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Abstract

Ammonia (NH3), a significant precursor of particulate matter, not only affects
biodiversity, ecosystems, soil acidification, but also climate and human health. In addition, its
concentrations are constantly rising due to increasing feeding needs and the large use of
fertilization and animal farming. Despite the significance of ammonia, its emissions are
associated with large uncertainties, while its atmospheric abundance is difficult to measure.
Nowadays, satellite products can effectively measure ammonia with low uncertainty and a
global coverage. Here, we use satellite observations of column ammonia in combination with
an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the
period 2013-2020. Ammonia emissions peak in Northern Europe, due to agricultural
application and livestock management, in Western Europe (industrial activity) and over Spain
(pig farming). Emissions have decreased by -26% since 2013 (from 5431 Gg in 2013 to 3994
Gg in 2020) showing that the abatement strategies adopted by the European Union have been
very efficient. The slight increase (+4.4%) in 2015 is also reproduced here and is attributed to
some European countries exceeding annual emission targets. Ammonia emissions are low in
winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature dependent
volatilization of ammonia from the soil. The largest emission decreases were observed in
Central and Eastern Europe (-38%) and in Western Europe (-37%), while smaller decreases
were recorded in Northern (-17%) and Southern Europe (-7.6%). When complemented against
ground observations, modelled concentrations using the posterior emissions showed improved
statistics, also following the observed seasonal trends. The posterior emissions presented here
also agree well with respective estimates reported in the literature and inferred from bottom-up
and top-down methodologies. These results indicate that satellite measurements combined with
inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of

ammonia emissions over large timescales.
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1 Introduction

Ammonia (NH3), the only alkaline gas in the atmosphere, constitutes one of the most
reactive nitrogen species. It is produced from decomposition of urea, which is a rapid process
when catalyzed by enzymes (Sigurdarson et al., 2018). The main sectors contributing to its
production are livestock management and wild animals (Behera et al., 2013), biomass burning
and domestic coal combustion (Fowler et al., 2004; Sutton et al., 2008), volcanic eruptions
(Sutton et al., 2008), and agriculture (Erisman et al., 2007). Emissions from agricultural activity
and livestock management represent over 80% of the total emissions (Crippa et al., 2020), while

their regional contribution can reach 94% (Van Damme et al., 2018).

Once emitted, it is transported over short distances and deposited to water bodies, soil or
vegetation with a typical atmospheric lifetime of a few hours (Evangeliou et al., 2021). It can
then lead to eutrophication of water bodies (Stevens et al., 2010), modulate soil pH (Galloway
etal., 2003) and «burny» vegetation by pulling water from the leaves (Krupa, 2003). It also reacts
with the abundant atmospheric sulfuric and nitric acids (Malm, 2004) forming fine particulate
matter (PM2.5) (Tsimpidi et al., 2007). While ammonia has a short atmospheric lifetime, PM2.5
resides significantly longer in the atmosphere, on the order of days to weeks (Seinfeld and
Pandis, 2000), and hence is transported over longer distances. Accordingly, secondary PM2.5
can affect the Earth’s radiative balance, both directly by scattering incoming radiation (Henze
et al., 2012) and indirectly as cloud condensation nuclei (Abbatt et al., 2006). Its environmental
effects include visibility problems and contribution to haze formation. Finally, PM2.5 affects
human health, as it penetrates the human respiratory system and deposits in the lungs and
alveolar regions (Pope and Dockery, 2006; Pope III et al., 2002) contributing to premature
mortality (Lelieveld et al., 2015).

To combat secondary pollution, the European Union established a set of measures
focusing on ammonia abatement, similar to the ones introduced by China (Giannakis et al.,
2019). These measures aim at reducing ammonia emissions by 6% in 2020, relative to 2005.
However, the lack of spatiotemporal measurements of ammonia over Europe makes any
assessment of the efficiency of these measures difficult, as only bottom-up methods are used to
calculate emission. These methods still show a slight increase (0.6% y™') up to 2018 mostly due
to increasing agricultural activities (McDuffie et al., 2020). Such bottom-up approaches rely on
uncertain land-use data and emission factors that are not always up to date, thus adding large

errors to existing inventories.
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During the last decade, satellite products have also become available to fill the gaps
created by spatially disconnected ground-based measurements. Data from satellite sounders
such as the Infrared Atmospheric Sounding Interferometer (IASI) (Van Damme et al., 2017),
the Atmospheric Infrared Sounder (AIRS) (Warner et al., 2017), the Cross-track Infrared
Sounder (CrIS) (Shephard and Cady-Pereira, 2015), the Tropospheric Emission Spectrometer
(TES) (Shephard et al., 2015), and Greenhouse Gases Observing Satellite (GOSAT) (Someya
et al., 2020) are publicly available. Most of them have been validated against ground-based
observations or complemented with other remote sensing products (Van Damme et al., 2015,
2018; Dammers et al., 2016, 2017, 2019; Kharol et al., 2018; Shephard et al., 2020; Whitburn
et al., 2016).

Accordingly, a few studies on ammonia emission calculations have been recently
published relying on 4D-Variational inversion schemes such as (Cao et al., 2022; Zhu et al.,
2013) or process based models (Beaudor et al., 2023; Vira et al., 2020). More recently, Sitwell
et al. (2022) proposed an inversion scheme for comparison between model profiles and satellite
retrievals using hybrid logarithmic and linear observation operator that attempts to choose the
best method according to the particular situation. In the present study, we use direct
comparisons between the CrIS ammonia retrievals and model profiles using the Least Squares
with Adaptive Prior Covariance (LS-APC) algorithm (Tichy et al., 2016), which reduces the
number of tuning parameters in the method significantly using variational Bayesian
approximation technique. We constrain ammonia emissions over Europe over the 2013-2020
period and validate the results against ground-based observations from EMEP (European

Monitoring and Evaluation Programme, https://emep.int/mscw/) (Torseth et al., 2012).

