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Abstract. High-resolution modelling of surface ozone is an essential step in the quantification of the impacts on 
health and ecosystems from historic and future concentrations. It also provides a principled way in which to extend 
analysis beyond measurement locations. Often, such modelling uses relatively coarse resolution chemistry 
transport models (CTMs), which exhibit biases when compared to measurements. EMEP4UK is a CTM that is 
used extensively to inform UK air quality policy, including the effects on ozone from mitigation of its precursors. 15 
Our evaluation of EMEP4UK for the years 2001–2018 finds a high bias in reproducing daily maximum 8-hr 
average ozone (MDA8), due in part to the coarse spatial resolution. We present a machine learning downscaling 
methodology to downscale EMEP4UK ozone output from a 5×5 km to 1×1 km resolution using a gradient boosted 
tree. By addressing the high bias present in EMEP4UK, the downscaled surface better represents the measured 
data, with a 128% improvement in R2 and 37% reduction in RMSE. Our analysis of the downscaled surface shows 20 
a decreasing trend in annual and March–August mean MDA8 ozone for all regions of the UK between 2001–
2018, differing from increasing measurement trends in some regions. We find the proportion of the UK which 
fails the government objective to have at most 10 exceedances of 100 µg/m3 per annum is 27% (2014–2018 
average), compared to 99% from the unadjusted EMEP4UK model. A statistically significant trend in this 
proportion of -2.19%/year is found from the downscaled surface only, highlighting the importance of bias 25 
correction in the assessment of policy metrics. Finally, we use the downscaling approach to examine the sensitivity 
of UK surface ozone to reductions in UK terrestrial NOX (i.e., NO + NO2) emissions on a 1×1 km surface. 
Moderate NOX emission reductions with respect to present day (20% or 40%) increase both average and high-
level ozone concentrations in large portions of the UK, whereas larger NOX reductions (80%) cause a similarly 
wide-spread decrease in high-level ozone. In all three scenarios, very urban areas (i.e., major cities) are the most 30 
affected by increasing concentrations of ozone, emphasising the broader air quality challenges of NOX control. 

1 Introduction 
Ground level ozone is a harmful air pollutant that causes respiratory health issues, hospitalisation, and in severe 
cases, mortality (Ji et al., 2011; COMEAP, 2015; Nuvolone et al., 2018), with an estimated 254,000 deaths 
globally in 2015 due to elevated ozone exposure (Cohen et al., 2017). Ozone is a secondary pollutant formed via 35 
chemical reactions of precursor pollutants – nitrogen oxides (NO and NO2, known as NOX) and volatile organic 
compounds (VOCs) – in the presence of sunlight. Because of the harmful consequences of increased ozone levels, 
air quality standards of varying degrees of stringency have been set in many countries for both ozone and its 
precursors. Compliance with, and the efficacy of, these standards is primarily assessed through analysis of surface 
ozone measurements. Whilst useful, the empirical analysis of ozone measurements is limited in scope by the 40 
density and location of monitoring sites and length of data records (e.g., Lang, 2020). Mathematical models, either 
process-based air quality models or statistical, are therefore useful in further improving our understanding of 
ozone formation, long-term trends, and spatial variability, at spatial and temporal scales that measurements alone 
cannot match. However, it is well established that ozone concentrations vary spatially, seasonally and temporally 
due to meteorological conditions and precursor availability and reactivity (Cooper et al., 2014; Pope et al., 2016), 45 
making it a particularly challenging pollutant to model.  
 
Recent statistical analysis of UK surface ozone has centred on data from measurement stations (Diaz et al., 2020; 
Gouldsbrough et al., 2022). However, these stations are not spread equally across the UK, leaving substantial 
portions of the country unmonitored (Finch and Palmer, 2020). In consequence, robust estimates of regional 50 
variability in ozone concentration and trends are unavailable, though it is known that both vary significantly across 
sites and site type. Taking the UK as a whole, a notable finding of the above studies is that the probability of the 
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occurrence of extreme ozone concentrations has reduced in recent decades, but reported trends are generally not 
statistically significant (e.g., Finch and Palmer, 2020). Chemistry transport models (CTMs), numerical models 
that simulate the various processes that affect pollutant concentrations (emissions, chemistry transport, deposition, 55 
etc.) are routinely used to produce spatial surfaces of ozone, and other air pollutants, with a far greater spatial 
coverage than can be achieved by the monitoring stations. Still, these are run on a grid, often at a coarse resolution 
with respect to what is optimal for exposure assessment, and thus may not capture local-scale behaviour. High 
resolution multi-annual CTM simulations are also computationally expensive and, like all process models, subject 
to a degree of bias (e.g., Liu et al., 2022). An alternative to high-resolution process modelling is to develop a 60 
statistical model to interpolate the ozone measurements (Wong et al., 2004; Hooyberghs et al., 2006). However, 
given the complexity of the processes that underpin ozone production, downscaling approaches that use measured 
data, where it is available, to remove local-scale bias from the numerical model output are attractive. 
  
