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Abstract. Proxy system models (PSMs) are an essential component of paleoclimate data assimilation and for testing climate

field reconstruction methods. Generally, current statistical PSMs consider the noise in the output (proxy) variable only, and

ignore the noise in the input (environmental) variables. This problem is exacerbated when there are several input variables.

Here we develop a new PSM, the Measurement Error Proxy System Model (MEPSM), which includes noise in all variables,

including noise auto- and cross-correlation. The MEPSM is calibrated using a quasi-Bayesian solution, which leverages Gaus-5

sian conjugacy to produce a fast solution. Another advantage of MEPSM is that the prior can be used to stabilize the solution

between an informative prior (e.g. with a non-zero mean) and the maximum likelihood solution. MEPSM is illustrated by

calibrating a proxy model for δ18Ocoral with multiple inputs (marine temperature and salinity), including noise in all variables.

MEPSM is applicable to many different climate proxies, and will improve our understanding of the effects of predictor noise

on PSMs, data assimilation, and climate reconstruction.10

1 Introduction

Proxy system models (PSMs) describe how biological, geological or chemical archives are imprinted with environmental

signals (Evans et al., 2013; Dee, 2015). They are an essential component of paleoclimate data assimilation (Steiger et al., 2018;

Tardif et al., 2019; Sanchez et al., 2021; King et al., 2023), and of pseudoproxy experiments e.g., testing the fidelity of climate

reconstruction methods (Loope et al., 2020a, b). For PSMs, input variables include one or more environmental variables (e.g.15

temperature, water salinity, rainfall), and output variables include variables which can be read from natural archives e.g. the

abundance of trace elements or isotopes in carbonate archives. The processes between input and outputs may be linear or

nonlinear fitted relationships (statistical PSMs), or more detailed physiochemical models (physiochemical PSMs). Statistical

PSMs can be frequentist (i.e. the PSM is calibrated using ordinary least squares, OLS) or Bayesian (PSMs that make use of

Bayes’ Rule). Current paleoclimate data assimilation projects often use frequentist PSMs (e.g. Steiger et al., 2018; Tardif et al.,20

2019) (see also example 1 in King et al., 2023), but some paleodata assimilation projects have begun to incorporate Bayesian

PSMs (King et al., 2023). Current Bayesian PSMs (e.g. Tierney and Tingley, 2014, 2018; Tierney et al., 2019; Malevich et al.,

2019) typically have the form:

ζ ∼N (b0 + f(x, Θ), σ2
ζ ) (1)

that is, ζ is sampled from the Normal distribution N (µ,σ2), where b0 is the regression intercept, x and ζ are the input and25

output variables respectively (note x is a row vector of predictor matrix X), and Θ is a set of parameters. These Bayesian
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models are based on Bayesian OLS rather than Bayesian TLS (total least squares). In comparison, an errors-in-variables (EIV)

model (containing error in both x and y) may have the form:

y ∼N (b0 + f(x, B), df(x, B)′Σaadf(x, B) + ε2
y) (2)

where df(x,B) is the derivative of f(x,B) for each observation vector [y x], the prime symbol (′) is the tranpose operator, Σaa30

is the covariance matrix of the noise associated with x = x∗+a, and x∗ denotes the part of x that is unobservable. Appendix

1 contains further information about Eq. (2). The term measurement error is used here generally to describe any uncertainty

associated with the value of the predictors and the response variable, which could include both measurement uncertainty (e.g.

from a thermometer), as well as methodological uncertainty (from the method used to “combine" several measurements, which

may be spatially and temporally apart). The model in Eq. (2) is not identifiable, meaning the parameters cannot be uniquely35

determined without additional information, such as information about Σaa. A full Bayesian solution to the problem may also

require reformulating the model in terms of a subspace of [Y X], see e.g., Florens et al. (1974). The focus of this paper is on

a quasi-Bayesian solution to Eq. (2), which leverages Gaussian conjugacy instead of a Markov Chain Monte Carlo (MCMC)

solution.

In this paper, EIV and WLS (weighted least squares) refer to general approaches. York (1966, 1968) introduced a root-finding40

solution for one-predictor WLS regression. Ludwig and Titterington (1994) presented a maximum likelihood (ML) solution

for a straight line in 3-dimensional space, with heterogenous noise in all variables. Schneider (2001) briefly discussed the

multivariate method of total least squares, which assumes homogenous and identically-distributed noise for both predictor and

response fields. Hannart et al. (2014) introduced a ML algorithm for weighted TLS (WTLS), that accounts for heterogeneity

and temporal autocorrelation in the predictor noise and the response noise, but lacks noise cross-correlation. Also ML solutions,45

by their very nature, don’t incorporate prior information about the regression coefficients. This study exapands the model of

Hannart et al. (2014), to include both prior information and generalized noise (auto- and cross-correlation within and between

the noise series), in a Measurement Error Proxy System Model (MEPSM). The MEPSM is formulated in Sect. 2.1, and steps

for practical implementation are given in Sect. 2.2. MEPSM is applied to a real example in Sect. 3.
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Table 1. Notation used.