2 Methods

2.1 CrlIS observations

To constrain ammonia emissions with inverse modelling, satellite measurements were
adopted from the Cross-Track Infrared Sounder (CrIS) onboard the NASA Suomi National
Polar-orbiting Partnership (S-NPP) satellite, which provides atmospheric soundings with a
spectral resolution of 0.625 cm™ (Shephard et al., 2015). CrIS presents improved vertical
sensitivity for ammonia closer to the surface due to the low spectral noise in the ammonia
spectral region (Zavyalov et al., 2013) and the early afternoon overpass that typically coincides
with high thermal contrast, which is optimal for thermal infrared sensitivity. The CrIS Fast

Physical Retrieval (CFPR) (Shephard and Cady-Pereira, 2015) retrieves ammonia profiles at
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14 levels using a physics-based optimal estimation retrieval, which also provides the vertical
sensitivity (averaging kernels) and an estimate of the retrieval errors (error covariance matrices)
for each measurement. As peak sensitivity typically occurs in the boundary layer between 900
and 700 hPa (~ 1 to 3 km) (Shephard et al., 2020) and the surface and total column
concentrations are both highly correlated with these boundary layer retrieved levels. The total
column random measurement error is estimated in the 10-15% range, with total errors to be
~30% (Shephard et al., 2020). The individual profile retrieval levels show an estimated random
measurement error of 10-30 %, with total random errors estimates increasing to 60 to 100%
due to the limited vertical resolution (1 degree of freedom of signal for CrIS ammonia). These
vertical sensitivity and error output parameters are also useful for using CrIS observations in
applications (e.g. data fusion, data assimilation; model-based emission inversions; (Cao et al.,
2020; Liet al., 2019)), as a satellite observational operator can be generated in a robust manner.
The detection limit of CrIS measurements has been calculated down to 0.3—0.5 ppbv (Shephard
et al., 2020). CrIS ammonia has been evaluated against other observations over North America
with the Ammonia Monitoring Network (AMoN) (Kharol et al., 2018) and against ground-
based Fourier transform infrared (FTIR) spectroscopic observations (Dammers et al., 2017)
showing small bias and high correlations.

Daily CrIS ammonia (version 1.6.3) was put on,a 0.5°%0.5° grid covering all of Europe

(10°W=50°E, 25°N-75°N) for the period 2013-2020. Gridding was chosen due to the large

number of observations (around 10,000 retrievals per day per vertical level), which made the

calculation of source-receptor matrices (SRMs) computationally inefficient. Through gridding
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we limited the number of observation (and thus the number of SRMs to be calculated) to 2000
per day per vertical level. Sitwell et al. (2022) showed that the averaging kernels of CrIS
ammonia are significant only for the lowest six levels (the upper eight have no influence onto
the satellite observations) and therefore we considered only these six vertical levels (~1018-

619 hPa). The gridding was performed by averaging the values that fall in each 0.5° resolution

erid-cell daily over the 2013 — 2020 period of this study. This type of gridding was selected

before previous experience with inverse distance weighting interpolation of satellite

observations showed overestimated results of up to 100% (Evangeliou et al., 2021). In addition

the quality of gridding with respect to the averaging kernel of CrIS ammonia was evaluated by

calculating the standard deviation of the averaged values (Supplementary Figure S 1). The latter

shows that the kernel values within each grid-cell were very similar resulting in low gridded
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standard deviations, and thus low bias caused from the gridding (Supplementary Figure S 1).
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2.2 A priori emissions of ammonia

We used as a priori emissions for ammonia in the inversion algorithm the ones calculated
(1) from the most recent version of ECLIPSEv6 (Evaluating the CLimate and Air Quality
ImPacts of Short-livEd Pollutants) (Klimont, 2022; Klimont et al., 2017) combined with
biomass burning emissions from GFEDv4 (Global Fire Emission Dataset) (Giglio et al., 2013)
hereafter “EC6G4”, (ii) a more traditional dataset from ECLIPSEvS5, GFEDv4 and GEIA
(Global Emissions InitiAtive), hereafter “EGG” (Bouwman et al., 1997; Giglio et al., 2013;
Klimont et al., 2017), (iii) emissions calculated from IASI (Infrared Atmospheric Sounding
Interferometer) and a 1-dimensional box-model and a modelled lifetime (Evangeliou et al.,
2021), denoted as “NE” and (iv) from the high resolution dataset of Van Damme et al. (2018)
after applying a simple 1-dimensional box-model (Evangeliou et al., 2021), hereafter denoted

as “VD”. Given the large uncertainty in ammonia emissions illustrated in Figure 1, we

CDeleted: Figure 1

calculated the average of these four priors (hereafter “avgEENV™) to establish the a priori

emissions used in this study.

2.3 Lagrangian particle dispersion model for the calculation of source-receptor

matrices (SRMs) of ammonia

SRMs were calculated for each 0.5°%0.5° grid-cell over Europe (10°W—50°E, 25°N—
75°N) using the Lagrangian particle dispersion model FLEXPART version 10.4 (Pisso et al.,
2019) adapted to simulate ammonia. The adaptation of the code includes treatment for the loss
processes of ammonia adopted from the Eulerian model LMDZ-OR-INCA (horizontal
resolution of 2.5°x1.3° and 39 hybrid vertical levels) that includes all atmospheric processes
and a state-of-the-art chemical scheme (Hauglustaine et al., 2004). The model accounts for
large-scale advection of tracers (Hourdin and Armengaud, 1999), deep convection (Emanuel,
1991), while turbulent mixing in the planetary boundary layer (PBL) is based on a local second-
order closure formalism. The model simulates atmospheric transport of natural and
anthropogenic aerosols and accounts for emissions, transport (resolved and sub-grid scale), and
dry and wet deposition. LMDZ-OR-INCA includes a simple chemical scheme for the ammonia
cycle and nitrate particle formation, as well as a state-of-the-art CH4/NOx/CO/NMHC/O3
tropospheric photochemistry (Hauglustaine et al., 2014). To calculate chemical loss of
ammonia to PM2.5, after a month of spin-up, global atmospheric transport of ammonia was
simulated for 2013-2020 by nudging the winds of the 6-hourly ERA Interim Reanalysis data
(Dee et al., 2011) with a relaxation time of 10 days (Hourdin et al., 2006). Using the EGG

inventory, we calculated the e-folding lifetime of ammonia in the model, which was adopted in
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FLEXPART. We refer the reader to (Tichy et al., 2022) for a detailed description of the
formalism. Atmospheric linearities of the system and a full validation against ground-based
observation are also presented in the same paper.

FLEXPART releases computational particles that are tracked backward in time using
ERAS (Hersbach et al., 2020) assimilated meteorological analyses from the European Centre
for Medium-Range Weather Forecasts (ECMWF) with 137 vertical layers, a horizontal
resolution of 0.5°%0.5° and one hour temporal resolution. FLEXPART simulates turbulence
(Cassiani et al., 2014), unresolved mesoscale motions (Stohl et al., 2005) and includes a deep
convection scheme (Forster et al., 2007). SRMs were calculated for 7 days backward in time,
at temporal intervals that matched satellite measurements and at spatial resolution of
0.25°x0.25°. This 7-day backward tracking is sufficiently long to include almost all ammonia
sources that contribute to surface concentrations at the receptors given a typical atmospheric

lifetime of about half a day (Van Damme et al., 2018; Evangeliou et al., 2021).