Data-driven downscaling methods are used to model complex physical systems by combining information from 65 
ground observations or satellites with information from process-based numerical models. Previous work to 
downscale numerical model surface ozone data includes dynamical, statistical and machine learning downscaling. 
Dynamical downscaling uses high resolution regional simulations to extrapolate the effects of large-scale 
processes to local scales, and has been applied in the US (Nolte et al., 2021; Sun et al., 2015; Trail et al., 2013) 
and Belgium (Lauwaet et al., 2013). Statistical downscaling of surface ozone has been performed using regression 70 
(Bravo et al., 2016; Gauthier-Manuel et al., 2022; Guillas et al., 2008), fitted empirical orthogonal functions 
(Alkuwari et al., 2013), and a spectral method (Reich et al., 2014). Machine learning (ML) models have also been 
used to downscale surface ozone. For example, a Bayesian ensemble machine learning model that integrates 13 
learning algorithms has been used to create a census tract level daily maximum 8-hr average (MDA8) ozone 
surface for the US, demonstrated for 2011 (Ren et al., 2022). Global downscaled ozone surfaces have also been 75 
created using ML models, including a Bayesian neural network model to create a 10×10 km ozone surface for 
1990–2019 (Sun et al., 2022), and a random forest model to create a 0.1∘×0.1∘ average ozone surface for 2010–
2014 (Betancourt et al., 2022). To our knowledge, no studies have applied downscaling specifically to UK ozone.     
 
In this paper, we develop and evaluate a novel ML-based methodology for downscaling the EMEP4UK CTM 80 
from a 5×5 km to 1×1 km resolution. The CTM is developed as the UK regional application of the European 
Monitoring and Evaluation Program (EMEP) and has been widely used to study UK air quality and to inform 
policy decisions (e.g., Vieno et al., 2016). Previous EMEP4UK evaluation have shown that whilst the model 
generally performs well at reproducing observations of a range of pollutants, there is non-negligible positive bias 
in ozone at almost all sites (Vieno et al., 2010). The bias is larger at urban background locations, possibly reflecting 85 
a dilution of local NOX emissions on the 5×5 km grid and, thus, insufficient NOX titration (Lin et al., 2017). One 
way to address this bias is through downscaling, by which information from EMEPUK surfaces can be combined 
with information from ozone measurement data and other variables, e.g., measures of atmospheric and 
meteorological conditions.  
  90 
By building a downscaling ML model that is trained to predict measurement data using not only the EMEPUK 
output, but also multiple other feature variables, we can produce high-resolution ozone surfaces that both better 
matches the measurement data than the raw EMEPUK ozone surfaces and provide greater spatial coverage - at a 
higher spatial resolution - than the raw measurement data. We apply the downscaled model to study UK surface 
ozone over an 18-year period (2001–2018), focussing on (1) quantifying regional variability in ozone, trends, and 95 
policy-related metrics; (2) comparing conclusions drawn from the downscaled surface relative to those from the 
unadjusted CTM and measurements alone; and (3) exploring the sensitivity of UK ozone concentrations to 
reductions in NOX. Of the many ML tools available, we use a gradient boosted tree (GBT) (Friedman, 2001). Our 
choice is primarily driven by the fact that the GBT model can learn non-linear relationships from highly 
dimensional datasets. Thus, the GBT model allows us to use several measurement stations and covariates in the 100 
downscaling model, and thereby model ozone as the product of multiple highly non-linear and interacting systems. 
Moreover, GBTs have been used to downscaled numerical model surface ozone for China (Hu et al., 2022; Liu et 
al., 2020), and were found useful in predicting surface level ozone during wildfires in California (Watson et al., 
2019). 
 105 
This paper is structured as follows. Section 2 outlines the data used in the analysis and the features included with 
the ML model. Section 3 describes the downscaling methodology, including an evaluation of the downscaled 
surface. In Section 4, we analyse the downscale surface, focussing on regional ozone variability across the UK in 
recent years (Section 4.1), on longer-term trends and interannual variability (4.2), and on UK ozone-NOX 
sensitivity (4.3). Across these results we compare the conclusions drawn from the new downscaled surface to 110 
those from the unadjusted EMEP4UK output and measurements alone. Finally, in Section 5 we present our 
conclusions and some brief recommendations for future research. 
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2 Data  
Accurate downscaling requires not just the measured and modelled ozone data, but also information on variables 
which affect the net production or transport of ozone at the Earth’s surface. We make use of information on the 115 
meteorology, climate and geophysical characteristics at a given location. For consistency with ML terminology, 
we refer to the individual variables as ‘input features’, a concise summary of which can be found in Table 1. All 
data sets cover the period 2001–2018 (inclusive).  
 
