of TROPOMI, equivalent to the orange dot335

in Fig 3) for roughly 5000 fires globally in 2019 (all fires where TROPOMI could successfully estimate CO fire emissions,

appropriate filters as described in Sect. 2.3 have been applied). The results show that the model captures the order of magni-

tude and some of the variability, however, on average GFFEPS tends to predict lower emissions than the satellite-derived CO

emissions.
::::
This

::::::::::
discrepancy

::
is

:::::
likely

::::
due

::
to

::
an

::::::::::::::
underestimation

::::
from

::::::::
GFFEPS

::::::
rather

::::
than

::
an

:::::::::::::
overestimation

::
of

::::::::::
TROPOMI

::::::::
emissions:

::::::::::
TROPOMI

:::::
offers

::::::::::
high-quality

::::
data

::::
over

::::
fires

:::
and

::::::
smoke

::::::
plumes

::::
(see

:::
Fig

::
5)
::::
and

:::::::
potential

:::::
cloud

:::::
cover

::::::
would

:::::
likely340

::::
result

:::
in

:::::
lower

:::
CO

:::::
levels

::::::::
detected

::
by

::::::::::
TROPOMI

:::
due

:::
to

:::::::
reduced

::::::::
sensitivity

::::::
below

:::
the

::::::
smoke

:::::
plume

::::::
rather

::::
than

::::::
higher.

::
It

::
is

::::::::
important

::
to

::::
note

::::
that

:::
the

:::::::::
TROPOMI

:::
CO

:::::::::
emissions

::::::::
approach

:::
has

::::
been

::::::::
validated

::::::::::::::::::::
(Stockwell et al., 2022)

::::
with

:
a
:::::
40 %

::::::
overall

:::::::::
uncertainty

:::
see

::::
Sect.

:::::
2.3),

:::::
while

:::::::
GFFEPS

::::
still

:::::::
requires

::::::::
validation

::::
and

::::::::
associated

::::::::::
uncertainty

::::::::
estimates.

The cause for this bias is being investigated; possible reasons for this could be the following: 1) misrepresentation of fuel345

type or its associated emissions factors; 2) the estimated area burned could incorrect; 3) the diurnal variability is not accurately

represented; or 4) the time assumed for the TROPOMI-derived emissions is not correctly represented. To examine the reasons

more closely and to pinpoint the issues, specific areas and fuel types were examined individually
:::
(see

::::::
Tables

:::
B1

::::
and

::::
B2).
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:::
The

::::::
region

:::::::::::
classification

:::::
relies

::
on

:::
the

:::::::::
definition

::::
used

::
in

::::::
GFED

::::::::::::::::
(Giglio et al., 2003)

:
,
:::::
which

:::::::
divides

:::
the

:::::
world

::::
into

::
14

:::::::
distinct

:::::
areas:

:::::
boreal

::::::
North

:::::::
America

::::::::
(BONA),

:::::::::
temperate

:::::
North

::::::::
America

:::::::
(TENA),

:::::::
Central

:::::::
America

:::::::::
(CEAM),

:::::::
Northern

:::::::::::
Hemisphere350

:::::
South

:::::::
America

::::::::
(NHSA),

::::::::
Southern

:::::::::::
Hemisphere

:::::
South

::::::::
America

::::::::
(SHSA),

::::::
Europe

::::::::
(EURO),

:::::::
Middle

::::
East

::::::::
(MIDE),

::::::::
Northern

::::::::::
Hemisphere

::::::
Africa

::::::::
(NHAF),

::::::::
Southern

::::::::::
Hemisphere

::::::
Africa

:::::::
(SHAF),

::::::
boreal

:::::
Asia

:::::::
(BOAS),

:::::::
Central

:::::
Asia

:::::::
(CEAS),

:::::::::
Southeast

::::
Asia

:::::::
(SEAS),

:::::::::
equatorial

::::
Asia

:::::::
(EQAS),

::::
and

::::::::
Australia

:::
and

:::::
New

:::::::
Zealand

:::::::
(AUST).

::::
The

::::::
extend

::
of

:::::
these

::::::
regions

::
is

:::::::::
illustrated

::
in

:::
Fig.

::::
A1.

::::::::::
Considering

:::::
factors

::::
like

:::::
slope,

::
R

:::::::::
(correlation

::::::::::
coefficient),

::::
and

:::::
RMSE

:::::
(root

::::
mean

::::::
square

::::::
error),

::
the

::::::
model

:::::::::::
demonstrates

:::::
strong

:::::::::
agreement

::::
with

:::::::::::::
satellite-derived

:::::::::
emissions

:::
for

:::::::
specific

::::::
regions,

:::::::
namely

:::::::
CEAM,

::::::
NHSA,

:::::::
EURO,

:::
and

::::::
MIDE

::::
(see

:::::
Table355

::::
B1).Other regions, like AUST have a very poor correlation, slope and RMSE, indicating a need to improve the modelling of

that region, which is currently still under development. In terms of biomes (see Table B2, the results are less clear, as biome 1

dominates the AUST region for fires in 2019 and also shows a very poor correlation.

We also examine individual fires contributing to this issue in Figure 5 which depicts an example of a fire where the GF-360

FEPS and TROPOMI values compare well (top row of panels) and a fire where the GFFEPS values are much lower than the

satellite observations. Shown are the TROPOMI CO VCDs (Figs. 5 a and d), the GEM-MACH VCDs (using GFFEPS emis-

sions) in Figs. 5 b and e, and the true color image together with the MODIS hotspots (Figs. 5 c and f). The fires that tend

to be lower compared to the directly-derived CO emissions significantly are predominantly the ones that are influenced by

thick smoke (andor clouds). Some of the lower emissions from GFFEPS may suggest that fires emitting thick smoke may have365

underestimated hotspot values – a correction for fires influenced by thick smoke reducing the number of observable hotspots

may be necessary.

Specifically at the overpass time, the emissions are often underestimated by GFFEPS when comparing individual fires (at the

time of the TROPOMI overpass). The TROPOMI overpass time (1:30 pm local time) is exactly at a time when fires typically370

experience significant growth, one or two hours either side of the overpass time make a difference of approximately 30-50 %

(see Fig. 3). Thus, the lower emissions could also be the result of a timing issue, either from GFFEPS or the time assumed for

the TROPOMI-derived emissions. GFFEPS prescribes a diurnal emission profile, whereas the TROPOMI emissions provide

an emission rate specific to a satellite overpass time. As can be seen in Fig. 3, the diurnal variation in GFFEPS emissions can

be substantial. While the satellite data only allows evaluation of GFFEPS at the overpass time (and hence an evaluation over375

all times of emissions is not possible). We can conclude that model emissions (specifically at the overpass time) capture at

least some of the variation in CO emissions at overpass time (R= 0.22), but are general biased low compared to the satellite

derived emissions in the early afternoon. The total daily emissions and the diurnal variability are still a large uncertainty, and

cannot be readily evaluated using polar orbiting satellites such as TROPOMI (since TROPOMI can only provide limited times

to obtain CO fire emissions).380

Overall, TROPOMI CO emission estimates can be used to help with the evaluation of the emission model and help pinpoint

certain areas that need further improvement.
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Figure 4. Comparison between approximately 4000 TROPOMI-derived CO emissions and (a) GFFEPS for 2019 fires. The colours indicate

the density of the points (yellow being high density and blue being outliers). Note that the axis are in logarithmic scale, showing the 1-to-1

line (black) and the 1-to-2 lines (red). GFFEPS tends to be lower than the directly-derived TROPOMI emissions.