2.4 Inverse modeling algorithm
The inversion method used in the present study relies on optimization of the difference

sat " and retrieved vertical

between the CrIS satellite vertical profile observations, denoted as v
profile, v"¢t. The latter are obtained by applying an instrument operator applied in logarithm
space (Rodgers, 2000) as follows:

Inv™") = Inw*) + A(n@w"™) — Inwv*) )

ret

where v"¢" is the retrieved profile concentration vector, v¢ is a priori profile concentration

vector used in the satellite retrievals, v"€

is the hypothetical true profile concentration vector
supplied by the model (v'™€ = v™°?), and A is the averaging kernel matrix (for each
0.5°%0.5° resolution grid-cell). Eq. (1) provides a useful basis for the calculation of the CrIS
retrievals if the retrieval algorithm is performing as designed, i.e., it is unbiased and the root
mean square error (RMSE) is within the expected variability. The v™°¢ term can be written as:
v™mod = My (2)
for each grid-cell of the spatial domain, where M is the grid-cell specific SRM calculated with
FLEXPART and x is the unknown grid-cell specific emission vector. The SRM matrix M is
calculated on circular surroundings around each grid-cell for computational efficiency. We
chose circles with a radius of approximately 445 km, equal to 4 degrees, which is shown to be
sufficient for reliable emission estimation and low sensitivity has been observed with this
choice. Since the vector x is unknown, we replace it by a prior emission x¢ (see section 2.2) in

the initial step that is gradually refined iteratively based on the satellite observations.
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The used inversion setup is based on iterative minimization of mismatch between v5%

ret

and v"®" updating (iteratively) the emission x such as below:

. 2
arg min | |vst — UT”H (3)
x-x 2
for each grid-cell of computational domain. The minimization problem is solved in two steps.
First, we construct the linear inverse problem for each year where v from the given

surroundings, denoted here as S, forms the block-diagonal matrix vZ® while v% from the
given surroundings form an associated observation vector v§%. This forms the linear inverse

problem:

vsat

= v5°qs 4
where the vector g is a vector with coefficients denoting how x® needs to be refined to obtain

emission estimate vector x. All elements in Eq. 4 are affected by uncertainties originating from

both the observations and model, hence, we employ an inverse algorithm to solve Eq. 4 with

added regularization in the form of prior distributions with specific covariance models. For one

year, 6 vertical profiles, and 4 degrees radius, the size of the the block-diagonal matrix vZ¢t is

13896 times 12, hence, the correction coefficient vector g contain 12 values corresponding to
each month. We solve Eq. 4 using the least squares with adaptive prior covariance (LS-APC)
algorithm (Tichy et al., 2016). The algorithm is based on variational Bayesian methodology
assuming non-negative solution and favoring solution without abrupt changes and it minimizes
the use of manual tuning (Tichy et al., 2020). The method assumes the data model in the form
of:

p(v°*) = Nws®qs, Ry (9)

where N denotes the multivariate normal distribution and R the covariance matrix assumed in

the form R = w_llp where I, is the identity matrix with ones on its diagonal and zeros

elsewhere, and, w is the unknown precision parameter on its diagonal. Following Bayesian

methodology, we assign a prior model to all unknown parameters, i.e. w and qg. Their, prior

models are selected as:
p(w) =G, po)  (6)
P(ds) = tN (0, (LVL)™, [0, +o0))  (7)

where G (9, po) is the Gamma distribution (conjugate to the normal distribution) with prior
parameters 9, p, selected to 10710 achive non-informative prior. The second term follows
truncated normal distribution with positive support and with specific form of a precision matrix.
We assume the precision matrix in the form of modified Cholesky decomposition which allows
for tractability of estimation of its parameters, matrices V and L. The matrix V is diagonal with

8
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unknown diagonal parameters and the matrix L is lower bidiagonal with ones on the diagonal
and unknown parameters on its sub-diagonal, formalized as vectors v and [, respectively.
These parameters are estimated within the method, while purpose of vector v is to allow for
abrupt changes in qg, and vector [ to favor smooth estimates (see details in Tichy et al. (2016)).
All model parameters (w, gs, v, 1) are estimated using the variational Bayes procedure where
we obtain not only point-estimates, but their full posterior distributions.

Second, the grid-cell specific coefficient vector g is propagated through Eq. 2 into Eq. 1
to refine a prior emission x® and obtain estimated unknown emissions x. To maintain stability
of the method, we bound the ratio between prior and posterior emission elements to 0.01 and
100, respectively. This choice, motivated by Cao et al. (2020), omits unrealistically small or
high emissions, however, the bounds are large enough to allow for new sources, as well as for
attenuation of old sources. To introduce these boundaries is necessary since the problem in Eq.
1 is ill-conditioned and the propagation through the equation may lead to unrealistic values due
to numerical instability. For this reason, these boundaries are needed and the sensitivity to the
choice of the prior emission are studied in Section 3.3.

Note that CrIS data for some spatiotemporal elements are missing in the dataset. In these
cases, we interpolated the missing data following the method proposed by D’Errico (2023),
which solves a direct linear system of equations for missing elements, while the extrapolation
behavior of the method is linear. Another strategy recently adopted in the literature has been to
tackle the missing data using total variation methodology (see details in Fang et al., 2023);
however, the method has been limited so far to its use on point-source release, hence we did

not use it in this work.

3 Results

3.1 Emissions of ammonia in Europe (2013-2020)

We analyze the CrIS ammonia satellite observations for Europe (10°W-50°E, 25°N—
75°N) over the 2013-2020 period on monthly basis to derive ammonia emissions using the
inverse modelling methodology described in Section 2.4. The inversion algorithm is applied to
each year of CrIS observations separately with the use of the avgEENV prior emission. Note

that since a diurnal cycle is neither assumed in the Chemistry Transport Model, nor exists in

the satellite observations from CrIS, daily emissions of ammonia do not represent a daily mean.

The overall resulting spatial distribution of the posterior emissions of ammonia (denoted

as posterior_avgEENYV) averaged for the whole period are displayed in Figure 2, (top-left). The

(Deleted: Figure 2
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highest emissions occur in Northwestern Europe (including Northern Belgium, the Netherlands
and northwestern Germany) and to a smaller extent in the Po Valley (Italy), and the Ebro Valley
(Spain). Local maxima are also seen over Pulawy (Poland), South Romania and Kutina
(Croatia) due to industrial applications (Clarisse et al., 2019; Van Damme et al., 2018). While
ammonia emissions were not calculated high in the Po Valley (8 year average), it has been
reported that in Lombardy, about 90% of the ammonia emissions there have been reported to
originate from manure management (Lonati and Cernuschi, 2020). The Ebro Valley is
characterized by intensive agricultural activities (Lassaletta et al., 2012; Lecina et al., 2010)
and the Aragon and Catalonia regions by large pig farms (Van Damme et al., 2022). Finally,
both Belgium and The Netherlands are countries in which intensive livestock activity is
documented. It consists mostly of dairy cow, beef cattle, pig and chicken farming (Gilbert et
al., 2018; Lesschen et al., 2011; Velthof et al., 2012).