2.1 Modelled ozone from EMEP4UK 120 
EMEP4UK is a UK focussed version of the EMEP MSC-W model (https://www.emep.int), an Eulerian CTM 
used to assess concentrations and deposition of various air pollutants across Europe (Simpson et al., 2012). 
Various studies related to UK ozone have been performed using EMEP4UK: quantifying the burden of heat and 
ozone on mortality (Doherty et al., 2009), modelling ozone during the 2003 heatwave (Vieno et al., 2010), 
modelling the effect of climate change on ozone health impacts (Vardoulakis and Heaviside, 2012), quantifying 125 
the socioeconomic and urban-rural differentials in exposure (Milojevic et al., 2017), and modelling air pollution 
exposure in relation to workplace mobility (Liška, 2021). The EMEP4UK model is also used to inform policy 
decisions concerning air quality: the extent to which UK source abatement measures can mitigate UK particulate 
matter concentrations (AQEG et al., 2013; Carnell et al., 2019); the impact of reductions in UK anthropogenic 
emissions on various pollutants (Vieno et al., 2016); the impacts of climate change and mitigation options for 130 
agriculture, forestry, land use and waste sectors (SRUC, 2017); the effect of changes in vegetation coverage on 
air pollution (EIDC, 2021); and to quantify the spatial variation in average ozone across the UK, including the 
calculation of population-weighted ozone exposure during workdays, long term exposure, and the implication of 
a 2030 emissions scenario on surface ozone concentrations (AQEG, 2021). 
 135 
Previous evaluation of the EMEP4UK model quantified its performance in the reproduction of the 10-year mean 
measured ozone concentrations for 2001–2010. Considering 17 rural and 30 urban sites, R2 values of 0.21 (0.81 
when removing one erroneous rural site) and 0.73, respectively, were obtained (Lin et al., 2017). A positive model 
bias for ozone at urban background sites is due to the dilution of urban NOX emissions at the model 5×5 km 
resolution, meaning that EMEP4UK insufficiently captures the urban NOX titration of ozone. In our preliminary 140 
investigations, we found that the original EMEP4UK output fails to capture the daily behaviour of ozone in the 
larger sample of 198 measurement stations used in this analysis, with a cross-year mean R2 of 0.32, and cross-
year mean RMSE of 19.4 µg/m3. Therefore, we determined it was necessary to develop a methodology with which 
to downscale the EMEP4UK model output to a higher resolution spatial grid and to address the above bias. 
 145 
The dataset we wished to downscale is a 5×5 km gridded dataset of hourly surface ozone concentrations from 
EMEP4UK covering the period 2001–2018. To produce this ozone field, the offline CTM was run with 
meteorology from the Weather Research and Forecast (WRF) model version 3.7.1 (Skamarock et al., 2008) 
between 2001–2017 and WRF4.1 (Skamarock et al., 2019) for 2018.  The WRF simulation in this work assimilates 
data from the numerical weather prediction model meteorological reanalysis of the US National Center for 150 
Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Global Forecast System 
(GFS) (National Centers for Environmental Prediction, 2000). MDA8 ozone concentrations were calculated from 
the original hourly model output and linear interpolation was used to convert the 5×5 km field to a 1×1 km grid 
over the entire study period (2001–2018).  
 155 
In addition to the output from the main transient model run described above, a series of additional model 
experiments were performed for the year 2018 to explore the sensitivity of UK ozone to NOX reductions. These 
included a 2018 reference run with terrestrial UK NO2 emissions of 743 Gg/yr and three otherwise identical runs 
with NO2 emissions reduced by 20% (594 Gg/yr NO2), 40% (446 Gg/yr), and 80% (148 Gg/yr). These reductions 
do not correspond to any specific future scenarios and are designed solely as a sensitivity analysis on the basis of 160 
the ongoing long-term decline in UK NOX emissions. These emissions fell by 73% between 1970 (2920 Gg/yr) 
and 2019 (784 Gg/yr) (Defra, 2021a), with the expectation of further reductions in the future. 
 
2.2 Meteorological variables 
Surface ozone levels are strongly influenced by local and synoptic weather conditions (Pope et al., 2016) and 165 
meteorological variables are thus common input features in ML studies of ozone. The WRF model is a weather 
prediction system designed for atmospheric forecasting (Grell et al., 2005). For this study, WRF version 3.7.1 
meteorological and terrain variables for the years 2001–2018 were collected on the same 5×5 km grid as the 
EMEP4UK model, and then also linearly interpolated to 1×1 km. Previous work found daily maximum 
temperature, relative humidity, thermal surface radiation and wind speed to be important drivers of MDA8 ozone 170 
in Europe (Otero et al., 2016). Thus, we include these (and other similarly relevant) meteorological variables in 
our ML model (Table 1). 
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2.3 Distance variables 175 
Due to the link between NOX and ozone, distance to the nearest road is a key explanatory variable (Granier and 
Brasseur, 2003). Distances to five road types from major to minor roads (Meijer et al., 2018) were calculated at 
each ozone measurement station for the calibration of the model, and on a 1×1 km grid for the predicted 
downscaled surface. Similarly, distance to coast from a shapefile of the UK coastline (Natural Earth: 
https://www.naturalearthdata.com) was used to account for the increase of ozone concentrations in coastal areas 180 
(Entwistle et al., 1997). Note that we do not include NOX itself, or any other precursor pollutants, directly in the 
model. The primary reason for this is that the EMEP4UK output for such chemicals is likely to be biased, and we 
wish to avoid this bias propagating into the downscaled ozone field. While this approach indirectly encompasses 
the influence of NOX, a comprehensive treatment of NOX within the ML model is beyond the current scope of our 
study. Additionally, the presence of sharp gradients in NOX emissions introduces a potential risk of introducing 185 
spurious features during the downscaling process. Instead, the distance to road variable acts as a proxy for NOX 
concentration, which is reasonable given the importance of road transport NOX emissions in the UK. To lessen 
the bias of the downscaling model towards the relatively dense measurement network in London, an indicator 
variable was included to delineate between inside London and outside London, with London defined using a 
bounding box from 0.489°W–0.236°E and 51.28–51.686°N. 190 
 
2.4 Ozone monitoring network data  
Surface ozone measurements for the years 2001–2018 were obtained from the Automatic Urban and Rural 
Network (AURN: https://uk-air.defra.gov.uk, 108 sites), Kings College London network (KCL: 
https://www.londonair.org.uk, 68 sites), Air Quality England network (AQE: 195 
https://www.airqualityengland.co.uk, 12 sites), Welsh Air Quality Network (WAQN: https://airquality.gov.wales, 
9 sites) and Scottish Air Quality Network (SAQN: https://www.scottishairquality.scot, 1 site). These 
measurements are essential for the calibration and evaluation of the downscaling model. MDA8 ozone 
concentrations were calculated at each of the 198 measurement sites; for locations, see Figure A1. There are 
differences in the observation period across the sites, but all sites had a minimum of 3 years data.  200 
 
In our subsequent analysis, we explored regional variations in ozone concentration and trends. We considered 12 
UK regions (see Figure A2), the spatial definitions of which are taken from the Level 1 Nomenclature of Territorial 
Units for Statistics (Office for National Statistics, 2018). Estimation of site-wise trends, including the magnitude 
and significance, may be sensitive to the chosen statistical technique. Approaches used in previous studies include 205 
use of the non-parametric Theil-Sen method applied to deseasonalised monthly mean ozone time series (AQEG, 
2021) and least square fits to annual mean data (Finch and Palmer, 2020). In this study, we calculated trends using 
ordinary least squares on the yearly averages (and seasonal averages, 90th percentiles, 10th percentiles) of MDA8 
ozone. All trends are calculated using all available data from each region.  
 210 
Table 1: Input features to the ML model. 