Symbol Definition

A n× p matrix of predictor noise, p predictors with n time points

B (p +1)-length vector of regression weights

e n-length vector of noise, Y −XB

Id Identity matrix of rank d

Q n× (p +1) matrix of noise for all variables, Q = [V A]

R n×n auto- or cross-correlation matrix

Σ Covariance matrix

V n-length vector of response noise, V = Y −Y ∗

W n×n weight matrix

X n× (p or p +1) matrix, p predictors with n time points, may include an intercept term

Y n-length response vector

Z n× (p +1) matrix, Z = [Y X]

Ω n×n lag-covariance matrix of noise

2 Methods50

2.1 MEPSM

The general EIV model can be expressed as:

zt = z∗t + qt (3a)

z∗t = [y∗t x∗t ] (3b)

qt = [vt at] (3c)55

y∗t = b0 + x∗t B∗+ϵt (3d)

where zt are the observed data, z∗t are unobserved values underlying zt, qt is a row vector of noise matrix Q = [V A], B∗

is a vector of regression coefficients, and ϵt is the equation error. Note that here the superscript star has two uses: generally it

denotes the part of a variable which is unobservable, but for x∗ and B∗ it also denotes vectors (or arrays) without an intercept

term. Further, vector B may be thought of as unobserved because it is calculated not measured, so the main difference between60

B and B∗ is the exclusion of an intercept coefficient in B∗ i.e. B = [b0 B∗]′. From Eq. (3), the relevant covariance matrices

are:

Σz∗z∗ =


 σ2

y∗y∗ Σy∗X∗

ΣX∗y∗ ΣX∗X∗


 , ΣQ =


ΩV 0

0 ΣA


 , and (4)
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ΣA =




ΩA1 ΩA1A2 . . . ΩA1Ap

ΩA2A1 ΩA2 . . . ΩA2Ap

...
...

. . .
...

ΩApA1 ΩApA2 . . . ΩAp




, (5)

where e.g. ΣQ means the covariance matrix of vec(Q), while ΣQQ means the covariance matrix of Q. The operation vec(Q)65

means to column stack the matrix Q (Henderson and Searle, 1979). The matrix Σz∗z∗ is assumed to be homogenous in

time. The matrices Ω are n×n matrices that describe e.g. the temporal autocovariance of the error variable Ai (ΩAi
), and

cross-covariance with the error variable Aj (ΩAiAj
). Unlike the algorithm in Hannart et al. (2014), I do not assume that the

off-diagonal ΩAiAj are 0n×n matrices. Also note that in this paper ΩV = ΣV . More will be said about ΣQ in Sect. 3.1.

In solving the general EIV model, the equation error ϵt (Eq. 3d) is often ignored as being separate from vt. An exception is70

in Fuller (1987) in which ϵt is estimated by keeping the predictor noise within p× p matrices Σatat
(which is like a special

case of ΣA). I also ignore the equation error, so the model in Eq. 3 can be re-expressed:




Z11

Z21

...

Zn1




=




1 x1

1 x2

...

1 xn





 b0

B∗


 +

[
In − (B∗ ′⊗ In)

]

 V

vec(A)


 (6)

where V ∼N (0n, ΩV ), vec(A)∼N (0n·p, ΣA), and here xt = x∗t + at. The response variable is the first column of Z,

denoted as Z1 or more generally as Y . Note also the two possible definitions of response noise for the model: V = Y −b0−75

X∗B∗ and e = Y −XB (where X includes an intercept term). The difference is that:

V = Y −XB+AB∗ = e+AB∗ (7)

(again X includes a column of ones for the regression intercept).