4 Emission Coefficients for Different Vegetation Types from Satellite-Derived Emissions

Annual CO emissions can be estimated based on TROPOMI and MODIS FRP observations. Emission coefficients, here de-385

fined as the ratio between the TROPOMI-derived CO emissions and MODIS FRP, are used to obtain an annual emission

budget by region, and can then be compared to study trends over time (see Sect. 5).
::::
The

:::::::
emission

::::::::::
coefficients

:::
are

:
a
::::::::

measure

::
of

:::
the

::::::
burning

:::::::::
efficiency

::
of

::::::::
different

::::::::
vegetation

::::::
types.

:::
The

:
TROPOMI-derived CO emissions alone cannot be used to obtain

annual total emissions because: 1) emissions of many fires will not be possible to be derived directly (e.g. due to unfavor-

able meteorology, cloud cover, size of the fire etc.); and 2) TROPOMI is in a low earth orbit observing each location once390

or twice per day and the TROPOMI-derived emissions are limited to the time of these overpasses. The emissions coefficients

can be determined from the correlation and slope of best-fit between the CO emissions and coincident FRP observations

(Mebust et al., 2011; Mebust and Cohen, 2014; Adams et al., 2019).

Emissions factors will change with different stages of a fire (flaming to smoldering); however, it is challenging to separate395

the different burning stages from fires (Andreae, 2019). For the emission coefficients derived in this study we did not separate

the burning stages; instead, a single emission coefficient is used for each biome for the following reasons: 1) The MODIS-based

GFAS FRE (total daily FRP) is a binned product, trying to project any assumptions of burning stages will introduce more un-
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Figure 5. Comparison between model and TROPOMI-observed CO VCDs for two different fires. Top shows an example of a good match

between the model (a) and TROPOMI (b), where the model input emissions (GFFEPS) are similar to the satellite-derived emissions. The

difference (model−TROPOMI) can be seen in (c). (d) shows the VIIRS true color image for the same scene together with the day time

MODIS thermal anomalies (hotspots, red dots), obtained from NASA Worldview; https://worldview.earthdata.nasa.gov/. The bottom figures

show an example of a bad match between the model (e) and TROPOMI (f), where the model input emissions (GFFEPS) are significantly

lower, with the difference shown in (g) and the VIIRS true color image in (h).

certainty; 2) fires will most likely be flaming at the time of the TROPOMI overpass (1:30 pm local time). It is likely that these

different burning stages have different CO emission coefficients (EC). For example, Hayden et al. (2022) identified that the CO400

EC is almost twice that during smoldering compared to flaming (this does not mean that emissions might be underestimated

by the same amount, the FRP is significantly lower during smoldering stages and thus reduces the induced error). In that case

study it was possible to roughly differentiate between smoldering and flaming; however, for large sample of fires it is very

difficult to do so. The point is, that a mix of flaming and smoldering fires will reduce the correlation coefficient (e.g. Fig. 6),

the overall EC will result in an average of flaming and smoldering EC. When applying these ratios globally to binned MODIS405

FRE to obtain annual emissions it is likely to average out overall, but all information on smoldering and flaming is lost in these

averages. It is the norm for top-down inventories to apply a single emission coefficient (per vegetation) that does not change

with the time of day (e.g. GFAS).

To differentiate biomass burning emissions in different biomes we use the GLC2000 (European Commission, 2003). This410

land use classification dataset distinguishes between 22 different types of biomes. A full list
::::::
Further

::::::
details,

:::::::::
including

:::
the

:::::
extend

::::
and

:::::::
location can be found in the Appendix, Table A1; in

:::
Fig.

:::
A2

:::
and

:::::
Table

:::
A1.

:::
In summary: 1-10 are different types

of forests,
:
;
:
11-12 are types of shrub, ;

:
13-15 different types of grassland (herbaceous cover),

:
;
:
16-18 different types of Mosaic

(cultivated areas and crops), 18-22 are areas were
:
;
:::::
19-22

:::
are

:::::
areas

:::::
where

:
fires are unlikely (including water, snow, and urban
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Figure 6. TROPOMI-derived CO emissions (2019-2021) versus MODIS detected FRP for fires from broadleaved evergreen trees. The color

indicates the density (yellow being the most dense and blue being the outliers) of the 842 fires.

areas). From the 22 possible types of biome
:::::
biomes, we include a total of 15 different biomes in our analysis, excluded are areas415

were we did not find any fires, these are biomes where fires were not observed by TROPOMI
::::
(and

:::::::
therefore

:::
no

::::::::::
information

::
is

:::::::
available

:::
on

:::
the

:::
CO

::::::::::
emissions),

::::::
namely: regularly flooded tree cover (7 and 8), previously burned tree cover (10), bare areas

(19), water bodies (20), snow and ice (21), and artificial surfaces (22).

Figure 6 shows the correlation between the TROPOMI-derived CO emissions (2019-2021) and the total MODIS Aqua FRP420

(which has a similar orbit as TROPOMI) for the corresponding fire for Tree Cover, broadleaved, evergreen (biome 1). The

slope between the CO emissions (in g/s) and the FRP (in MJ/s) corresponds to the
:
is
:
EC (in g/MJ),

:::
the

::::::
values

::
of

::::::
which

:::
are

:::::
shown

:
in Table 2

::::
(and

::
for

:::::
2019,

:::::
2020,

::::
and

::::
2021

::
in

::::::
Tables

:::
C1,

:::
C2,

::::
and

:::
C3,

:::::::::::
respectively). A geometric mean approach was used

to find the slope of best fit and the 99 % confidence level (used as the uncertainty of the EC). The results for all biomes used in

the analysis are summarized in Table 2. The sample size specifies the number of fires used for the regression analysis and the425

rank is number of importance with respect to the total annual FRP from GFAS (for the 2019 base year). The total FRP identifies

how much each of these different biomes contribute to the total annual budget (Sect. 5). The emission coefficients vary between

120 and 39 g/MJ, where the largest CO emissions relative to FRP are from broadleaved evergreen tree cover (1
:::::
shrub

:::::
cover

::::::::
evergreen

:::
(11) and the lowest are from cultivated manged areas (16). With regards to the different correlation coefficients, these

::::
shrub

:::::
cover

:::::::::
deciduous

::::
(12),

::::::::
meaning

::::
three

:::::
times

::::
more

::::
CO

:
is
:::::::
emitted

::::
from

:::::::::
evergreen

::::
shrub

:::::::
(biome

:::
11)

::::::::
compared

::
to

:::::::::
deciduous430

::::
shrub

:::::::
(biome

:::
12)

:::
for

:
a
:::
fire

::::
that

:::::
burns

::::
with

::::::::
equivalent

::::
heat

:::::::
energy.

::::
Even

::::::
though

::::
both

:::::::
biomes

:::
are

:::::
shrub,

::::
they

:::
are

::::
quite

::::::::
different

::::::
biomes,

:::::
based

:::
on

::::
their

::::
CO

::::::::
emissions

::::
and

::::
way

::::
they

::::
burn

::
as

::::
well

:::::
their

:::::::
location

:::
and

::::::::::
occurrence.

:::::::::
Evergreen

:::::
shrub

::::::
(biome

::::
11)

:
is
:::
not

:::::
very

:::::::
common

::
(it

::::::
covers

::::::::::::
approximately

:::::
0.5 %

::
of

:::
the

:::::::
Earth’s

:::::::
surface)

:::
and

:::::::
appears

::::::::
primarily

::
in

::::::
Central

::::
Asia

::::
and

::
in

:::::
some

::::
parts

::
of

::::::::
Northern

::::::
Canada

::::
and

::::::
Alaska

:::
(see

::::
Fig.

:::
A2

:::
and

:::::
Table

::::
A1).

::::::::
Whereas

::::::::
deciduous

:::::
shrub

::::::
covers

::::::::::::
approximately

:::::
2.2 %

::
of

:::
the
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Table 2. Emissions coefficients for CO (ECCO) ± the 99 % confidence interval (note this is only a mathematical error for the determination

of the slope), correlation coefficient (R), number of fires (sample size) and rank of importance in terms of total FRP (“Rank”) derived from

TROPOMI and MODIS FRP for fires globally between 2019 and 2021. The biome definition is taken from GLC2000, see Table A1.

