
1	
 

Decreasing trends of ammonia emissions over Europe seen 1 

from remote sensing and inverse modelling 2 

 3 

Ondřej Tichý1, Sabine Eckhardt2, Yves Balkanski3, Didier Hauglustaine3, 4 

Nikolaos Evangeliou2,* 5 

 6 
1 The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, 7 

Czech Republic. 8 
2Norwegian Institute for Air Research (NILU), Department of Atmospheric and Climate 9 

Research (ATMOS), Kjeller, Norway. 10 
3Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA-CNRS-UVSQ, 11 

91191, Gif-sur-Yvette, France. 12 

 13 

* Corresponding author: N. Evangeliou (Nikolaos.Evangeliou@nilu.no) 14 

 	15 



2	
 

Abstract  16 

Ammonia (NH3), a significant precursor of particulate matter, not only affects 17 

biodiversity, ecosystems, soil acidification, but also climate and human health. In addition, its 18 

concentrations are constantly rising due to increasing feeding needs and the large use of 19 

fertilization and animal farming. Despite the significance of ammonia, its emissions are 20 

associated with large uncertainties, while its atmospheric abundance is difficult to measure. 21 

Nowadays, satellite products can effectively measure ammonia with low uncertainty and a 22 

global coverage. Here, we use satellite observations of column ammonia in combination with 23 

an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the 24 

period 2013–2020. Ammonia emissions peak in Northern Europe, due to agricultural 25 

application and livestock management, in Western Europe (industrial activity) and over Spain 26 

(pig farming). Emissions have decreased by -26% since 2013 (from 5431 Gg in 2013 to 3994 27 

Gg in 2020) showing that the abatement strategies adopted by the European Union have been 28 

very efficient. The slight increase (+4.4%) in 2015 is also reproduced here and is attributed to 29 

some European countries exceeding annual emission targets. Ammonia emissions are low in 30 

winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature dependent 31 

volatilization of ammonia from the soil. The largest emission decreases were observed in 32 

Central and Eastern Europe (-38%) and in Western Europe (-37%), while smaller decreases 33 

were recorded in Northern (-17%) and Southern Europe (-7.6%). When complemented against 34 

ground observations, modelled concentrations using the posterior emissions showed improved 35 

statistics, also following the observed seasonal trends. The posterior emissions presented here 36 

also agree well with respective estimates reported in the literature and inferred from bottom-up 37 

and top-down methodologies. These results indicate that satellite measurements combined with 38 

inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of 39 

ammonia emissions over large timescales. 40 
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1 Introduction 81 

Ammonia (NH3), the only alkaline gas in the atmosphere, constitutes one of the most 82 

reactive nitrogen species. It is produced from decomposition of urea, which is a rapid process 83 

when catalyzed by enzymes (Sigurdarson et al., 2018). The main sectors contributing to its 84 

production are livestock management and wild animals (Behera et al., 2013), biomass burning 85 

and domestic coal combustion (Fowler et al., 2004; Sutton et al., 2008), volcanic eruptions 86 

(Sutton et al., 2008), and agriculture (Erisman et al., 2007). Emissions from agricultural activity 87 

and livestock management represent over 80% of the total emissions (Crippa et al., 2020), while 88 

their regional contribution can reach 94% (Van Damme et al., 2018).  89 

Once emitted, it is transported over short distances and deposited to water bodies, soil or 90 

vegetation with a typical atmospheric lifetime of a few hours (Evangeliou et al., 2021). It can 91 

then lead to eutrophication of water bodies (Stevens et al., 2010), modulate soil pH (Galloway 92 

et al., 2003) and «burn» vegetation by pulling water from the leaves (Krupa, 2003). It also reacts 93 

with the abundant atmospheric sulfuric and nitric acids (Malm, 2004) forming fine particulate 94 

matter (PM2.5) (Tsimpidi et al., 2007). While ammonia has a short atmospheric lifetime, PM2.5 95 

resides significantly longer in the atmosphere, on the order of days to weeks (Seinfeld and 96 

Pandis, 2000), and hence is transported over longer distances. Accordingly, secondary PM2.5 97 

can affect the Earth’s radiative balance, both directly by scattering incoming radiation (Henze 98 

et al., 2012) and indirectly as cloud condensation nuclei (Abbatt et al., 2006). Its environmental 99 

effects include visibility problems and contribution to haze formation. Finally, PM2.5 affects 100 

human health, as it penetrates the human respiratory system and deposits in the lungs and 101 

alveolar regions (Pope and Dockery, 2006; Pope III et al., 2002) contributing to premature 102 

mortality (Lelieveld et al., 2015).  103 

To combat secondary pollution, the European Union established a set of measures 104 

focusing on ammonia abatement, similar to the ones introduced by China (Giannakis et al., 105 

2019). These measures aim at reducing ammonia emissions by 6% in 2020, relative to 2005. 106 

However, the lack of spatiotemporal measurements of ammonia over Europe makes any 107 

assessment of the efficiency of these measures difficult, as only bottom-up methods are used to 108 

calculate emission. These methods still show a slight increase (0.6% y-1) up to 2018 mostly due 109 

to increasing agricultural activities (McDuffie et al., 2020). Such bottom-up approaches rely on 110 

uncertain land-use data and emission factors that are not always up to date, thus adding large 111 

errors to existing inventories.  112 
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During the last decade, satellite products have also become available to fill the gaps 113 

created by spatially disconnected ground-based measurements. Data from satellite sounders 114 

such as the Infrared Atmospheric Sounding Interferometer (IASI) (Van Damme et al., 2017), 115 

the Atmospheric Infrared Sounder (AIRS) (Warner et al., 2017), the Cross-track Infrared 116 

Sounder (CrIS) (Shephard and Cady-Pereira, 2015), the Tropospheric Emission Spectrometer 117 

(TES) (Shephard et al., 2015), and Greenhouse Gases Observing Satellite (GOSAT) (Someya 118 

et al., 2020) are publicly available. Most of them have been validated against ground-based 119 

observations or complemented with other remote sensing products (Van Damme et al., 2015, 120 

2018; Dammers et al., 2016, 2017, 2019; Kharol et al., 2018; Shephard et al., 2020; Whitburn 121 

et al., 2016). 122 

Accordingly, a few studies on ammonia emission calculations have been recently 123 

published relying on 4D-Variational inversion schemes such as (Cao et al., 2022; Zhu et al., 124 

2013) or process based models (Beaudor et al., 2023; Vira et al., 2020). More recently, Sitwell 125 

et al. (2022) proposed an inversion scheme for comparison between model profiles and satellite 126 

retrievals using hybrid logarithmic and linear observation operator that attempts to choose the 127 

best method according to the particular situation. In the present study, we use direct 128 

comparisons between the CrIS ammonia retrievals and model profiles using the Least Squares 129 

with Adaptive Prior Covariance (LS-APC) algorithm (Tichý et al., 2016), which reduces the 130 

number of tuning parameters in the method significantly using variational Bayesian 131 

approximation technique. We constrain ammonia emissions over Europe over the 2013–2020 132 

period and validate the results against ground-based observations from EMEP (European 133 

Monitoring and Evaluation Programme, https://emep.int/mscw/) (Torseth et al., 2012). 134 

