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Abstract  18 

Ammonia (NH3), a significant precursor of particulate matter, not only affects 19 

biodiversity, ecosystems, soil acidification, but also climate and human health. In addition, its 20 

concentrations are constantly rising due to increasing feeding needs and the large use of 21 

fertilization and animal farming. Despite the significance of ammonia, its emissions are 22 

associated with large uncertainties, while its atmospheric abundance is difficult to measure. 23 

Nowadays, satellite products can effectively measure ammonia with low uncertainty and a 24 

global coverage. Here, we use satellite observations of column ammonia in combination with 25 

an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the 26 

period 2013–2020. Ammonia emissions peak in Northern Europe, due to agricultural 27 

application and livestock management, in Western Europe (industrial activity) and over Spain 28 

(pig farming). Emissions have decreased by -26% since 2013 (from 5431 Gg in 2013 to 3994 29 

Gg in 2020) showing that the abatement strategies adopted by the European Union have been 30 

very efficient. The slight increase (+4.4%) in 2015 is also reproduced here and is attributed to 31 

some European countries exceeding annual emission targets. Ammonia emissions are low in 32 

winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature dependent 33 

volatilization of ammonia from the soil. The largest emission decreases were observed in 34 

Central and Eastern Europe (-38%) and in Western Europe (-37%), while smaller decreases 35 

were recorded in Northern (-17%) and Southern Europe (-7.6%). When complemented against 36 

ground observations, modelled concentrations using the posterior emissions showed improved 37 

statistics, also following the observed seasonal trends. The posterior emissions presented here 38 

also agree well with respective estimates reported in the literature and inferred from bottom-up 39 

and top-down methodologies. These results indicate that satellite measurements combined with 40 

inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of 41 

ammonia emissions over large timescales. 42 

 	43 
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1 Introduction 44 

Ammonia (NH3), the only alkaline gas in the atmosphere, constitutes one of the most 45 

reactive nitrogen species. It is produced from decomposition of urea, which is a rapid process 46 

when catalyzed by enzymes (Sigurdarson et al., 2018). The main sectors contributing to its 47 

production are livestock management and wild animals (Behera et al., 2013), biomass burning 48 

and domestic coal combustion (Fowler et al., 2004; Sutton et al., 2008), volcanic eruptions 49 

(Sutton et al., 2008), and agriculture (Erisman et al., 2007). Emissions from agricultural activity 50 

and livestock management represent over 80% of the total emissions (Crippa et al., 2020), while 51 

their regional contribution can reach 94% (Van Damme et al., 2018).  52 

Once emitted, it is transported over short distances and deposited to water bodies, soil or 53 

vegetation with a typical atmospheric lifetime of a few hours (Evangeliou et al., 2021). It can 54 

then lead to eutrophication of water bodies (Stevens et al., 2010), modulate soil pH (Galloway 55 

et al., 2003) and «burn» vegetation by pulling water from the leaves (Krupa, 2003). It also reacts 56 

with the abundant atmospheric sulfuric and nitric acids (Malm, 2004) forming fine particulate 57 

matter (PM2.5) (Tsimpidi et al., 2007). While ammonia has a short atmospheric lifetime, PM2.5 58 

resides significantly longer in the atmosphere, on the order of days to weeks (Seinfeld and 59 

Pandis, 2000), and hence is transported over longer distances. Accordingly, secondary PM2.5 60 

can affect the Earth’s radiative balance, both directly by scattering incoming radiation (Henze 61 

et al., 2012) and indirectly as cloud condensation nuclei (Abbatt et al., 2006). Its environmental 62 

effects include visibility problems and contribution to haze formation. Finally, PM2.5 affects 63 

human health, as it penetrates the human respiratory system and deposits in the lungs and 64 

alveolar regions (Pope and Dockery, 2006; Pope III et al., 2002) contributing to premature 65 

mortality (Lelieveld et al., 2015).  66 

To combat secondary pollution, the European Union established a set of measures 67 

focusing on ammonia abatement, similar to the ones introduced by China (Giannakis et al., 68 

2019). These measures aim at reducing ammonia emissions by 6% in 2020, relative to 2005. 69 

However, the lack of spatiotemporal measurements of ammonia over Europe makes any 70 

assessment of the efficiency of these measures difficult, as only bottom-up methods are used to 71 

calculate emission. These methods still show a slight increase (0.6% y-1) up to 2018 mostly due 72 

to increasing agricultural activities (McDuffie et al., 2020). Such bottom-up approaches rely on 73 

uncertain land-use data and emission factors that are not always up to date, thus adding large 74 

errors to existing inventories.  75 
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During the last decade, satellite products have also become available to fill the gaps 76 

created by spatially disconnected ground-based measurements. Data from satellite sounders 77 

such as the Infrared Atmospheric Sounding Interferometer (IASI) (Van Damme et al., 2017), 78 

the Atmospheric Infrared Sounder (AIRS) (Warner et al., 2017), the Cross-track Infrared 79 

Sounder (CrIS) (Shephard and Cady-Pereira, 2015), the Tropospheric Emission Spectrometer 80 

(TES) (Shephard et al., 2015), and Greenhouse Gases Observing Satellite (GOSAT) (Someya 81 

et al., 2020) are publicly available. Most of them have been validated against ground-based 82 

observations or complemented with other remote sensing products (Van Damme et al., 2015, 83 

2018; Dammers et al., 2016, 2017, 2019; Kharol et al., 2018; Shephard et al., 2020; Whitburn 84 

et al., 2016). 85 

Accordingly, a few studies on ammonia emission calculations have been recently 86 

published relying on 4D-Variational inversion schemes such as (Cao et al., 2022; Zhu et al., 87 

2013) or process based models (Beaudor et al., 2023; Vira et al., 2020). More recently, Sitwell 88 

et al. (2022) proposed an inversion scheme for comparison between model profiles and satellite 89 

retrievals using hybrid logarithmic and linear observation operator that attempts to choose the 90 

best method according to the particular situation. In the present study, we use direct 91 

comparisons between the CrIS ammonia retrievals and model profiles using the Least Squares 92 

with Adaptive Prior Covariance (LS-APC) algorithm (Tichý et al., 2016), which reduces the 93 

number of tuning parameters in the method significantly using variational Bayesian 94 

approximation technique. We constrain ammonia emissions over Europe over the 2013–2020 95 

period and validate the results against ground-based observations from EMEP (European 96 

Monitoring and Evaluation Programme, https://emep.int/mscw/) (Torseth et al., 2012). 97 

2 Methods 98 

2.1 CrIS observations 99 

To constrain ammonia emissions with inverse modelling, satellite measurements were 100 

adopted from the Cross-Track Infrared Sounder (CrIS) onboard the NASA Suomi National 101 

Polar-orbiting Partnership (S-NPP) satellite, which provides atmospheric soundings with a 102 

spectral resolution of 0.625 cm-1 (Shephard et al., 2015). CrIS presents improved vertical 103 

sensitivity for ammonia closer to the surface due to the low spectral noise in the ammonia 104 

spectral region (Zavyalov et al., 2013) and the early afternoon overpass that typically coincides 105 

with high thermal contrast, which is optimal for thermal infrared sensitivity. The CrIS Fast 106 

Physical Retrieval (CFPR) (Shephard and Cady-Pereira, 2015) retrieves ammonia profiles at 107 

https://emep.int/mscw/
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14 levels using a physics-based optimal estimation retrieval, which also provides the vertical 108 

sensitivity (averaging kernels) and an estimate of the retrieval errors (error covariance matrices) 109 

for each measurement. As peak sensitivity typically occurs in the boundary layer between 900 110 

and 700 hPa (~ 1 to 3 km) (Shephard et al., 2020) and the surface and total column 111 

concentrations are both highly correlated with these boundary layer retrieved levels. The total 112 

column random measurement error is estimated in the 10–15% range, with total errors to be 113 