Number Description ECCO (g/MJ) R sample size Rank

1 Tree Cover, broadleaved, evergreen 95±5 0.70 842 1

2 Tree Cover, broadleaved, deciduous, closed 86±7 0.51 425 4

3 Tree Cover, broadleaved, deciduous, open 64±5 0.38 667 2

4 Tree Cover, needle-leaved, evergreen 59 ±7 0.48 442 8

5 Tree Cover, needle-leaved, deciduous 93±6 0.52 1040 10

6 Tree Cover, mixed leaf type 49±22 0.52 26 15

9 Mosaic: Tree cover / Other natural vegetation 63±9 0.68 111 12

11 Shrub Cover, closed-open, evergreen 120±20 0.50 162 13

12 Shrub Cover, closed-open, deciduous 39 ±2 0.68 465 3

13 Herbaceous Cover, closed-open 40 ±4 0.47 283 6

14 Sparse Herbaceous or sparse Shrub Cover 81±17 0.53 72 9

15 Regularly flooded Shrub and/or Herbaceous Cover 105±17 0.62 127 14

16 Cultivated and managed areas 62±7 0.59 250 5

17 Mosaic: Cropland / Tree Cover / Other natural vegetation 67 ±13 0.34 111 7

18 Mosaic: Cropland / Shrub or Grass Cover 61 ±5 0.87 129 11

::::::
Earth’s

::::::
surface

:::
and

::::::
grows

:::::::
globally

:::
(see

::::
Fig.

:::
A2

:::
and

:::::
Table

::::
A1).

::::::::::
Correlation

:::::::::
coefficients

:
vary significantly for different biomes.435

Most biomes have a moderate to high correlation with a correlation coefficient that is between approximately 0.5-0.9. The

lowest correlation coefficient (R= 0.34) is found for Mosaic: Cropland / Tree Cover / Other natural vegetation (biome 17)

meaning that the
:::
CO emissions are quite variable. A simplified classification of forest, shrub and grassland is not appropriate

based on our results. For example the ECCO for different types of
::::::
shrubs

:::
has

::::
both

:::
the

:::::
largest

::::
and

:::::::
smallest

:::::::
emission

::::::::::
coefficients

:::
and forests vary between roughly 59

::
49 and 95 g/MJ. An attempt was made to simplify the biomes following the approach of440

(Mebust et al., 2011),
::::::::::::::::
Mebust et al. (2011);

:
however, this depreciated the correlation coefficients significantly. Based on the 22

biomes used here suggests additional subclassification of biomes might be necessary to further improve the correlations used

to estimate ECCO values across different parts of the globe (e.g., the CFFDRS has seven classifications for coniferous forests,

here described as biome 4).

5 Global CO Budget445

Applying TROPOMI-MODIS-derived ECs to daily integrated MODIS FRE (that captures the diurnal fire activity) can help to

analyse the CO emission budget and can allow to compare it to existing fire emission inventories. The ECs (derived in Sect.
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4) are here applied to the daily GFAS FRP, assimilated FRP observations from the Terra MODIS and Aqua MODIS satellite

sensors. The domain is global with a resolution of 0.1◦ on a regular latitude-longitude grid. The time period between 2003 and

the present is covered. The resulting top-down emissions, referred to as “TROPOMI-FRE”, can be used to study the distribu-450

tion of fire emissions more generically. Figure 7 shows the distribution of the CO emissions for 2019 by (a) biome, (b) region,

and (c) month. Most CO emissions are from evergreen forests
:
(biome type 1), which also has

:::
one

::
of

:
the largest EC for CO

(see Table 2). About two thirds of wildfire CO emissions are from forests (type 1-6). The regions affected by the largest CO

fire emissions are Southern Hemisphere Africa (SHAF , 25
:::::
SHAF

:::::
(26.5 %) and Southern Hemisphere South America (SHSA

, 20
:::::
SHSA

:::::
(16.8 %). The least affected are Europe (EURO ) and the Middle East (MIDE)

:::::
EURO

::::
and

::
the

::::::
MIDE, these regions455

have the least amount of fires and the smallest wildfire CO emissions, below 1 % of the global emissions. The annual cycle is

a little more evenly distributed with emissions between roughly 5-15
:::
5-14 %, and shows the peak of CO emissions in August

(15
::
14 %) with the lowest emissions in May (4.5

:::
4.9 %). It should be noted that 2019 was an unusual year for Australia with

high intensity fires in December 2019 (during the 2019/2020 Australian summer), also known as the “black summer” (e.g.

van der Velde et al., 2021; Pope et al., 2021). These fires contributed significantly to the global December emissions (Fig. 7460

(c)), further the .
::::
The type of biome burned was Eucalyptus forest, which is classified as biome 1.

The total wildfire related CO emissions using TROPOMI derived-EC and GFAS FRP
:::::::::::::
TROPOMI-FRE

:
are approximately

288 Mt in 2019. The total from TROPOMI ECs and FRP is in good agreement with most
:::::::::::::
TROPOMI-FRE

::::
may

::
be

:::::::::
compared

::
to

:::::
those

::::
from

:::::
other

:
fire emission inventories: GFFEPS (337 Mt), the top-down inventory GFAS (364 Mt), the bottom-up465

inventories: GFED (408 Mt), FINN v1.5 (295 Mt), and FINN v2.5 (579 Mt). FINN v2.5 stands out as the fire emission

inventory with the highest emissions, almost twice as large as FINN v1.5. The break-down for 14 common geographical

regions around the globe, as defined by (Giglio et al., 2013, Fig. 1), can be seen in Fig. 8. Even though the here presented

TROPOMI-FRE product is based on GFAS FRP, there are significant differences between these two data sets. Most noticeable

in EQAS and BOAS region where TROPOMI-FRE is significantly lower and SHAF region where it is higher. FINN v2.5
:::::
stands470

:::
out

::
as

:::
the

:::
fire

::::::::
emission

::::::::
inventory

::::
with

:::
the

:::::::
highest

:::::::::
emissions,

::::::
almost

:::::
twice

::
as

:::::
large

::
as

:::::
FINN

:::::
v1.5.

:::::
FINN

::::
v2.5

:
emissions are

especially high for Southeast Asia (SEAS)
:::::
SEAS. The inventories show consistently the largest CO emissions due to wildfires

from SHSA and SHAF (with most fires just south of the equator), a result of the Amazon tropical forest fires and Congo’s

forested ecosystem, respectively. For Boreal North America (BONA), Temperate North America (TENA), Central America

(CEAM), Northern Hemisphere South America (NHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa475

(NHAF), and Centraleast Asia (CEAS)
::::::
BONA,

::::::
TENA,

:::::::
CEAM,

::::::
NHSA,

::::::
EURO,

:::::::
MIDE,

::::::
NHAF,

:::
and

::::::
CEAS,

:
there is agreement

within a factor of 2
:::
two (but often better than that) between the different inventories. Equatorial Asia (EQAS ) and Boreal Asia

(BOAS )
:::::
EQAS

::::
and

::::::
BOAS are the regions where CO emissions seem quite uncertain and are the least consistent between

the different inventories with rates between approximately 10-80 and 10-70 Mt for 2019, respectively. The most noticeable

differences are for FINN v1.5 and v2.5 that are exceptionally high in the SEAS region compared to all other estimates. CO480

emissions from EQAS and BOAS seem high for the GFED and GFAS estimates compared to the other inventories. BONA CO

emissions are also about twice as high for GFED and GFAS compared to the other estimates. Australia (AUST )
:::::
AUST is very
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Figure 7. Analysis of the 2019 TROPOMI-FRE CO fire emissions: (a) emissions by different biomes as defined in Table A1, (b) by geo-

graphical regions as defined by Giglio et al. (2013)), (c) by month.

low for FINN v1.5 (roughly a factor of 5) compared to the others. The low bias in GFFEPS (as found in Sect. 3) cannot be seen

in this comparison. One possibility is that the bias seen in the previous section is due to a inaccurate diurnal pattern, but there

could be other reasons too. To be certain
:
, further investigation is required that is outside the scope of this study. Overall, Fig. 8485

highlights that there are large discrepancies especially for certain regions around the globe with regards to wildfire related (CO)

emissions. Using a measurement based approach can help with the evaluation of the different inventories, as was done in Sect.