2 Methods 135 

2.1 CrIS observations 136 

To constrain ammonia emissions with inverse modelling, satellite measurements were 137 

adopted from the Cross-Track Infrared Sounder (CrIS) onboard the NASA Suomi National 138 

Polar-orbiting Partnership (S-NPP) satellite, which provides atmospheric soundings with a 139 

spectral resolution of 0.625 cm-1 (Shephard et al., 2015). CrIS presents improved vertical 140 

sensitivity for ammonia closer to the surface due to the low spectral noise in the ammonia 141 

spectral region (Zavyalov et al., 2013) and the early afternoon overpass that typically coincides 142 

with high thermal contrast, which is optimal for thermal infrared sensitivity. The CrIS Fast 143 

Physical Retrieval (CFPR) (Shephard and Cady-Pereira, 2015) retrieves ammonia profiles at 144 
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14 levels using a physics-based optimal estimation retrieval, which also provides the vertical 151 

sensitivity (averaging kernels) and an estimate of the retrieval errors (error covariance matrices) 152 

for each measurement. As peak sensitivity typically occurs in the boundary layer between 900 153 

and 700 hPa (~ 1 to 3 km) (Shephard et al., 2020) and the surface and total column 154 

concentrations are both highly correlated with these boundary layer retrieved levels. The total 155 

column random measurement error is estimated in the 10–15% range, with total errors to be 156 

~30% (Shephard et al., 2020). The individual profile retrieval levels show an estimated random 157 

measurement error of 10–30 %, with total random errors estimates increasing to 60 to 100% 158 

due to the limited vertical resolution (1 degree of freedom of signal for CrIS ammonia). These 159 

vertical sensitivity and error output parameters are also useful for using CrIS observations in 160 

applications (e.g. data fusion, data assimilation; model-based emission inversions; (Cao et al., 161 

2020; Li et al., 2019)), as a satellite observational operator can be generated in a robust manner. 162 

The detection limit of CrIS measurements has been calculated down to 0.3–0.5 ppbv (Shephard 163 

et al., 2020). CrIS ammonia has been evaluated against other observations over North America 164 

with the Ammonia Monitoring Network (AMoN) (Kharol et al., 2018) and against ground-165 

based Fourier transform infrared (FTIR) spectroscopic observations (Dammers et al., 2017) 166 

showing small bias and high correlations. 167 

Daily CrIS ammonia (version 1.6.3) was interpolated onto a 0.5°×0.5° grid covering all 168 

of Europe (10°W–50°E, 25°N–75°N) for the period 2013–2020. Interpolation was chosen due 169 

to the large number of observations (around 10,000 retrievals per day per vertical level), which 170 

made the calculation of source-receptor matrices (SRMs) computationally inefficient. Through 171 

interpolation we limited the number of observation (and thus the number of SRMs to be 172 

calculated) to 2000 per day per vertical level. Sitwell et al. (2022) showed that the averaging 173 

kernels of CrIS ammonia are significant only for the lowest six levels (the upper eight have no 174 

influence onto the satellite observations) and therefore we considered only these six vertical 175 

levels (~1018-619 hPa). 176 

2.2 A priori emissions of ammonia 177 

We used as a priori emissions for ammonia in the inversion algorithm the ones calculated 178 

(i) from the most recent version of ECLIPSEv6 (Evaluating the CLimate and Air Quality 179 

ImPacts of Short-livEd Pollutants) (Klimont, 2022; Klimont et al., 2017) combined with 180 

biomass burning emissions from GFEDv4 (Global Fire Emission Dataset) (Giglio et al., 2013) 181 

hereafter “EC6G4”, (ii) a more traditional dataset from ECLIPSEv5, GFEDv4 and GEIA 182 

(Global Emissions InitiAtive), hereafter “EGG” (Bouwman et al., 1997; Giglio et al., 2013; 183 
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Klimont et al., 2017), (iii) emissions calculated from IASI (Infrared Atmospheric Sounding 192 

Interferometer) and a 1-dimensional box-model and a modelled lifetime (Evangeliou et al., 193 

2021), denoted as “NE” and (iv) from the high resolution dataset of Van Damme et al. (2018) 194 

after applying a simple 1-dimensional box-model (Evangeliou et al., 2021), hereafter denoted 195 

as “VD”. Given the large uncertainty in ammonia emissions illustrated in Figure 1, we 196 

calculated the average of these four priors (hereafter “avgEENV”) to establish the a priori 197 

emissions used in this study. 198 

2.3 Lagrangian particle dispersion model for the calculation of source-receptor 199 

matrices (SRMs) of ammonia 200 

SRMs were calculated for each 0.5°×0.5° grid-cell over Europe (10°W–50°E, 25°N–201 

75°N) using the Lagrangian particle dispersion model FLEXPART version 10.4  (Pisso et al., 202 

2019) adapted to simulate ammonia. The adaptation of the code includes treatment for the loss 203 

processes of ammonia adopted from the Eulerian model LMDZ-OR-INCA (horizontal 204 

resolution of 2.5°×1.3° and 39 hybrid vertical levels) that includes all atmospheric processes 205 

and a state-of-the-art chemical scheme (Hauglustaine et al., 2004). The model accounts for 206 

large-scale advection of tracers (Hourdin and Armengaud, 1999), deep convection (Emanuel, 207 

1991), while turbulent mixing in the planetary boundary layer (PBL) is based on a local second-208 

order closure formalism. The model simulates atmospheric transport of natural and 209 

anthropogenic aerosols and accounts for emissions, transport (resolved and sub-grid scale), and 210 

dry and wet deposition. LMDZ-OR-INCA includes a simple chemical scheme for the ammonia 211 

cycle and nitrate particle formation, as well as a state-of-the-art CH4/NOx/CO/NMHC/O3 212 

tropospheric photochemistry (Hauglustaine et al., 2014). To calculate chemical loss of 213 

ammonia to PM2.5, after a month of spin-up, global atmospheric transport of ammonia was 214 

simulated for 2013–2020 by nudging the winds of the 6-hourly ERA Interim Reanalysis data 215 

(Dee et al., 2011) with a relaxation time of 10 days (Hourdin et al., 2006). Using the EGG 216 

inventory, we calculated the e-folding lifetime of ammonia in the model, which was adopted in 217 

FLEXPART. We refer the reader to (Tichý et al., 2022) for a detailed description of the 218 

formalism. Atmospheric linearities of the system and a full validation against ground-based 219 

observation are also presented in the same paper.  220 

FLEXPART releases computational particles that are tracked backward in time using 221 

ERA5 (Hersbach et al., 2020) assimilated meteorological analyses from the European Centre 222 

for Medium-Range Weather Forecasts (ECMWF) with 137 vertical layers, a horizontal 223 

resolution of 0.5°×0.5° and one hour temporal resolution. FLEXPART simulates turbulence 224 
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(Cassiani et al., 2014), unresolved mesoscale motions (Stohl et al., 2005) and includes a deep 227 

convection scheme (Forster et al., 2007). SRMs were calculated for 7 days backward in time, 228 

at temporal intervals that matched satellite measurements and at spatial resolution of 229 

0.25°×0.25°. This 7-day backward tracking is sufficiently long to include almost all ammonia 230 

sources that contribute to surface concentrations at the receptors given a typical atmospheric 231 

lifetime of about half a day (Van Damme et al., 2018; Evangeliou et al., 2021). 232 