Input features Source Abbreviation in source Resolution 
EMEP4UK surface ozone EMEP4UK O3 1×1 km 
Latitude Measurements -- -- 
Longitude Measurements -- -- 
Daily maximum 2m temperature WRF T2 1×1 km 
Daily minimum 2m temperature WRF T2 1×1 km 
Daily mean surface pressure WRF PSFC 1×1 km 
Downward short-wave flux at ground surface WRF SWDOWN 1×1 km 
Daily mean planet boundary layer height WRF PBLH 1×1 km 
Daily mean surface vapor WRF QVAPOR 1×1 km 
Daily mean x component of wind WRF U10 1×1 km 
Daily mean y component of wind WRF V10 1×1 km 
Terrain height WRF HGT 1×1 km 
Distance to highways GRIP 1 Vector 
Distance to primary roads GRIP 2 Vector 
Distance to secondary roads GRIP 3 Vector 
Distance to tertiary roads GRIP 4 Vector 
Distance to local roads GRIP 5 Vector 
Distance to coast Natural Earth -- Vector 
Year EMEP4UK -- -- 
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Month EMEP4UK -- -- 
Date (as integer) EMEP4UK -- -- 
London (or not) Bounding box -- -- 

 

3 Downscaling methodology  
Our goal is to produce a gridded downscaled surface ozone product which better represents the stochastic 
behaviour of the measurements than the original EMEP4UK output alone. The downscaling approach consists of 215 
five steps. First, the 5×5 km gridded model ozone surface is linearly interpolated to a 1×1 km resolution. Second, 
a matched data set of modelled ozone is selected from the 1×1 km EMEP4UK surface by selecting, for each 
measurement station, the nearest grid cell. Third, a machine learning model is used to perform bias correction on 
the modelled ozone data. Fourth, the performance of the bias correction is evaluated at the measurement locations, 
by a comparison of the predicted ozone with the observed measurements. Steps three and four are iterated until 220 
no further improvements in the predictive capability of the model can be seen. Finally, the trained machine 
learning model is used to predict MDA8 surface ozone on a 1×1 km resolution grid for the UK. Figure 1 shows 
an example of the resulting downscaled surface. This surface consists of 234,187 cells, compared to the 10,941 
cells of the original EMEP4UK surface. The increased resolution in the downscaled surface leads to greater local-
level detail, resulting in improved inference on the probabilistic behaviour of the ozone surface which we 225 
demonstrate in our subsequent analysis. Further details on the specific machine learning model, and how it was 
tuned, are as follows.  
 

 
Figure 1: (a) An example of the downscaled MDA8 (µg/m3) surface (1×1 km resolution) and (b) original EMEP4UK 230 
surface (right, 5×5 km) for 01-01-2008.  

 
3.1 Machine learning model 
A gradient boosting tree (GBT) is an iterative, supervised, machine learning model, consisting of a parameterized 
ensemble of decision trees (Friedman, 2001). These decision trees are trained sequentially; each additional tree 235 
minimizes the prediction error from the previous tree using gradient descent. As a supervised learning algorithm, 
training the model requires both a training data set and a predefined objective function, the latter consisting of a 
loss function and a regularization term. The training data set is the subset of the full set of data from which the 
best fitting model is found. The loss function and regularization term quantify the quality of model fit given the 
complexity of the model. The error for each decision tree is calculated from the loss function (Friedman, 2001), 240 
which measures how well the model predicts the training data, whilst the regularization term penalises against 
model complexity to prevent overfitting. The fitting algorithm ends when either a predetermined number of trees 
have been fitted, the loss function falls below a predetermined threshold, or the addition of more trees provides 
no significant improvement to the model fit. The latter criterion is determined by an external validation data set. 
The final model is then the summation over the entire ensemble.  245 
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Several characteristics of GBTs make them suitable for downscaling: they can capture non-linear relationships 
between variables far more effectively than competitor approaches (e.g., statistical regression models) and they 
are both computationally efficient and scalable, i.e., are suitable for large datasets (Chen and Guestrin, 2016). The 250 
specific GBT implementation used for this analysis is XGBoost, a highly optimized Python package (Chen and 
Guestrin, 2016). Since the measurement ozone data is long tailed, we chose a gamma regression for objective and 
evaluation functions of the GBT model; gamma regression is suited to modelling continuous, non-negative and 
long tailed data, i.e., non-normally distributed data with few but large extreme values. Like many ML models, the 
fitting process used to train the GBTs prioritises the fit of the mean behaviour at the expense of characterising the 255 
tails (i.e., largest and smallest observations). To reduce this inequality and reduce the mean bias, the tails of the 
measurement data – data above (and below) high (and low) concentrations of ozone – were oversampled. 
Resampling is a common approach to rebalance the distribution of training data for a ML model when the goal is 
to forecast rare values of the target variable (Torgo et al., 2015). 
 260 
Lastly, as with any machine learning analysis, we require a balance between the fit of the model on the training 
data and with the ability to apply the model to unseen data, i.e., making sure that the model is not overfit or 
underfit to the training data. To get satisfactory results, the hyperparameters of the XGBoost model needed 
substantial tuning. Initial hyperparameters were found using Hyperopt, a Bayesian optimization package (Bergstra 
et al., 2013). Subsequent fine tuning was performed manually until no further improvement could be found in the 265 
cross-validation (CV) tests.  
 