3 for individual fires. Again, it should be highlighted that all these top-down and bottom-up inventories rely to a certain extend

on good coverage of hotspot locations. If the fire hotspots cannot be measured by MODIS (due to clouds or thick smoke) the

emissions will be underestimated, which is a difficult bias to properly correct for without introducing further assumptions and490

uncertainties. If anything, the true CO wildfire emissions are likely higher than the ones here presented, due to missed fire

hotspots and the underestimate of large fires (with thick smoke).

5.1 CO emissions over the past two decades

:::
The

::::::::::
inventories

::::::::
discussed

::
in
::::

the
:::::::
previous

:::::::
section

:::::::
provide

::::
data

:::
for

::::::
various

::::
past

::::::
years,

::::::
except

:::
for

::::::::
GFFEPS

::::::::
(currently

:::::
only

:::::::
available

:::
for

::::::
2019).

:::
For

:::
our

::::::::::
independent

:::::::::
estimates,

::
we

::::::
relied

::
on

:::::
daily

::::
FRP

:::
data

:::::
from

::::::
GFAS, which is based on MODIS FRPis495

:
, available from 2003 to the present. Assuming

:::::
Under

::::
the

:::::::::
assumption

:
that the ECCO :::::

values
:
(as derived in Sect. 4) do not

change drastically
::::::
remain

::::::::
relatively

:::::
stable over the years, we studied

::::::::
conducted

::
an

::::::::
extensive

:::::::
analysis

:::
of the entire time series

and estimated CO emissions between
::::::::
calculated

:::
CO

:::::::::
emissions

:::::::
spanning

:::::
from 2003 and

:
to
:
2021

:::::
(refer

::
to

:::
Fig.

::::
10).

:::
To

:::::
assess

:::
the

:::::::::
uncertainty

::
of

:::
the

::::
total

::::::
annual

:::::::::
emissions

::
of

:::
our

::::::::
estimates

::::::::::::::::
(TROPOMI-FRE),

::
we

::::
also

::::
used

::::::::
emission

::::::::::
coefficients

::::::
derived

:::::
from

:::
fires

:::
of

::::::::
individual

:::::
years

:::::
(2019

::
to

:::::
2021).

::::::
Using

:::::::
emission

::::::::::
coefficients

::::
from

::::
2019,see Fig. 10.

:::::
2020,

:::
and

:::::::::
2019-2021

:::::::::
combined

:::
did500

:::
not

::::::
impact

:::
the

::::
total

::::::::
emissions

::::
(see

::::
Fig.

::::
C1),

::::
only

:::
for

::::
2021

:::
the

::::
total

:::::::::
emissions

::::::
reduced

:::
by

::::::::::::
approximately

:::::
20 %,

::::
due

::
to

::::::
overall

:::::
lower

:::::
ECCO::::

(for
::::::
biomes

::::
1-3,

:::
see

:::::
Table

:::::
C3).

::::
This

:::::
shows

::::
that

:::
the

::::::::::
uncertainty

::
of

:::
our

::::::::
approach

::
is
::
at
:::::
least

:::::
20 %,

:::
but

:::::
since

:::
the

::::::::
individual

:::::::::
TROPOMI

:::::::
derived

:::
CO

::::::::
emissions

:::::
have

::
an

:::::::::
uncertainty

:::
of

::::
40 %,

:::
we

::::::
would

:::::
expect

:::
the

::::::
overall

::::::::::::::
TROPOMI-FRE

::::::
annual
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Figure 8. Comparison of total CO emissions from fires in 2019 for different fire emission inventories and TROPOMI-FRE for different

geographical regions (as defined by Giglio et al. (2003).

:::::::
emission

::
to

::::
have

:::::::
similar

::::::::::
uncertainties

:::
on

:::
the

:::::
order

::
of

:::::
40 %.

:::::::::::
Furthermore,

:::
we

:::
also

:::::::
present

::::
data

::::
from

:::
the

:::::
other

:::
four

::::::::::
inventories

::
for

:::
the

:::::
same

::::
time

::::::
frame.

:::
The

::::::
results

:::
are

::::::::
visualized

:::
in

:::
Fig.

::
9.

:
505

As expected, the fire emissions from various regions around the globe have a high
::::::::
emissions

::::
from

:::::::
wildfires

::
in

::::::
various

:::::::
regions

:::::
across

:::
the

:::::
globe

:::::::
exhibit

:::::::::
significant

:
interannual variability.

:::::::
Notably, EURO and MIDE have the lowest emissions wildfire

emissions for this
::::::::::
consistently

:::::
report

::::
the

::::::
lowest

::::::
wildfire

:::::::::
emissions

::::::::::
throughout

:::
the

:
entire time series , and cannot even be

identified on the figure. The vast majority
:::
and

:::
are

::::::
barely

:::::::::
noticeable

::
in

:::
the

:::::::
figures.

:::
The

:::::::::::
predominant

::::::
source

:
of wildfire CO

emissions originate
:
is
:
from SHAF and SHSA, followed by NHAF. It seems that between

:::
This

:::::::::
consistent

::::::
pattern

::
is

::::::
evident

:::
for510

::
all

:::
the

:::::::::
inventories

::::::::
analyzed.

:

::
To

:::::::
enhance

:::
the

:::::
clarity

:::
of

::::::::
emissions

:::::::::::
identification

:::
and

:::::::
changes

:::::
across

::::::::
different

::::::
regions,

:::
we

::::
have

:::::::
depicted

:::::::::
emissions

::
by

::::::
region

::
in

:::
Fig.

:::
10.

::::
The

:::
rate

::
of

:::::::
change

::
for

::::
this

::::
time

:::::
period

::::
has

::::
been

::::::::
quantified

:::
for

::::
each

:::::::::
inventory,

:::
and

:::
the

::::::
results

:::
are

::::::::
presented

::
in

:::::
Table

::
3.

:::::::::
Significant

::::
rates

::
of

::::::
change

:::::
(with

:
a
:::::::
p-value

:::::
below

::::
5 %)

:::
are

:::::::::
highlighted

::
in
:::::
bold,

:::::
while

::
all

:::::
other

::::
rates

::
of

::::::
change

:::
are

::::::::::
statistically

::::::::::
insignificant.

:
515

:::::::
Globally,

::::
CO

::::::::
emissions

:::
are

:::::::::::
experiencing

:
a
:::::::
decrease

:::::::
ranging

::::
from

:::
5.1

::
to
:::
8.7

::::::::::
Mt(CO)/yr

:::::::
between 2003 and 2021 the wildfire

associated CO emissions are decreasing on a global scale, certain regions see increased emissions (e.g. TENA, AUST), but

globally the emissions decrease , mainly driven by decreasing wildfire emissions in the highest emitting regions: SHAF, SHSA

, and NHAF . These same figures have been created using GFED, GFAS CO, FINN v1.5 and v 2.5, and can be found in the

Appendix ??. Almost all of these also show a decrease of wildfire associated CO emissions globally during this time period,520
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with the exception of GFED. In GFED, there seems to be a higher interannual variability and peak CO emissions in 2015,

2019, and 2021 that are not as pronounced in the other emission inventories. These peaks are driven by high emissionsin

EQAS, AUST (and EQAS)
:::::
across

:::
all

::::::::::
inventories,

:::::
with

:::
the

::::::::
exception

:::
of

::::::
GFED.