2.4 Inverse modeling algorithm 233 

The inversion method used in the present study relies on optimization of the difference 234 

between the CrIS satellite vertical profile observations, denoted as 𝑣!"#, and retrieved vertical 235 

profile, 𝑣$%#. The latter are obtained by applying an instrument operator applied in logarithm 236 

space (Rodgers, 2000) as follows: 237 

ln(𝑣$%#) = ln(𝑣") + 𝐴(ln(𝑣#$&%) − ln(𝑣"))  (1) 238 

where 𝑣$%#  is the retrieved profile concentration vector, 𝑣"  is a priori profile concentration 239 

vector used in the satellite retrievals, 𝑣#$&% is the hypothetical true profile concentration vector 240 

supplied by the model (𝑣#$&% = 𝑣'() ), and 𝐴	  is the averaging kernel matrix (for each 241 

0.5°×0.5° resolution grid-cell). Eq. (1) provides a useful basis for the calculation of the CrIS 242 

retrievals if the retrieval algorithm is performing as designed, i.e., it is unbiased and the root 243 

mean square error (RMSE) is within the expected variability. The 𝑣'() term can be written as: 244 

𝑣'() = 𝑀𝑥  (2) 245 

for each grid-cell of the spatial domain, where 𝑀 is the grid-cell specific SRM calculated with 246 

FLEXPART and 𝑥 is the unknown grid-cell specific emission vector. The SRM matrix 𝑀 is 247 

calculated on circular surroundings around each grid-cell for computational efficiency.  We 248 

chose circles with a radius of approximately 445 km, equal to 4 degrees, which is shown to be 249 

sufficient for reliable emission estimation and low sensitivity has been observed with this 250 

choice. Since the vector 𝑥 is unknown, we replace it by a prior emission 𝑥" (see section 2.2) in 251 

the initial step that is gradually refined iteratively based on the satellite observations. 252 

The used inversion setup is based on iterative minimization of mismatch between 𝑣!"# 253 

and 𝑣$%# updating (iteratively) the emission 𝑥 such as below: 254 

arg min
*!→*2|𝑣

!"# − 𝑣$%#|2,
, (3) 255 

for each grid-cell of computational domain. The minimization problem is solved in two steps. 256 

First, we construct the linear inverse problem for each year where 𝑣$%# from the given 257 

surroundings, denoted here as 𝑆, forms the block-diagonal matrix 𝑣-$%#  while 𝑣!"#  from the 258 
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given surroundings form an associated observation vector 𝑣-!"#. This forms the linear inverse 271 

problem: 272 

𝑣!"# = 𝑣-$%#𝑞-  (4) 273 

where the vector 𝑞- is a vector with coefficients denoting how 𝑥"  needs to be refined to obtain 274 

emission estimate vector 𝑥. For one year, 6 vertical profiles, and 4 degrees radius, the size of 275 

the the block-diagonal matrix 𝑣-$%# is 13896 times 12, hence, the correction coefficient vector 276 

𝑞- contain 12 values corresponding to each month. We solve Eq. 4 using the least squares with 277 

adaptive prior covariance (LS-APC) algorithm	(Tichý	et	al.,	2016). The algorithm is based on 278 

variational Bayesian methodology assuming non-negative solution and favoring solution 279 

without abrupt changes and it minimizes the use of manual tuning (Tichý	et	al.,	2020). The 280 

method assumes the data model in the form of:	281 

𝑝(𝑣!"#) = 𝑁(𝑣-$%#𝑞-, 𝑅) (5) 282 

where 𝑁 denotes the multivariate normal distribution and 𝑅	 the covariance matrix assumed in 283 

the form 𝑅 = 𝜔./𝐼0 with unknown precision parameter 𝜔 on its diagonal. Following Bayesian 284 

methodology, we assign prior model to all unknown parameters, i.e. 𝜔 and 𝑞-. Theirs prior 285 

models are selected as: 286 

𝑝(𝜔) = 𝐺(𝜗1, 𝜌1)	 (6)	287 

𝑝(𝑞-) = 𝑡𝑁(0, (𝐿𝑉𝐿)./, [0,+∞])	 (7)	288 

where 𝐺(𝜗1, 𝜌1) is the Gamma distribution (conjugate to the normal distribution) with prior 289 

parameters 𝜗1, 𝜌1 selected to 10./1  achive non-informative prior. The second term follows 290 

truncated normal distribution with positive support and with specific form of a precision matrix. 291 

We assume the precision matrix in the form of modified Cholesky decomposition which allows 292 

for tractability of estimation of its parameters, matrices 𝑉 and 𝐿. The matrix 𝑉 is diagonal with 293 

unknown diagonal parameters and the matrix 𝐿 is lower bidiagonal with ones on the diagonal 294 

and unknown parameters on its sub-diagonal, formalized as vectors 𝑣	 and 𝑙	, respectively. 295 

These parameters are estimated within the method, while purpose of vector 𝑣	 is to allow for 296 

abrupt changes in 𝑞-, and vector 𝑙	 to favor smooth estimates (see details in Tichý et al. (2016)). 297 

All model parameters (𝜔, 𝑞-, 𝑣, 𝑙) are estimated using the variational Bayes procedure where 298 

we obtain not only point-estimates, but their full posterior distributions. 299 

Second, the grid-cell specific coefficient vector 𝑞- is propagated through Eq. 2 into Eq. 1 300 

to refine a prior emission 𝑥" and obtain estimated unknown emissions 𝑥. To maintain stability 301 

of the method, we bound the ratio between prior and posterior emission elements to 0.01 and 302 

100, respectively. This choice, motivated by Cao et al. (2020), omits unrealistically small or 303 
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high emissions, however, the bounds are large enough to allow for new sources, as well as for 325 

attenuation of old sources. To introduce these boundaries is necessary since the problem in Eq. 326 

1 is ill-conditioned and the propagation through the equation may lead to unrealistic values due 327 

to numerical instability. For this reason, these boundaries are needed and the sensitivity to the 328 

choice of the prior emission are studied in Section 3.3. 329 

Note that CrIS data for some spatiotemporal elements are missing in the dataset. In these 330 

cases, we interpolated the missing data following the method proposed by D’Errico (2023), 331 

which solves a direct linear system of equations for missing elements, while the extrapolation 332 

behavior of the method is linear. Another strategy recently adopted in the literature has been to 333 

tackle the missing data using total variation methodology (see details in Fang et al., 2023); 334 

however, the method has been limited so far to its use on point-source release, hence we did 335 

not use it in this work.  336 

3 Results 337 

3.1 Emissions of ammonia in Europe (2013–2020) 338 

We analyze the CrIS ammonia satellite observations for Europe (10°W–50°E, 25°N–339 

75°N) over the 2013-2020 period on monthly basis to derive ammonia emissions using the 340 

inverse modelling methodology described in Section 2.4. The inversion algorithm is applied to 341 

each year of CrIS observations separately with the use of the avgEENV prior emission. 342 

The overall resulting spatial distribution of the posterior emissions of ammonia (denoted 343 

as posterior_avgEENV) averaged for the whole period are displayed in Figure 2 (top-left). The 344 

highest emissions occur in Northwestern Europe (including Northern Belgium, the Netherlands 345 

and northwestern Germany) and to a smaller extent in the Po Valley (Italy), and the Ebro Valley 346 