3.2 Evaluation of downscaling 
3.2.1 Predicting ozone at measurement locations 
Evaluation of the downscaling model used CV to assess the prediction of MDA8 ozone across multiple 270 
measurement locations. CV requires the model to be trained on a random subsample of the whole dataset, and the 
resulting model then used to predict the remaining, and previously unseen, data. The first CV test is to split the 
data into two random samples, selected from the entire dataset: 70% of the data is used to train the model and the 
remaining 30% is used for evaluation. Table 2 shows the annual R2 and RMSE for the predictions combined 
across all sites. We found a good agreement between predicted ozone and measurement ozone, with a cross-year 275 
mean R2 of 0.80 and RMSE of 10.61 µg/m3 for 2001–2018, and no evidence of substantial between-year variation 
in performance. 
 
The second CV test assesses predictive performance at locations which are completely excluded from the model 
training. To do this,  we divided the measurement data into ten subsets by their location. The model was trained 280 
on nine subsets, while the remaining subset served as the evaluation set. We repeated this process for all subsets, 
ensuring that each subset was used for evaluation exactly once. Again, we found a good agreement between 
predicted and measurement ozone, with a cross-year mean R2 of 0.70, as seen in Table 2.  
 
Table 2: R2 and RMSE (µg/m3) results of predicted MDA8 ozone vs MDA8 measurements for the two cross-validation 285 
tests: 70/30 train/test split and 10-fold CV. All metrics are calculated using all available data i.e., daily data across all 
sites. 

 70/30 train/test split 10-fold CV 
Year R2 RMSE R2 RMSE 
2001 0.82 11.33 0.71 14.09 
2002 0.79 11.36 0.70 13.72 
2003 0.82 12.88 0.74 15.52 
2004 0.79 11.42 0.69 13.82 
2005 0.77 11.50 0.66 13.98 
2006 0.84 11.66 0.74 14.72 
2007 0.82 10.09 0.72 12.52 
2008 0.83 10.56 0.74 12.89 
2009 0.81 10.23 0.71 12.50 
2010 0.79 10.43 0.68 12.87 
2011 0.79 10.43 0.67 13.06 
2012 0.79 10.18 0.68 12.61 
2013 0.81 10.09 0.71 12.52 
2014 0.77 10.22 0.65 12.56 
2015 0.77 9.66 0.65 12.05 
2016 0.80 9.88 0.73 11.63 
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2017 0.81 9.29 0.69 11.80 
2018 0.83 9.81 0.73 12.42 
Mean 0.80 10.61 0.70 13.07 

 
3.2.2 Downscaled surface vs measurements 
Having assessed the accuracy of the ML downscaling model, we created the downscaled surface by training the 295 
ML model on all measurement data. To compare the downscaled surface to both measurements and the unadjusted 
EMEP4UK surface, the data from the cell nearest to each measurement station was extracted. Due to the different 
grid specifications, the matched cells were not concentric, but they are very close. Table 3 shows the R2 for each 
year for the downscaled surface and original EMEP4UK surface when compared to the measurement data. The 
cross-year mean R2 of the downscaled surface is 0.73, 128% higher than the equivalent for the unadjusted 300 
EMEP4UK, at 0.32. Notably, the extremely low R2 values for 2014–2016 in the latter are significantly improved 
in the downscaled surface, e.g., 0.06 vs 0.73 in 2016. Notable improvement is also seen in 2003, the best 
performing year for EMEP4UK, with a downscaled R2 of 0.81 compared with 0.61 for unadjusted EMEP4UK. 
There is also a 37% reduction in the cross-year mean RMSE for the downscaled surface compared with the 
unadjusted product: 12.26 µg/m3 vs 19.40 µg/m3. Our results are not inconsistent with other machine learning 305 
downscaling approaches for ozone. Liu et al., (2020) applied a similar method to produce a spatiotemporal surface 
of ozone concentrations in China from 2005 to 2017 and achieved a daily site cross-validation R2 score of 0.64 
and RMSE of 27.27 μg/m3. Ren et al., (2020) investigated various machine learning models to predict ozone 
across the US and the highest spatial validation R2 score was 0.68. 
 310 
Table 3: R2 and RMSE (µg/m3) results for downscaled ozone vs measurements and EMEP4UK ozone vs measurements. 
All metrics are calculated using all available data i.e., daily data across all sites. 