Figure 2, (top-right) shows the annual posterior emissions discretized monthly for the

CDeleted: Figure 2

whole period (solid line) compared to prior ammonia emissions (dashed line), averaged for the
domain. Higher emissions than the prior ones were calculated, which is not necessarily
attributed to emission increases over Europe, but rather to miscalculation of emissions in the
prior bottom-up inventories that were used. A strong seasonal cycle is also observed peaking
in the middle of each year (summer) of the study period, but for several of these years, the
characteristic bimodal cycle also appears with another peak in spring (Beaudor et al., 2023).
To examine more closely the seasonal variability of ammonia emissions in Europe, we
present the monthly posterior emissions of ammonia averaged for the whole study period

(2013-2020) at the bottom-left panel of Figure 2, together with the prior ones. The total

(Deleted: Figure 2

emissions for each month based on the map element size and length of the respective month
were averaged for the whole study period. The same was done for each year in the bottom-right
panel. The interannual variability over the period between 2013 and 2020, is also apparent in
the monthly box and whisker plots of the posterior emissions. In addition, the spatial
distribution of monthly ammonia emissions averaged for the eight-year period is given in

Supplementary Figure S 21, It appears that ammonia emissions are very low in wintertime (DJF

(Deleted: Supplementary Figure S 1

average: 286 Gg) over Europe and increase towards summer (JJA average: 563 Gg), due to
temperature dependent volatilization of ammonia (Sutton et al., 2013), with the largest
emissions occurring in August (601 Gg). Although a clear peak of fertilization in early spring
is missing from the plot, emissions start to increase in early spring to peak in late-summer (Van
Damme et al., 2022) corresponding to the start and end of the fertilization periods in Europe

(Paulot et al., 2014). Fertilization is tightly regulated in Europe (Ge et al., 2020). It is only

10



318
319
320
321
322
F23
324
325
326
327
328
329
F3o
331
332
333
334
335
336
337
338
339
340
341
342
343

344
345
346
347
F48
349
350

allowed from February to mid-September in The Netherlands, while manure application is also
only allowed during the same period depending on the type of manure and the type of land (Van
Damme et al., 2022). In Belgium, nitrogen fertilizers are only allowed from mid-February to
the end of August (Van Damme et al., 2022), so as in Germany (restricted in winter months)
(Kuhn, 2017).

Finally, Figure 2, (bottom-right) shows the annual posterior emissions for the whole

(Deleted: Figure 2

period with the annual total emissions for each year. We observe a significant decrease in
ammonia posterior emissions over Europe during the 2013-2020 period. Emissions were
estimated as 5431 Gg for 2013 decreasing to 4890 Gg in 2014. A minor increase can be seen
in2015 (5104 Gg), after which a significant decrease of 534 Gg (more than 10%) was estimated,
followed by the nearly constant plateau at the levels between 4383 Gg in 2017, 4323 Gg in
2019 and finally to 3994 Gg in 2020. The gradual decrease in ammonia emissions over Europe

since 2013 is also plotted spatially in Supplementary Figure S 32, It is evident that the

CDeleted: Supplementary Figure S 2

restrictions and measures adopted by the European Union to reduce secondary PM formation
were successful, as emissions in the hot-spot regions of Belgium, The Netherlands, Germany
and Poland declined drastically over time. However, an increase of +4.4% was observed in
2015. It has been reported that ammonia emissions increased in 2015 and several European
Union Member States, as well as the EU as a whole, exceeded their respective ammonia
emission ceilings (EEA, 2017). The increase was reported to be +1.8% and was mainly caused
by increased emissions in Germany, Spain, France, and the United Kingdom. This was caused
by extensive use of inorganic nitrogen fertilizers (including urea application) in Germany, while
increased emissions in Spain were driven by an increase in the consumption of synthetic
nitrogen fertilizers and in the number of cattle and pigs (EEA, 2017). It should be mentioned
that a false decrease of ammonia in 2020 due to the COVID-19 pandemic is calculated by the
current methodology, mainly due to bias created by the decrease of NOx and SO, that are

precursor species of the atmospheric acids, with which ammonia reacts (see Tichy et al., 2022).

3.2 Country by country ammonia emissions

Posterior annual emissions of ammonia for 2013-2020 are plotted for four European
regions (Western, Central and Eastern, Northern and Southern Europe), accompanied by
relative trends calculated as difference between year 2013 and 2020 divided by the average for

the whole period, in the left panel of Figure 3, while the estimated seasonal variation of each

CDeleted: Figure 3

region is shown on the right panels averaged over the whole eight-year period. Western Europe

includes Ireland, Austria, France, Germany, Belgium, Andorra, Luxembourg, The Netherlands,
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Switzerland, and United Kingdom; Central and Eastern Europe include Albania, Bosnia and
Herzegovina, Bulgaria, Czechia, Croatia, Hungary, Belarus, Slovakia, North Macedonia,
Montenegro, Poland, Romania, Moldova, Slovenia, Ukraine, and Serbia; Northern Europe is
defined by Denmark, Estonia, Finland, Latvia, Lithuania, Faroe Islands, Norway, and Sweden;
finally, Southern Europe includes Cyprus, Greece, Italy, Portugal, Spain.

The most significant decreases in ammonia emissions were estimated to be -38% in
Central and Eastern Europe and -37% in Western Europe, respectively. Quantitatively, Central
and Eastern Europe emissions were estimated to gradually drop from 2190 Gg in 2013 and to
1495 Gg in 2020 with a small increase in 2015 (2171 Gg) mainly because Germany, France
and the United Kingdom missed their emission targets (EEA, 2017). Western European
emissions of ammonia also declined constantly over time from 2041 Gg in 2013 to 1421 Gg in
2020. Smaller, yet significant, decreases were calculated over Northern Europe from 398 Gg in
2013 to 333 Ggin 2020 (-17%). Finally, Southern Europe exhibited a minor drop between years
2013 and 2014 (from 803 Gg in 2013 to 729 Gg in 2014) followed by a small increase until
2019 (from 729 to 803 Gg), and then decreased again in 2020 to 743 Gg. Overall, Southern
European emissions decreased by -7.62%.