From e = V −AB∗, the covariance matrix of model prediction can be expressed as:

W = ΩV + (B∗ ′⊗ In)ΣA(B∗⊗In) (8)80

Different solutions to the general model exist, including a Generalized Least Squares (GLS) estimator (Fuller, 1990),

Weighted Total Least Squares (WTLS) (Amiri-Simkooei and Jazaeri, 2012), and a maximum a posterior (MAP) estimator

(Fang, 2017). The latter method is partly based on GLS, because it uses the formulation (in my notation):

Bgls =
(
X∗

′
Ω−1

V X∗
)−1 (

X∗
′
Ω−1

V Y
)

, (9)

for the maximum likelihood component. In these studies, a current issue is the different ways of calculating ΣB . For ex-85

ample, Amiri-Simkooei and Jazaeri (2012) and Fang (2017) give the covariance matrix of ΣB as (in my notation): ΣB =
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σ2
(
X∗

′
W−1X∗

)−1

where σ2 = e′W−1 e
n−p , and ΣB =

(
X∗

′
Ω−1

V X∗
)−1

, respectively without theoretical derivation. See

Appendix B for further information on covariance notation.

Bayes’ rule states that the posterior density function p(Θ|D) is proportional to the product of the likelihood function L(Θ)

and the prior density function p(Θ):90

p(Θ|D) ∝ L(Θ)× p(Θ) (10)

Note that it does not matter if the likelihood function is a scaled distribution e.g., a normal density function multiplied by a

scalar (so it integrates to a number other than unity).

Assuming that the right-side distributions are Gaussian (or scaled Gaussian), then

N (B, ΣB) ∝ N (Bml, Σml
B )×N (B0, Σ0) (11)95

where ml refers to the maximum likelihood solution. The posteriorN (B, ΣB) integrates to unity, as expected. First I show an

example by using the GLS likelihood. Let the GLS likelihood be:

N (Bml, Σml
B ) = N

(
(X′Σ−1X)−1X′Σ−1 Y , (X′Σ−1X)−1

)
(12)

Now apply the gaussian multiplication identity:

N (C(Σml −1
B Bml + Σ−1

0 B0), C) ∝ N (Bml, Σml
B )×N (B0, Σ0) (13)100

where C =
(
Σml −1

B + Σ−1
0

)−1
. Thus the mean and varaince of p(Θ|D) are:

B = (X′Σ−1X + Σ−1
0 )−1(X′Σ−1 Y + Σ−1

0 B0) (14a)

ΣB = (X′Σ−1X + Σ−1
0 )−1 (14b)

The above solution is a simple example using the GLS likelihood. To obtain the solution for the EIV problem, the GLS

likelihood is replaced with the WTLS likelihood N (Bwtls, Σwtls
B ), where Bwtls and Σwtls

B are derived in Appendix C and D.105

Using the WTLS likelihood, simplifying the product Σml −1
B Bml (from Eq. 13) is no longer feasible, so instead we write the

mean and variance of p(Θ|D) simply as:

B =
(
Σwtls

B

−1
+ Σ−1

0

)−1 (
Σwtls

B

−1
Bwtls + Σ−1

0 B0

)
(15)

ΣB =
(
Σwtls

B

−1
+ Σ−1

0

)−1

. (16)

2.2 Implementation110

An application to calibrate a real PSM is provided in Sect. 3. Here general aspects of the solution and implementation are

discussed.

The predictor noise and response noise, A and V , can be estimated as:

A = −(B∗′⊗In)ΣA(Ip⊗W−1 e) (17)
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V = ΩV W−1 e (18)115

where e = Y −XB. Matrix A is needed for the calculation of both Bwtls and Σwtls
B , while V is needed to reestimate ΩV if

relevant (see next paragraph).

The n×n covariances matrices ΩAi
(or ΩAiAj

) and ΩV , ideally need information about the cross-correlation within A,

and autocorrelation of A and V . If the ACF (autocorrelation function) and CCF (cross-correlation function) are not available,

these can potentially be estimated using an iterative procedure. The procedure begins with vectors σ2
A and σ2

V , which are the120

heterescedastic error variances (the diagonals of ΣA and ΩV ).

1. Initialize ΣA = Diag(σA⊙σA) and ΩV = Diag(σV ⊙σV ), where ⊙ denotes Hadamard multiplication

2. Estimate the first posterior: N (B, ΣB), and the predictor and response noise: A and V (Eqs. 15-18)

3. Calculate the ACF (for A and V ) and the CCF (for A)

4. Estimate ΣA and ΩV as in Appendix E, and recalculate the posterior distribution.125

3 Application

3.1 A proxy system model, uncertainties, and the prior

A bivariate (i.e. two-predictor) PSM for coral δ18O is:

δ18Ocoral = b0 + b1SST + b2SSS (19)

where SST is sea surface temperature and SSS is sea surface salinity. Note that in the coral literature, the coefficients b1 and130

b2 are commonly referred to as a1 and a2, but here I use the former symbols for generality. This bivariate PSM has been used

in data assimilation (Sanchez et al., 2021) and Monte Carlo experiments (Thompson et al., 2022). The bivariate PSM can be

extended by rewriting it in the form of Eq. (6). The MEPSM requires estimates of the time-varying uncertainty of all variables,

and a prior distribution for B (see below). Here the time-varying uncertainties for the predictors are obtained from recent SST

and SSS products, that provide the complete uncertainty field ε2(x,y, t) i.e. the uncertainty variance for each grid cell, at each135

time point.

