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Abstract. Various retrieval algorithms have been developed for retrieving temperature and water vapor profiles from the

Atmospheric Emitted Radiance Interferometer (AERI) observations. The physical retrieval algorithm, named AERI Optimal

Estimation (AERIoe), outperforms other retrieval algorithms in many aspects except the retrieval time, which is significantly

increased due to the complex radiative transfer process. The calculation of the Jacobian matrix is the most computationally

intensive step of the physical retrieval algorithm. Analysis of the change of AERI observations’ information content with15

Jacobians revealed that the performance of AERIoe algorithm had little dependence on Jacobians. Thus, the Jacobian matrix

could remain unchanged when the variation of atmospheric state is small in the retrieval process to reduce the most time

consuming computation. On the basis of the above findings, a fast physical-iterative retrieval algorithm was proposed by

adaptively recalculating Jacobians in keeping with the changes of the atmospheric state. The performance of the algorithm

was evaluated using synthetic ground-based infrared spectra observations. The retrieval speed was significantly improved20

compared with the original AERIoe algorithm under the condition that the parameters of the computing platform remain

unchanged, resulting in an average retrieval time reduction by 58.82%. The retrieval results of the fast retrieval model are

comparable to that of AERIoe, with maximum root-mean-square errors of less than 0.95 K and 0.22 log(ppmv) for heights

below 3 km for the temperature and water vapor, respectively. Results based on synthetic observations revealed that the fast

retrieval algorithm reached an acceptable convergence rate of 98.67%, which is slightly lower than the 99.88% convergence25

rate of AERIoe for the 826 cases used in this study.

1 Introduction

High-quality profiles of atmospheric constituents are required for many endeavors, including radiative transfer, cloud process

research, and assimilation into mesoscale models to improve forecasts (Turner et al., 2000). The accuracy of the initial field
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provided by observation networks is becoming a key factor restricting the skill of numerical weather prediction (NWP)30

models (Romine et al., 2013; Li et al., 2016). The existing observation networks are insufficient to meet the needs of

convective scale numerical weather prediction systems, especially in the prediction of convection initiation convective

processes (Kain et al., 2013; Wagner et al., 2019; Geerts et al., 2018). As the spatiotemporal resolution is too coarse,

radiosonde profiles cannot capture the atmospheric phenomena in detail. Space-based detection equipment observes

atmospheric upwelling radiance, which demonstrates some drawbacks in the detection of the planetary boundary layer (PBL)35

owing to the influence of the cloud layer or the underlying surface. A promising solution is the ground-based thermal

infrared spectrometers that measure downwelling spectral infrared radiance, which show good skill at retrieving the

temperature and humidity profiles of the PBL. The assimilation of ground-based infrared hyperspectral data can significantly

improve the abilities of convective scale prediction systems for convection initiation (Coniglio et al., 2019; Hu et al., 2019).

The commonly used ground-based infrared hyperspectral equipment mainly includes Fourier Transform Infrared (FTIR)40

instruments of the Karlsruhe Institute of Technology deployed in the Detection of Atmospheric Composition Change

(NDACC) (De Mazière et al., 2018) and AERI developed by the University of Wisconsin Space Science and Engineering

Center (UW-SSEC) deployed in the Atmospheric Radiation Measurement (ARM) program (Knuteson et al., 2004). The

FTIR instrument observes near-infrared and mid-infrared high-resolution solar spectra, which are mainly used to retrieve

water vapor (Schneider et al., 2006a, b; Schneider and Hase, 2009), water isotopologues (Schneider et al., 2006a; Barthlott et45

al., 2017) and various trace gas (Gardiner et al., 2008; Kiel et al., 2016; Zhou et al., 2018; Yin et al., 2020; Yin et al., 2021a;

Yin et al., 2021b; Viatte et al., 2014) profiles or total columns. The spectral region of AERI covers the range of 520-3000

cm-1, containing a 15 μm absorption band of CO2 commonly used for the retrieval of temperature profiles, which makes it

more advantageous in detecting thermodynamic profiles (Rowe et al., 2006). Specific retrieval algorithms, capable of being

divided into statistical retrieval algorithms and physical retrieval algorithms as per different principles, are required to extract50

large amounts of information on the required atmospheric profiles from rich infrared hyperspectral radiance data. The

physical retrieval algorithm includes the radiative transfer process, which enables it to provide thermodynamic profiles with

higher accuracy than the statistical retrieval algorithm (Yang and Min, 2018; Cimini et al., 2010). Two physical retrieval

algorithms, named AERIprof (Smith et al., 1999; Feltz et al., 1998) and AERIoe (Turner and Löhnert, 2014; Turner and

Blumberg, 2019; Turner and Löhnert, 2021), has been successively adopted in the AERI equipment to derive thermodynamic55

profiles. Based on the "onion peeling" algorithm, the former is used to adjust the first-guess profile from bottom to top with

the iterative algorithm to minimize the difference between the calculated and observed radiation. Given that the algorithm

only needs to calculate the diagonal elements in the Jacobian matrix, its retrieval speed is faster than that of the optimal

estimation method (OEM) (Rodgers, 2000).
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However, the AERIprof algorithm has several significant drawbacks, such as its high dependence on the first-guess60

profile and inability to provide uncertainty estimates for retrieval results (Turner and Löhnert, 2014; Blumberg et al., 2017;