~30% (Shephard et al., 2020). The individual profile retrieval levels show an estimated random 114 

measurement error of 10–30 %, with total random errors estimates increasing to 60 to 100% 115 

due to the limited vertical resolution (1 degree of freedom of signal for CrIS ammonia). These 116 

vertical sensitivity and error output parameters are also useful for using CrIS observations in 117 

applications (e.g. data fusion, data assimilation; model-based emission inversions; (Cao et al., 118 

2020; Li et al., 2019)), as a satellite observational operator can be generated in a robust manner. 119 

The detection limit of CrIS measurements has been calculated down to 0.3–0.5 ppbv (Shephard 120 

et al., 2020). CrIS ammonia has been evaluated against other observations over North America 121 

with the Ammonia Monitoring Network (AMoN) (Kharol et al., 2018) and against ground-122 

based Fourier transform infrared (FTIR) spectroscopic observations (Dammers et al., 2017) 123 

showing small bias and high correlations. 124 

Daily CrIS ammonia (version 1.6.3) was put on a 0.5°×0.5° grid covering all of Europe 125 

(10°W–50°E, 25°N–75°N) for the period 2013–2020. Gridding was chosen due to the large 126 

number of observations (around 10,000 retrievals per day per vertical level), which made the 127 

calculation of source-receptor matrices (SRMs) computationally inefficient. Through gridding 128 

we limited the number of observation (and thus the number of SRMs to be calculated) to 2000 129 

per day per vertical level. Sitwell et al. (2022) showed that the averaging kernels of CrIS 130 

ammonia are significant only for the lowest six levels (the upper eight have no influence onto 131 

the satellite observations) and therefore we considered only these six vertical levels (~1018-132 

619 hPa). The gridding was performed by averaging the values that fall in each 0.5° resolution 133 

grid-cell daily over the 2013 – 2020 period of this study. This type of gridding was selected 134 

before previous experience with inverse distance weighting interpolation of satellite 135 

observations showed overestimated results of up to 100% (Evangeliou et al., 2021). In addition, 136 

the quality of gridding with respect to the averaging kernel of CrIS ammonia was evaluated by 137 

calculating the standard deviation of the averaged values (Supplementary Figure S 1). The latter 138 

shows that the kernel values within each grid-cell were very similar resulting in low gridded 139 

standard deviations, and thus low bias caused from the gridding (Supplementary Figure S 1). 140 
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2.2 A priori emissions of ammonia 145 

We used as a priori emissions for ammonia in the inversion algorithm the ones calculated 146 

(i) from the most recent version of ECLIPSEv6 (Evaluating the CLimate and Air Quality 147 

ImPacts of Short-livEd Pollutants) (Klimont, 2022; Klimont et al., 2017) combined with 148 

biomass burning emissions from GFEDv4 (Global Fire Emission Dataset) (Giglio et al., 2013) 149 

hereafter “EC6G4”, (ii) a more traditional dataset from ECLIPSEv5, GFEDv4 and GEIA 150 

(Global Emissions InitiAtive), hereafter “EGG” (Bouwman et al., 1997; Giglio et al., 2013; 151 

Klimont et al., 2017), (iii) emissions calculated from IASI (Infrared Atmospheric Sounding 152 

Interferometer) and a 1-dimensional box-model and a modelled lifetime (Evangeliou et al., 153 

2021), denoted as “NE” and (iv) from the high resolution dataset of Van Damme et al. (2018) 154 

after applying a simple 1-dimensional box-model (Evangeliou et al., 2021), hereafter denoted 155 

as “VD”. Given the large uncertainty in ammonia emissions illustrated in Figure 1, we 156 

calculated the average of these four priors (hereafter “avgEENV”) to establish the a priori 157 

emissions used in this study. 158 

2.3 Lagrangian particle dispersion model for the calculation of source-receptor 159 

matrices (SRMs) of ammonia 160 

SRMs were calculated for each 0.5°×0.5° grid-cell over Europe (10°W–50°E, 25°N–161 

75°N) using the Lagrangian particle dispersion model FLEXPART version 10.4  (Pisso et al., 162 

2019) adapted to simulate ammonia. The adaptation of the code includes treatment for the loss 163 

processes of ammonia adopted from the Eulerian model LMDZ-OR-INCA (horizontal 164 

resolution of 2.5°×1.3° and 39 hybrid vertical levels) that includes all atmospheric processes 165 

and a state-of-the-art chemical scheme (Hauglustaine et al., 2004). The model accounts for 166 

large-scale advection of tracers (Hourdin and Armengaud, 1999), deep convection (Emanuel, 167 

1991), while turbulent mixing in the planetary boundary layer (PBL) is based on a local second-168 

order closure formalism. The model simulates atmospheric transport of natural and 169 

anthropogenic aerosols and accounts for emissions, transport (resolved and sub-grid scale), and 170 

dry and wet deposition. LMDZ-OR-INCA includes a simple chemical scheme for the ammonia 171 

cycle and nitrate particle formation, as well as a state-of-the-art CH4/NOx/CO/NMHC/O3 172 

tropospheric photochemistry (Hauglustaine et al., 2014). To calculate chemical loss of 173 

ammonia to PM2.5, after a month of spin-up, global atmospheric transport of ammonia was 174 

simulated for 2013–2020 by nudging the winds of the 6-hourly ERA Interim Reanalysis data 175 

(Dee et al., 2011) with a relaxation time of 10 days (Hourdin et al., 2006). Using the EGG 176 

inventory, we calculated the e-folding lifetime of ammonia in the model, which was adopted in 177 
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FLEXPART. We refer the reader to (Tichý et al., 2022) for a detailed description of the 179 

formalism. Atmospheric linearities of the system and a full validation against ground-based 180 

observation are also presented in the same paper.  181 

FLEXPART releases computational particles that are tracked backward in time using 182 

ERA5 (Hersbach et al., 2020) assimilated meteorological analyses from the European Centre 183 

for Medium-Range Weather Forecasts (ECMWF) with 137 vertical layers, a horizontal 184 

resolution of 0.5°×0.5° and one hour temporal resolution. FLEXPART simulates turbulence 185 

(Cassiani et al., 2014), unresolved mesoscale motions (Stohl et al., 2005) and includes a deep 186 

convection scheme (Forster et al., 2007). SRMs were calculated for 7 days backward in time, 187 

at temporal intervals that matched satellite measurements and at spatial resolution of 188 

0.25°×0.25°. This 7-day backward tracking is sufficiently long to include almost all ammonia 189 

sources that contribute to surface concentrations at the receptors given a typical atmospheric 190 

lifetime of about half a day (Van Damme et al., 2018; Evangeliou et al., 2021). 191 

2.4 Inverse modeling algorithm 192 

The inversion method used in the present study relies on optimization of the difference 193 

between the CrIS satellite vertical profile observations, denoted as 𝑣!"#, and retrieved vertical 194 

profile, 𝑣$%#. The latter are obtained by applying an instrument operator applied in logarithm 195 

space (Rodgers, 2000) as follows: 196 

ln(𝑣$%#) = ln(𝑣") + 𝐴(ln(𝑣#$&%) − ln(𝑣"))  (1) 197 

where 𝑣$%#  is the retrieved profile concentration vector, 𝑣"  is a priori profile concentration 198 

vector used in the satellite retrievals, 𝑣#$&% is the hypothetical true profile concentration vector 199 

supplied by the model (𝑣#$&% = 𝑣'() ), and 𝐴	  is the averaging kernel matrix (for each 200 