For ERSSTv5, for each grid cell and time point, the SST total uncertainty ε2
T (x,y, t) is the sum of the parametric

uncertainty and reconstruction uncertainty. These uncertainties are derived from a large reconstruction ensemble (Huang et al.,

2020). The parametric uncertainty is based on the difference between the ensemble average and each ensemble member,

given various internal parameters which affect SST uncertainty (including the uncertainty of the ship/buoy/float measurement).140

The reconstruction uncertainty is based on the difference between each ensemble member and a pseudo-observation dataset on

which the reconstruction method is trained e.g. OISST (Optimally Interpolated SST). Note that the calculation of reconstruction

uncertainty includes grid cells that have observational or no observational data, while the calculation of parametric uncertainty

includes only grid cells that have observational data.
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For HadEN4, the SSS total uncertainty ε2
S(x,y, t) is a combination of background uncertainty and observational uncertainty145

(Good et al., 2013). The observational uncertainty is obtained from previous studies, while the background uncertainty is the

uncertainty associated with a persistent-based forecast.

For δ18Ocoral, the main known uncertainty is the analytical uncertainty, which is ∼ 0.05 ‰ for δ18Ocoral (Osborne et al.,

2013). Time variation could be included by expressing the analytical uncertainty as a relative standard deviation of the mean

δ18O (the effect of this will be tested elsewhere). Other uncertainities, which are unknown at many sites, include the intra- and150

inter-colony noise (Sayani et al., 2019). Note also that detrending adds time-varying uncertainty, because the trend uncertainty

is larger at the ends of the time series (this is applicable to all detrended variables).

For MEPSM, the matrix ΣA can be initially constructed using Diag(σA⊙σA) where σ′A = [εT (site, ·), εS(site, ·)], site

refers to the grid cell of a particular site, and the (site, ·) notation means over all time points. In the SST and SSS products,

no information is given on the noise serial correlation, and no information exists on the noise cross-correlation between SST155

and SSS products. Seasonal peaks in the autocorrelation function (ACF) of SST noise could arise by e.g. seasonal changes in

shipping tracks, which would affect the parametric uncertainty. Cross-correlation between SST and SSS noise might arise from

sampling these variables at the same points within a particular grid cell (i.e. from the same ship), or due to seasonal variation in

shipping tracks. Future work should investigate the ACF and CCF (cross-correlation function) for the SST and SSS ensembles

(this is beyond the scope of the current paper). Finally, since the uncertainties in the predictors and response are fundamentally160

different, then ΣQ is assumed to be a block-diagonal matrix, with ΩV and ΣA on the block diagonal, and zero-filled blocks on

the block anti-diagonal (Eq. (4)).

For Bayesian methods, informative prior distributions are thought to be more useful than noninformative priors (Lemoine,

2019) e.g., when using a fully noninformative prior distribution the posterior distribution will be close to the maximum likeli-

hood distribution, which would make using the fully noninformative prior somewhat obselete.165

The prior distribution for B is obtained from previous values that were used in Monte Carlo PSM experiments (Thompson

et al., 2022; Watanbe and Pfeiffer, 2022). Those previous studies did not seek to calculate Bayesian posterior distributions, but

the values in those studies represent current beliefs about the coefficients and their uncertainty, and can be used as a prior. The

prior distribution obtained from those studies is:

p(B) = N (B0, Σ0) = N







b0

−0.22

0.27s


 ,




σ2
b0

0 0

0 0.022 0

0 0 0.152





 (20)170

where s = 0.97 is a scaling factor between δ18Oseawater (in VSMOW) and δ18Ocoral (in VPDB). The values of b1 =−0.22

and σ2
b1

= 0.022 are from Thompson et al. (2022) and Watanbe and Pfeiffer (2022) respectively. The value of s−1b2 = 0.27

‰ psu−1 originates from LeGrande and Schmidt (2006), and is an average ‰/salinity value for the Tropical Pacific Ocean.