(Spain). Local maxima are also seen over Pulawy (Poland), South Romania and Kutina 347 

(Croatia) due to industrial applications (Clarisse et al., 2019; Van Damme et al., 2018). While 348 

ammonia emissions were not calculated high in the Po Valley (8 year average), it has been 349 

reported that in Lombardy, about 90% of the ammonia emissions there have been reported to 350 

originate from manure management (Lonati and Cernuschi, 2020). The Ebro Valley is 351 

characterized by intensive agricultural activities (Lassaletta et al., 2012; Lecina et al., 2010) 352 

and the Aragon and Catalonia regions by large pig farms (Van Damme et al., 2022). Finally, 353 

both Belgium and The Netherlands are countries in which intensive livestock activity is 354 

documented. It consists mostly of dairy cow, beef cattle, pig and chicken farming (Gilbert et 355 

al., 2018; Lesschen et al., 2011; Velthof et al., 2012).	356 
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Figure 2 (top-right) shows the annual posterior emissions discretized monthly for the 362 

whole period (solid line) compared to prior ammonia emissions (dashed line), averaged for the 363 

domain. Higher emissions than the prior ones were calculated, which is not necessarily 364 

attributed to emission increases over Europe, but rather to miscalculation of emissions in the 365 

prior bottom-up inventories that were used. A strong seasonal cycle is also observed peaking 366 

in the middle of each year (summer) of the study period, but for several of these years, the 367 

characteristic bimodal cycle also appears with another peak in spring (Beaudor et al., 2023). 368 

To examine more closely the seasonal variability of ammonia emissions in Europe, we 369 

present the monthly posterior emissions of ammonia averaged for the whole study period 370 

(2013–2020) at the bottom-left panel of Figure 2 together with the prior ones. The total 371 

emissions for each month based on the map element size and length of the respective month 372 

were averaged for the whole study period. The same was done for each year in the bottom-right 373 

panel. The interannual variability over the period between 2013 and 2020, is also apparent in 374 

the monthly box and whisker plots of the posterior emissions. In addition, the spatial 375 

distribution of monthly ammonia emissions averaged for the eight-year period is given in 376 

Supplementary Figure S 1. It appears that ammonia emissions are very low in wintertime (DJF 377 

average: 286 Gg) over Europe and increase towards summer (JJA average: 563 Gg), due to 378 

temperature dependent volatilization of ammonia (Sutton et al., 2013), with the largest 379 

emissions occurring in August (601 Gg). Although a clear peak of fertilization in early spring 380 

is missing from the plot, emissions start to increase in early spring to peak in late-summer (Van 381 

Damme et al., 2022) corresponding to the start and end of the fertilization periods in Europe 382 

(Paulot et al., 2014). Fertilization is tightly regulated in Europe (Ge et al., 2020). It is only 383 

allowed from February to mid-September in The Netherlands, while manure application is also 384 

only allowed during the same period depending on the type of manure and the type of land (Van 385 

Damme et al., 2022). In Belgium, nitrogen fertilizers are only allowed from mid-February to 386 

the end of August (Van Damme et al., 2022), so as in Germany (restricted in winter months) 387 

(Kuhn, 2017). 388 

Finally, Figure 2 (bottom-right) shows the annual posterior emissions for the whole 389 

period with the annual total emissions for each year. We observe a significant decrease in 390 

ammonia posterior emissions over Europe during the 2013–2020 period. Emissions were 391 

estimated as 5431 Gg for 2013 decreasing to 4890 Gg in 2014. A minor increase can be seen 392 

in 2015 (5104 Gg), after which a significant decrease of 534 Gg (more than 10%) was estimated, 393 

followed by the nearly constant plateau at the levels between 4383 Gg in 2017, 4323 Gg in 394 

2019 and finally to 3994 Gg in 2020. The gradual decrease in ammonia emissions over Europe 395 
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since 2013 is also plotted spatially in Supplementary Figure S 2. It is evident that the restrictions 403 

and measures adopted by the European Union to reduce secondary PM formation were 404 

successful, as emissions in the hot-spot regions of Belgium, The Netherlands, Germany and 405 

Poland declined drastically over time. However, an increase of +4.4% was observed in 2015. It 406 

has been reported that ammonia emissions increased in 2015 and several European Union 407 

Member States, as well as the EU as a whole, exceeded their respective ammonia emission 408 

ceilings (EEA, 2017). The increase was reported to be +1.8% and was mainly caused by 409 

increased emissions in Germany, Spain, France, and the United Kingdom. This was caused by 410 

extensive use of inorganic nitrogen fertilizers (including urea application) in Germany, while 411 

increased emissions in Spain were driven by an increase in the consumption of synthetic 412 

nitrogen fertilizers and in the number of cattle and pigs (EEA, 2017). It should be mentioned 413 

that a false decrease of ammonia in 2020 due to the COVID-19 pandemic is calculated by the 414 

current methodology, mainly due to bias created by the decrease of NOx and SO2 that are 415 

precursor species of the atmospheric acids, with which ammonia reacts (see Tichý et al., 2022). 416 

3.2 Country by country ammonia emissions 417 

Posterior annual emissions of ammonia for 2013–2020 are plotted for four European 418 

regions (Western, Central and Eastern, Northern and Southern Europe), accompanied by 419 

relative trends calculated as difference between year 2013 and 2020 divided by the average for 420 

the whole period, in the left panel of Figure 3, while the estimated seasonal variation of each 421 

region is shown on the right panels averaged over the whole eight-year period. Western Europe 422 

includes Ireland, Austria, France, Germany, Belgium, Andorra, Luxembourg, The Netherlands, 423 

Switzerland, and United Kingdom; Central and Eastern Europe include Albania, Bosnia and 424 

Herzegovina, Bulgaria, Czechia, Croatia, Hungary, Belarus, Slovakia, North Macedonia, 425 

Montenegro, Poland, Romania, Moldova, Slovenia, Ukraine, and Serbia; Northern Europe is 426 

defined by Denmark, Estonia, Finland, Latvia, Lithuania, Faroe Islands, Norway, and Sweden; 427 

finally, Southern Europe includes Cyprus, Greece, Italy, Portugal, Spain.  428 

The most significant decreases in ammonia emissions were estimated to be -38% in 429 

Central and Eastern Europe and -37% in Western Europe, respectively. Quantitatively, Central 430 

and Eastern Europe emissions were estimated to gradually drop from 2190 Gg in 2013 and to 431 

1495 Gg in 2020 with a small increase in 2015 (2171 Gg) mainly because Germany, France 432 

and the United Kingdom missed their emission targets (EEA, 2017). Western European 433 

emissions of ammonia also declined constantly over time from 2041 Gg in 2013 to 1421 Gg in 434 

2020. Smaller, yet significant, decreases were calculated over Northern Europe from 398 Gg in 435 
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2013 to 333 Gg in 2020 (-17%). Finally, Southern Europe exhibited a minor drop between years 440 

2013 and 2014 (from 803 Gg in 2013 to 729 Gg in 2014) followed by a small increase until 441 

2019 (from 729 to 803 Gg), and then decreased again in 2020 to 743 Gg. Overall, Southern 442 