0.5°×0.5° resolution grid-cell). Eq. (1) provides a useful basis for the calculation of the CrIS 201 

retrievals if the retrieval algorithm is performing as designed, i.e., it is unbiased and the root 202 

mean square error (RMSE) is within the expected variability. The 𝑣'() term can be written as: 203 

𝑣'() = 𝑀𝑥  (2) 204 

for each grid-cell of the spatial domain, where 𝑀 is the grid-cell specific SRM calculated with 205 

FLEXPART and 𝑥 is the unknown grid-cell specific emission vector. The SRM matrix 𝑀 is 206 

calculated on circular surroundings around each grid-cell for computational efficiency.  We 207 

chose circles with a radius of approximately 445 km, equal to 4 degrees, which is shown to be 208 

sufficient for reliable emission estimation and low sensitivity has been observed with this 209 

choice. Since the vector 𝑥 is unknown, we replace it by a prior emission 𝑥" (see section 2.2) in 210 

the initial step that is gradually refined iteratively based on the satellite observations. 211 
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The used inversion setup is based on iterative minimization of mismatch between 𝑣!"# 212 

and 𝑣$%# updating (iteratively) the emission 𝑥 such as below: 213 

arg min
*!→*2|𝑣

!"# − 𝑣$%#|2,
, (3) 214 

for each grid-cell of computational domain. The minimization problem is solved in two steps. 215 

First, we construct the linear inverse problem for each year where 𝑣$%# from the given 216 

surroundings, denoted here as 𝑆, forms the block-diagonal matrix 𝑣-$%#  while 𝑣!"#  from the 217 

given surroundings form an associated observation vector 𝑣-!"#. This forms the linear inverse 218 

problem: 219 

𝑣!"# = 𝑣-$%#𝑞-  (4) 220 

where the vector 𝑞- is a vector with coefficients denoting how 𝑥"  needs to be refined to obtain 221 

emission estimate vector 𝑥. All elements in Eq. 4 are affected by uncertainties originating from 222 

both the observations and model, hence, we employ an inverse algorithm to solve Eq. 4 with 223 

added regularization in the form of prior distributions with specific covariance models. For one 224 

year, 6 vertical profiles, and 4 degrees radius, the size of the the block-diagonal matrix 𝑣-$%# is 225 

13896 times 12, hence, the correction coefficient vector 𝑞- contain 12 values corresponding to 226 

each month. We solve Eq. 4 using the least squares with adaptive prior covariance (LS-APC) 227 

algorithm	(Tichý	et	al.,	2016). The algorithm is based on variational Bayesian methodology 228 

assuming non-negative solution and favoring solution without abrupt changes and it minimizes 229 

the use of manual tuning (Tichý	et	al.,	2020). The method assumes the data model in the form 230 

of:	231 

𝑝(𝑣!"#) = 𝑁(𝑣-$%#𝑞-, 𝑅) (5) 232 

where 𝑁 denotes the multivariate normal distribution and 𝑅	 the covariance matrix assumed in 233 

the form 𝑅 = 𝜔./𝐼0 , where 𝐼0  is the identity matrix with ones on its diagonal and zeros 234 

elsewhere, and 𝜔 is the unknown precision parameter on its diagonal. Following Bayesian 235 

methodology, we assign a prior model to all unknown parameters, i.e. 𝜔 and 𝑞-. Their prior 236 

models are selected as: 237 

𝑝(𝜔) = 𝐺(𝜗1, 𝜌1)	 (6)	238 

𝑝(𝑞-) = 𝑡𝑁(0, (𝐿𝑉𝐿)./, [0,+∞])	 (7)	239 

where 𝐺(𝜗1, 𝜌1) is the Gamma distribution (conjugate to the normal distribution) with prior 240 

parameters 𝜗1, 𝜌1 selected to 10./1  achive non-informative prior. The second term follows 241 

truncated normal distribution with positive support and with specific form of a precision matrix. 242 

We assume the precision matrix in the form of modified Cholesky decomposition which allows 243 

for tractability of estimation of its parameters, matrices 𝑉 and 𝐿. The matrix 𝑉 is diagonal with 244 
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unknown diagonal parameters and the matrix 𝐿 is lower bidiagonal with ones on the diagonal 248 

and unknown parameters on its sub-diagonal, formalized as vectors 𝑣	 and 𝑙	, respectively. 249 

These parameters are estimated within the method, while purpose of vector 𝑣	 is to allow for 250 

abrupt changes in 𝑞-, and vector 𝑙	 to favor smooth estimates (see details in Tichý et al. (2016)). 251 

All model parameters (𝜔, 𝑞-, 𝑣, 𝑙) are estimated using the variational Bayes procedure where 252 

we obtain not only point-estimates, but their full posterior distributions. 253 

Second, the grid-cell specific coefficient vector 𝑞- is propagated through Eq. 2 into Eq. 1 254 

to refine a prior emission 𝑥" and obtain estimated unknown emissions 𝑥. To maintain stability 255 

of the method, we bound the ratio between prior and posterior emission elements to 0.01 and 256 

100, respectively. This choice, motivated by Cao et al. (2020), omits unrealistically small or 257 

high emissions, however, the bounds are large enough to allow for new sources, as well as for 258 

attenuation of old sources. To introduce these boundaries is necessary since the problem in Eq. 259 

1 is ill-conditioned and the propagation through the equation may lead to unrealistic values due 260 

to numerical instability. For this reason, these boundaries are needed and the sensitivity to the 261 

choice of the prior emission are studied in Section 3.3. 262 

Note that CrIS data for some spatiotemporal elements are missing in the dataset. In these 263 

cases, we interpolated the missing data following the method proposed by D’Errico (2023), 264 

which solves a direct linear system of equations for missing elements, while the extrapolation 265 

behavior of the method is linear. Another strategy recently adopted in the literature has been to 266 

tackle the missing data using total variation methodology (see details in Fang et al., 2023); 267 

however, the method has been limited so far to its use on point-source release, hence we did 268 

not use it in this work.  269 

3 Results 270 

3.1 Emissions of ammonia in Europe (2013–2020) 271 

We analyze the CrIS ammonia satellite observations for Europe (10°W–50°E, 25°N–272 

75°N) over the 2013-2020 period on monthly basis to derive ammonia emissions using the 273 

inverse modelling methodology described in Section 2.4. The inversion algorithm is applied to 274 

each year of CrIS observations separately with the use of the avgEENV prior emission. Note 275 

that since a diurnal cycle is neither assumed in the Chemistry Transport Model, nor exists in 276 

the satellite observations from CrIS, daily emissions of ammonia do not represent a daily mean. 277 

The overall resulting spatial distribution of the posterior emissions of ammonia (denoted 278 

as posterior_avgEENV) averaged for the whole period are displayed in Figure 2 (top-left). The 279 Deleted: Figure 2280 
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highest emissions occur in Northwestern Europe (including Northern Belgium, the Netherlands 281 

and northwestern Germany) and to a smaller extent in the Po Valley (Italy), and the Ebro Valley 282 

(Spain). Local maxima are also seen over Pulawy (Poland), South Romania and Kutina 283 