Regional variations in this value will probably be revealed by new datasets (DeLong et al., 2022), but for the purpose of

this example of MEPSM, the value of 0.27 ‰ psu−1 is used. Thompson et al. (2022) considered two values for σ2
b2

i.e.175

σ2
b2

= {0.12, 0.22}, so for this example an "average" value is used (0.152). The value of the intercept b0, and it’s uncertainty
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σ2
b0

, are unknown in the sense that they are site-dependent values. A prior for these unknown values can be estimated by

using the other prior coefficients and SST and SSS data for a particular site. For a particular site, the prior value of b0 can be

calculated as:

b0 = µy −uX


−0.22

0.27s


 (21)180

where µX = [µX1 µX2 ] and µy are the mean values of the predictors and response. From ordinary least sqaures theory, the

diagonal elements of the covariance of B are typically given as:

σ2
bj

= σ2
e/RSSj (22)

where σ2
e is the error variance, and RSSj is the residual sum of squares after regressing Xj on X−j , where X−j is the matrix

X omitting column j. So for σ2
b0

:185

RSS0 = n−n2µ′X(X′−0X−0)−1µX (23)

where X−0 is the observed part of X not including an intercept term (different than X∗ which is the unobserved part of X).

Preliminary analysis showed that the prior value for σ2
b0 had a large influence on the posterior distribution of B, so σ2

b0
only

was scaled to be uninformative i.e. 103σ2
b0

.

3.2 Coral example190

Rock Islands (7.27°N, 134.38°E) is a site on the western barrier reef of Palau, western Pacific Ocean. A number of coral

cores were sampled from Rock Islands and surrounds, but the focus here is on one core labelled RI6, which is a monthly-

resolved record spanning 1899-2008. The core was sampled from a narrow-entrance lagoon, in shallow water (∼2 metres

depth). Osborne et al. (2013) compared the coral δ18O record with temperature data from the NCEP-NCAR Reanalysis (Kalnay

2006), and salinity data from LEGOS (Delcroix 2011). Using the raw (not detrended or deseasonalized) RI record from 1970-195

2008, and ordinary least squares, Osborne et al. (2013) regressed the coral δ18O against surface temperature and salinity,

producing the equation:

δ18Ocoral =−0.06SST + 0.43SSS− 18.70; (24)

see Supplementary Table A4 in Osborne et al. (2013). Osborne et al. attributed the small SST coefficient to the small seasonal

SST range at Palau (∼1.5◦C), presumably because the small SST range makes the data scatter with δ18O more spherical than200

ellipsoid. They did not directly compare their raw SSS coefficient with any other data. Hence the RI δ18O record was chosen

for this example, in order to further investigate the SST and SSS effects on coral δ18O at this site. In the following analysis the

main differences with the analysis of Osborne et al. (2013) are that here the SST and SSS data are extracted from ERSSTv5 and

HadEN4, because these products provide the uncertainty fields (Sect. 3.1). Secondly, the time period examined is from 1950-

2008. Also, for this study, all variables were detrended (using linear detrending and without removing the intercept), in order205
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to ensure stationarity in the mean. For all variables, the trends at this site were weak e.g. for δ18Ocoral the trend from 1950-2008

was -0.00135±0.004 ‰ per year. A Jupyter notebook with these prepocessing steps is available in the Supplementary Material.

Using this updated (and detrended) data, the OLS regression was recalculated as:

δ18Ocoral =−0.13SST + 0.42SSS− 16.25. (25)

Next MEPSM was applied to the same data, following the steps in Sect. 2.2. Except, for the application presented here, only210

ΣA was updated in step 4. ΩV was set as ΩV = Diag(σV ⊙σV ) throughout, because here σV is thought to be mostly analytical

noise, which should be approximately white (the uncertainty due to detrending is time-varying, but also white). For ΣA, for the

auto- and cross-correlation functions of the predictor noise, up to 100 lags (months) were retained to construct the submatrices

RAi and RAiAj (see Appendix E). Experiments with 50 and 150 lags showed little difference in the final posterior. In any

application of MEPSM, the user should consider the source of the predictor and response noise in constructing ΣA and ΩV (as215

in Sect. 3.1).