Blumberg et al., 2015). The limitations of AERIprof could be overcome by the AERIoe optimal-estimation retrieval

algorithm, which was designed as an alternative to the previous physical algorithm. One of the important improvements

remains to reduce the dependence on the first-guess profile by introducing regularization parameters in the AERIoe

algorithm to balance the observation and the prior information. The AERIoe algorithm sets regularization parameters as fixed65

values from large to small to achieve good stability and accuracy, which makes the algorithm require at least 7 iterations. The

Jacobian matrix should be recalculated for each iteration due to the dependence on the current state vector, which

significantly increases the amount of calculation and results in a high retrieval time.

A fast physical-iterative retrieval method, henceforth called Fast AERIoe, is proposed to address the limitation of long

retrieval time of AERIoe. The original AERIoe algorithm was modified to allow Jacobians to be recalculated adaptively70

without manual intervention by monitoring the change of atmospheric state. Thus the retrieval speed of AERIoe can be

improved due to the reduction of computation amount. In this study, only temperature and water vapor profiles are retrieved

from Fast AERIoe, and cases of cloudy situations will be handled in a future work. Last, the retrieval time, convergence

characteristics and accuracy of the new algorithm are presented using radiosonde observations at the same station.

2 Data75

The data used in the study are from the ARM program supported by the U. S. Department of Energy, which aims to

quantitatively study the atmospheric radiation budget and develop and verify the parameterization scheme of the numerical

model (Revercomb et al., 2003; Ellingson et al., 2016). This program mainly focuses on the long-term observation of

atmospheric states and radiative fluxes, providing information to researchers around the world to inform and validate

predictive models of climate and weather. We will use data collected at the Southern Great Plain (SGP) site, which is located80

at 36.61 ° N and 149.88 ° W, near Lamont, Oklahoma, USA (Sisterson et al., 2016). These data mainly include ground-based

infrared spectra obtained by AERI and radiosonde profiles, with the former used to retrieve the temperature and water vapor

profiles and the latter mainly used to evaluate the accuracy of the retrieval results.

2.1 AERI

AERI can continuously receive downwelling atmospheric infrared radiance from 3.3-19.2 μm (520-3000 cm-1) with a85

spectral resolution better than 1 cm-1, among which the infrared radiation of 520-1800 cm-1 band is obtained by the mercury

cadmium telluride (HgCdTe) detector, and 1800-3020 cm-1 band is obtained by the indiumantimonide (InSb) detector. The
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profile but also cannot provide uncertainty on retrieval results

Deleted:

adjust theDeleted:

betweenDeleted:

information and the background fieldDeleted:

theDeleted:

updatedDeleted:

aiming at the problemDeleted:

in theDeleted:

The computation amount is reduced by adjusting the

updating strategy of the Jacobian, which can improve the

retrieval speed of AERIoe; the Jacobians, by monitoring the

index of the iterative profiles, can be updated adaptively

without manual intervention.

Deleted:

FinallyDeleted:

dataDeleted:

researchDeleted:

theDeleted:

withDeleted:



4

AERI front-end optics include a scene mirror and two calibrated blackbodies, one of which changes with the temperature of

the surrounding environment, while the other maintains at a fixed temperature (60 ℃). AERI achieved a calibration accuracy

of better than 1% by viewing two high-precision blackbodies and a nonlinearity correction for the detectors (Knuteson et al.,90

2004). The temporal resolution of the AERI standard remains approximately 8 minutes, including a 3-minute sky dwell

period and the subsequent observation of the two blackbodies.

Table 1. Spectral regions used for retrieving temperature and water vapor profiles in the AERIoe algorithm

Temperature Water Vapor

612-618 cm-1 538-588 cm-1

624-660 cm-1

674-713 cm-1

AERI has many observation channels, including not only temperature and humidity profile information but also trace

gas information such as ozone, methane, and redundant data. Therefore, appropriate channels must be selected when95

retrieving temperature and humidity profiles. The retrieval of humidity profiles generally adopts water vapor-sensitive

channels, and the temperature profiles could be retrieved from channels sensitive to a uniformly mixed gas (such as CO2) .

The spectral regions used in the retrieval process are consistent with AERIoe v1.2, which used only the 538–588 cm-1 band

for water vapor profiling to exclude scattering effects from clouds (Turner and Blumberg, 2019). Specific wavenumbers used

to perform the retrieval are shown in Table 1, among which the spectral region used for temperature retrieval includes 167100

channels, and the water vapor includes 104 channels.