The seasonal cycle of ammonia was again characterized by the restrictions applied to the

agricultural-related activities by the European Union member states (Figure 3, right panels). As

such, emissions in Western, Central and Eastern and Southern Europe were very low in winter
and started increasing when fertilization was allowed in early spring, whereas the increasing
temperature towards summer increased volatilization and, thus, emissions of ammonia (Van
Damme et al., 2022; Ge et al., 2020). Although much less marked than in other European
regions due to lower prevailing temperatures and weaker agricultural applications, emissions
in Northern Europe show the spring-summer temperature dependence. However, emissions
were estimated to be double in winter rather following the cycle of SO2 (Tang et al., 2020).
Emission may increase in Northern Europe in winter because OH and O3 concentrations are
much lower, and the rate of converting SO2 to sulfate much slower. This means that less sulfate

is produced and thus more NH3 stays in the gas form. Supplementary Figure S 43 shows prior

(Deleted: Figure 3

(Deleted: Supplementary Figure S 3

emissions in Western, Central and Eastern, Northern and Southern Europe for EC6G4 and NE
emission inventories. Both show the aforementioned increase in emissions during winter in
Northeastern Europe. Specifically, the NE emissions that dominate the a priori emissions
(avgEENYV) as the highest inventory show an extreme winter peak in the north (emissions

decline from 105 to 13 Gg). Therefore, there is a very strong dependence of the posterior
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seasonality of ammonia in Northern Europe, which may be also influenced by the used prior
emissions, see uncertainty analysis in Section 3.3.
Country specific emissions of posterior ammonia on a monthly basis (eight-year average

emissions) are shown for 20 countries in Supplementary Figure S 54, For countries such as

(Deleted: Supplementary Figure S 4

Portugal, Spain, Italy, United Kingdom, The Netherlands, Belgium, Poland, Hungary,
Denmark, Belarus and Romania two peaks can be clearly seen in late spring and end of summer.
As discussed before, these peaks coincide with the two main fertilization periods in Europe
(Paulot et al., 2014). However, it is expected that ammonia abundance is high throughout the
entire spring—summer period (e.g., Greece, France, Germany, Czechia, Ukraine and Bulgaria)
due to agricultural activity and temperature dependent volatilization (Sutton et al., 2013).
Ammonia emissions in Finland, Sweden and Norway are smaller than in the rest of Europe and

show a reverse seasonality.

3.3 Uncertainties in ammonia’s posterior emissions

For the calculation of uncertainty of the estimated posterior emissions two different
approaches were used. The first approach is based on uncertainty arising as a result of the
inversion methodology. The standard deviation is calculated from posterior estimate which is
in the form of Gaussian distribution such as

Pposterior (Xi) = N (Ui, 07) (&),

where N denotes normal (Gaussian) distribution and posterior parameters y; and o; are results
of inversion for each element of the spatiotemporal domain. The uncertainty associated with
any given spatial element is then a property of Gaussian distribution defined with the square

root of summed squared standard deviations:

Olocation = \/Zt o'lication.t (9)

Here, 02 4ti0n ¢ denotes the estimated variance of the emissions for given coordinates and time

period; we consider uncertainty calculated as 2¢ standard deviations, i.e. 95% of the values lay
inside the interval with the center in the reported emissions surrounded by the reported
uncertainty.

The second approach is based on ensemble of the used prior emissions as an input for the
inversion. The different ensemble members are built from five prior emissions (see Figure 1)
while the uncertainty is calculated as the standard deviation of five resulting posterior

emissions.
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2.410The calculated posterior uncertainty for our spatial domain and studied period

(2013-2020) is shown in Figure 4, for Gaussian posterior (left) and for ensemble of prior

(Deleted: Figure 4Figure 4Figure 4

emissions (right). The uncertainty associated with Gaussian posterior for each year of the study

period are depicted in Supplementary Figure S 65, The absolute uncertainty of Gaussian

(Deleted: Supplementary Figure S 4

posterior ammonia emissions reaches a maximum of 23.3 ng m? s’ or about 39% (relative
value, calculated based on related maximum of posterior emissions). The uncertainty based on
prior ensemble reaches a maximum of 60.2 ng m s”! which is equal to about 101% based on
related maximum of posterior emissions. In general, the pattern of both posterior uncertainties,
Gaussian posterior and prior ensemble respectively, are in agreement in theirs patterns and
follow the one of the posterior emissions, with the highest values over (i) Belgium, the
Netherlands, and Germany due to livestock, farming, and agricultural activity; (ii) Poland,
South Romania and Croatia due to industrial applications; (iii) Catalonia due to pig farming;
(iv) West France due to manure application. Nevertheless, the obtained posterior uncertainty
remains low, and this depicts the robustness of the methodology used and the calculated

posterior emissions of ammonia.

3.4 Validation of posterior emissions

As shown in Eq. 3 (Section 2.4), the inversion algorithm minimizes the distance between
the satellite observations (v5%") and the retrieved ammonia concentrations (v"¢%). The latter is
a function of different satellite parameters (e.g., averaging kernel sensitivities) and modelled
ammonia concentrations using a prior dataset (v™°% or v"*¢) as seen in Eq. 1. The overall

mod

result is always propagated to v iteratively, each time updating the prior emissions to obtain

posterior ammonia. As specified in CrIS guidelines, modelled concentrations (v™°%) cannot be

sat ret

directly compared with satellite data (v5?%), while comparing v5¢¢ with vt is not a proper
validation method, because the comparison is performed for satellite observations that were
included in the inversion (dependent observations), and the inversion algorithm has been

designed to reduce the vSet-pet

mismatches. This means that the reduction of the posterior
retrieved concentration (v"¢") mismatches to the observations (v5%!) is determined by the
weighting that is given to the observations with respect to v"¢. A proper validation of the
posterior emissions is performed against observations that were not included in the inversion
(independent observations).

For these reasons, we compare modelled posterior concentrations of ammonia (v™°%) at

the surface with ground-based observations over Europe from the EMEP (European Monitoring

and Evaluation Programme, https://emep.int/mscw/) network (Torseth et al., 2012). The
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measurements are open in public and can be retrieved from https:/ebas.nilu.no. We used
measurements for all years between 2013 and 2020 from an average of 53 stations with 2928

observations for each station covering all Europe (Supplementary Figure S 76). The comparison

is plotted for each of the 53 stations separately on a Taylor diagram in Figure 5, For all stations,

(Deleted: Supplementary Figure S 6
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the Pearson’s correlation coefficient increased for the posterior ammonia (coloured circles)
increased as compared to the prior one (coloured squares) reaching above 0.6 at several stations,
while the normalized root mean square error (1(RMSE) and standard deviation were kept below
2 (unitless) and 2 pg m-3, respectively, in almost all stations (except SI0008 in Slovenia).