Figure 1 shows the prior and the first and final posterior distributions for the SST and SSS coefficients. The first posterior

distribution (dashed line) is obtained after step 2 (Sect. 2.2), while the final posterior is obtained after updating ΣA for auto-

and cross-correlation. The (final) mean SST and SSS coefficients are given in Figure 2: b1 =−0.25 ‰ °C−1 and b2 = 0.49 ‰

psu−1. Figure 2 shows the marginal plots of the 3-dimensional scatter plot (SST, SSS, δ18O), together with the prior and220

posterior regression lines. For Rock Island, the SST and SSS coefficients are both steeper for the final posterior, compared to

the OLS equation (Eq. 25).
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Figure 1. The prior and posterior distributions for the SST (b1) and SSS (b2) coefficients. The final posterior is wider than the first posterior,

because the final posterior accounts for auto- and cross-correlation in ΣA. In Figs. 1-3 the first posterior is the dashed line.
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Figure 2. The regression lines of the prior and posterior distributions. In 3d, these regression lines are the sides of a plane. Each shaded point

corresponds to a monthly value from 1950-2008.
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Figure 3. The effect of the regularization parameter λ on the SST (b1, top) and SSS (b2, bottom) coefficients. The left and right side of the

plots correspond to the prior distribution p(B) and likelihood distribution L(B) respectively.

Another advantage of Bayesian analysis, is that attaching a ridge parameter λ to the prior variances means that the method

can be used to regularize the solution, in a way that is different than traditional methods of regularization, such as prinicipal

components analysis, where components are retained by hard thresholding. Here, the ridge parameter λ is attached to the prior:225

p(B) =N







b0

−0.22

0.27s


 ,




103σ2
b0

0 0

0 λ0.022 0

0 0 λ0.152





 , (26)

and allowed to vary over the range 10−4 to 102. Figure 3 shows the effect of λ for both the first and final posterior. As λ

increases, then B moves from the prior distribution to the likelihood distribution. The difference between the solid and dashed

lines (for each coefficient) is because of the effect of adjusting ΣA for auto- and cross-correlation, which becomes less relevant

for small λ (λ < 10−2). More will be said about serial dependence in A below. This type of prior regularization will likely be230

useful for sites where the (p + 1)-dimensional scatter of data (predictors plus response) is more spherical than ellipsoid e.g. a

more spherical scatter of data could oocur at sites where the SST range is small. In practice, the value of λ could be estimated

using cross-validation methods.

Table 2 compares the regression coefficients (and variance) from 4 different solutions: a ML solution (Appendix F), the

WTLS method (Appendix C and D), and the MEPSM solution for the first and final posterior. The MLE (maximum likelihood235

estimation) solution and WTLS solution are basic implementations i.e. no prior, and no adjustment for autocorrelation or cross-
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Table 2. Regression parameters and their standard deviation, from 4 different solutions

Method b0 b1 b2 Equations

MLE -24.6±1.2 -0.169±0.014 0.696±0.027 Eq. (F3)

WTLS -24.6±1.8 -0.169±0.014 0.696±0.046 Eq. (C8) & (D3)

First Posterior -22.0±1.6 -0.189±0.011 0.635±0.042 Eq. (15) & (16)

Final Posterior -15.4±2.2 -0.248±0.017 0.492±0.061 Eq. (15) & (16)

correlation. The MLE and WTLS solutions are similar, with the variance being generally more conservative for WTLS, owing

either to assumptions in the two methods, or differences in method implementation e.g. optimization for MLE versus analytical

solution (with gaussian assumptions) for WTLS. For the first posterior of MEPSM, both the mean and the variance move away

from the WTLS solution, and towards a tight prior: in Fig. 3 the MEPSM first posterior (on the dashed line) is the same as240

the λ = 100 solution, and the basic WTLS solution is the same as λ≥ 102. For the final posterior (Table 2), the SST and SSS

coefficients change steepness: b1 becomes steeper, while b2 becomes a little less steep compared to the WTLS solution and

the first posterior (also seen on Fig. 3 as the difference between the solid and dashed lines). For both coefficients (Table 2),

the variance increases for the final posterior (relative to the first posterior), because the final posterior adjusts for the auto- and

cross-correlation in ΣA.245

Figure 4 shows the autocorrelation of the noise in each variable (A1 is the SST noise, and A2 is the SSS noise), for the

first and final posterior distribution. For the first posterior solution, the noise covariance in ΣA and ΩV is assumed to be

heteroscedastic but white. This assumption is clearly not true, because all variables appear to have seasonally-varying noise as

shown by their autocorrelation functions (Fig. 4, left column). However, when this seasonally-varying noise is included in ΣA

(but not in ΩV ), then the response noise V essentially becomes white, as all the seasonal dependence moves into the predictor250

noise (Fig. 4, right column). Whether or not the response noise V should have seasonal variation (see Sect. 3.1) requires expert

knowledge. This example is simply to illustrate the effect of including serially-correlated noise in a multipredictor model. The

implications of seasonally-varying noise for coral PSMs will be addressed in another paper, by the application of MEPSM to

a large coral database (Walter et al., 2022).