2.2 Radiosonde data

Radiosondes have been used for decades to provide humidity, temperature and wind profiles throughout the troposphere,

which is considered to be the most accurate means to detect the vertical structure of the atmosphere. It is often used to

evaluate the accuracy of other detection methods. Located 150 m to the north of the AERI equipment, the closer radiosonde105

release point can ensure the comparability of radiosonde profiles and AERI retrieval results (Wakefield et al., 2021). The

radiosonde data at the SGP site were obtained by Vaisala RS92 since 2002 (Turner et al., 2016), including temperature,

humidity, pressure, wind direction and wind speed. It was regularly launched four times a day at 05:30 UTC, 11:30 UTC,

17:30 UTC and 23:30 UTC.

We collected radiosonde profiles and AERI radiation data of 2012, screening 826 groups of qualified data samples110

through quality control, spatiotemporal matching, and clear sky recognition. On the basis of the above datasets, we

calculated the simulated AERI spectrum corresponding to 826 sets of radiosonde profiles using the line-by-line radiative

transfer model (LBLRTM), with parameter settings consistent with Sect. 3.1.
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3 Methodology

3.1 Retrieval configuration115

The AERIoe algorithm, based upon the optimal estimation method, iteratively searching for the atmospheric state that most

conforms to the observation and prior constraints.

      11 1 1
1

T T m
n a n e n a n e n n n aF

  
       X X K S K S K S Y X K X X , (1)

Here, X is the profile of the atmospheric state to be retrieved, Xa is the prior profile of the atmosphere, Sa is the a priori

covariance matrix, Ym is the observed radiance vector, F(X) is the computed radiance for X, Se is the observation error120

covariance matrix, and n denotes the iteration number. The superscripts T and -1 imply the matrix transpose and inverse,

respectively.

To improve the stability of the retrieval algorithm, the regularization parameter  was introduced in Formula (1),

which is set as fixed values from large to small ([1000, 300, 100, 30, 10, 3, 10, 1]). As  decreases with iterations, more

observation information is introduced to improve the retrieval accuracy. Iterations are continued until  decreases to 1 and125

the following convergence criterion is satisfied.

1
)()(

_ 1
1




 


N
indexeconvergenc nnnn XXSXX , (2)

N represents the dimension of the retrieved atmospheric state vector.

Figure 1. Flowchart of the Fast AERIoe retrieval process. Note that the red line indicates the Jacobian updating process. The iterative130
profiles and observations are defined as temperature and water vapor profiles at iteration n and computed radiance for Xn, respectively.

The monitoring index is used to derive the variations of Xn.
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Note that K depends on X used for estimating the Jacobian, which means that K must be recomputed for every iteration

step. The updating of the Jacobians in the above retrieval process requires the calculation of the optical thickness or radiance

(intensity) with respect to different atmospheric constituents at each height, which might be computationally expensive135

depending on the lengths of X and Ym (Maahn et al., 2020). Owing to the constraints of  , the decrease of the difference

between simulated and observed radiation is not very much in the adjustment of individual iterations to the retrieval profile.

At this time, the change in the Jacobian calculated as per the iteration profile is negligible. Backed by the above analysis, a

fast iterative algorithm called Fast AERIoe is proposed on the basis of the AERIoe algorithm. The flowchart of Fast AERIoe

is shown in Fig. 1, most of the configurations are consistent with AERIoe described by Turner and Löhnert (2014), except140

some modifications highlighted as follows:

a. atmospheric configurations: The height grid of X is consistent with AERIoe, but the maximum retrieval height is

limited to 3 km. This is done because the variations of K above 3 km is negligible due to the fact that most of the

information in AERI spectrum lies in the lowest 2 km of the atmosphere for temperature and water vapor profiles (Turner

and Löhnert, 2014). The cloud properties were excluded from the state vector X, which is beyond the scope of this study.145

The corresponding priori profile Xa and the priori covariance matrices represented by Sa are modified to be consistent with

X.

b. observational vector Y: Spectral regions that sensitive to cloud properties were removed from the observational

vector Y to be consistent with the state vector X. Furthermore, additional observations including surface temperature and

water vapor were incorporated into the observation vector, details are described by Turner and Blumberg (2019) .150

c. Jacobian matrix K: K is derived from LBLRTM, which is the same as AERIoe except the version (12.8 instead of

12.1). Another modification is that K is not recomputed to improve the retrieval speed of the algorithm when the variations

of the iterative profile Xn is small.

3.2 Adaptive recalculation of Jacobian

The method to reduce the calculation of K is the key to speed up the AERIoe algorithm. The Jacobians are dependent on the155

atmospheric constituents, which means that K must be recalculated for every iteration step. The question arises as to under

what circumstances K does not need to be recalculated. Therefore, the dependence of the retrieval capability on Jacobians

must be analyzed and indicators that reflect the changes of Jacobians should be figured out to determine whether K

recalculated or not.
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3.2.1 Quantification of algorithm retrieval capability160