::::::::
Notably,

::::::
GFED

::::
does

::::
not

:::::
reflect

::
a
::::::
global

:::::::
decrease

:::
due

::
to
:::
the

:::::::::
substantial

::::::::
increase

::
in

:::
CO

::::::::
emissions

::::::
within

:::
the

::::::
BOAS

::::::
region,

:::::::::
amounting

::
to

::::
19.8

::::::::::
Mt(CO)/yr.

::::
This

::::::
overall

:::::::
decrease

::
is

::::::::
primarily

:::::
driven

:::
by

:::::::::
significant

::::::::
reductions

::
in
::::::
SHSA

:::::::
(ranging

:::::
from

:::
2.1

::
to

:::
6.3

::::::::::
Mt(CO)/yr),

::::::
NHAF

:::::::
(ranging

:::::
from

:::
0.6525

::
to

:::
7.6

::::::::::
Mt(CO)/yr),

::::::
SHAF

:::::::
(ranging

::::
from

:::
0.9

:::
to

:::
5.6

::::::::::
Mt(CO)/yr),

:::
and

::::::
CEAS

:::::::
(ranging

:::::
from

:::
0.3

::
to

:::
3.3

:::::::::::
Mt(CO)/yr),

::
all

::
of

::::::
which

::::
show

::::::::::
statistically

:::::::::
significant

::::::::
decreases

:::::
across

::
at

::::
least

::::
four

::::::::::
inventories.

::
In

:::::::
contrast,

::::
CO

::::::::
emissions

:::::
from

::::::::
wildfires

:::
are

::
on

::::
the

:::
rise

::
in
:::::::

TENA,
::::
with

:::
an

:::::::
increase

:::::::
ranging

::::
from

::::
0.2

::
to

:::
4.1

::::::::::
Mt(CO)/yr.

::::::::::
Additionally,

:::::::::
emissions

::
in

:::
the

::::::
EQAS

:::::
region

::::::
exhibit

::
an

::::::::::
interannual

:::::
cycle

:::
that

:::::::
appears

::
to

:::::::
correlate

::::
with

:::
El

::::
Niño

:::::
years,

::::::::
resulting

::
in

:::::
higher

:::::::::
emissions

:::::
across

:::
all

:::::::::
inventories

::
in

:::::
2006,

:::::
2009,

::::
2014, and BOAS, respectively.

:::::
2015,

:::
and

:::::
2019.

:
530

:::::
These

:::::::
findings

::::
align

:::::
with

::::
prior

::::::::
research.

::::::::::::::::
Giglio et al. (2013)

:::::::
reported

:
a
::::::::::
decreasing

::::
trend

::
in
:::

the
::::::

annual
::::
area

:::
of

::::
land

::::::
burned

::::
since

:::::
2000,

::::::
which

:::::::::::
corroborates

::::
our

::::::::
observed

::::::::
reduction

::
in

::::
CO

:::::::::
emissions.

:::::::::
Moreover,

::::::::::::::::
Zheng et al. (2021)

:
,
::::
also

::::::::
observed

::
a

::::::
decline

::
in

::::::
burned

::::
area

:::::::
between

:::::
1998

:::
and

:::::
2015

:::::::
through

:::::::
satellite

:::::::::::
observations,

:::
but

:::::::
reported

::::::
stable

::
or

::::
only

:::::
slight

:::::::::
decreases

::
in

::::::
wildfire

:::::::::
emissions.

::::
The

:::::::
satellite

:::::::::
instrument

::::::::::::
“Measurement

::
of

::::::::
Pollution

::
in

:::
the

::::::::::::
Troposphere”

:::::::::
(MOPITT)

:::
on

:::::
board

:::
the

:::::::
TERRA

::::::
satellite

:::::::::::::::::::::
(Drummond et al., 2010)

:::
has

::::
been

:::::::::
observing

::::
CO

::::
since

:::::
2000,

::::::::::::::::::::
(Buchholz et al., 2021)

::::::
showed

::::
that

::::::::
MOPITT

:::
CO

::::
has535

::::
been

:::::::
steadily

:::::::::
decreasing

::
by

:::::::
-0.50 %

:::
per

:::::
year

:::::::
between

::::
2002

:::
to

:::::
2018.

:::
No

:::::
study

:::::::::
examining

:::
fire

:::::::::
emissions

:::
for

:::
the

::::
time

::::::
period

::::::::
presented

::::
here

:::::::
currently

:::::
exists

::
to
::::
our

:::::::::
knowledge.

:

6 Conclusions

In this study, we presented an approach to compare TROPOMI-derived wildfire CO emissions with those from bottom-up and

top-down emission inventories and emission prediction systems. Also highlighted is the importance of hotspots. When these540

are obscured, fire emissions cannot be estimated correctly with neither top-down or bottom-up that both rely on MODIS or

VIIRS derived fire products. The directly-derived TROPOMI emission estimates are not impacted by this and have been used

here to verify and analyse this issue for individual fires. With TROPOMI CO observations, wildfire emissions can be estimated

from individual overpasses, resulting in roughly 5000 high quality fire emission estimates globally per year. The TROPOMI-

derived CO estimates have preciously been validated with aircraft derived emission rates (Stockwell et al., 2022); here, we545

further established and automated an estimation method and performed model sensitivity tests to verify the robustness and

uncertainties of the approach. Applying the same method to model VCDs, showed that the method is robust and is capable to

derive the model input emissions when appropriate quality filters are applied. The success rate depends primarily on favorable

meteorological conditions, including stable atmospheric conditions, low cloud and smoke cover, and no significant wind shear

in the area, as well as the proximity of other nearby sources (especially upwind). Applying appropriate filtering for unfavorable550

wind conditions is the key for this method to work well and to reduce uncertainties of the emission estimates. The sensitivity

tests show that the methods uncertainty is approximately 42 %.
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Figure 9. Total CO emissions from fires between 2003 and 2021 for different geographical regions (as defined by Giglio et al. (2003))

derived from
:::::::
FINN1.5,

:::::::
FINN2.5,

:::::
GFED

::::
v4.1,

:
GFAS

::
and

::::::::::::::::
“TROPOMI-GFAS”,

:::::
which

:::::::
combines

:::::
GFAS FRP and TROPOMI-MODIS ECCO

(as defined in Table 2
:
3).

Further the TROPOMI-derived CO emissions have been used to obtain emission coefficients with respect to MODIS FRP.

This allows a method to determine a global CO emission budget to allow a comparison to other fire emission inventories,
:::
and555

::
to determine total emissions and changes over time. TROPOMI alone cannot be used to study total emissions, as

:::::::
because too

many fires are missed due to unfavorable meteorological conditions and the the
::::::
satellite

::
is
:::::::
limited

::
to

:
a
:
single daily overpass

at 1:30pm. The TROPOMI derived CO emissions have generally a good
::
an

::::::
average

:
correlation with FRP (R∼ 0.5− 0.6)

for most biomes. Depending on the biome different ECs have been derivedwith biome type 1 (broadleaved evergreen trees)

showing the highest CO emission relative to FRP. In this study we used the GLC2000 biome classification, and showed that560

there are large differences of EC for different types of forests. Based on this analysis we would not recommend a more sim-

plified classification (e.g. for forests we determined ECs between 64 and 120
::
95

:
g/MJ), if anything the biomes could benefit

from further distinction. We also found that the FRP is strongly influenced by thick smoke which can influence these types of

top-down emission estimates, and leads to an underestimate of fire emissions for fires with thick smoke (typically large fires).