Year Downscaled R2 Downscaled RMSE EMEP4UK R2 EMEP4UK RMSE 
2001 0.79 12.10 0.45 19.52 
2002 0.77 12.05 0.30 20.91 
2003 0.81 13.10 0.61 19.05 
2004 0.76 12.25 0.47 18.01 
2005 0.73 12.54 0.36 19.22 
2006 0.80 13.13 0.54 19.81 
2007 0.76 11.64 0.41 18.08 
2008 0.78 11.97 0.44 19.07 
2009 0.74 12.05 0.31 19.45 
2010 0.70 12.65 0.29 19.40 
2011 0.69 12.62 0.29 19.17 
2012 0.71 12.02 0.29 18.88 
2013 0.72 12.24 0.28 19.58 
2014 0.65 12.73 0.08 20.54 
2015 0.64 12.20 0.07 19.66 
2016 0.73 11.46 0.06 21.52 
2017 0.70 11.70 0.14 19.73 
2018 0.74 12.15 0.45 17.62 
Mean 0.73 12.26 0.32 19.40 

 
Further differences in the capabilities of the two gridded products to represent surface ozone measurements are 
shown in Figure 2. A considerable reduction in noise can be seen in the scatter density plots of the downscaled 315 
surface vs measurements (panel a), which has a stronger linear signal and less scatter in comparison to the 
equivalent plot for EMEP4UK (panel b). This indicates that the unadjusted EMEP4UK surface is a less accurate 
representation of the measurement data. The bias in the stochastic behaviour of the unadjusted EMEP4UK output 
is evident when comparing the percentiles of the measurement data to the percentiles of the (i) unadjusted and (ii) 
downscaled EMEP4UK (panel c); the percentiles for the unadjusted output are consistently higher than those of 320 
the measurements, whilst those of the downscaled data are almost identical to those of the measurements. 
Similarly, we see a considerable shift in the density of the EMEP4UK percentiles compared to that of the 
measurement data (panel d); again, there is a far smaller discrepancy between the densities of the measurements 
and the downscaled data.  
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Figure 2: a) scatter density plot of downscaled surface vs measurement ozone; b) scatter density plot of EMEP4UK 
surface vs measurement ozone; c) percentile-percentile plot comparing ordered percentiles of downscaled vs 
measurement ozone (green) and EMEP4UK vs measurement ozone (orange); and d) density plots of measurement 330 
ozone (blue), corresponding downscaled surface ozone (green) and corresponding EMEP4UK surface ozone (orange). 

3.3 Feature importance 
Complex ensemble models, of which GBTs are an example, can be difficult to interpret. We make use of Shapley 
Additive exPlanations (SHAP) to quantify the importance of the input features to the trained GBT, and hence their 
importance to the predictive process, and to show that these features are consistent with what would be expected 335 
given our understanding of the generating mechanisms of surface ozone.  The Shapley values (Lundberg and Lee, 
2017) are one measure of feature importance that have been used previously to understand the relationship 
between input features and ozone in ML studies (e.g., Liu et al., 2022). It is important to note that SHAP values 
cannot be interpreted as correlation coefficients.  Instead, SHAP values display the difference between the average 
value of the response and the conditional average of the response given a specific value of the feature. Positive 340 
SHAP values can co-occur with either high (red) or low (blue) values of a feature, and similarly for negative 
SHAP values. This means that high values of a given feature may result in low or high ozone levels.  
Figure 3 shows the feature importance (as SHAP values) for the final GBT model trained on all data, where 
negative SHAP values result in lower predictions and positive ones to higher predictions. Unsurprisingly, 
EMEP4UK ozone is the most important feature in predicting the measured ozone, followed by daily maximum 345 
2m temperature, date (as an integer), month, and distance to road type 1 (i.e., motorways). Lower concentrations 
of EMEP4UK ozone have a greater impact on the GBT model output than high values, signifying that lower 
EMEP4UK ozone concentrations better represent the behaviour of measurement ozone than higher 
concentrations. Daily maximum 2m temperature is the most important meteorological feature, reflecting the well-
established observed temperature/MDA8 relationship (e.g., Gouldsbrough et al., 2022) that is likely underpinned 350 
by several processes (Sun et al., 2017; Romer et al., 2018; Porter and Heald, 2019). Lower temperatures decreased 
the model prediction while higher temperatures increase the prediction. The high importance of the temporal 
features (date and month) indicates that seasonality and long-term trends of measurement ozone are not wholly 
captured in EMEP4UK. Road type 1 is the most important of the road types, and the fifth most important feature 
overall, reflecting the strong link between vehicles, NOX, and ozone. Type 1 roads typically have a higher traffic 355 
volume and considerably higher NOX concentrations than background locations, due to higher driving speeds and 
numbers of heavy good vehicles (Mann, 1997). 
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Figure 3: Feature importance in the GBT model ordered from most important (top), to least important (bottom). Local 
SHAP values (left) show the model impact of each feature based on feature value, negative SHAP value results in a 
lower ozone prediction, and positive SHAP value results in a higher ozone prediction. Mean absolute SHAP values 370 
(right) show the overall impact of each feature on model output.   

4 Results - analysis of the downscaled surface  
We perform three analyses of our downscaled ozone surface: recent years (2014–2018), time trends (2001–2018), 
and heatwave years (2003, 2006 and 2018). In all cases, we compare the behaviour of four characteristics – annual 
mean, March–August mean, and the annual 10th and 90th percentiles – across the measurement stations and the 375 
EMEP4UK and downscaled surfaces. 
 