4 Conclusions255

MEPSM is a new type of proxy system model which incoporates both prior information and generalized noise in all variables,

such as cross-correlated noise within the predictor variables. In the work presented here, the response noise is assumed to be

independent of the predictor noise (the zero matrices in ΣQ), but cross-correlation between the predictor and response noise is

possible (if needed), by complete quadratic multiplication of ΣQ, rather than treating ΩV and ΣA separately, in Eq. 8. However,

for many PSMs the predictor and response noise are fundamentally different, and therefore should be independent. The next260
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Figure 4. The autocorrelation function of the response noise (V ), the SST noise A1, and the SSS noise A2, for the first posterior (left

column), and the final posterior (right column). The predictor and response noise were calculated Equations.

step is to apply MEPSM to calibrating multiple-input proxy system models for different climate proxies, e.g. isotopes in corals,

tree-rings, speleothems, and to incorporate MEPSM into current data assimilation projects.

Code availability. Easy to read Julia code for MEPSM is available on Github (https://github.com/Mattriks/MeasurementErrorModels.jl),

and Zenodo (Fischer, 2023). A manual for MEPSM is available at https://mattriks.github.io/MeasurementErrorModels.jl/dev/. The manual

contains 3 examples which reproduce results from this paper.265

Data availability. The ERSSTv5 sea surface temperature data are available at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html (meta-

data: https://doi.org/10.7289/V5T72FNM). The ERSSTv5 uncertainty data were obtained from Boyin Huang, NOAA (22/10/2020).
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The HadEN4 ocean salinity data (and uncertainty) are available at http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=16640. These data

are from version EN.4.2.1, and are the G10 analyses i.e. with the corrections of Gouretski and Reseghetti (2010).

The coral δ18O data from core RI6 were extracted from the CoralHydro2k database (Walter et al., 2022).270

A Jupyter notebook (as a pdf) showing the preprocessing of these data is available in the Supplementary Material. The dataset stored for the

code examples in the github repository contains all 3 detrended variables (detrended without removing the intercept).

Appendix A: Basis of Eq. (2)

Let

y = f(x1− a1, . . . , xp− ap). (A1)275

A first-order Taylor expansion gives:

y ≈ f(x1, . . . , xp)−
p∑

k=1

[
∂f(x1, . . . , xp)

∂xk
ak

]
, (A2)

such that the variance of f(x), Var(f(x))≈ df(x)′Σaadf(x). The first-order Taylor exapnsion will be exact when f(x) is a

linear function.

280

Appendix B: Notation for covariance

Covariance can be given in plain or scaled format, e.g.

Σ = σ2S (B1)

So, just as an example, a naive covariance matrix for B could be written:

ΣB = (X∗Σ−1X∗)−1 = σ2(X∗S−1X∗)−1 (B2)285

In this paper I use the plain format because it simplifies many expressions.

Appendix C: The WTLS likelihood, and its mean Bwtls

The target function for WTLS essentially consists of the quadratic component of the loglikelihood function:

Φwtls(B,X∗) =


vec(Z)−


 Y ∗

vec(X∗)






′

Σ−1
Q


vec(Z)−


 Y ∗

vec(X∗)





 (C1)

where Y ∗ =
[
1n X∗

]
B. For ∂Φ/∂ B, Eq. (C1) reduces to:290

∂Φwtls

∂ B
=

∂[(Y − b0−X∗B∗)′Ω−1
V (Y − b0−X∗B∗)]

∂ B
(C2a)
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= 2X̃′Ω−1
V V (C2b)

where X̃ =
[
1n X∗

]
. Next substitute V with Eq. 18:

∂Φwtls

∂ B
= 2X̃′W−1 e (C3)

The residual vector e can be written as:295

e = (Y −b0−AB∗)−X∗B∗, or (C4)

e = Y −XB (C5)

Then setting Eq. (C3) to zero, substituting for e, and rearranging gives:

Bwtls =
[
(X−A)′W−1(X−A)

]−1 [
(X−A)′W−1(Y −AB)

]
, or (C6)

Bwtls =
[
(X−A)′W−1X

]−1 [
(X−A)W−1 Y

]
(C7)300

where A now may include a column of zeros (corresponding to noiseless predictors in X).