The retrieval accuracy of the atmospheric profile depends on the amount of atmospheric information in the hyperspectral

data. Shannon Information Content (SIC) and Degrees of Freedom for Signal (DFS), as important indicators to describe the

effective information contained in hyperspectral data (Rodgers, 1998), can quantitatively describe the detector's retrieval

ability for specific atmospheric constituents. SIC represents the reduction of uncertainty in the retrieved profiles contributed

by the observation, with the calculation formula shown in (3). DFS provides the number of independent pieces of165

information contained in the measured radiation, with the calculation formula shown in (4).

 aˆdetlnIC SS 1

2
1  , (3)

 ne
T
nTraceDFS KSKB 11  , (4)

Here, Ŝ is the posterior error covariance matrix, also known as the analysis error covariance matrix. Its diagonal element is

the standard deviation of the retrieval error, with the calculation formula Ŝ as follows:170

  11211   BSKSKBS ae
Tˆ  , (5)

Among which,

 ne
T
na KSKSB 11    , (6)

3.2.2 Analysis of the dependence of AERIoe on Jacobians

It can be seen from equations (3) and (4) that SIC and DFS are determined by Se, Sa, K and  . However, Sa and Se remain175

unchanged during retrieval, which makes SIC and DFS change with iteration due to variations in  and K. As  drops to

1 at the final iteration, the values of SIC and DFS are only dependent on K. Owing to the difficulty of quantifying the change

in the two-dimensional Jacobian caused by the iteration profiles, a monitoring index, henceforth called K_Index, is designed

and used to characterize the change of the profiles at various iterations. The calculation of K_Index comes from the

convergence criteria convergence_index, which contains not only the difference between the iteration profiles but also the180

posterior dominated by Jacobian. The introduced K_Index should reflect the changes in the temperature and humidity profile,

which means that the influence of the Jacobian should be excluded. Then, the convergence_index was degenerated into the

K_Index as follows.

   
N

IndexK nn
T

nn XXXX 
_ , (7)
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185
Figure 2. (a) The change of SIC with K_Index. (b) The change of DFS with K_Index for temperature (unfilled circles) and water vapor

(open squares), respectively.

The values of K_Index in Fig. 2, which covers most of the K_Index during AERIoe retrieval process (ranged from 0 to

260, see Fig. 3), were obtained by multiplying the prior profile by different scale factors. The atmosphere dependent K were

computed by LBLRTM with the prior profiles above, and SIC and DFS were calculated using equations (3) and (4) with190

different Jacobians, respectively. Both SIC and DFS change slowly with K_Index as shown in Fig. 2, with the variation of

SIC within 13.46% (from 13.89 to 16.05), and DFS within 4.38% (from 3.71 to to 3.88) for temperature and within 12.73%

(from 1.44 to 1.65) for water vapor, which demonstrates that SIC and DFS remain almost unchanged on the condition that

the value of K_Index is small. This provides an effective means to improve the retrieval speed of AERIoe by recalculating K

selectively when X is not changing much or K_Index is small. This could be achieved by comparing the value of K_Index195

with its threshold at each iteration to determine whether K is recalculated or not.

3.2.3 Determination of the K_Index threshold

The selection of the threshold for K_Index is very important for the Fast AERIoe algorithm: if the threshold remains too

large, too many Jacobians will stop updating, resulting in the decline of retrieval accuracy or even the non-convergence of

the retrieval process; while the threshold value remains too small, most Jacobians need to be recalculated, which cannot200

effectively shorten the retrieval time.
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Figure 3. Box-and-whisker plots for K_Index values at different iterations in the retrieval process of AERIoe. (a) K_Index values

calculated using 826 samples at iterations 1-7, (b) and (c) are same as (a), but for iterations 2-7 and iterations 3-7, respectively. The boxes

show upper-quartile, median (the red line through the middle of the box), and lower-quartile values for K_Index. The whiskers extend to205
the 1.5 times the inter quartile range (IQR). Any outliers above or below the whiskers are plotted as red symbols ‘+’.

Fig. 3 shows the histogram of the K_Index distribution for each iteration in the retrieval process, with the K_Index

values at each iteration calculated using the clear sky data for 2012. Since the climatological mean profile was used as the

first-guess, which has a large deviation from the real atmospheric state, a larger value of K_Index was demonstrated in the

first step of the retrieval. The K_Index value decreases significantly from the second iteration (see Fig. 3a), indicating that210

the adjustment of the iterative profile remains very small and the retrieval process tends to be stable relative to the first

iteration. As the retrieval proceeds, the iteration profile gradually approaches the truth, and the K_Index box gradually

shortens to below 0.5 (see Fig. 3b). Using this value as the threshold for K_Index, most of the Jacobian after the second

iteration does not need to be recalculated, and the retrieval time could be effectively reduced. However, the K_Index in

iteration 7 shows larger outliers, indicating that the instability of the retrieval algorithm increases when the  factor215

decreases to 1. To reduce the impact of the Jacobian on the convergence of the algorithm, the threshold for the K_Index after

iteration 6 is set to 0.1 according to Fig. 3c, of which the K_Index box at iteration 7 is within 0.1. It should be noted that the

threshold of K_Index used in the Fast AERIoe algorithm is dependent on the datasets used in the retrieval. They are

presented ‘as is’ and are not intended to be directly applied by the reader. We encourage readers to develop their own

indicator to reduce the recalculation of Jacobians based on the atmospheric constituents they intend to retrieve.220

4 Results and discussions

The simulated AERI radiation is used for retrieval to better analyze the performance of Fast AERIoe and eliminate the

interference of other factors. An advantage of using synthetic observations is that the true atmospheric state is known, which
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can be used to evaluate the retrieval accuracy. Second, the errors caused by parameters in the forward model, such as the

deviation of trace gas content, the strength and temperature dependence of the water vapor continuum absorption, and the225

half-widths of absorption lines, could be eliminated (Maahn et al., 2020). Third, we can control the noise level in the

synthetic measurement.