(Croatia) due to industrial applications (Clarisse et al., 2019; Van Damme et al., 2018). While 284 

ammonia emissions were not calculated high in the Po Valley (8 year average), it has been 285 

reported that in Lombardy, about 90% of the ammonia emissions there have been reported to 286 

originate from manure management (Lonati and Cernuschi, 2020). The Ebro Valley is 287 

characterized by intensive agricultural activities (Lassaletta et al., 2012; Lecina et al., 2010) 288 

and the Aragon and Catalonia regions by large pig farms (Van Damme et al., 2022). Finally, 289 

both Belgium and The Netherlands are countries in which intensive livestock activity is 290 

documented. It consists mostly of dairy cow, beef cattle, pig and chicken farming (Gilbert et 291 

al., 2018; Lesschen et al., 2011; Velthof et al., 2012).	292 

Figure 2 (top-right) shows the annual posterior emissions discretized monthly for the 293 

whole period (solid line) compared to prior ammonia emissions (dashed line), averaged for the 294 

domain. Higher emissions than the prior ones were calculated, which is not necessarily 295 

attributed to emission increases over Europe, but rather to miscalculation of emissions in the 296 

prior bottom-up inventories that were used. A strong seasonal cycle is also observed peaking 297 

in the middle of each year (summer) of the study period, but for several of these years, the 298 

characteristic bimodal cycle also appears with another peak in spring (Beaudor et al., 2023). 299 

To examine more closely the seasonal variability of ammonia emissions in Europe, we 300 

present the monthly posterior emissions of ammonia averaged for the whole study period 301 

(2013–2020) at the bottom-left panel of Figure 2 together with the prior ones. The total 302 

emissions for each month based on the map element size and length of the respective month 303 

were averaged for the whole study period. The same was done for each year in the bottom-right 304 

panel. The interannual variability over the period between 2013 and 2020, is also apparent in 305 

the monthly box and whisker plots of the posterior emissions. In addition, the spatial 306 

distribution of monthly ammonia emissions averaged for the eight-year period is given in 307 

Supplementary Figure S 21. It appears that ammonia emissions are very low in wintertime (DJF 308 

average: 286 Gg) over Europe and increase towards summer (JJA average: 563 Gg), due to 309 

temperature dependent volatilization of ammonia (Sutton et al., 2013), with the largest 310 

emissions occurring in August (601 Gg). Although a clear peak of fertilization in early spring 311 

is missing from the plot, emissions start to increase in early spring to peak in late-summer (Van 312 

Damme et al., 2022) corresponding to the start and end of the fertilization periods in Europe 313 

(Paulot et al., 2014). Fertilization is tightly regulated in Europe (Ge et al., 2020). It is only 314 
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allowed from February to mid-September in The Netherlands, while manure application is also 318 

only allowed during the same period depending on the type of manure and the type of land (Van 319 

Damme et al., 2022). In Belgium, nitrogen fertilizers are only allowed from mid-February to 320 

the end of August (Van Damme et al., 2022), so as in Germany (restricted in winter months) 321 

(Kuhn, 2017). 322 

Finally, Figure 2 (bottom-right) shows the annual posterior emissions for the whole 323 

period with the annual total emissions for each year. We observe a significant decrease in 324 

ammonia posterior emissions over Europe during the 2013–2020 period. Emissions were 325 

estimated as 5431 Gg for 2013 decreasing to 4890 Gg in 2014. A minor increase can be seen 326 

in 2015 (5104 Gg), after which a significant decrease of 534 Gg (more than 10%) was estimated, 327 

followed by the nearly constant plateau at the levels between 4383 Gg in 2017, 4323 Gg in 328 

2019 and finally to 3994 Gg in 2020. The gradual decrease in ammonia emissions over Europe 329 

since 2013 is also plotted spatially in Supplementary Figure S 32. It is evident that the 330 

restrictions and measures adopted by the European Union to reduce secondary PM formation 331 

were successful, as emissions in the hot-spot regions of Belgium, The Netherlands, Germany 332 

and Poland declined drastically over time. However, an increase of +4.4% was observed in 333 

2015. It has been reported that ammonia emissions increased in 2015 and several European 334 

Union Member States, as well as the EU as a whole, exceeded their respective ammonia 335 

emission ceilings (EEA, 2017). The increase was reported to be +1.8% and was mainly caused 336 

by increased emissions in Germany, Spain, France, and the United Kingdom. This was caused 337 

by extensive use of inorganic nitrogen fertilizers (including urea application) in Germany, while 338 

increased emissions in Spain were driven by an increase in the consumption of synthetic 339 

nitrogen fertilizers and in the number of cattle and pigs (EEA, 2017). It should be mentioned 340 

that a false decrease of ammonia in 2020 due to the COVID-19 pandemic is calculated by the 341 

current methodology, mainly due to bias created by the decrease of NOx and SO2 that are 342 

precursor species of the atmospheric acids, with which ammonia reacts (see Tichý et al., 2022). 343 

3.2 Country by country ammonia emissions 344 

Posterior annual emissions of ammonia for 2013–2020 are plotted for four European 345 

regions (Western, Central and Eastern, Northern and Southern Europe), accompanied by 346 

relative trends calculated as difference between year 2013 and 2020 divided by the average for 347 

the whole period, in the left panel of Figure 3, while the estimated seasonal variation of each 348 

region is shown on the right panels averaged over the whole eight-year period. Western Europe 349 

includes Ireland, Austria, France, Germany, Belgium, Andorra, Luxembourg, The Netherlands, 350 
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Switzerland, and United Kingdom; Central and Eastern Europe include Albania, Bosnia and 354 

Herzegovina, Bulgaria, Czechia, Croatia, Hungary, Belarus, Slovakia, North Macedonia, 355 

Montenegro, Poland, Romania, Moldova, Slovenia, Ukraine, and Serbia; Northern Europe is 356 

defined by Denmark, Estonia, Finland, Latvia, Lithuania, Faroe Islands, Norway, and Sweden; 357 

finally, Southern Europe includes Cyprus, Greece, Italy, Portugal, Spain.  358 

The most significant decreases in ammonia emissions were estimated to be -38% in 359 

Central and Eastern Europe and -37% in Western Europe, respectively. Quantitatively, Central 360 

and Eastern Europe emissions were estimated to gradually drop from 2190 Gg in 2013 and to 361 

1495 Gg in 2020 with a small increase in 2015 (2171 Gg) mainly because Germany, France 362 

and the United Kingdom missed their emission targets (EEA, 2017). Western European 363 

emissions of ammonia also declined constantly over time from 2041 Gg in 2013 to 1421 Gg in 364 

2020. Smaller, yet significant, decreases were calculated over Northern Europe from 398 Gg in 365 

2013 to 333 Gg in 2020 (-17%). Finally, Southern Europe exhibited a minor drop between years 366 

2013 and 2014 (from 803 Gg in 2013 to 729 Gg in 2014) followed by a small increase until 367 

2019 (from 729 to 803 Gg), and then decreased again in 2020 to 743 Gg. Overall, Southern 368 

European emissions decreased by -7.62%. 369 

The seasonal cycle of ammonia was again characterized by the restrictions applied to the 370 

agricultural-related activities by the European Union member states (Figure 3, right panels). As 371 

such, emissions in Western, Central and Eastern and Southern Europe were very low in winter 372 

and started increasing when fertilization was allowed in early spring, whereas the increasing 373 

temperature towards summer increased volatilization and, thus, emissions of ammonia (Van 374 

Damme et al., 2022; Ge et al., 2020). Although much less marked than in other European 375 

regions due to lower prevailing temperatures and weaker agricultural applications, emissions 376 

in Northern Europe show the spring-summer temperature dependence. However, emissions 377 

were estimated to be double in winter rather following the cycle of SO2 (Tang et al., 2020). 378 

Emission may increase in Northern Europe in winter because OH and O3 concentrations are 379 

much lower, and the rate of converting SO2 to sulfate much slower. This means that less sulfate 380 

is produced and thus more NH3 stays in the gas form. Supplementary Figure S 43 shows prior 381 

emissions in Western, Central and Eastern, Northern and Southern Europe for EC6G4 and NE 382 

emission inventories. Both show the aforementioned increase in emissions during winter in 383 