European emissions decreased by -7.62%. 443 

The seasonal cycle of ammonia was again characterized by the restrictions applied to the 444 

agricultural-related activities by the European Union member states (Figure 3, right panels). As 445 

such, emissions in Western, Central and Eastern and Southern Europe were very low in winter 446 

and started increasing when fertilization was allowed in early spring, whereas the increasing 447 

temperature towards summer increased volatilization and, thus, emissions of ammonia (Van 448 

Damme et al., 2022; Ge et al., 2020). Although much less marked than in other European 449 

regions due to lower prevailing temperatures and weaker agricultural applications, emissions 450 

in Northern Europe show the spring-summer temperature dependence. However, emissions 451 

were estimated to be double in winter rather following the cycle of SO2 (Tang et al., 2020). 452 

Emission may increase in Northern Europe in winter because OH and O3 concentrations are 453 

much lower, and the rate of converting SO2 to sulfate much slower. This means that less sulfate 454 

is produced and thus more NH3 stays in the gas form. Supplementary Figure S 3 shows prior 455 

emissions in Western, Central and Eastern, Northern and Southern Europe for EC6G4 and NE 456 

emission inventories. Both show the aforementioned increase in emissions during winter in 457 

Northeastern Europe. Specifically, the NE emissions that dominate the a priori emissions 458 

(avgEENV) as the highest inventory show an extreme winter peak in the north (emissions 459 

decline from 105 to 13 Gg). Therefore, there is a very strong dependence of the posterior 460 

seasonality of ammonia in Northern Europe, which may be also influenced by the used prior 461 

emissions, see uncertainty analysis in Section 3.3.	462 

Country specific emissions of posterior ammonia on a monthly basis (eight-year average 463 

emissions) are shown for 20 countries in Supplementary Figure S 4. For countries such as 464 

Portugal, Spain, Italy, United Kingdom, The Netherlands, Belgium, Poland, Hungary, 465 

Denmark, Belarus and Romania two peaks can be clearly seen in late spring and end of summer. 466 

As discussed before, these peaks coincide with the two main fertilization periods in Europe 467 

(Paulot et al., 2014). However, it is expected that ammonia abundance is high throughout the 468 

entire spring–summer period (e.g., Greece, France, Germany, Czechia, Ukraine and Bulgaria) 469 

due to agricultural activity and temperature dependent volatilization (Sutton et al., 2013). 470 

Ammonia emissions in Finland, Sweden and Norway are smaller than in the rest of Europe and 471 

show a reverse seasonality. 472 
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3.3 Uncertainties in ammonia’s posterior emissions 488 

For the calculation of uncertainty of the estimated posterior emissions two different 489 

approaches were used. The first approach is based on uncertainty arising as a result of the 490 

inversion methodology. The standard deviation is calculated from posterior estimate which is 491 

in the form of Gaussian distribution such as 492 

𝑝posterior(𝑥2) = 𝑁(𝜇2 , 𝜎2,) (8), 493 

where 𝑁	 denotes normal (Gaussian) distribution and posterior parameters 𝜇2 and 𝜎2 are results 494 

of inversion for each element of the spatiotemporal domain. The uncertainty associated with 495 

any given spatial element is then a property of Gaussian distribution define with the square root 496 

of summed squared standard deviations: 497 

Σlocation = K∑ 𝜎location,#, 
#  	 (9) 498 

Here, we consider uncertainty calculated as 2σ standard deviations, i.e. 95% of the values lay 499 

inside the interval with the center in the reported emissions surrounded by the reported 500 

uncertainty. 501 

The second approach is based on ensemble of the used prior emissions as an input for the 502 

inversion. The different ensemble members are built from five prior emissions (see Figure 1) 503 

while the uncertainty is calculated as the standard deviation of five resulting posterior 504 

emissions. 505 

2.410The calculated posterior uncertainty for our spatial domain and studied period 506 

(2013–2020) is shown in Figure 4Figure 4 (right). The uncertainty associated with Gaussian 507 

posterior for each year of the study period are depicted in Supplementary Figure S 5. The 508 

absolute uncertainty of Gaussian posterior ammonia emissions reaches a maximum of 23.3 ng 509 

m-2 s-1 or about 39% (relative value, calculated based on related maximum of posterior 510 

emissions). The uncertainty based on prior ensemble reaches a maximum of 60.2 ng m-2 s-1 511 

which is equal to about 101% based on related maximum of posterior emissions. In general, the 512 

pattern of both posterior uncertainties, Gaussian posterior and prior ensemble respectively, are 513 

in agreement in theirs patterns and follow the one of the posterior emissions, with the highest 514 

values over (i) Belgium, the Netherlands, and Germany due to livestock, farming, and 515 

agricultural activity; (ii) Poland, South Romania and Croatia due to industrial applications; (iii) 516 

Catalonia due to pig farming; (iv) West France due to manure application. Nevertheless, the 517 

obtained posterior uncertainty remains low, and this depicts the robustness of the methodology 518 

used and the calculated posterior emissions of ammonia.	519 
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3.4 Validation of posterior emissions 562 

As shown in Eq. 3 (Section 2.4), the inversion algorithm minimizes the distance between 563 

the satellite observations (𝑣!"#) and the retrieved ammonia concentrations (𝑣$%#). The latter is 564 

a function of different satellite parameters (e.g., averaging kernel sensitivities) and modelled 565 

ammonia concentrations using a prior dataset (𝑣'() or 𝑣#$&%) as seen in Eq. 1. The overall 566 

result is always propagated to 𝑣'() iteratively, each time updating the prior emissions to obtain 567 

posterior ammonia. As specified in CrIS guidelines, modelled concentrations (𝑣'()) cannot be 568 

directly compared with satellite data (𝑣!"#), while comparing 𝑣!"# with 𝑣$%# is not a proper 569 

validation method, because the comparison is performed for satellite observations that were 570 

included in the inversion (dependent observations), and the inversion algorithm has been 571 

designed to reduce the 𝑣!"#-𝑣$%# mismatches. This means that the reduction of the posterior 572 

retrieved concentration (𝑣$%# ) mismatches to the observations (𝑣!"# ) is determined by the 573 

weighting that is given to the observations with respect to 𝑣$%#. A proper validation of the 574 

posterior emissions is performed against observations that were not included in the inversion 575 

(independent observations). 576 

For these reasons, we compare modelled posterior concentrations of ammonia (𝑣'()) at 577 

the surface with ground-based observations over Europe from the EMEP (European Monitoring 578 

and Evaluation Programme, https://emep.int/mscw/) network (Torseth et al., 2012). The 579 

measurements are open in public and can be retrieved from https://ebas.nilu.no. We used 580 

measurements for all years between 2013 and 2020 from an average of 53 stations with 2928 581 

observations for each station covering all Europe (Supplementary Figure S 6). The comparison 582 

is plotted for each of the 53 stations separately on a Taylor diagram in Figure 5. For all stations, 583 

the Pearson’s correlation coefficient increased for the posterior ammonia (coloured circles) 584 

increased as compared to the prior one (coloured squares) reaching above 0.6 at several stations, 585 

while the normalized root mean square error (nRMSE) and standard deviation were kept below 586 

2 (unitless) and 2 μg m-3, respectively, in almost all stations (except SI0008 in Slovenia). 587 