4.1 Retrieval process

Examples of the Fast AERIoe retrieval using the simulated spectra at various iterations are shown in Fig. 4. These profiles

represent the typical performance of each retrieval configuration at the SGP site. The entire retrieval process took 3.59 min230

with 7 iterations, in which only Jacobians of the first and second iterations were updated. The retrieved profiles converged

quickly below 1 km, with little adjustment of the temperature and humidity profile following the first iteration. For the upper

atmosphere above 1.5 km, the temperature and humidity profiles have a relatively large adjustment and gradually approach

the radiosonde profile with the iterations. This feature of the Fast AERIoe retrieval process is very similar to AERIoe, which

is determined by the information content of the AERI spectra. The information content is concentrated near the surface,235

which leads to a more rapid convergence in the lowest portions of the profile. The information content of the upper layer is

less, and as such, it is necessary to reduce the value of  to introduce more observation information so that the retrieved

profiles are refined to approach the radiosonde profile as the iterations are continued.

One advantage of the optimal estimation method remains that the posterior error covariance matrix of the solution Ŝ

can be obtained to estimate the uncertainty of the retrieval results of each sample. The temperature and water vapor profile240

show a strong correlation for the correlation coefficient matrix of Sa (see Fig. 5a and Fig. 5c), especially the temperature

profile, which has a high correlation coefficient above 0.6 between any two layers because of the relatively stable vertical

gradient of the temperature profile. The non-diagonal elements below 1 km in the correlation coefficient matrix of Ŝ

results from Fast AERIoe show a much lower correlation than that of Sa (see Fig. 5b and Fig. 5d), which means that the

retrieved profiles in the lower atmosphere are dominated by AERI observations. However, with the increase of height, the245

correlation of the area near the diagonal increases significantly. Therefore, the retrieval algorithm will rely more on the

constraint of prior information at the upper layer of PBL. The 1-σ uncertainty lines, which is the square root of the diagonal

of the covariance matrices for the prior (blue shaded area) and the posterior (black horizontal line) in Fig. 4, demonstrates

that the retrieved profile has a much smaller uncertainty than the prior. Therefore, the Fast AERIoe algorithm can effectively

reduce the impact of uncertainties in the first-guess profile on the retrieval results. As the height increases, the black250

horizontal line segment becomes longer either for the temperature profile or water vapor profile, indicating that the

uncertainty in the retrieved profiles increases at upper PBL.
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Figure 4. Retrieved (left) temperature and (right) water vapor profiles at various iterations from the simulated AERI observations, where

the simulated observations were computed from a radiosonde (shown in red curves) launched at the SGP site at 11:30 UTC 20 Apr 2012.255
The prior mean profile (blue) was used as the first guess, and the blue-shaded area illustrates the 1-σ uncertainties in the prior. The profiles

at iterations 1, 2, and 7 was shown in solid blue, yellow, purple, and black (with 1-σ error bars derived from Ŝ ) lines, and the  were

set to 1000, 300, 30 and 1 for above iterations, respectively.

Figure 5. The level-to-level correlation of the prior (left) and posterior (right) for temperature (top row) and water vapor (bottom row) at260
11:30 UTC 20 Apr 2012.

4.2 Performance

4.2.1 Retrieval time

Both AERIoe and Fast AERIoe algorithms were used to retrieve 826 groups of simulated AERI radiation data at SGP stations

in 2012 to evaluate the retrieval performance of Fast AERIoe. The codes for the retrieval algorithm are written in MATLAB265

language and runs on a Lenovo Aircross 510P computer, of which the CPU is Intel Core i7-7700 and the operating system is

Ubuntu 14.04. To analyze the code timing of the retrieval algorithm, the code was divided into the following sections:

preparation, iteration 1, iteration 2, iteration 3,... and iteration final. The preparation section mainly consists of atmosphere

construction, observation vector construction and pre-calculated variables importation. The iteration sections include the

Deleted:

5Deleted:

WVMRDeleted:

6Deleted:

–temperatureDeleted:

WVMR–WVMRDeleted:

TheDeleted:

, with more data samples capable of ensuring

representative retrieval results

Deleted:



12

recalculation of K and F(X) and the inversion using equation (1). Note that iteration 1 does not need to calculate K and F(X)270

because the prior profile Xa is fixed (mean value of the atmosphere), and the K and F(X) associated with it are pre-calculated.