4.1 Recent years analysis (2014–2018) 
We examine the years 2014–2018 as these are the most recent years in the dataset. The five-year period 
accommodates the interannual variability in ozone concentrations, resulting in a broader overview of ozone 380 
behaviour. In the UK, elevated ozone mostly occurs in spring/summer (March–August) during anticyclonic 
conditions when slow moving air masses from mainland Europe contribute to increased accumulation of precursor 
emissions and increased rates of photochemical ozone production (AQEG, 2021). Figure 4 shows the 2014–2018 
annual (i.e., all months) and March–August (only) mean MDA8 ozone for each region and each data product. 
Recall that the measurement means are based on a limited and varying number of monitoring sites within each 385 
region (Figure A1). Regional means, both annual and March–August, are consistently higher for the original 
EMEP4UK surface compared to the downscaled surface and measurements reflecting a high bias in the unadjusted 
CTM. See also Tables A1 and A2 which contain a summary of the data plotted in Figure 4. The all-region annual 
mean MDA8 from the downscaled surface (~62 µg/m3) and measurements (~61 µg/m3) are in close agreement, 
while the original EMEP4UK surface (~76 µg/m3) is significantly larger (Table A1). A similar pattern of 390 
agreement is found for the March–August means (Table A2). One region where the downscaled surface and 
measurements differ considerably is London. Here, the annual mean MDA8 for the downscaled surface and 
measurements are 57 µg/m3 and 49 µg/m3, respectively (and 68 µg/m3 versus 58 µg/m3 for the March–August 
mean). The high proportion of urban measurement sites in London (i.e., sampling more NOX titration), in contrast 
to the more varied site type sampling of the gridded downscaled surface, likely contributes to the higher MDA8 395 
ozone in the downscaled surface.  
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While numerous studies have reported differences in UK ozone across different site types based on measurement 
analysis (Diaz et al., 2020; Finch and Palmer, 2020), there has been less focus on characterising regional 400 
variability. Considering the regional averages, analysis of the downscaled surface reveals a relatively modest 
amount of inter-region variability. For instance, the difference between the highest and lowest regional mean is 
10 µg/m3 for the annual mean and 13 µg/m3 for the March–August mean. Similarly, across all regions the relative 
standard deviation is less than 6%. Variability in the regional means based on the original EMEP4UK surface is 
smaller (<1%). Additionally, we find that the region with the highest annual mean MDA8 ozone differs across all 405 
three data sets: Southwest England at 66 µg/m3 in the downscaled surface, Wales at 79 µg/m3 in the original 
EMEP4UK surface, and Southeast England at 67 µg/m3 in the measurements. Comparatively, the region with the 
highest March–August mean is Southeast England at 75 µg/m3 for both the downscaled surface and measurement 
data, whilst the highest March–August mean for EMEP4UK is East England at 88 µg/m3. 
 410 

 
Figure 4: Comparing regional averages of EMEP4UK (left column), downscaled (middle column), and measurement 
(right column) MDA8 ozone (µg/m3) for 2014–2018 annual mean (top row) and March–August mean (bottom row). 

Figure 5 shows the 2014–2018 regional average 90th and 10th percentiles of MDA8 ozone. The EMEP4UK 90th 
and 10th percentiles are higher for all regions compared to the downscaled surface and measurements, further 415 
demonstrating the high ozone bias present in the EMEP4UK surface. Southeast England has the highest regional 
90th percentile MDA8 ozone concentration in both the downscaled (88 µg/m3) and EMEP4UK (99 µg/m3,) 
surfaces, while Southwest England has the highest 90th percentile in the measurements at 90 µg/m3. The most 
noticeable difference between the three datasets is the 90th percentile estimate for Scotland: 79 µg/m3 for the 
downscaled surface, 95 µg/m3 for the EMEP4UK surface, and 86 µg/m3 for the measurements. Wales has the 420 
highest 10th percentile MDA8 ozone concentration in the EMEP4UK and downscaled surfaces, 62 µg/m3 and 50 
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µg/m3 respectively, while having only the third highest 10th percentile in the measurements, at 40 µg/m3. The 
highest regional 10th percentile in the measurement data is 45 µg/m3 for Scotland. The 10th percentiles for Scotland 
in the EMEP4UK and downscaled surfaces are higher still: 61 µg/m3 and 48 µg/m3, respectively. The relatively 425 
high 10th percentile in Scotland is likely due to the low regional NOX emissions, as ozone in Northern Scotland 
reflects hemispheric background concentrations  instead of the photochemical generated concentrations (Entwistle 
et al., 1997). The inter-region variation in 90th percentile is 12 µg/m3 in the downscaled surface, whereas the inter-
region variation in the 10th percentile is considerably higher at 21 µg/m3, due to the particularly low 10th percentile 
ozone concentration in London of 29 µg/m3. See Table A3 and Table A4 for regional point estimates and 430 
confidence intervals and point estimates. 
 

 
Figure 5: Comparing regional averages of EMEP4UK (left column), downscaled (middle column), measurement (right 
column) MDA8 ozone for 2014–2018 90th percentile (top row) and 10th percentile (bottom row). 435 

 
Reports from Defra highlight that very few UK regions currently meet the UK government long-term ozone 
objective of MDA8 to not exceed 100 µg/m3 more than 10 times in a year. Similarly, the EU’s long-term objective 
(no MDA8 exceedances of 120 μg/m3) is routinely breached in most areas. A summary of the guidelines against 
which the UK reports is given in Table 1 of Defra, 2021b. For the above assessments, which are based on 440 
measurements from the AURN network, if one location (monitoring site) within a region is in breach of the 
objective, that region is deemed non-compliant. For example, in 2021 no regions outside of Scotland met the EU 
objective (Defra, 2022). Our downscaled surface provides an additional perspective on adherence that is not 
possible to obtain from a relatively sparse monitoring network alone or from a CTM with significant bias. Figure 
6 shows the number of days in a year exceeding 100 µg/m3 averaged over 2014–2018 for both the downscaled 445 



 12 

and unadjusted EMEP4UK datasets, with yellow cells highlighting areas where 100 µg/m3 is exceeded less than 
10 times per year and therefore passing the government objective. We find that 27% of the downscaled UK surface 
exceeds the government objective, compared to 99% from EMEP4UK. This underpins the importance of bias 
correction when using process models to examine policy metrics and air quality exposure indicators. At least one 
downscaled cell in all the 12 UK regions was found to have more than 10 days with MDA8 greater than 100 µg/m3 450 
averaged over 2014–2018, however the regions in the southeast of the UK have the greatest proportion of failing 
cells, with 86% and 88% of the East and Southeast England regions failing.  
 