Northeastern Europe. Specifically, the NE emissions that dominate the a priori emissions 384 

(avgEENV) as the highest inventory show an extreme winter peak in the north (emissions 385 

decline from 105 to 13 Gg). Therefore, there is a very strong dependence of the posterior 386 

Deleted: Figure 3387 

Deleted: Supplementary Figure S 3388 



13	
 

seasonality of ammonia in Northern Europe, which may be also influenced by the used prior 389 

emissions, see uncertainty analysis in Section 3.3.	390 

Country specific emissions of posterior ammonia on a monthly basis (eight-year average 391 

emissions) are shown for 20 countries in Supplementary Figure S 54. For countries such as 392 

Portugal, Spain, Italy, United Kingdom, The Netherlands, Belgium, Poland, Hungary, 393 

Denmark, Belarus and Romania two peaks can be clearly seen in late spring and end of summer. 394 

As discussed before, these peaks coincide with the two main fertilization periods in Europe 395 

(Paulot et al., 2014). However, it is expected that ammonia abundance is high throughout the 396 

entire spring–summer period (e.g., Greece, France, Germany, Czechia, Ukraine and Bulgaria) 397 

due to agricultural activity and temperature dependent volatilization (Sutton et al., 2013). 398 

Ammonia emissions in Finland, Sweden and Norway are smaller than in the rest of Europe and 399 

show a reverse seasonality. 400 

3.3 Uncertainties in ammonia’s posterior emissions 401 

For the calculation of uncertainty of the estimated posterior emissions two different 402 

approaches were used. The first approach is based on uncertainty arising as a result of the 403 

inversion methodology. The standard deviation is calculated from posterior estimate which is 404 

in the form of Gaussian distribution such as 405 

𝑝posterior(𝑥2) = 𝑁(𝜇2 , 𝜎2,) (8), 406 

where 𝑁	 denotes normal (Gaussian) distribution and posterior parameters 𝜇2 and 𝜎2 are results 407 

of inversion for each element of the spatiotemporal domain. The uncertainty associated with 408 

any given spatial element is then a property of Gaussian distribution defined with the square 409 

root of summed squared standard deviations: 410 

𝜎location = J∑ 𝜎location,#, 
#  	 (9) 411 

Here, 𝜎location,#,  denotes the estimated variance of the emissions for given coordinates and time 412 

period; we consider uncertainty calculated as 2σ standard deviations, i.e. 95% of the values lay 413 

inside the interval with the center in the reported emissions surrounded by the reported 414 

uncertainty. 415 

The second approach is based on ensemble of the used prior emissions as an input for the 416 

inversion. The different ensemble members are built from five prior emissions (see Figure 1) 417 

while the uncertainty is calculated as the standard deviation of five resulting posterior 418 

emissions. 419 
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2.410The calculated posterior uncertainty for our spatial domain and studied period 422 

(2013–2020) is shown in Figure 4 for Gaussian posterior (left) and for ensemble of prior 423 

emissions (right). The uncertainty associated with Gaussian posterior for each year of the study 424 

period are depicted in Supplementary Figure S 65. The absolute uncertainty of Gaussian 425 

posterior ammonia emissions reaches a maximum of 23.3 ng m-2 s-1 or about 39% (relative 426 

value, calculated based on related maximum of posterior emissions). The uncertainty based on 427 

prior ensemble reaches a maximum of 60.2 ng m-2 s-1 which is equal to about 101% based on 428 

related maximum of posterior emissions. In general, the pattern of both posterior uncertainties, 429 

Gaussian posterior and prior ensemble respectively, are in agreement in theirs patterns and 430 

follow the one of the posterior emissions, with the highest values over (i) Belgium, the 431 

Netherlands, and Germany due to livestock, farming, and agricultural activity; (ii) Poland, 432 

South Romania and Croatia due to industrial applications; (iii) Catalonia due to pig farming; 433 

(iv) West France due to manure application. Nevertheless, the obtained posterior uncertainty 434 

remains low, and this depicts the robustness of the methodology used and the calculated 435 

posterior emissions of ammonia.	436 

3.4 Validation of posterior emissions 437 

As shown in Eq. 3 (Section 2.4), the inversion algorithm minimizes the distance between 438 

the satellite observations (𝑣!"#) and the retrieved ammonia concentrations (𝑣$%#). The latter is 439 

a function of different satellite parameters (e.g., averaging kernel sensitivities) and modelled 440 

ammonia concentrations using a prior dataset (𝑣'() or 𝑣#$&%) as seen in Eq. 1. The overall 441 

result is always propagated to 𝑣'() iteratively, each time updating the prior emissions to obtain 442 

posterior ammonia. As specified in CrIS guidelines, modelled concentrations (𝑣'()) cannot be 443 

directly compared with satellite data (𝑣!"#), while comparing 𝑣!"# with 𝑣$%# is not a proper 444 

validation method, because the comparison is performed for satellite observations that were 445 

included in the inversion (dependent observations), and the inversion algorithm has been 446 

designed to reduce the 𝑣!"#-𝑣$%# mismatches. This means that the reduction of the posterior 447 

retrieved concentration (𝑣$%# ) mismatches to the observations (𝑣!"# ) is determined by the 448 

weighting that is given to the observations with respect to 𝑣$%#. A proper validation of the 449 

posterior emissions is performed against observations that were not included in the inversion 450 

(independent observations). 451 

For these reasons, we compare modelled posterior concentrations of ammonia (𝑣'()) at 452 

the surface with ground-based observations over Europe from the EMEP (European Monitoring 453 

and Evaluation Programme, https://emep.int/mscw/) network (Torseth et al., 2012). The 454 
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measurements are open in public and can be retrieved from https://ebas.nilu.no. We used 457 

measurements for all years between 2013 and 2020 from an average of 53 stations with 2928 458 

observations for each station covering all Europe (Supplementary Figure S 76). The comparison 459 

is plotted for each of the 53 stations separately on a Taylor diagram in Figure 5. For all stations, 460 

the Pearson’s correlation coefficient increased for the posterior ammonia (coloured circles) 461 

increased as compared to the prior one (coloured squares) reaching above 0.6 at several stations, 462 

while the normalized root mean square error (nRMSE) and standard deviation were kept below 463 

2 (unitless) and 2 μg m-3, respectively, in almost all stations (except SI0008 in Slovenia). 464 

To further show how posterior emissions of ammonia affect modelled concentrations, we 465 

chose six stations (DE0002 in Germany, NO0056 in South Norway, ES0009 in Spain, NL0091 466 

in the Netherlands, HU0002 in Hungary and PL0005 in Poland) from the EMEP network 467 

(highlighted in red in Supplementary Figure S 76), and we plot prior and posterior 468 

concentrations against ground-based ammonia over time for the whole study period (2013–469 

2020) in Supplementary Figure S 87. Given the long period of plotting, we average observations 470 

every week and modelled concentrations every month for a more visible representation of the 471 

comparison. To evaluate the comparison, we calculate a number of statistic measures, namely 472 

nRMSE, the normalized mean absolute error (nMAE) and the root mean squared logarithmic 473 

error (RMSLE) as defined below:  474 

𝑛𝑅𝑀𝑆𝐸 = 5∑
"
#

#
$%" ('$.($)&

"
#∑ ($#

$%"
  𝑛𝑀𝐴𝐸 = ∑ |'$.($|

#
$%"

∑ ($#
$%"

    475 

 𝑅𝑀𝑆𝐿𝐸 = J
/
:∑ (log𝑚2 − log 𝑜2),:

2;/  (11) 476 

where 𝑛 is sample size, 𝑚 and 𝑜 the individual sample points for model concentrations and 477 

observations of ammonia indexed with 𝑖. As one can see in Supplementary Figure S 87, all 478 

statistics were improved in all six stations and posterior concentrations were closer to the 479 

observations. However, individual peaks were in many cases misrepresented in the model. 480 

Whether this is a result of the measurement technique or the fact that local sources cannot be 481 

resolved at the spatiotemporal resolution of CTM and FLEXPART (given the short lifetime of 482 

atmospheric ammonia) needs further research. The best results were obtained at station ES0009 483 

(Spain), where model captures the seasonal variation of the observations during the whole study 484 

period (2013–2020). In all other stations, the seasonality is maintained albeit steep peaks in the 485 

observations are lost. 486 

As explained in section 1, ammonia reacts with the available atmospheric acids producing 487 

secondary aerosols (Seinfeld and Pandis, 2000). Therefore, its presence and lifetime in the 488 
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atmosphere is driven by the atmospheric acids and their precursors, SO2 and NO2. Changes in 494 

atmospheric levels of these substances have a significant impact on the lifetime of ammonia 495 

and its emissions, as highlighted in Tichý et al., (2022). Therefore, it is clear that a wrong 496 

representation of trends in modelled SO2 and NO2 will lead to systematic biases in the 497 

estimated ammonia emission trends. To further demonstrate that the modelling system correctly 498 

represents the trends in SO2 and NO2, we compare ground-based observations of these two 499 

species from the EMEP network (https://emep.int/mscw/) against modelled concentrations. 500 

The comparison is shown in Supplementary Figure S 9 for six random EMEP stations for 501 

different years for each of NO2 and SO2. The full comparison of the two datasets of 502 

observations is plotted in scatterplots of modelled versus measured surface concentrations for 503 

NO2 and SO2 for all the study period (2013-2020) in Supplementary Figure S 10. A total 504 

number of 3,368,660 for SO2 and 4,252,592 for NO2 was used in the validation. It is evident 505 

that the seasonal variation of the modelled surface concentrations and their magnitude are both 506 

represented very well in the model for NO2 and SO2. nRMSE was 0.12 – 0.19 for NO2 and 507 

0.09 – 0.25 for SO2, nMAE 0.39 – 0.94 for NO2 and 0.48 – 1.2 for SO2, RMSLE was 0.25 – 508 

0.49 for NO2 and 0.11 – 0.33 for SO2 in the six stations (Supplementary Figure S 9). For over 509 

4.2 and 3.3 million measurements that were used in this validation of NO2 and SO2 510 

concentrations for 2013 – 2020 study period, nRMSE values were 0.05 and 0.02, nMAE 0.74 511 

and 1.0 and RMSLE 0.50 and 0.40 for NO2 and SO2, respectively (Supplementary Figure S 512 

10). 513 

4 Discussion 514 

4.1 Comparison with emissions inferred from satellite observations 515 

We compared our posterior estimates with two recently published studies on ammonia 516 

emission in Europe (Cao et al., 2022; Luo et al., 2022). Luo et al. (2022) used IASI observations 517 

for the period 2008 to 2018 to estimate ammonia emissions in a global domain. Their method 518 

was based on updating prior emissions with correction term computed using differences 519 

between observed and simulated ammonia columns combined with calculated ammonia 520 

lifetimes. The key indicators calculated for the European domain in Luo et al. (2022) are a 521 

linear trend for the 2008–2018 period, average annual emissions, and relative trends. Note that 522 

we compare our eight-year period with a decade in Luo et al. (2022). The comparison is 523 

depicted in Figure 6. Our estimates (Figure 6, left panel) are in good agreement with those 524 

calculated by Luo et al. (2022). The linear trend was estimated as -1.27 Tg for the period by 525 
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Luo et al. (2022), while our estimate is -1.44 Tg. The spatial distribution of the trend is also 528 

given in Figure 6 (left panel). The key decrease is observed mainly in France, Germany, and 529 

middle Europe, while the increasing trend is observed mostly in Spain, parts of Italy, and 530 

Greece. The average annual ammonia emission for the European domain in Luo et al. (2022) 531 

was estimated to be 5.05 Tg while our estimate is 4.63 Tg. Our lower estimate (by 532 

approximately 8%) may be attributed to use of more recent period considered in our study, but 533 

both methods agree that the trend in Europe is negative. The relative decrease estimated by Luo 534 

et al. (2022) is -25.1%, while we calculate -31.02%, which is again in very good agreement. 535 

Cao et al. (2022) used CrIS observations for the year 2016 in order to estimate ammonia 536 

emissions for 25 European Union members (EU25), namely Austria, Belgium, Bulgaria, 537 

Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, 538 

Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, 539 

Romania, Slovakia, Slovenia, and Spain. The method was tested with uni-directional and bi-540 

directional flux schemes. The uni-directional dry deposition scheme assumes only air to surface 541 

exchange of ammonia ignoring changes in environmental conditions, while the bi-directional 542 

scheme captures dynamics in measured ammonia fluxes. Total estimated ammonia emissions 543 

for the EU25 region by the uni-directional scheme (posterior_uni) and the bi-directional scheme 544 

(posterior_bi) were reported as 3534 Gg N y−1 and 2850 Gg N y−1, respectively. The 545 

posterior_bi estimate is very close to our estimate for EU25 for the year 2016, which is 2712 546 

Gg N y−1, while the posterior_uni is approximately 30% higher. A uni-directional dry 547 

deposition scheme ignores the impacts of changes in environmental conditions (e.g., soil 548 

temperature, soil wetness, soil pH, fertilized condition, and vegetation type) on ammonia 549 

emissions from fertilized soil and crops (volatilization), which likely lead to high biases in top-550 

down estimates. Ammonia in LMDz-OR-INCA model, that was used to capture ammonia’s 551 

losses, resembles a partially bi-directional treatment, where emissions and deposition are both 552 

possible at the same time without any use of a compensation point; this may explain the 30% 553 

difference. 554 

The detailed EU25 emissions for the year 2016 are displayed in Figure 6 (right panel) for 555 

posterior_uni (red), posterior_bi (yellow), our post_avgEENV (blue), and priors used by Cao 556 

et al. (2022) and in our study (dashed red and blue, respectively). As seen from Figure 6, our 557 

posterior estimates (post_avgEENV) have more similar characteristics with posterior_bi, with 558 

monthly difference to be less than factor of 2 positive or negative from Cao et al. (2022). Note 559 

that the posterior_uni estimates are always a factor of 3 higher than our posterior estimates for 560 

ammonia emissions. The main differences can be observed during February-March and 561 
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October-November periods where our estimates are generally lower than those from Cao et al. 565 

(2022).  566 

Finally, the latest Commission Third Clean Air Outlook published in December 2022 567 

(EC, 2022) based on the data reported by the EEA (https://www.eea.europa.eu/data-and-568 

maps/dashboards/necd-directive-data-viewer-7) concluded (p. 2) that emissions of ammonia in 569 

recent years remain worryingly flat or may have increased for some member states. The 570 

assessment covers the period we investigated in the present manuscript (2013 – 2020) and 571 

shows (for the EU27) a reduction in ammonia emissions of only 2% that is far smaller than that 572 

we calculated here (26%). The consistency of our results with those calculated with similar 573 

methodologies (Cao et al., 2022; Luo et al., 2022) urges us to believe that such differences in 574 

ammonia trends are the result of differences between bottom-up and top-down estimates. 575 