The time consumed by each section was analyzed both for AERIoe and Fast AERIoe, results for an arbitrarily selected case

are provided in Table 2. The recalculation of F(X) and K consumed an immense amount of time in the retrieval process of

AERIoe, and the latter is the most time consuming section. Therefore, by reducing the recalculation of K, the retrieval time

of Fast AERIoe is greatly reduced compared to AERIoe.275

Table 2. List of time consumption (units: s) by the sections of AERIoe and Fast AERIoe. The sections denoted with superscript “*”

indicate that K is not recalculated during Fast AERIoe retrieval process.

Sections AERIoe Fast AERIoe

preparation 0.29 0.22

iteration 1 inversion 0.29 0.22

iteration 2

recalculation of F(X) 17.11 16.69

recalculation of K 68.76 70.27

inversion 0.31 0.27

iteration 3

recalculation of F(X) 17.18 17.04

recalculation of K 70.55 0.00

inversion 0.22 0.22

iteration 4

recalculation of F(X) 17.71 16.36

recalculation of K* 70.07 0.00

inversion 0.25 0.21

iteration 5

recalculation of F(X) 16.97 17.38

recalculation of K* 68.93 0.00

inversion 0.21 0.25

iteration 6

recalculation of F(X) 16.08 15.08

recalculation of K* 68.23 0.00

inversion 0.24 0.24

iteration final

recalculation of F(X) 15.91 18.45

recalculation of K* 68.11 0.00

inversion 0.28 0.23

The average retrieval time of Fast AERIoe for the 826 cases used in the study is 3.69 min, which is more than 50% shorter

than that of AERIoe, with an average retrieval time of 8.96 min, which is beyond the temporal resolution (about 8 min) of

AERI observations. All of the samples of AERIoe consumed more than 8 minutes, while only 10 cases exceeded the280

temporal resolution of AERI for Fast AERIoe algorithm. Note that the retrieval time is dependent on the computing platform

and the method used to compute Jacobians and are not intended to be directly applied by the reader.

Table 3. The number of samples of different classes, which are classified according to K_diff

Classification K_diff Sample Numbers
Class1 1 8

The computing platform used in the retrieval process

is Lenovo Aircross 510P, with the CPU Intel Core i7-7700 and

the operating system Ubuntu 14.04.
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Class2 2 15
Class3 3 60
Class4 4 193
Class5 5 471
Class6 6 73
Class7 7 1

Figure 6. The distribution of K_diff, Total_diff and Time_diff with different classes.285

Besides the recalculation of K, the retrieval time is also affected by the total iteration steps. Therefore, statistics of the

average retrieval time difference (Time_diff for short) caused by K recalculation step difference (K_diff for short) and

average total iteration step difference (Total_diff for short) are provided in this study. The retrieval samples are divided into 7

categories (shown in Table 3) in keeping with K_diff between AERIoe and the Fast AERIoe. On this basis, Time_diff and

Total_diff between the two retrieval algorithms for various samples are calculated. As shown in Fig. 6, with an increase in290

K_diff, Time_Diff also increased gradually, showing a strong positive correlation. Compared with K_diff, the value of

Total_diff is very small, and its impact on the retrieval time is also minimal, only having a slight negative and positive effect

on the Time_diff of Calss3 and Class6. Therefore, the improvement in the retrieval speed of Fast AERIoe is mainly due to the

recalculation of Jacobians.

4.2.2 Convergence characteristics295

825 samples of the 826 data sets using the AERIoe algorithm achieved convergence, with the convergence rate reaching

99.88%. The Fast AERIoe algorithm has 815 groups of samples to achieve convergence, with the convergence rate reaching

98.7%, which is lower than that of AERIoe. Among the 11 sets of retrieval samples that did not achieve convergence, the

K_Index of most of them did not change much after the  was dropped to 1, indicating that the subsequent iterations had

little effect on the adjustment of the profiles, so the iterative profile corresponding to the minimum convergence_index could300
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be taken as the retrieval results instead of criterion (2). Fig. 7a shows the comparison between the retrieved profiles from

AERIoe using criteria (2) and Fast AERIoe using the new convergence criteria with 11 sets of non-converged samples. The

temperature profiles obtained by the two algorithms are virtually identical, with an R-square of 0.99. For water vapor mixing

ratio (WVMR),, the introduction of the new convergence criteria reduces the value of R-square but still reaches 0.84,

indicating that the two datasets still have a strong correlation. The above results indicate that the method of using the305

minimum convergence_index to obtain the retrieval profiles is a reasonable and feasible method, as the Fast AERIoe

algorithm cannot achieve convergence.