To further show how posterior emissions of ammonia affect modelled concentrations, we 588 

chose six stations (DE0002 in Germany, NO0056 in South Norway, ES0009 in Spain, NL0091 589 

in the Netherlands, HU0002 in Hungary and PL0005 in Poland) from the EMEP network 590 

(highlighted in red in Supplementary Figure S 6), and we plot prior and posterior concentrations 591 

against ground-based ammonia over time for the whole study period (2013–2020) in 592 

Supplementary Figure S 7. Given the long period of plotting, we average observations every 593 

week and modelled concentrations every month for a more visible representation of the 594 
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comparison. To evaluate the comparison, we calculate a number of statistic measures, namely 600 

nRMSE, the normalized mean absolute error (nMAE) and the root mean squared logarithmic 601 

error (RMSLE) as defined below:  602 

𝑛𝑅𝑀𝑆𝐸 = 5∑
"
#

#
$%" ('$.($)&

"
#∑ ($#

$%"
  𝑛𝑀𝐴𝐸 = ∑ |'$.($|

#
$%"

∑ ($#
$%"

    603 

 𝑅𝑀𝑆𝐿𝐸 = K
/
:∑ (log𝑚2 − log 𝑜2),:

2;/  (11) 604 

where 𝑛 is sample size, 𝑚 and 𝑜 the individual sample points for model concentrations and 605 

observations of ammonia indexed with 𝑖. As one can see in Supplementary Figure S 7, all 606 

statistics were improved in all six stations and posterior concentrations were closer to the 607 

observations. However, individual peaks were in many cases misrepresented in the model. 608 

Whether this is a result of the measurement technique or the fact that local sources cannot be 609 

resolved at the spatiotemporal resolution of CTM and FLEXPART (given the short lifetime of 610 

atmospheric ammonia) needs further research. The best results were obtained at station ES0009 611 

(Spain), where model captures the seasonal variation of the observations during the whole study 612 

period (2013–2020). In all other stations, the seasonality is maintained albeit steep peaks in the 613 

observations are lost. 614 

4 Discussion 615 

4.1 Comparison with emissions inferred from satellite observations 616 

We compared our posterior estimates with two recently published studies on ammonia 617 

emission in Europe (Cao et al., 2022; Luo et al., 2022). Luo et al. (2022) used IASI observations 618 

for the period 2008 to 2018 to estimate ammonia emissions in a global domain. Their method 619 

was based on updating prior emissions with correction term computed using differences 620 

between observed and simulated ammonia columns combined with calculated ammonia 621 

lifetimes. The key indicators calculated for the European domain in Luo et al. (2022) are a 622 

linear trend for the 2008–2018 period, average annual emissions, and relative trends. Note that 623 

we compare our eight-year period with a decade in Luo et al. (2022). The comparison is 624 

depicted in Figure 6. Our estimates (Figure 6, left panel) are in good agreement with those 625 

calculated by Luo et al. (2022). The linear trend was estimated as -1.27 Tg for the period by 626 

Luo et al. (2022), while our estimate is -1.44 Tg. The spatial distribution of the trend is also 627 

given in Figure 6 (left panel). The key decrease is observed mainly in France, Germany, and 628 

middle Europe, while the increasing trend is observed mostly in Spain, parts of Italy, and 629 
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Greece. The average annual ammonia emission for the European domain in Luo et al. (2022) 637 

was estimated to be 5.05 Tg while our estimate is 4.63 Tg. Our lower estimate (by 638 

approximately 8%) may be attributed to use of more recent period considered in our study, but 639 

both methods agree that the trend in Europe is negative. The relative decrease estimated by Luo 640 

et al. (2022) is -25.1%, while we calculate -31.02%, which is again in very good agreement. 641 

Cao et al. (2022) used CrIS observations for the year 2016 in order to estimate ammonia 642 

emissions for 25 European Union members (EU25), namely Austria, Belgium, Bulgaria, 643 

Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, 644 

Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, 645 

Romania, Slovakia, Slovenia, and Spain. The method was tested with uni-directional and bi-646 

directional flux schemes. The uni-directional dry deposition scheme assumes only air to surface 647 

exchange of ammonia ignoring changes in environmental conditions, while the bi-directional 648 

scheme captures dynamics in measured ammonia fluxes. Total estimated ammonia emissions 649 

for the EU25 region by the uni-directional scheme (posterior_uni) and the bi-directional scheme 650 

(posterior_bi) were reported as 3534 Gg N y−1 and 2850 Gg N y−1, respectively. The 651 

posterior_bi estimate is very close to our estimate for EU25 for the year 2016, which is 2712 652 

Gg N y−1, while the posterior_uni is approximately 30% higher. A uni-directional dry 653 

deposition scheme ignores the impacts of changes in environmental conditions (e.g., soil 654 

temperature, soil wetness, soil pH, fertilized condition, and vegetation type) on ammonia 655 

emissions from fertilized soil and crops (volatilization), which likely lead to high biases in top-656 

down estimates. Ammonia in LMDz-OR-INCA model, that was used to capture ammonia’s 657 

losses, resembles a partially bi-directional treatment, where emissions and deposition are both 658 

possible at the same time without any use of a compensation point; this may explain the 30% 659 

difference. 660 

The detailed EU25 emissions for the year 2016 are displayed in Figure 6 (right panel) for 661 

posterior_uni (red), posterior_bi (yellow), our post_avgEENV (blue), and priors used by Cao 662 

et al. (2022) and in our study (dashed red and blue, respectively). As seen from Figure 6, our 663 

posterior estimates (post_avgEENV) have more similar characteristics with posterior_bi, with 664 

monthly difference to be less than factor of 2 positive or negative from Cao et al. (2022). Note 665 

that the posterior_uni estimates are always a factor of 3 higher than our posterior estimates for 666 

ammonia emissions. The main differences can be observed during February-March and 667 

October-November periods where our estimates are generally lower than those from Cao et al. 668 

(2022).  669 

Deleted: treats surface exchange of ammonia between the 670 
atmosphere and biosphere in a one-way manner (from air to 671 
surface) and …672 

Deleted: Figure 4673 

Deleted: Figure 4674 



17	
 

4.2 Assessment of ammonia’s atmospheric linearities 675 

Ammonia is a particularly interesting substance due to its affinity to react with 676 

atmospheric acids producing secondary aerosols. In most cases, it is depleted by sulfuric and 677 

nitric acids. In acidic atmospheres where total ammonia (TA=gas, aqueous and solid) is less 678 

than twice the total sulfate ([TA]<2[TS]), all the available ammonia is taken up by the aerosol 679 

phase. In ammonia-rich environments ([TA]>2[TS]), the excess ammonia reacts with nitric acid 680 

forming ammonium nitrate. If RH is too high, ammonium nitrate is aqueous (Seinfeld and 681 

Pandis, 2000). As ammonia reacts with sulfate, it neutralizes sulfuric acid decreasing its 682 

concentration. Part of the sulfate may be replaced by nitric acid increasing ammonium nitrate 683 

content in the aerosol. If RH is high and particles are aqueous, the sulfate that reacts with 684 

ammonia and decreases, increases the equilibrium vapor pressure of ammonia with nitric acid 685 

shifting the reaction towards production of free ammonia (Seinfeld and Pandis, 2000). 686 