To further show how posterior emissions of ammonia affect modelled concentrations, we
chose six stations (DE0002 in Germany, NO0056 in South Norway, ES0009 in Spain, NL0091
in the Netherlands, HU0002 in Hungary and PLO00O5 in Poland) from the EMEP network

(highlighted in red in Supplementary Figure S 76), and we plot prior and posterior

(Deleted: Supplementary Figure S 6

concentrations against ground-based ammonia over time for the whole study period (2013—

2020) in Supplementary Figure S 87, Given the long period of plotting, we average observations

(Deleted: Supplementary Figure S 7

every week and modelled concentrations every month for a more visible representation of the
comparison. To evaluate the comparison, we calculate a number of statistic measures, namely
nRMSE, the normalized mean absolute error (nMAE) and the root mean squared logarithmic
error (RMSLE) as defined below:

iy Amg—0)? N
nRMSE = Jlli nIMAE = Zi=1™i~ 0]

n n .
n2i=10i Yi=10i

RMSLE = ﬁ s, (logm; — log 0;)? (11

where n is sample size, m and o the individual sample points for model concentrations and

observations of ammonia indexed with i. As one can see in Supplementary Figure S 87, all

statistics were improved in all six stations and posterior concentrations were closer to the
observations. However, individual peaks were in many cases misrepresented in the model.
Whether this is a result of the measurement technique or the fact that local sources cannot be
resolved at the spatiotemporal resolution of CTM and FLEXPART (given the short lifetime of
atmospheric ammonia) needs further research. The best results were obtained at station ES0009
(Spain), where model captures the seasonal variation of the observations during the whole study
period (2013-2020). In all other stations, the seasonality is maintained albeit steep peaks in the
observations are lost.

As explained in section 1, ammonia reacts with the available atmospheric acids producing

secondary aerosols (Seinfeld and Pandis, 2000). Therefore, its presence and lifetime in the
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atmosphere is driven by the atmospheric acids and their precursors, SO2 and NO2. Changes in

atmospheric levels of these substances have a significant impact on the lifetime of ammonia

and its emissions, as highlighted in Tichy et al., (2022). Therefore, it is clear that a wrong

representation of trends in modelled SO2 and NO2 will lead to systematic biases in the

estimated ammonia emission trends. To further demonstrate that the modelling system correctly

represents the trends in SO2 and NO2, we compare ground-based observations of these two

species from the EMEP network (https://emep.int/mscw/) against modelled concentrations.

The comparison is shown in Supplementary Figure S 9 for six random EMEP stations for<-.

different years for each of NO2 and SO2. The full comparison of the two datasets of

observations is plotted in scatterplots of modelled versus measured surface concentrations for

NO2 and SO2 for all the study period (2013-2020) in Supplementary Figure S 10. A total

number of 3,368,660 for SO2 and 4,252,592 for NO2 was used in the validation. It is evident
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that the seasonal variation of the modelled surface concentrations and their magnitude are both
represented very well in the model for NO2 and SO2. nRMSE was 0.12 — 0.19 for NO2 and

0.09 — 0.25 for SO2, nMAE 0.39 — 0.94 for NO2 and 0.48 — 1.2 for SO2, RMSLE was 0.25 —
0.49 for NO2 and 0.11 —0.33 for SO2 in the six stations (Supplementary Figure S 9). For over

4.2 and 3.3 million measurements that were used in this validation of NO2 and SO2
concentrations for 2013 — 2020 study period, nRMSE values were 0.05 and 0.02, nMAE 0.74
and 1.0 and RMSLE 0.50 and 0.40 for NO2 and SO2, respectively (Supplementary Figure S

10).
4 Discussion

4.1 Comparison with emissions inferred from satellite observations

We compared our posterior estimates with two recently published studies on ammonia
emission in Europe (Cao et al., 2022; Luo et al., 2022). Luo et al. (2022) used IASI observations
for the period 2008 to 2018 to estimate ammonia emissions in a global domain. Their method
was based on updating prior emissions with correction term computed using differences
between observed and simulated ammonia columns combined with calculated ammonia
lifetimes. The key indicators calculated for the European domain in Luo et al. (2022) are a
linear trend for the 2008—2018 period, average annual emissions, and relative trends. Note that
we compare our eight-year period with a decade in Luo et al. (2022). The comparison is

depicted in Figure 6, Our estimates (Figure 6, left panel) are in good agreement with those

- (Deleted: Figure 6

calculated by Luo et al. (2022). The linear trend was estimated as -1.27 Tg for the period by
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Luo et al. (2022), while our estimate is -1.44 Tg. The spatial distribution of the trend is also

given in Figure 6, (left panel). The key decrease is observed mainly in France, Germany, and

(Deleted: Figure 6

middle Europe, while the increasing trend is observed mostly in Spain, parts of Italy, and
Greece. The average annual ammonia emission for the European domain in Luo et al. (2022)
was estimated to be 5.05 Tg while our estimate is 4.63 Tg. Our lower estimate (by
approximately 8%) may be attributed to use of more recent period considered in our study, but
both methods agree that the trend in Europe is negative. The relative decrease estimated by Luo
et al. (2022) is -25.1%, while we calculate -31.02%, which is again in very good agreement.

Cao et al. (2022) used CrIS observations for the year 2016 in order to estimate ammonia
emissions for 25 European Union members (EU25), namely Austria, Belgium, Bulgaria,
Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece,
Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia, and Spain. The method was tested with uni-directional and bi-
directional flux schemes. The uni-directional dry deposition scheme assumes only air to surface
exchange of ammonia ignoring changes in environmental conditions, while the bi-directional
scheme captures dynamics in measured ammonia fluxes. Total estimated ammonia emissions
for the EU25 region by the uni-directional scheme (posterior _uni) and the bi-directional scheme
(posterior_bi) were reported as 3534 Gg N y—1 and 2850 Gg N y—1, respectively. The
posterior_bi estimate is very close to our estimate for EU25 for the year 2016, which is 2712
Gg N y—1, while the posterior_uni is approximately 30% higher. A uni-directional dry
deposition scheme ignores the impacts of changes in environmental conditions (e.g., soil
temperature, soil wetness, soil pH, fertilized condition, and vegetation type) on ammonia
emissions from fertilized soil and crops (volatilization), which likely lead to high biases in top-
down estimates. Ammonia in LMDz-OR-INCA model, that was used to capture ammonia’s
losses, resembles a partially bi-directional treatment, where emissions and deposition are both
possible at the same time without any use of a compensation point; this may explain the 30%
difference.