Figure 7. Scatter plots between the retrieval results of the non-converged samples with AERIoe and Fast AERIoe. (a) Temperature profiles,

(b) WVMR profiles.310

4.2.3 Accuracy

Traditional methods used to evaluate the accuracy of retrieved profiles against radiosondes compute the BIAS and Root

Mean Square Error (RMSE), with the calculation formula as follows:
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315

Where i and j represent the serial numbers of vertical stratification and samples, respectively, with M being the number of

samples. Xretrieval is defined as retrieved profiles, smooth
sondeX is radiosonde observations which are smoothed with the averaging

kernel A by the following multiplication to reduce the vertical representativeness errors

  aasonde
smoothed
sonde XXXAX  , (10)
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320

Figure 8. Bias (solid curves) and RMSE (dashed curves) profiles for clear-sky comparisons of the AERIoe(red curves) and Fast AERIoe

(blue curves) retrievals with radiosondes. (Left) Temperature profile, (right) Water Vapor profiles.

The BIAS and RMSE of AERIoe and Fast AERIoe are calculated for 826 sets of samples using the above equations

within the altitude range of 0-3 km, and the results are shown in Fig. 8. The temperature profile below 1.0 km and the water

vapor profile below 1.5 km have obvious positive deviations, with the maximum deviation reaching 1.0 K and 0.2 log(ppmv),325

respectively. However, the BIAS and RMSE at the bottom are significantly reduced due to the constraint of the surface

observations, indicating that the introduction of surface meteorological observation data in the observation vector has an

obvious positive effect. The Fast AERIoe retrieved temperature profiles shows a negative deviation of 0.05K between 1.0 km

and 1.5 km and a maximum increase of RMSE within 0.08 K above 1.0 km when compared with AERIoe. For the water

vapor profile, the BIAS and RMSE profiles of Fast AERIoe are in good agreement with AERIoe, except for a maximum330

increase of BIAS within 0.03 log(ppmv) bellow 1.0 km. When considering the magnitude of the temperature (roughly on the

order of 300 K) and water vapor (roughly on the order of 5-10 log(ppmv)) profiles, the differences between the retrieved

profiles are negligible, indicating that the retrieval results of Fast AERIoe are comparable to that of AERIoe.

The comparison of the profiles retrieved by the two algorithms can be demonstrated more clearly by the modified

Taylor plots (Turner and Löhnert, 2014), which are used to evaluate how well each retrieved profile can capture the vertical335

shapes of its true profile, as BIAS and RMSE can only describe the average accuracy of the whole dataset at each height.

These Taylor diagrams show Pearson’s correlation coefficient between two datasets on the y-axis and the ratio of the

standard deviation on the x-axis. Each retrieval/sonde pair is used to derive the correlation coefficient (r) from Eq. (11) and

the ratio of the standard deviations from Eq.(12), both are used by Turner and Löhnert (2014).
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Within the equations, )(zs and )(za are defined as the radiosonde observations and retrieved profiles between 0 and 3 km,

 as , and  as  , are the mean values and standard deviations at the same height range.

Retrievals that have a correlation coefficient of 1 and a standard deviation ratio (SDR) of 1 mean that the two datasets

match perfectly. Fig. 9a and Fig. 9b show these plots for the clear-sky AERIoe and fast AERIoe retrievals. For the345

temperature retrievals, both the Fast AERIoe and the AERIoe perform well, with 90 percent of correlation coefficients above

0.9 and the intersection of the arms close to 1. Fig. 9b shows that retrieving the water vapor structure is much more difficult

with both algorithms; the spread in the correlation coefficient and SDR are much larger for water vapor than for temperature.

Most of the blue and red symbols ‘×’ in Fig. 9 , which indicate the scores for the individual profiles of the two algorithms,

are closed to each other both for temperature and water vapor profile. Therefore, the modified Taylor plots also confirms the350

conclusion that the retrieval results of the AERIoe and Fast AERIoe algorithms are comparable.

Figure 9. Modified Taylor plots showing the correlation coefficient and standard deviation ratio between the smoothed radiosondes and

the retrieved clear-sky (a) temperature and (b) water vapor using AERIoe (red symbols) and Fast AERIoe (blue symbols). There are 826

cases from the SGP site within 2012. Each symbol indicates the score for an individual profile. The arms of the plotted crosses span the355
10th–90th percentiles for the correlation coefficient (vertical arms) and the standard deviation ratio (horizontal arms).

4.3 Real observations

Since the clouds overhead have an significant influence on the infrared spectra, the primary problem is how to screen

clear-sky samples when using the measured AERI data to retrieve the temperature and humidity profile. The contribution of

clouds to infrared radiation not only interferes with the inversion of temperature and humidity profile, but also provides360

technical means for obtaining cloud macro parameters. Fig. 10 shows the AERI observed spectrum under cloudy and clear

sky conditions. The AERI observations under the two conditions remain highly different, indicating that the AERI observed

spectrum can be adopted directly to determine whether clouds or clear skies are present. To establish an accurate cloud

recognition model, we adopted the cloud fraction data obtained from the all-sky image at the same site as the label for
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training, where the sample with a cloud fraction less than 30% is marked as 0, indicating clear sky, while the sample with a365

cloud fraction greater than 30% is marked as 1, indicating that there is cloud over head. Using the above mentioned method,

the cloud fraction of the all-sky image from March to May 2010 was labeled and temporally matched with the AERI

observed radiance to form a training data set, based on which a cloud recognition model was established by training the back

propagation (BP) neural network, with the final cross-validation accuracy reaching 94.3%. Compared with the recognition

method by radiosonde, the BP cloud recognition model has greatly improved the discrimination accuracy without requiring370

additional detection equipment. The BP cloud recognition model was applied to the 178 groups of AERI observations

collected on October 21, 2012, with 168 groups of clear sky samples screened in total.