4.2 Assessment of ammonia’s atmospheric linearities 576 

Ammonia is a particularly interesting substance due to its affinity to react with 577 

atmospheric acids producing secondary aerosols. In most cases, it is depleted by sulfuric and 578 

nitric acids. However, when relative humidity is high and particles are aqueous, sulfate reacts 579 

with ammonia and decreases, while the equilibrium vapor pressure of ammonia with nitric acid 580 

increases shifting the reaction towards production of free ammonia (Seinfeld and Pandis, 2000). 581 

The former reaction is a rare event and lots of prerequisites must be fulfilled to take place.	582 

Supplementary Figure S 118a shows the frequency distribution of gain (production of 583 

free ammonia - negative numbers) or loss (production of sulphate/nitrate – positive numbers) 584 

due to all chemical processes in the inversion domain (10°W–50°E, 25°N–75°N), for the study 585 

period (2013 – 2020) and the lowest six sigma-p vertical levels (~1018-619 hPa,  see averaging 586 

kernels in section 2.1) (Sitwell and Shephard, 2021). The figure shows mostly positive numbers 587 

indicating that atmospheric ammonia reacts towards secondary aerosol formation. The spatial 588 

distribution of gain/loss of ammonia is shown in Supplementary Figure S 118b. The pixels 589 

indicating production of gaseous ammonia are located in marine regions, where we chose to 590 

not perform inversions, as they are an order of magnitude lower (Bouwman et al., 1997), thus 591 

less significant. No continental pixels showing gain of ammonia were detected, which would 592 

cause simulated backwards in time to fail with our Lagrangian model (see next paragraph). Our 593 

approximation, although simplistic, provides computational efficiency when simulating SRMs 594 

in backward mode using FLEXPART (Pisso et al., 2019).	595 

Seibert and Frank (2004) reported that standard Lagrangian particle dispersion models 596 

cannot simulate non-linear chemical reactions. First-order chemical reactions, where the 597 
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reaction rates can be prescribed, are also linear. Non-linear chemistry cannot be calculated 627 

because neither the background chemistry is modeled nor is the coupling of the tracked plume 628 

(forward or backward) to this background. Technically, the SRM in FLEXPART is calculated 629 

for a receptor with a certain mean mixing ratio (𝜒) and an emitting source (𝑞2,:) in a certain 630 

discretization of the space (index 𝑖) and time (index 𝑛), as:	631 
<
=$,#

= /
> ∑ Δ𝑡2,?,:

0(,#
@$,#

>
?;/   (12)	632 

where 𝐽 is the total number of backward trajectories (particles index 𝑗 ) originating from the 633 

position of the receptor 𝜒  and ending at a certain discretized time (index 𝑛)  in certain 634 

discretized space position (index 𝑖) for a time interval Δ𝑡2,?,: , and where the air density is 𝜌2,:. 635 

The further function 𝑝?,: (𝑝?,: ≤ 1) represents the relative (to the initial receptor state) decay 636 

of the mass value in the particle in its travel from the receptor to the discretized space time 637 

interval (𝑗, 𝑛) due to any linear decay process (e.g. deposition, linear chemical decay) for a 638 

perfectly conserved scalar 𝑝?,: = 1 . So, for linear decaying species a direct SRM can be 639 

calculated explicitly among all relevant receptor points and all positions in space and time. The 640 

existence of the SRM (𝑯), linking directly mixing ratios at the receptor points with emissions, 641 

is the prerequisite to apply simple inversion algorithms, such as the one in the present study.	642 

Inversion of observations to obtain emissions for non-linear chemically reactive species 643 

entails the need of a chemistry transport model (CTM) forward (and its adjoint backward) in 644 

time from time 𝑡1  to time 𝑡⬚  evolving the full state of the atmosphere, in relation to the 645 

emissions and boundary conditions. Subsequently, a cost function is evaluated by an iterative 646 

descent gradient method that implies running the adjoint of the forward model (Fortems-647 

Cheiney et al., 2021). Note that an iterative algorithm means that the forward and adjoint 648 

models run several times in sequence until the estimated minimum of the cost function is 649 

reached.	650 

To overcome these complexities, we examine the linearities of our method and show that 651 

FLEXPART simulates ammonia efficiently, we evaluate modelled ammonia against ground-652 

based measurements of ammonia from EMEP (https://emep.int/mscw/) in Europe, EANET 653 

(East Asia acid deposition NETwork) in Southeastern Asia (https://www.eanet.asia/) and 654 

AMoN (Ammonia Monitoring Network in the US, AMoN-US; National Air Pollution 655 

Surveillance Program (NAPS) sites in Canada) in North America 656 

(http://nadp.slh.wisc.edu/data/AMoN/). The SRMs for ammonia express the emission 657 

sensitivity (in seconds) and yield modelled concentrations at the receptor point when coupled 658 

with gridded emissions from EGG (in kg m-2 s-1, see section 2.2) at the lowest model level 659 
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(100 m). To check the consistency of the proxy used in the SRMs of ammonia, we also 670 

simulated surface concentrations of ammonia with FLEXPART in forward mode using the 671 

same emissions (EGG). We have chosen two random ground-based stations from each of the 672 

three measuring networks (EMEP, EANET, AMoN) to compare modelled concentrations. For 673 

consistency, we also plot the resulting surface concentrations from the LMDz-OR-INCA model 674 

(Supplementary Figure S 129).	675 

Modelled concentrations (forward and backward FLEXPART and the CTM LMDz-OR-676 

INCA) at each station have been averaged to the temporal resolution of the observations. 677 

Supplementary Figure S 1310 shows Taylor diagrams of the comparison between FLEXPART 678 

simulated concentration in forward and backward mode. Plotting backward versus forward 679 

results is a common procedure to infer whether a Lagrangian model produces reasonable results 680 

(Eckhardt et al., 2017; Pisso et al., 2019). In general, the forward and backward simulations 681 

show very good agreement for the depicted receptor points. For example, ammonia 682 

concentration at stations AL99, CA83, and VNA001 (Supplementary Figure S 129) are 683 

simulated similarly, and the mean concentrations are almost identical in the forward and 684 

backward modes. However, during some episodes there can be notable differences (e.g., at 685 

DE0002R) as seen before (Eckhardt et al., 2017). The main reason is that the backward 686 

calculations always give more accurate results as the number of particles released at the receptor 687 

is much higher in backward mode than in forward mode; the particles are targeted to a very 688 

small location in backward, whereas in forward mode the particles are distributed equally on a 689 

global scale and therefore less particles represent each receptor location. Another reason is that 690 

transport and especially turbulent processes are parametrized by random motion, which are 691 

different for each FLEXPART simulation. Finally, the coordinate system for defining the height 692 

layer above ground depends on the meteorological field which is read at the start of the 693 

simulation, and this can also cause small deviations. The Taylor diagram for the respective 694 

comparison (Supplementary Figure S 1310) show high Pearson’s correlation coefficients 695 

(>0.7), low standard deviations (<1 μg N m-3) and root means square errors (RMSEs <0.7 μg 696 

N m-3). 697 

5 Conclusions 698 

Today, a large debate takes place about ammonia abatement strategies for Europe, but 699 

also for Southeastern Asia, in an effort to reduce secondary formation and, thus, mitigate 700 

climate crisis (van Vuuren et al., 2015). These strategies include (a) low nitrogen feed by 701 

reducing ammonia emissions at many stages of manure management, from excretion in 702 
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housing, through storage of manure to application on land, also having positive effects on 710 

animal health and indoor climate (Montalvo et al., 2015); (b) low emission livestock housing, 711 

which focuses on reducing the surface and time manure is exposed to air by adopting rules and 712 

regulations regarding new livestock houses (Poteko et al., 2019); (c) air purification by 713 

adopting technologies to clean exhaust air from livestock buildings (Cao et al., 2023) and 714 

others. Here we used satellite observations from CrIS and a novel inverse modelling algorithm 715 

to study the spatial variability and seasonality of ammonia emissions over Europe. We then 716 

evaluated the overall impact of such strategies on the emissions of ammonia for the period 717 