The detailed EU25 emissions for the year 2016 are displayed in Figure 6, (right panel) for

(Deleted: Figure 6

posterior_uni (red), posterior_bi (yellow), our post avgEENYV (blue), and priors used by Cao
et al. (2022) and in our study (dashed red and blue, respectively). As seen from Figure 6, our

CDeleted: Figure 6

posterior estimates (post_avgEENV) have more similar characteristics with posterior_bi, with
monthly difference to be less than factor of 2 positive or negative from Cao et al. (2022). Note
that the posterior uni estimates are always a factor of 3 higher than our posterior estimates for

ammonia emissions. The main differences can be observed during February-March and
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October-November periods where our estimates are generally lower than those from Cao et al.
(2022).

Finally, the latest Commission Third Clean Air Outlook published in December 2022
(EC, 2022) based on the data reported by the EEA (https://www.eea.curopa.cu/data-and-

maps/dashboards/necd-directive-data-viewer-7) concluded (p. 2) that emissions of ammonia in

recent years remain worryingly flat or may have increased for some member states. The

assessment covers the period we investigated in the present manuscript (2013 — 2020) and

shows (for the EU27) a reduction in ammonia emissions of only 2% that is far smaller than that

we calculated here (26%). The consistency of our results with those calculated with similar

methodologies (Cao et al., 2022; Luo et al., 2022) urges us to believe that such differences in

ammonia trends are the result of differences between bottom-up and top-down estimates.

4.2 Assessment of ammonia’s atmospheric linearities
Ammonia is a particularly interesting substance due to its affinity to react with
atmospheric acids producing secondary aerosols. In most cases, it is depleted by sulfuric and

nitric acids. However, when relative humidity is high and particles are aqueous, sulfate reacts

with ammonia and decreases, while the equilibrium vapor pressure of ammonia with nitric acid

increases shifting the reaction towards production of free ammonia (Seinfeld and Pandis, 2000).

The former reaction is a rare event and lots of prerequisites must be fulfilled fo take place.

\

Supplementary Figure S 118a shows the frequency distribution of gain (production of

free ammonia - negative numbers) or loss (production of sulphate/nitrate — positive numbers)

due to all chemical processes jn, the inversion domain (10°W-50°E, 25°N-75°N), for the study

period (2013 —2020) and the lowest six sigma-p vertical levels (~1018-619 hPa, see Vayerragrinrgrf‘-
kernels in section 2.1) (Sitwell and Shephard, 2021). The figure shows mostly positive numbers

indicating that atmospheric ammonia reacts towards secondary aerosol formation. The spatial

distribution of gain/loss of ammonia is shown in Supplementary Figure S 118p. The pixels

indicating production of gaseous ammonia are located in marine regions, where we chose to
not perform inversions, as they are an order of magnitude lower (Bouwman et al., 1997), thus

less significant. No continental pixels showing gain of ammonia were detected, which would

cause simulated backwards in time to fail with our Lagrangian model (see next paragraph). Our |

approximation, although simplistic, provides computational efficiency when simulating SRMs
in backward mode using FLEXPART (Pisso et al., 2019).
Seibert and Frank (2004) reported that standard Lagrangian particle dispersion models

cannot simulate non-linear chemical reactions. First-order chemical reactions, where the
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reaction rates can be prescribed, are also linear. Non-linear chemistry cannot be calculated
because neither the background chemistry is modeled nor is the coupling of the tracked plume
(forward or backward) to this background. Technically, the SRM in FLEXPART is calculated
for a receptor with a certain mean mixing ratio (¥) and an emitting source (g;,) in a certain

discretization of the space (index i) and time (index n), as:

X _1_J A Pjn
X L) pp o Pin 12
din J Zj:l Ll Pin ( )

where ] is the total number of backward trajectories (particles index j ) originating from the
position of the receptor y and ending at a certain discretized time (index n) in certain
discretized space position (index i) for a time interval At; ; , , and where the air density is p; .
The further function p;, (pj, < 1) represents the relative (to the initial receptor state) decay
of the mass value in the particle in its travel from the receptor to the discretized space time
interval (j,n) due to any linear decay process (e.g. deposition, linear chemical decay) for a
perfectly conserved scalar p;, = 1. So, for linear decaying species a direct SRM can be
calculated explicitly among all relevant receptor points and all positions in space and time. The

existence of the SRM (H), linking directly mixing ratios at the receptor points with emissions,
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is the prerequisite to apply simple inversion algorithms, such as the one jn the present study. CDeleted: -
Inversion of observations to obtain emissions for non-linear chemically reactive species (Deeted: we use
entails the need of a chemistry transport model (CTM) forward (and its adjoint backward) in CDeleted: to run
time from time t, to time t;: evolving the full state of the atmosphere. in relation to the
emissions and boundary conditions. Subsequently, a cost function is evaluated by an iterative
descent gradient method that implies running the adjoint of the forward model (Fortems-
Cheiney et al., 2021). Note that an iterative algorithm means that the forward and adjoint
models run several times in sequence until the estimated minimum of the cost function is
To overcome these complexities, we examine the linearities of our method and show that
FLEXPART simulates ammonia efficiently, we evaluate modelled ammonia against ground-
based measurements of ammonia from EMEP (https://emep.int/mscw/) in Europe, EANET CDeleted: the
(East Asia acid deposition NETwork) in Southeastern Asia (https://www.eanet.asia/) and (Deleted: neovork
AMoN (Ammonia Monitoring Network in the US, AMoN-US; National Air Pollution
Surveillance ~ Program  (NAPS)  sites in Canada) in  North  America ’ [Delete d: caloulated with the backward mode
(http://nadp.slh.wisc.edu/data/AMoN/). The SRMs for ammonia gxpress the emission (Deleted: , which
sensitivity (in seconds) and, yield modelled concentrations at the receptor point, when coupled . (Deleted: 24
with gridded emissions from EGG (in kg m-2 s-1, see section 2.2) at the lowest model level  8:::: I:Smion)
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(100 m). To check the consistency of the proxy used in the SRMs of ammonia, we also

simulated surface concentrations of ammonia with FLEXPART in forward mode using the
same emissions (EGG). We have chosen two random ground-based stations from each of the
three measuring networks (EMEP, EANET, AMoN) to compare modelled concentrations. For
consistency, we also plot the resulting surface concentrations from the LMDz-OR-INCA model

(Supplementary Figure S 129).
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Modelled concentrations (forward and backward FLEXPART and the CTM LMDz-OR-
INCA) at each station have been averaged to the temporal resolution of the observations.