This can explain to some extend the outliers in the CO-FRP scatter plots. Differences between flaming and smoldering are also565
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Figure 10.
::
To

:::::::
illustrate

:::
the

:::::
trend

::
of

::::
CO

:::
fire

::::::::
emissions

:::
the

::::
sum

::
of
:::

all
::
5
:::::::::
inventories

::::::::
(FINN1.5,

::::::::
FINN2.5,

:::::
GFED

:::::
v4.1,

:::::
GFAS

::::
and

:::::::::::::::
“TROPOMI-GFAS”)

::
is

:::::
shown

:::
for

::
the

:::::::
different

::::::::::
geographical

:::::
regions

:::::::
between

::::
2003

:::
and

::::
2021.

expected and will influence the correlation between the CO emissions and FRP, however, it is very difficult to determine the

burning stage especially on a global scale for thousands of fires. When estimating the ECs the smoldering and flaming stages

are neglected, though we would expect that for a monthly or annual budget over different regions the effect will average out.

There is much uncertainty in this method as a single EC is assumed for each biome that is based on emission estimates at

around 1:30pm local time. In the near future geostationary satellites can be used to study total daily emissions and the ECs at570

different times of day.

In the comparison to GFFEPS, we identified the limitation to hotspot detection. GFFEPS relies on the satellite detected

hotspots, these feed directly into the estimate of burned area which is used to derive the bottom-up emissions. Thus, if not

all hotspots are captured the emissions will be underestimated. This discrepancy can be corrected for, but further analysis is575

needed how exactly this can be accounted for.

The
:::::::::
comparison

::
of TROPOMI-FRP derived top-down emissions have been compared to other inventories . This comparison

shows that there are large discrepancies between different inventories, and highlights that fire emission inventories have large

uncertainties. GFFEPS tends to be closest to TROPOMI-FRE with the exception of some regions (
::::
with

:::::
other

:::::::::
inventories

::::::
reveals580

::::::::
significant

:::::::::
disparities

::::
and

::::::::
highlights

::::
the

:::::::::
substantial

:::::::::::
uncertainties

:::::::::
associated

::::
with

:::
fire

::::::::
emission

::::::::
estimates.

::::::::
Notably,

::::::::
GFFEPS

:::::::
generally

:::::::
exhibits

:::
the

::::::
closest

:::::::::
agreement

::::
with

::::::::::::::
TROPOMI-FRE,

:::::::
although

:::::
some

:::::::::
exceptions

:::
are

::::::
evident

::
in

::::::
regions

:::::
such

::
as SHSA,
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Table 3.
:::::
Trends

::
of

:::
CO

::::::::
emissions

:::
from

::::
wild

::::
fires

::
(in

::::
units

::
of

:::::
Mt/yr)

::::::
between

::::
2003

:::
and

::::
2021

:::
for

:
5
:::::::
different

::
fire

:::::::
emission

::::::::
inventories

::::::::
discussed

:
in
:::
this

:::::
study.

::::
Bold

:::::::
numbers

::::::
indicate

:
a
::::::::
significant

::::
trend

::::
(with

::::::
p_value

::::::
smaller

::::
than

::::
0.05),

:::
for

::
all

:::::
others

:::
the

::::
trend

:
is
:::
not

:::::::::
significant.

:
A
:::::::
negative

:::::
number

::::::::::
demonstrates

::::::::
declining

:::::::
emissions

:::
and

:
a
:::::::

positive
::::::
number

::::::
indicates

::::::::
increasing

::::::::
emissions.

::::
Note

:::
hat

:::
the

::::::::
uncertainty

::
of

::::
these

:::::
trends

:::
are

::::
large,

:::::
which

:::
can

::
be

::::
seen

::
by

:::
the

::::
range

::
of

:::::
values

:::::
across

:::
the

::::::
different

:::::::
emission

:::::::::
inventories.

:::::
Region

: :::::::::::::
TROPOMI-GFAS

: :::::
GFED

:::::
GFAS

:::::::
FINN1.5

:::::::
FINN2.5

::::
global

::
-5.3

::
0.4

:::
-5.1

:::
-8.2

:::
-8.7

::::::
BONA

::
0.0

:::
11.9

:::
-0.1

:::
-0.1

:::
0.3

::::
TENA

::
0.2

::
4.1

::
0.2

:::
0.0

:::
0.4

::::::
CEAM

::
-0.1

:::
-1.2

:::
0.0

::
0.0

:::
-0.5

::::
NHSA

::
0.0

::
0.1

:::
0.0

::
0.0

:::
-0.1

::::
SHSA

::
-2.1

:::
-7.3

:::
-2.2

:::
-3.0

:::
-6.3

::::
EURO

::
0.0

:::
-0.2

:::
0.0

::
0.0

:::
-0.1

::::
MIDE

::
0.1

::
0.1

::
0.2

:::
0.0

:::
0.0

::::
NHAF

::
-1.3

:::
-7.6

:::
-1.0

:::
-0.6

:::
0.5

::::
SHAF

::
-1.1

:::
-5.6

:::
-0.9

:::
-1.0

:::
0.8

::::
BOAS

::
0.2

:::
19.8

:::
0.1

:::
-0.8

:::
-0.2

::::
CEAS

::
-0.3

:::
-3.3

:::
-0.4

:::
-0.6

:::
-0.7

::::
SEAS

::
-0.5

:::
-1.7

:::
-0.5

:::
-1.2

:::
-1.4

::::
EQAS

::
-0.2

:::
-6.7

:::
-0.4

:::
-0.8

:::
-1.6

::::
AUST

::
-0.1

::
1.6

::
0.0

:::
0.1

:::
0.1

NHSA). All these estimates are likely impacted by missing
:
,
::::::
SEAS,

:::
and

::::::
AUST.

:::::
These

:::::::::
deviations

:::
are

:::::
likely

:::::::::
influenced

:::
by

:::
the

:::::::
omission

::
of

:
small fires, missing hotspotsand an underestimatation of FRPthat ultimtely might lead to an underestimate of the

::
the

:::::::
absence

::
of

::::::::
detected

:::::::
hotspots,

::::
and

::
an

:::::::::::::
underestimation

:::
of

::::
FRP,

::::::::
ultimately

:::::::::::
contributing

::
to

::
an

::::::
overall

::::::::::::::
underestimation

::
of total585

emissions. Over the last 20 years (lifetime of MODIS ),

:::::::::
Examining

:::
the

:::::
trends

::::
over

:::
the

::::
past

::::
two

::::::
decades

:::::::::::::
(corresponding

::
to

:::
the

:::::::
MODIS

::::::::
lifetime),

::
it

:::::::
appears

:::
that

:
global CO wildfire

emissions seem to decrease. This trend is due to the reduction of wildfire CO from the regions with the largest emissions (SHSA,

NHAF, SHAF), other regions (TENA, AUST, possibly BOAS) show increased wildfire CO emissions during this time period.590

::::
have,

:::
on

:::
the

::::::
whole,

:::::::::
decreased.

::::
This

::::::
decline

::
is

::::::::::
consistently

::::::::
observed

:::::
across

:::
all

:::::::::
inventories

::::::
utilized

:::
in

:::
this

:::::
study.

::::::::
However,

::::
this

::::
trend

::
is

:::::
highly

:::::::::::::
region-specific,

::::
with

:::
the

::::
most

:::::::::
substantial

:::::::::
reductions

::::::::
occurring

::
in

::::::
SHSA,

::::::
SHAF,

:::::::
NHAF,

:::
and

::::::
CEAS.

::::::::::
Conversely,

::::::
wildfire

:::::::::
emissions

::
in

::::::
TENA

:::
are

:::
on

:::
the

::::
rise.

::::
For

::
all

:::::
other

:::::::
regions,

:::
the

:::::::::
variability

::::::
within

:::
the

::::
past

::::
two

:::::::
decades

:::
has

::::
been

::::
too

:::::::::
substantial

::
to

::::::::
determine

:
a
::::::::::
statistically

:::::::::
significant

:::::
trend.