2013–2020. The main key messages can be summarized below:  718 

• The highest emissions over the 2013–2020 study period occur in North Europe (Belgium, 719 

the Netherlands and northwestern Germany). At a regional scale, peaks are seen in Western 720 

Europe (Poland, South Romania and Croatia) due to industrial activities, in Spain (Ebro 721 

Valley, Aragon, Catalonia) due to agricultural activities and farming, in Belgium and The 722 

Netherlands due to livestock activity (dairy cow, beef cattle, pig and chicken farming). 723 

• Ammonia emissions are low in winter (average: 286 Gg) and peak in summer (average: 724 

563 Gg), due to temperature dependent volatilization of ammonia, while a notable peak 725 

attributed to fertilization can be seen in early spring during some years. 726 

• Over the 2013–2020 period, European emissions of ammonia decreased from 5431 Gg in 727 

2013 to 3994 Gg in 2020 or about -26%. Hence, the restrictions adopted by the European 728 

Union members were effective in reducing secondary PM formation.  729 

• A slight emission increase of +4.4% in 2015 appears for several European Union Member 730 

States (Germany, Spain, France, and the United Kingdom) who exceeded the respective 731 

ammonia emission targets. Part of the 2020 ammonia decrease might be attributable to the 732 

COVID-19 pandemic restrictions. 733 

• The largest decreases in ammonia emissions were observed in Central and Eastern Europe 734 

(-38%, 2190 Gg in 2013 to 1495 Gg in 2020) and in Western Europe (-37%, 2041 Gg in 735 

2013 to 1421 Gg in 2020). Smaller decreases were calculated in Northern Europe (-17%, 736 

398 Gg in 2013 to 333 Gg in 2020) and Southern Europe (-7.6%, from 803 Gg in 2013 to 737 

to 743 Gg in 2020). 738 

• The maximum calculated absolute uncertainty of Gaussian posterior model was 23.3 ng m-739 
2 s-1, or about 39% (relative value) and calculated maximum based ensemble of prior 740 

emissions was 60.2 ng m-2 s-1, or about 101% following the spatial distribution of the 741 

posterior emissions. 742 
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• Comparison of the concentrations calculated with prior and posterior ammonia emissions 744 

against independent (not used in the inversion algorithm) observations showed improved 745 

correlation coefficients and low nRMSEs and standard deviations. Looking at timeseries 746 

of six randomly selected stations in Europe, we also found that posterior surface 747 

concentrations of ammonia were in accordance with the ground-based measurement, also 748 

following the observed seasonal trends. 749 

• Our results agree very well with those from Luo et al. (2022) (decreasing trend: -1.44 750 

versus -1.27 Tg, annual European emissions: 4.63 versus 5.05 Tg) and those from Cao et 751 

al. (2022) following their methodology (their posterior_bi estimate for EU25 and year 2016 752 

was 2850 Gg N y−1, while we calculate 2712 Gg N y−1). 753 

• The relatively low posterior uncertainty and improved statistics in the validation of the 754 

posterior surface concentrations denote the robustness of the posterior emissions of 755 

ammonia calculated with satellite measurements and our adapted inverse framework. 756 

 757 

Data availability. The data generated for the present paper can be downloaded from ZENODO 758 

(https://doi.org/10.5281/zenodo.7646462). FLEXPARTv10.4 is open access and can be 759 

downloaded from https://www.flexpart.eu/downloads, while use of ERA5 data is free of 760 

charge, worldwide, non-exclusive, royalty-free and perpetual. The inversion algorithm LS-APC 761 

is open access from https://www.utia.cas.cz/linear_inversion_methods. CrIS ammonia can be 762 

obtained by request to Dr. M. Shephard (Mark.Shephard@ec.gc.ca). EMEP measurements are 763 

open in https://ebas.nilu.no. FLEXPART SRMs for 2013–2020 can be obtained from the 764 

corresponding author upon request. 765 
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FIGURES & LEGENDS 1139 

 1140 

Figure 1. Four ammonia prior emissions (EC6G4, EGG, NE, VD) are displayed in the first two 1141 
rows. The combined prior (avgEENV) is displayed in the bottom left. The temporal variability 1142 
of all five prior emissions is given in bottom right. 1143 
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 1146 

Figure 2. The spatial distribution of posterior ammonia emissions (posterior_EENV, top-left) 1147 
together with its temporal distribution (top-right). The Gaussian uncertainty of the posterior 1148 
emissions is also plotted. Monthly average ammonia emissions are shown in bottom-left graph. 1149 
The monthly average posterior emissions over the studied period are accompanied by the box 1150 
plot where the red line indicates the median, the bottom and top edges of the Boxes indicating 1151 
the 25th and 75th percentiles, respectively, and the whiskers extend to the most extreme data 1152 
points not considered as outliers, which are denoted using red crosses. Solid blue lines refer to 1153 
the posterior ammonia emissions, while dashed ones to the prior emissions (avgEENV). 1154 
Finally, annual average ammonia emissions are also plotted (bottom-right). Except for the 1155 
annual average emission dosages that are shown in blue, we also depict the elements that were 1156 
used to calculate 𝒗𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓𝒓𝒆𝒕 , namely 𝒗𝒂  and 𝒗𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓𝒎𝒐𝒅  (see Eq. 1) that were compared with 1157 
𝒗𝒔𝒂𝒕. 1158 

  1159 

Deleted: 1160 

Deleted: (1161 
Deleted: ) and annually average (bottom-right) estimates are 1162 
also plotted…1163 

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold



33	
 

 1164 

Figure 3. Left: Annual posterior emissions of ammonia in Southern (yellow), Western (green), 1165 
Northern (blue), and Central and Eastern (red) Europe. Right: Monthly average posterior 1166 
emissions of ammonia accompanied by box plots, where the red line indicates the median, the 1167 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and the 1168 
whiskers extend to the most extreme data points (not considered outliers), which are represented 1169 
using red crosses. 1170 

  1171 



34	
 

 1172 

Figure 4. Absolute uncertainty of posterior emissions of ammonia calculated as 2σ (left 1173 
panel) and from a member ensemble (right panel) comprising posterior emissions calculated 1174 
with five different priors (Figure 1) averaged for the whole study period 2013–2020. 1175 
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 1179 

Figure 5. Modelled concentrations of ammonia with prior and posterior emissions against 1180 
ground-based observations from 53 EMEP stations for 2013–2020 presented in a Taylor 1181 
diagram. The diagram shows the Pearson’s correlation coefficient (gauging similarity in pattern 1182 
between the modelled and observed concentrations) that is related to the azimuthal angle (blue 1183 
contours); the standard deviation of modelled concentrations of ammonia is proportional to the 1184 
radial distance from the origin (black contours) and the centered normalized RMSE of modelled 1185 
concentrations is proportional to the distance from the reference standard deviation (green 1186 



36	
 

contours). 1187 

 1188 

Figure 6. Left: spatial distribution of ammonia emission trends computed for the studied period 1189 
2013–2020 in the same way as in (Luo et al., 2022), where also trend, mean, and trend/mean 1190 
are defined/computed in the same way. Right: comparison of ammonia emissions from the 1191 
EU25 countries for the year 2016 from our posterior calculations (posterior_avgEENV, blue) 1192 
and results from Cao et al. (2022) (posterior_uni in red and posterior_bi, in yellow). 1193 
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