Supplementary Figure S 1310,shows Taylor diagrams of the comparison between FLEXPART

CDeleted: Supplementary Figure S 10

simulated concentration in forward and backward mode. Plotting backward versus forward
results is a common procedure to infer whether a Lagrangian model produces reasonable results
(Eckhardt et al., 2017; Pisso et al., 2019). In general, the forward and backward simulations
show very good agreement for the depicted receptor points. For example, ammonia

concentration at stations AL99, CA83, and VNAOOI (Supplementary Figure S 129) are

CDeleted: Supplementary Figure S 9

simulated similarly, and the mean concentrations are almost identical in the forward and
backward modes. However, during some episodes there can be notable differences (e.g., at

DEOO02R) as seen before (Eckhardt et al., 2017). The main reason is that the backward

calculations always give more accurate results as the number of particles released at the receptor

is much higher in backward mode than in forward mode; the particles are targeted to a very

small location in backward, whereas in forward mode the particles are distributed equally on a

global scale and therefore less particles represent each receptor location. Another reason is that

transport and especially turbulent processes are parametrized by random motion, which are

different for each FLEXPART simulation. Finally, the coordinate system for defining the height

layer above ground depends on the meteorological field which is read at the start of the

simulation, and this can also cause small deviations. The Taylor diagram for the respective

comparison (Supplementary Figure S 1310) show high Pearson’s correlation coefficients

CDeleted: Supplementary Figure S 10

(>0.7), low standard deviations (<1 pg N m-3) and root means square errors (RMSEs <0.7 pg
N m-3).

5 Conclusions

Today, a large debate takes place about ammonia abatement strategies for Europe, but
also for Southeastern Asia, in an effort to reduce secondary formation and, thus, mitigate
climate crisis (van Vuuren et al., 2015). These strategies include (a) low nitrogen feed by

reducing ammonia emissions at many stages of manure management, from excretion in
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housing, through storage of manure to application on land, also having positive effects on
animal health and indoor climate (Montalvo et al., 2015); (b) low emission livestock housing,
which focuses on reducing the surface and time manure is exposed to air by adopting rules and
regulations regarding new livestock houses (Poteko et al., 2019); (c) air purification by
adopting technologies to clean exhaust air from livestock buildings (Cao et al., 2023) and
others. Here we used satellite observations from CrlS and a novel inverse modelling algorithm
to study the spatial variability and seasonality of ammonia emissions over Europe. We then
evaluated the overall impact of such strategies on the emissions of ammonia for the period

2013-2020. The main key messages can be summarized below:

e The highest emissions over the 2013-2020 study period occur in North Europe (Belgium,
the Netherlands and northwestern Germany). At a regional scale, peaks are seen in Western
Europe (Poland, South Romania and Croatia) due to industrial activities, in Spain (Ebro
Valley, Aragon, Catalonia) due to agricultural activities and farming, in Belgium and The
Netherlands due to livestock activity (dairy cow, beef cattle, pig and chicken farming).

e Ammonia emissions are low in winter (average: 286 Gg) and peak in summer (average:
563 Gg), due to temperature dependent volatilization of ammonia, while a notable peak
attributed to fertilization can be seen in early spring during some years.

e Over the 2013-2020 period, European emissions of ammonia decreased from 5431 Gg in
2013 to 3994 Gg in 2020 or about -26%. Hence, the restrictions adopted by the European
Union members were effective in reducing secondary PM formation.

e A slight emission increase of +4.4% in 2015 appears for several European Union Member
States (Germany, Spain, France, and the United Kingdom) who exceeded the respective
ammonia emission targets. Part of the 2020 ammonia decrease might be attributable to the
COVID-19 pandemic restrictions.

e The largest decreases in ammonia emissions were observed in Central and Eastern Europe
(-38%, 2190 Gg in 2013 to 1495 Gg in 2020) and in Western Europe (-37%, 2041 Gg in
2013 to 1421 Gg in 2020). Smaller decreases were calculated in Northern Europe (-17%,
398 Gg in 2013 to 333 Gg in 2020) and Southern Europe (-7.6%, from 803 Gg in 2013 to

C Deleted: and,

to 743 Gg in 2020).

e The maximum calculated absolute uncertainty of Gaussian posterior model was 23.3 ng m-

2 o1

s!, or about 39% (relative value) and calculated maximum based ensemble of prior
emissions was 60.2 ng m? s, or about 101% following the spatial distribution of the

posterior emissions.
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e Comparison of the concentrations calculated with prior and posterior ammonia emissions
against independent (not used in the inversion algorithm) observations showed improved
correlation coefficients and low nRMSEs and standard deviations. Looking at timeseries
of six randomly selected stations in Europe, we also found that posterior surface
concentrations of ammonia were in accordance with the ground-based measurement, also
following the observed seasonal trends.

e Our results agree very well with those from Luo et al. (2022) (decreasing trend: -1.44
versus -1.27 Tg, annual European emissions: 4.63 versus 5.05 Tg) and those from Cao et
al. (2022) following their methodology (their posterior bi estimate for EU25 and year 2016
was 2850 Gg N y—1, while we calculate 2712 Gg N y—1).

e The relatively low posterior uncertainty and improved statistics in the validation of the
posterior surface concentrations denote the robustness of the posterior emissions of

ammonia calculated with satellite measurements and our adapted inverse framework.

Data availability. The data generated for the present paper can be downloaded from ZENODO
(https://doi.org/10.5281/zenodo.7646462). FLEXPARTv10.4 is open access and can be
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Figure 1. Four ammonia prior emissions (EC6G4, EGG, NE, VD) are displayed in the first two
rows. The combined prior (avgEENV) is displayed in the bottom left. The temporal variability
of all five prior emissions is given in bottom right.
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Figure 2. The spatial distribution of posterior ammonia emissions (posterior EENV, top-left)
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Figure 3. Left: Annual posterior emissions of ammonia in Southern (yellow), Western (green),
Northern (blue), and Central and Eastern (red) Europe. Right: Monthly average posterior
emissions of ammonia accompanied by box plots, where the red line indicates the median, the
bottom and top edges of the box indicate the 25™ and 75™ percentiles, respectively, and the
whiskers extend to the most extreme data points (not considered outliers), which are represented
using red crosses.
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Figure 5. Modelled concentrations of ammonia with prior and posterior emissions against
ground-based observations from 53 EMEP stations for 2013-2020 presented in a Taylor
diagram. The diagram shows the Pearson’s correlation coefficient (gauging similarity in pattern
between the modelled and observed concentrations) that is related to the azimuthal angle (blue
contours); the standard deviation of modelled concentrations of ammonia is proportional to the
radial distance from the origin (black contours) and the centered normalized RMSE of modelled
concentrations is proportional to the distance from the reference standard deviation (green
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Figure 6. Left: spatial distribution of ammonia emission trends computed for the studied period
2013-2020 in the same way as in (Luo et al., 2022), where also trend, mean, and trend/mean
are defined/computed in the same way. Right: comparison of ammonia emissions from the
EU25 countries for the year 2016 from our posterior calculations (posterior avgEENV, blue)
and results from Cao et al. (2022) (posterior uni in red and posterior bi, in yellow).
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