:

595
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Overall, directly-derived TROPOMI CO emissions and CO VCD enhancements are a great tool for validation of fire emission

models, e.g. GFFEPS. With this is was possible to pinpoint several issues, which either have been addressed or will be addressed

in future versions of GFFEPS, such as the obstructed hotspots. Future geostationary
:::::::::::
Geostationary

:
satellite sensors, such as

TEMPO (covering North America),
::::::::::::
Geostationary

:::::::::::
Environment

::::::::::
Monitoring

:::::::::::
Spectrometer

::::::::
(GEMS),

:
or Sentinel-4 (covering

Europe and Africa) will help to validate the diurnal pattern of emissions. WilfireSat (Johnston et al., 2020) will help with the600

FRP and hotspot count in the afternoon during the peak of the fire activity.
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Figure A1.
::::::
Polygons

::::
used

::
to

:::::
define

:::
the

:::::::::
geographical

::::::
region,

::::
these

:::
are

::::
based

:::
on

::
the

::::::
GFED

:::::
regions

::::
from

:::::::::::::::
Giglio et al. (2003).

:::::::::::
Abbreviations

::
are

::
as

:::::::
follows:

:::::
boreal

::::
North

:::::::
America

:::::::
(BONA),

::::::::
temperate

::::
North

:::::::
America

:::::::
(TENA),

::::::
Central

::::::
America

::::::::
(CEAM),

:::::::
Northern

:::::::::
Hemisphere

:::::
South

::::::
America

:::::::
(NHSA),

::::::::
Southern

:::::::::
Hemisphere

:::::
South

:::::::
America

:::::::
(SHSA),

::::::
Europe

:::::::
(EURO),

::::::
Middle

::::
East

:::::::
(MIDE),

:::::::
Northern

:::::::::
Hemisphere

::::::
Africa

:::::::
(NHAF),

::::::
Southern

:::::::::
Hemisphere

:::::
Africa

:::::::
(SHAF),

:::::
boreal

::::
Asia

::::::
(BOAS),

::::::
Central

::::
Asia

::::::
(CEAS),

::::::::
Southeast

:::
Asia

:::::::
(SEAS),

:::::::
equatorial

::::
Asia

:::::::
(EQAS),

:::
and

:::::::
Australia

:::
and

::::
New

::::::
Zealand

::::::
(AUST).

Appendix A: GLC2000
:::::::
Regions

::::
and

::::::
Biomes

A1
:::::::::
GLC2000

Appendix B:
::::::::::
TROPOMI

::::::::
GFFEPS

::::::::::
comparison

B1605
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Figure A2. GLC2000 biomes, see European Commission (2003)
:::::::::::::::::::::::
Bartholomé and Belward (2005).

:::
The

:::::::
definition

:
1
::
to
:::
18

::
can

:::
be

::::
found

::
in

:::
the

:::
table

:::::
below

:::::
(Table

::::
A1).
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Table A1.
:::::::
GLC2000

::::::
biomes,

:::
see

::::::::::::::::::::::::
Bartholomé and Belward (2005),

:::
the

:::::
extend

::
of

::
the

::::::
biomes

::
is

:::
also

:::::::
included

:
in
:::

the
::::
table

::
in

:::
km2

::
as
::::
well

::
as

::
in

::::::::
percentage

::::::
relative

:
to
:::

the
::::
total

::::
Earth

::::::
surface

::::::::
(assuming

:::
510

::::::
million

::::
km2).

::::
Note

:::
that

:::
the

::::::::
GLC2000

:::::
dataset

::::
does

:::
not

::::
cover

:::
the

::::
entire

:::::
globe,

::
it

:::::
covers

::
the

::::
areas

:::::::
between

::::
90◦N

:::
and

:::::
56◦S,

:::::::
therefore

:::
the

:::
area

::
of

::::
water

:::
and

:::::
snow

:::
and

::
ice

:::
are

:::
only

:::::
taking

:::::::
anything

::::
north

::
of
::::
56◦S

::::
into

::::::
account.

Number Description
:::
area

:::::
(km2)

:::
area

:::
(%)

1 Tree Cover, broadleaved, evergreen LCCS >15
::::
1.2e7

: ::
2.4

:

2 Tree Cover, broadleaved, deciduous, closed
::::
6.5e6

: ::
1.3

3 Tree Cover, broadleaved, deciduous, open
::::
3.7e6

: ::
0.7

:

4 Tree Cover, needle-leaved, evergreen
::::
9.1e6

: ::
1.8

:

5 Tree Cover, needle-leaved, deciduous
::::
3.8e6

::
0.7

:

6 Tree Cover, mixed leaf type
::::
3.2e6

::
0.6

:

7 Tree Cover, regularly flooded, fresh water
::::
5.7e5

::
0.1

:

8 Tree Cover, regularly flooded, saline water
::::
1.1e5

: :::
0.02

9 Mosaic: Tree cover / Other natural vegetation
::::
2.4e6

::
0.5

10 Tree Cover, burnt
::::
3.0e5

:::
0.05

11 Shrub Cover, closed-open, evergreen
::::
2.1e6

::
0.4

12 Shrub Cover, closed-open, deciduous
::::
1.1e7

: ::
2.2

13 Herbaceous Cover, closed-open
::::
1.3e7

::
2.6

14 Sparse Herbaceous or sparse Shrub Cover
::::
1.3e7

::
2.7

15 Regularly flooded Shrub and/or Herbaceous Cover
::::
1.7e6

: ::
0.3

16 Cultivated and managed areas
::::
1.7e7

::
3.4

17 Mosaic: Cropland / Tree Cover / Other natural vegetation
::::
3.5e6

: ::
0.7

18 Mosaic: Cropland / Shrub or Grass Cover
::::
3.1e6

::
0.6

19 Bare Areas
::::
2.0e7

::
3.9

20 Water Bodies (natural & artificial)
::::
3.3e8

::::
65.4*

21 Snow and Ice (natural & artificial)
::::
2.8e5

::::
0.6**

22 Artificial surfaces and associated areas
::::
2.8e5

:::
0.05

*Does not include water south of 56◦S. ** Does not include Antarctica.
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Table B1.
::::::::::::::
TROPOMI-derived

:::
CO

:::::::
emissions

:::::
versus

:::::::
GFFEPS

:::
CO

::::::::
emissions

::
for

:::::::
different

:::::
regions

::::::
around

::
the

:::::
globe.

:::::
Region

: ::::
Slope

: :
R
: :::::

RMSE
: :::::

sample
::::
size

::::::
BONA

:::
0.31

::::
0.36

::::
1976

:::
183

::::
TENA

:::
0.42

::::
0.51

::::
1074

:
45

::::::
CEAM

:::
1.80

::::
0.59

:::
401

:
22

::::
NHSA

:::
0.82

::::
0.74

:::
249

:
58

::::
SHSA

:::
0.42

::::
0.33

:::
844

:::
789

::::
EURO

:::
0.20

::::
0.44

:::
215

:
7

::::
MIDE

::::
-0.60

::::
-0.90

:::
300

:
3

::::
NHAF

:::
0.19

::::
0.31

:::
446

:::
557

::::
SHAF

:::
0.14

::::
0.31

:::
441

:::
918

::::
BOAS

:::
0.35

::::
0.56

:::
895

:::
403

::::
CEAS

:::
0.22

::::
0.29

:::
395

:::
121

::::
SEAS

:::
0.33

::::
0.07

:::
579

:::
203

::::
EQAS

:::
0.49

::::
0.40

:::
928

:
58

::::
AUST

:::
0.10

::::
0.09

::::
2986

:::
672

Table B2.
::::::::::::::
TROPOMI-derived

:::
CO

:::::::
emissions

:::::
versus

:::::::
GFFEPS

:::
CO

::::::::
emissions

::
for

::::::::
GLC2000

:::::
biomes

::::
(see

::::
Table

:::
A1

:::::
around

:::
the

:::::
globe).