Figure 10. AERI observations in clear and cloudy sky conditions.

Benefiting from good retrieval accuracy and high temporal resolution, AERI instruments can be used to monitor375

thermodynamic temporal structures that may not be resolved by infrequent radiosonde launches. Fig. 11 shows the

time–height cross sections of temperature and WVMR profiles derived from the Fast AERIoe retrievals. It can be seen from

Fig. 11 that AERI resolved the temperature inversion prior to approximately 15:00 UTC, and the height of the inversion layer

gradually rising over time. After 15:00 UTC, the temperature near the surface increases significantly, accompanied by the

disappearance of the inversion layer. From the comparisons with radiosonde profiles shown in Fig. 12, the retrieval results of380

Fast AERIoe are well matched with radiosonde profiles, especially the temperature profiles, which demonstrates the ability

of the algorithm to resolve the inversion layer.
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Figure 11. Time-height cross sections of temperature (top) and water vapor (bottom) on Oct. 21, 2012.

385

Figure 12. Comparisons between retrieved thermodynamic profiles and the coincident radiosonde profiles at 05:30 UTC, 11:30 UTC,

17:30 UTC and 23:30 UTC on Oct. 21, 2012. (Left) Temperature profiles, (right) WVMR profiles.

5 Conclusions

The AERIoe algorithm retrieves atmospheric temperature and humidity profiles on the basis of the optimal estimation

algorithm, which can make full use of information in the infrared spectrum and give the uncertainty of each retrieval results.390

AERIoe reduces the dependence on the first-guess profile by introducing regularization parameters, but at the same time, it

also requires more iterative steps, which increases the calculation amount and retrieval time of the algorithm. In this paper, a

fast retrieval method called Fast AERIoe is established on the basis of AERIoe by adaptively recalculating the Jacobians.

Based on the statistical comparison of the two methods (AERIoe and Fast AERIoe) with radiosonde observations, the

retrieval performance of Fast AERIoe are summarized as follows:395

1. The retrieval speed of the Fast AERIoe is significantly improved compared with AERIoe while keeping the

parameters of the computing platform unchanged, with the average retrieval time reduced by more than 50%. The
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temperature and water vapor profiles derived from Fast AERIoe is almost unchanged compared with AERIoe, illustrating

that the retrieval results of Fast AERIoe is comparable to that of AERIoe.

2. As for the convergence characteristics, 825 out of 826 samples adopted AERIoe meets the convergence criterion,400

while the sample adopted Fast AERIoe converged over 98% of the time. The method of recalculating Jacobians in Fast

AERIoe slightly reduces the convergence of the retrieval algorithm. Despite this, the Fast AERIoe algorithm have

demonstrated the ability to retrieve reliable temperature and water vapor profiles more quickly, which is fast enough for

real-time processing.

3. When the Fast AERIoe is adopted to measured AERI spectrum, a cloud recognition model without additional405

detection equipment is established based on the BP neural network algorithm to remove cloudy-sky cases. Compared with

the commonly used cloud recognition method by radiosonde observations, the BP cloud recognition model has greatly

improved the discrimination accuracy. It should be noted that the hyperspectra under the two weather conditions of clear sky

with high humidity and few clouds are relatively close, while the above two weather conditions are far from further

distinguished when building the BP cloud recognition model, which may reduce the discriminative accuracy of the model.410

A single instrument always has some defects at the vertical coverage, vertical resolution, temporal resolution and

accuracy in obtaining the vertical distribution of atmospheric continents (Barrera-Verdejo et al., 2016). The combination of

multiple remote sensing devices in an optimal retrieval algorithm can overcome the shortcomings of a single device, making

full use of each measurement to achieve the purpose of enhancing their benefits. However, the increase in observation

equipment will inevitably lead to more complex calculations of the forward model and Jacobian, which will lead to a415

significant increase in the amount of calculation and retrieval time. Therefore, it is particularly necessary to carry out

research on fast retrieval in case of joint retrieval. Apart from the influence of the Jacobian on the retrieval time, so does the

number of iterations required by the retrieval algorithm, which is dominated by the regularization parameter. Future work

will focus on the application of Fast AERIoe in the combination of different observations and the selection of regularization

parameters to permit the retrieval algorithm to converge more efficiently.420

Data availability. The data used in the manuscript (including AERI, radiosonde, etc) are available from the ARM Data

Archive (https://adc.arm.gov/discovery/#/, accessed on 19 January 2022). The code for recalculating Jacobians are not

publicly available at this time but may be obtained from the authors upon reasonable request.
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