However, production of ammonia is a rare event and lots of prerequisites must be fulfilled in 687 

order to take place.	688 

The latter is illustrated in Supplementary Figure S 8a that shows the frequency 689 

distribution of gain (negative numbers) or loss (positive numbers) due to all chemical processes 690 

affecting ammonia into the inversion domain (10°W–50°E, 25°N–75°N), for the study period 691 

(2013 – 2020) and the lowest sigma-p vertical levels (~1018-619 hPa) that were significant in 692 

satellite observations (see averaging kernels in section 2.1) (Sitwell and Shephard, 2021). The 693 

figure shows mostly positive numbers indicating that atmospheric ammonia reacts towards 694 

secondary aerosol formation. The spatial distribution of gain/loss of ammonia is shown in 695 

Supplementary Figure S 8b. The pixels indicating production of gaseous ammonia are located 696 

in marine regions, where we chose to not perform inversions, as they are an order of magnitude 697 

lower (Bouwman et al., 1997), thus less significant. No continental pixels showing gain of 698 

ammonia were were detected, which would cause simulated backwards in time to fail with our 699 

Lagrangian model (see next paragraph). Our approximation, although simplistic, provides 700 

computational efficiency when simulating SRMs in backward mode using FLEXPART (Pisso 701 

et al., 2019).	702 

Seibert and Frank (2004) reported that standard Lagrangian particle dispersion models 703 

cannot simulate non-linear chemical reactions. However, all the other processes occurring 704 

during the atmospheric transport of trace substances are linear, i.e., advection, diffusion, 705 

convective mixing, dry and wet deposition, and radioactive decay. First-order chemical 706 

reactions, where the reaction rates can be prescribed, are also linear. Non-linear chemistry 707 

cannot be calculated because neither the background chemistry is modeled nor is the coupling 708 
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of the tracked plume (forward or backward) to this background. Technically, the SRM in 711 

FLEXPART is calculated for a receptor with a certain mean mixing ratio (𝜒) and an emitting 712 

source (𝑞2,:) in a certain discretization of the space (index 𝑖) and time (index 𝑛), as:	713 
<
=$,#

= 1
>∑ Δ𝑡2,?,:

0(,#
@$,#

>
?;1   (12)	714 

where 𝐽 is the total number of backward trajectories (particles index 𝑗 ) originating from the 715 

position of the receptor 𝜒  and ending at a certain discretized time (index 𝑛)  in certain 716 

discretized space position (index 𝑖) for a time interval Δ𝑡2,?,: , and where the air density is 𝜌2,:. 717 

The further function 𝑝?,: (𝑝?,: ≤ 1) represents the relative (to the initial receptor state) decay 718 

of the mass value in the particle in its travel from the receptor to the discretized space time 719 

interval (𝑗, 𝑛) due to any linear decay process (e.g. deposition, linear chemical decay) for a 720 

perfectly conserved scalar 𝑝?,: = 1 . So, for linear decaying species a direct SRM can be 721 

calculated explicitly among all relevant receptor points and all positions in space and time. The 722 

existence of the SRM (𝑯), linking directly mixing ratios at the receptor points with emissions, 723 

is the pre-requisite to apply simple inversion algorithms such as the one we use in the present 724 

study.	725 

Inversion of observation to obtain emission for non-linear chemically reactive species 726 

entails the need to run a chemistry transport model (CTM) forward (and its adjoint backward) 727 

in time from time 𝑡0 to time 𝑡⬚  evolving the full state of the atmosphere in relation to the 728 

emissions and boundary conditions. Subsequently, a cost function is evaluated by an iterative 729 

descent gradient method that implies running the adjoint of the forward model (Fortems-730 

Cheiney et al., 2021). Note that an iterative algorithm means that the forward and adjoint 731 

models run several times in sequence until the estimated minimum of the cost function is 732 

reached.	733 

To overcome these complexities, we examine the linearities of our method and show that 734 

FLEXPART simulates ammonia efficiently, we evaluate modelled ammonia against ground-735 

based measurements of ammonia from the EMEP network (https://emep.int/mscw/) in Europe, 736 

EANET (East Asia acid deposition NETwork) in Southeastern Asia (https://www.eanet.asia/) 737 

and AMoN (Ammonia Monitoring Network in the US, AMoN-US; National Air Pollution 738 

Surveillance Program (NAPS) sites in Canada) in North America 739 

(http://nadp.slh.wisc.edu/data/AMoN/). The SRMs for ammonia calculated with the backward 740 

mode express the emission sensitivity (in seconds), which yields a modelled concentration in 741 

the receptor point (station) when coupled with gridded emissions (in kg m-2 s-1) at the lowest 742 

model level (100 m). Here, we used the ECLIPSEv5, GFED4  and GEIA, (EGG) emissions 743 

Formatted: None, Font: Cambria

Formatted: None, Font: Times New Roman

Formatted ... [1]
Formatted ... [2]
Formatted: None, Font: Times New Roman

Formatted: Centred

Formatted ... [3]

Field Code Changed

Deleted: 1745 

Formatted: None, Font: Times New Roman

Formatted ... [4]
Formatted ... [5]
Formatted ... [6]
Formatted ... [7]
Formatted ... [8]
Formatted: None, Font: Times New Roman

Formatted ... [9]
Formatted ... [10]
Formatted ... [11]
Formatted ... [12]
Formatted: None, Font: Times New Roman

Formatted ... [13]
Formatted: None, Font: Times New Roman

Formatted: None, Font: Times New Roman

Formatted ... [14]
Formatted ... [15]

Formatted: None, Font: Times New Roman

Formatted: Justified, Indent: First line:  1 cm, Line spacing: 
1.5 lines



19	
 

(Bouwman et al., 1997; Giglio et al., 2013; Klimont et al., 2017) to get concentrations. To check 746 

the consistency of the proxy used in the SRMs of ammonia, we also simulated surface 747 

concentrations of ammonia with FLEXPART in forward mode using the same emissions. We 748 

have chosen two random ground-based stations from each of the three measuring networks 749 

(EMEP, EANET, AMoN) to compare modelled concentrations. For consistency, we also plot 750 

the resulting surface concentrations from the LMDz-OR-INCA model (Supplementary Figure 751 

S 9).	752 

Modelled concentrations (forward and backward FLEXPART and the CTM LMDz-OR-753 

INCA) at each station have been averaged to the temporal resolution of the observations. 754 

Supplementary Figure S 10 shows Taylor diagrams of the comparison between FLEXPART 755 

simulated concentration in forward and backward mode. Plotting backward versus forward 756 

results is a common procedure to infer whether a Lagrangian model produces reasonable results 757 

(Eckhardt et al., 2017; Pisso et al., 2019). In general, the forward and backward simulations 758 

show very good agreement for the depicted receptor points. For example, ammonia 759 

concentration at stations AL99, CA83, and VNA001 (Supplementary Figure S 9) are simulated 760 

similarly, and the mean concentrations are almost identical in the forward and backward modes. 761 

However, during some episodes there can be notable differences (e.g., at DE0002R) as seen 762 

before (Eckhardt et al., 2017). The Taylor diagram for the respective comparison 763 