:::
Fuel

::::
Type

: ::::
Slope

: :
R
: :::::

RMSE
: :::::

sample
::::
size

1
:::
0.14

:::
0.02

: ::::
2794

:::
706

2
:::
0.14

::::
0.23

::
866

:::
356

3
:::
0.25

: :::
0.41

: :::
885

:::
768

4
:::
0.47

: :::
0.44

: :::
1227

: :::
233

5
:::
0.34

: :::
0.54

: :::
1008

: :::
248

6
:::
0.32

: :::
0.77

: :::
1988

: :
36

:
9
: :::

0.25
: :::

0.59
: :::

633
:
78

::
11

:::
0.11

: :::
0.07

: :::
1545

: :::
150

::
12

:::
0.40

: :::
0.53

: :::
444

:::
519

::
13

:::
0.25

: :::
0.34

: :::
640

:::
193

::
14

:::
0.61

: :::
0.35

: :::
395

:::
172

::
15

:::
0.25

: :::
0.37

: :::
564

:
85

::
16

:::
0.46

: :::
0.34

: :::
199

:::
131

::
17

:::
0.32

: :::
0.40

: :::
806

:::
166

::
18

:::
0.12

: :::
0.73

: :::
1342

: :::
107
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Figure C1. Same as Table 2
::::::::::::
TROPOMI-FRE

::::::::
emissions

:::::::
between

::::
2003

:::
and

::::
2021

:::::
based

::
on

:::::::
different

:::::::
emission

:::::::::
coefficients

::::::::
estimated

::::
from

::::
single

:::::
years

:::::::::
(2019-2021, but for 2019 only

:::
see

:::::
Tables

:::
C1,

:::
C2,

:::
and

::::
C3),

:::
and

::::::::
combined

::::
years

:::::::::
(2019-2021,

:::
see

:::::
Table

:::
??). Note 2019 was he

year of
:::::
While

:::::::
individual

::::::
ECCO ::

are
:::::::
changing

:::::
overall

:
the

:::::
change

::
is
::::
small

:::::::::
particularly

::
in

::::
using

:::::::::
TROPOMI

::::::
emission

:::::::
estimates

::::
from

:::::
2019,

::::
2020

:::
and “black summer

:::::::
combined” fires

::::::::::
(2019-2021).

:::
The

::::::
ECCO in Australia that burned mostly type 1 vegetation

::::
2021

::
is

:::::::::
significantly

:::::
lower

::
for

::::::
biomes

:::
1-3, those were extreme fires with very thick smoke

::::::
leading

::
to

::::
lower

:::::::
emission

:::::::
estimates

::
of
:::::::::::

approximately
:::::
60 Mt

::::
(CO)

:::::::
globally

:::::::
(∼ 20%).

Appendix C: ECCO for different years

Appendix D: CO emissions over the past two decades

Same as Fig. 10 but for GFED v4. Same as Fig. 10 but for GFAS CO.

Same as Fig. 10 but for FINNv1.5.

Same as Fig. 10 but for FINN v2.5.610
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Table C1.
::::
Same

::
as

::::
Table

::
2,
:::
but

:::
for

::::
2019

::::
only.

::::
Note

::::
2019

:::
was

:::
the

::::
year

::
of

::
the

::::::
“black

:::::::
summer”

:::
fires

::
in
::::::::

Australia
:::
that

:::::
burned

::::::
mostly

:::
type

::
1

::::::::
vegetation,

::::
those

::::
were

::::::
extreme

::::
fires

::::
with

:::
very

::::
thick

::::::
smoke.

Number Description ECCO (g/MJ) R sample size Rank

1 Tree Cover, broadleaved, evergreen 150 0.55 498 1

2 Tree Cover, broadleaved, deciduous, closed 100 0.61 194 4

3 Tree Cover, broadleaved, deciduous, open 53 0.71 357 2

4 Tree Cover, needle-leaved, evergreen 56 0.47 183 8

5 Tree Cover, needle-leaved, deciduous 111 0.47 220 10

6 Tree Cover, mixed leaf type 67 0.65 31 15

9 Mosaic: Tree cover / Other natural vegetation 72 0.82 44 12

11 Shrub Cover, closed-open, evergreen 100 0.78 89 13

12 Shrub Cover, closed-open, deciduous 28 0.37 220 3

13 Herbaceous Cover, closed-open 58 0.5 82 6

14 Sparse Herbaceous or sparse Shrub Cover 31 0.28 103 9

15 Regularly flooded Shrub and/or Herbaceous Cover 67 0.54 64 14

16 Cultivated and managed areas 28 0.36 62 5

17 Mosaic: Cropland / Tree Cover / Other natural vegetation 58 0.43 83 7

18 Mosaic: Cropland / Shrub or Grass Cover 69 0.46 60 11
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Table C2. Same as Table 2, but for 2020 only.

Number Description ECCO (g/MJ) R sample size Rank

1 Tree Cover, broadleaved, evergreen 101 0.71 459 1

2 Tree Cover, broadleaved, deciduous, closed 93 0.57 225 4

3 Tree Cover, broadleaved, deciduous, open 79 0.42 346 2

4 Tree Cover, needle-leaved, evergreen 61 0.52 151 8

5 Tree Cover, needle-leaved, deciduous 90 0.43 294 10

6 Tree Cover, mixed leaf type 47 0.28 5 15

9 Mosaic: Tree cover / Other natural vegetation 67 0.22 47 12

11 Shrub Cover, closed-open, evergreen 75 0.26 103 13

12 Shrub Cover, closed-open, deciduous 43 0.76 227 3

13 Herbaceous Cover, closed-open 45 0.30 139 6

14 Sparse Herbaceous or sparse Shrub Cover 56 0.38 30 9

15 Regularly flooded Shrub and/or Herbaceous Cover 124 0.63 89 14

16 Cultivated and managed areas 38 0.67 146 5

17 Mosaic: Cropland / Tree Cover / Other natural vegetation 46 0.28 58 7

18 Mosaic: Cropland / Shrub or Grass Cover 50 0.34 56 11

Table C3. Same as Table 2, but for 2021 only.

Number Description ECCO (g/MJ) R sample size Rank

1 Tree Cover, broadleaved, evergreen 59 0.52 507 1

2 Tree Cover, broadleaved, deciduous, closed 42 0.30 252 4

3 Tree Cover, broadleaved, deciduous, open 28 0.22 439 2

4 Tree Cover, needle-leaved, evergreen 55 0.49 340 8

5 Tree Cover, needle-leaved, deciduous 92 0.30 915 10

6 Tree Cover, mixed leaf type 45 0.29 25 15

9 Mosaic: Tree cover / Other natural vegetation 65 0.69 75 12

11 Shrub Cover, closed-open, evergreen 123 0.53 101 13

12 Shrub Cover, closed-open, deciduous 34 0.43 295 3

13 Herbaceous Cover, closed-open 36 0.50 173 6

14 Sparse Herbaceous or sparse Shrub Cover 78 0.52 49 9

15 Regularly flooded Shrub and/or Herbaceous Cover 52 0.49 56 14

16 Cultivated and managed areas 94 0.60 130 5

17 Mosaic: Cropland / Tree Cover / Other natural vegetation 85 0.34 68 7

18 Mosaic: Cropland / Shrub or Grass Cover 63 0.88 87 11
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Data availability. TROPOMI data can be downloaded from https://s5phub.copernicus.eu. The MODIS fire product is publicly available

for download at: http://modis-fire.umd.edu/index.php.
:::
The

::::::
location

::
of

::::
fires

:::
and

:::
the

::::::::
TROPOMI

:::
CO

:::::::
emission

:::::::
estimates

::::
can

::
be

:::::
found

::::
here:

:::::::::::::::::::::::::::::::::::::::::::::::
https://collaboration.cmc.ec.gc.ca/cmc/arqi/Griffin_et_al_fireco/.
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