Eq. (C7) expands to:

Bwtls =
[
X′W−1X−A′W−1X

]−1 [
X′W−1 Y −A′W−1 Y

]
(C8)

where (A′W−1X) is the weighted covariance between A and the predictors, and (A′W−1 Y ) is the weighted covariance

between between A and the response vector. This shows that WTLS can be expressed as an adjusted least squares problem.305

Hence, it can also be expressed as an augmented linear regression:

Y −AB = (X−A)B + (V −AB) (C9)

which is equivalent to Eq. (6)

Appendix D: Covariance of Bwtls310

One approximation for ΣB is as follows. Let

B = KY = K(XB + e) (D1)

If KX = I, then

ΣB = KΣK′, (D2)

where Σ = Diag(e⊗ e). For Bwtls, from Eq. (D1) and Eq. (C7) it follows that K =
[
(X−A)′W−1X

]−1
(X−A)W−1.315

Therefore,

Σwtls
B =

[
(X−A)′W−1X

]−1
M

[
(X−A)′W−1X

]−1′
(D3)
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where M = (X−A)′W−1 ΣW−1(X−A)

Appendix E: Construction of ΣA and ΩV320

For two predictors, ΣA is:

ΣA =


 ΩA1 ΩA1A2

ΩA2A1 ΩA2


 (E1)

ΣA can be constructed as:

ΣA = Diag(σA)′


 RA1 RA1A2

RA2A1 RA2


Diag(σA) (E2)

where Diag(·) is a diagonal matrix, and σA is a (n ·p)-length vector containing the hetereoscedastic "variance" of the predictor325

noise for each predictor (stacked vertically). The central block matrix, made up of submatrices R, will be labelled R̃. The

submatrices of R̃ are n×n correlation matrices, containing the autocorrelation or cross-correlation information for the predictor

noise A:

R =




ρ0 ρ1 ρ2 ρ3 . . . ρn−1

ρ1 ρ0 ρ1 ρ2 . . . ρn−2

ρ2 ρ1 ρ0 ρ1 . . . ρn−3

ρ3 ρ2 ρ1 ρ0 . . . ρn−3

...
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 ρn−4 . . . ρ0




(E3)

where (ρ0, ρ1, . . . , ρn−1) is the auto- or cross-correlation function.330

If R is an autocorrelation matrix then ρ0 = 1. Also, because the auto- or cross-correlation may become ∼ 0 at long lags, then

ρ>k may be set to 0, for a chosen lag k. To ensure that R̃ is positive definite, the algorithm of Rebonato and Jaeckel (1999) is

computationally fast.

ΩV can be similarly constructed:

ΩV = Diag(σV )′RV Diag(σV ) (E4)335
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Appendix F: Maximum likelihood solution of Hannart et al. (2014)

Hannart et al. (2014) defined the loglikelihood of the EIV model as (here written using the notation in this paper, rather than

the notation of Hannart et al. (2014)):

ℓ(B∗, X∗) = (Y −b0−X∗B∗)′Ω−1
V (Y −b0−X∗B∗) +

∑

i

(Xi−X∗i )
′Ω−1

Ai
(Xi−X∗i ) (F1)

which is a reduced form of Eq. (C1), because the off-diagonal matrices ΩAiAj in ΣA are not included. Hannart et al. wrote an340

iterative (fixed-point) solution in terms of X∗ and B∗.

X∗i = (Ω−1
Ai

+ b2
i Ω
−1
V )−1(biΩ−1

V ȳi + Ω−1
Ai

Xi) (F2a)

B∗ = (X∗
′
Ω−1

V X∗)−1X∗
′
Ω−1

V (Y −b0) (F2b)

where here B∗ = [b1 b2]′, and ȳi = Y − b0 − X∗−i B
∗
−i. (I have included the intercept b0 explicitly.) Confidence intervals

for each bi were calculated from the likelihood profiles (see Sect. 3 in Hannart et al., 2014).345

The ML solution I provide here differs from Hannart et al. (2014), but I adopt a similar form (what follows is only for the

ML estimate in the first row of Table 2). I express the loglikelihood in Eq. F1 as a function of V amd A:

ℓ(B) = V ′Ω−1
V V +

∑

i

Ai Ω−1
Ai

Ai (F3)

where A and V are calculated using Eqs. 17-18. The difference with Hannart et al. (2014), is that the likelihood here is

rewritten with respect to e = Y −XB (through Eqs. 17-18), whereas Hannart et al.’s procedure is expressed with respect to350

Y −X∗B∗ i.e. the main difference being X or X∗. The point here is merely to provide a basic ML solution in Table 2, in

order to compare with the other solutions. Equation (F3) should work with many standard ML packages, because there is no

iterative dependence on X∗.

The first row in Table 2 was calculated using Eq. (F3), and the Julia package ProfileLikelihoods.jl (VandenHeuvel, 2022).
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