(Supplementary Figure S 10) show high Pearson’s correlation coefficients (>0.7), low standard 764 

deviations (<1 μg N m-3) and root means square errors (RMSEs <0.7 μg N m-3). 765 

5 Conclusions 766 

Today, a large debate takes place about ammonia abatement strategies for Europe, but 767 

also for Southeastern Asia, in an effort to reduce secondary formation and, thus, mitigate 768 

climate crisis (van Vuuren et al., 2015). These strategies include (a) low nitrogen feed by 769 

reducing ammonia emissions at many stages of manure management, from excretion in 770 

housing, through storage of manure to application on land, also having positive effects on 771 

animal health and indoor climate (Montalvo et al., 2015); (b) low emission livestock housing, 772 

which focuses on reducing the surface and time manure is exposed to air by adopting rules and 773 

regulations regarding new livestock houses (Poteko et al., 2019); (c) air purification by 774 

adopting technologies to clean exhaust air from livestock buildings (Cao et al., 2023) and 775 

others. Here we used satellite observations from CrIS and a novel inverse modelling algorithm 776 

to study the spatial variability and seasonality of ammonia emissions over Europe. We then 777 
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evaluated the overall impact of such strategies on the emissions of ammonia for the period 778 

2013–2020. The main key messages can be summarized below:  779 

• The highest emissions over the 2013–2020 study period occur in North Europe (Belgium, 780 

the Netherlands and northwestern Germany). At a regional scale, peaks are seen in Western 781 

Europe (Poland, South Romania and Croatia) due to industrial activities, in Spain (Ebro 782 

Valley, Aragon, Catalonia) due to agricultural activities and farming, in Belgium and The 783 

Netherlands due to livestock activity (dairy cow, beef cattle, pig and chicken farming). 784 

• Ammonia emissions are low in winter (average: 286 Gg) and peak in summer (average: 785 

563 Gg), due to temperature dependent volatilization of ammonia, while a notable peak 786 

attributed to fertilization can be seen in early spring during some years. 787 

• Over the 2013–2020 period, European emissions of ammonia decreased from 5431 Gg in 788 

2013 to 3994 Gg in 2020 or about -26%. Hence, the restrictions adopted by the European 789 

Union members were effective in reducing secondary PM formation.  790 

• A slight emission increase of +4.4% in 2015 appears for several European Union Member 791 

States (Germany, Spain, France, and the United Kingdom) who exceeded the respective 792 

ammonia emission targets. Part of the 2020 ammonia decrease might be attributable to the 793 

COVID-19 pandemic restrictions. 794 

• The largest decreases in ammonia emissions were observed in Central and Eastern Europe 795 

(-38%, 2190 Gg in 2013 to 1495 Gg in 2020) and in Western Europe (-37%, 2041 Gg in 796 

2013 to 1421 Gg in 2020). Smaller decreases were calculated in Northern Europe (-17%, 797 

398 Gg in 2013 to 333 Gg in 2020) and, Southern Europe (-7.6%, from 803 Gg in 2013 to 798 

to 743 Gg in 2020). 799 

• The maximum calculated absolute uncertainty of Gaussian posterior model was 23.3 ng m-800 
2 s-1, or about 39% (relative value) and calculated maximum based ensemble of prior 801 

emissions was 60.2 ng m-2 s-1, or about 101% following the spatial distribution of the 802 

posterior emissions. 803 

• Comparison of the concentrations calculated with prior and posterior ammonia emissions 804 

against independent (not used in the inversion algorithm) observations showed improved 805 

correlation coefficients and low nRMSEs and standard deviations. Looking at timeseries 806 

of six randomly selected stations in Europe, we also found that posterior surface 807 

concentrations of ammonia were in accordance with the ground-based measurement, also 808 

following the observed seasonal trends. 809 

Deleted: Here, we examine the impact of such strategies 810 
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• Our results agree very well with those from Luo et al. (2022) (decreasing trend: -1.44 821 

versus -1.27 Tg, annual European emissions: 4.63 versus 5.05 Tg) and those from Cao et 822 

al. (2022) following their methodology (their posterior_bi estimate for EU25 and year 2016 823 

was 2850 Gg N y−1, while we calculate 2712 Gg N y−1). 824 

• The relatively low posterior uncertainty and improved statistics in the validation of the 825 

posterior surface concentrations denote the robustness of the posterior emissions of 826 

ammonia calculated with satellite measurements and our adapted inverse framework. 827 
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FIGURES & LEGENDS 1205 

 1206 
Figure 1. Four ammonia prior emissions (EC6G4, EGG, NE, VD) are displayed in the first two 1207 
rows. The combined prior (avgEENV) is displayed in the bottom left. The temporal variability 1208 
of all five prior emissions is given in bottom right. 1209 
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 1212 

Figure 2. The spatial distribution of posterior ammonia emissions (posterior_EENV, top-left) 1213 
together with its temporal distribution (top-right). The Gaussian uncertainty of the posterior 1214 
emissions is also plotted. Monthly average (bottom-left) and annually average (bottom-right) 1215 
estimates are also plotted. The monthly average posterior emissions over the studied period are 1216 
accompanied by the box plot where the red line indicates the median, the bottom and top edges 1217 
of the Boxes indicating the 25th and 75th percentiles, respectively, and the whiskers extend to 1218 
the most extreme data points not considered as outliers, which are denoted using red crosses. 1219 
Solid blue lines refer to the posterior ammonia emissions, while dashed ones to the prior 1220 
emissions (avgEENV). 1221 
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 1224 

Figure 3. Left: Annual posterior emissions of ammonia in Southern (yellow), Western (green), 1225 
Northern (blue), and Central and Eastern (red) Europe. Right: Monthly average posterior 1226 
emissions of ammonia accompanied by box plots, where the red line indicates the median, the 1227 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and the 1228 
whiskers extend to the most extreme data points (not considered outliers), which are represented 1229 
using red crosses. 1230 

  1231 



32	
 

 1232 

Figure 4. Absolute uncertainty of posterior emissions of ammonia calculated as 2σ (left 1233 
panel) and from a member ensemble (right panel) comprising posterior emissions calculated 1234 
with five different priors (Figure 1) averaged for the whole study period 2013–2020. 1235 
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 1240 

Figure 5. Modelled concentrations of ammonia with prior and posterior emissions against 1241 
ground-based observations from 53 EMEP stations for 2013–2020 presented in a Taylor 1242 
diagram. The diagram shows the Pearson’s correlation coefficient (gauging similarity in pattern 1243 
between the modelled and observed concentrations) that is related to the azimuthal angle (blue 1244 
contours); the standard deviation of modelled concentrations of ammonia is proportional to the 1245 
radial distance from the origin (black contours) and the centered normalized RMSE of modelled 1246 
concentrations is proportional to the distance from the reference standard deviation (green 1247 
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contours). 1249 

 1250 

Figure 6. Left: spatial distribution of ammonia emission trends computed for the studied period 1251 
2013–2020 in the same way as in (Luo et al., 2022), where also trend, mean, and trend/mean 1252 
are defined/computed in the same way. Right: comparison of ammonia emissions from the 1253 
EU25 countries for the year 2016 from our posterior calculations (posterior_avgEENV, blue) 1254 
and results from Cao et al. (2022) (posterior_uni in red and posterior_bi, in yellow). 1255 
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