 
Figure 6: 2014–2018 average number of days per year where each cell exceeds a level of 100 µg/m3 in a) downscaled 455 
ozone surface and b) EMEP4UK ozone surface. 

4.2 Trends over time 
As mentioned earlier, the use of measurement data only is limited by varying, and in some cases very short, 
measurement periods and this can prove problematic in air quality trend analysis (Lang, 2020). The gridded 
downscaled and EMEP4UK datasets facilitate the estimation of trends for all regions, regardless of the density of 460 
the measurement network and/or the completeness of the measurement records. We illustrate this in the 
subsequent analysis by quantifying regional trends in ozone concentrations, comparing, as before, measurement, 
downscaled and EMEP4UK estimates. We do not quantify a single UK-wide trend since the behaviour of ozone, 
and consequently also the observed long-term trends, differ considerably across the UK. 
 465 
A benefit of using a gridded ozone surface is greater spatial coverage; this enables estimation of regional trends 
in regions where measurement stations are sparse, and therefore more comprehensive regional estimates. Figure 
7 shows the annual and March–August regional mean MDA8 ozone trends for 2001–2018, for the three datasets. 
These trends are also given in Table A5 and Table A6, respectively. All regions have a decreasing trend in annual 
mean MDA8 ozone in the downscaled surface; however, no trends are statistically significant. Southeast England 470 
has the greatest trend at -0.26 [-0.56, 0.04], followed by Southwest England and Wales, at -0.25 [-0.55, 0.04] and 
-0.25 [-0.50, 0.00] µg/m3, respectively. In comparison, the measurements and EMEP4UK surfaces both have a 
combination of increasing and decreasing regional trends (few of which are statistically significant). In the 
measurements, Yorkshire and The Humber has the greatest increasing trend in annual mean ozone concentrations, 
at 0.33 [0.02, 0.64] µg/m3 per year, followed by the West Midlands and Northwest England at 0.28 [-0.01, 0.56] 475 
and 0.29 [-0.02, 0.59] µg/m3 per year, respectively. EMEP4UK is the only dataset for which London has a 
significant increasing trend in annual mean ozone, at 0.43 [0.20, 0.66] µg/m3, with non-significant decreasing 
trends of -0.20 [-0.48, 0.09] and -0.23 [-0.50, 0.05] µg/m3 per year in, respectively, the measurements and 
downscaled surface.  
 480 
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In contrast to the annual mean case discussed above, most March–August mean ozone trends are statistically 
significant in the downscaled and EMEP4UK surfaces (Table A6). When comparing the March–August mean 
trends we also see a greater similarity between the downscaled and EMEP4UK surfaces (in terms of the sign of 
the trend), except for London where the trend is again positive in the EMEP4UK surface (0.17 [-0.06, 0.39] µg/m3 
per year), and negative in the downscaled surface (-0.34 [-0.77, 0.10] µg/m3 per year). While all regions have a 485 
decreasing March–August mean trend in the downscaled surface, the largest reductions are seen in the south of 
the UK: Southeast England and Southwest England at -0.58 [-1.02, -0.15] and -0.52 [-0.95, -0.09] µg/m3 per year, 
respectively. Note, the MDA8 ozone data that underpin the above trend analysis is shown in Figures A3–A5 and 
A6–A8 for the annual mean and March–August mean, respectively. These figures demonstrate the regional 
interannual variation in MDA8 ozone concentrations, which is missed by only considering the trends. 490 
 

 
Figure 7: Annual mean and March–August mean trends for each region, for each dataset. Regions with insignificant 
trends are hatched. 

Figure 8 shows the regional trends of 90th and 10th percentile ozone concentrations for the period 2001–2018; 495 
estimates and confidence intervals are also given in Table A7 and Table A8. 90th percentile ozone is decreasing 
for all regions and all datasets. Looking at the downscaled surface, the downward trend is significant in half of 
the regions considered, with the greatest changes in 90th percentile ozone in the south of the UK, particularly for 
Southeast England with a trend of -0.74 [-1.35, -0.12] µg/m3 per year. In comparison, regions with the greatest 
change in 90th percentile ozone in the EMEP4UK surface and measurements are East of England at -0.75 [-1.09, 500 
-0.40], and Northeast England at -0.59 [-0.95, -0.22] µg/m3 per year. 10th percentile ozone is increasing for most 
regions in the downscaled and EMEP4UK surface, and for all regions in the measurements. Northern Ireland, 
Wales, and Scotland have a slightly decreasing 10th percentile trends in the downscaled surface, at -0.01, -0.01 
and 0.06 µg/m3 per year, respectively, though none of these trends are statistically significant. We find a greater 
increase in 10th percentile ozone for London in the downscaled surface than in the measurements, at 1.19 [0.75, 505 
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1.62] and 0.17 [-0.04, 0.37] µg/m3 per year, respectively. We suspect this is again due to urban site type bias in 
the measurements, compared with the more varied sampling in the gridded downscaled surface. The regional 
yearly 90th percentiles in the downscaled, EMEP4UK and measurement datasets are shown in Figure A9, Figure 
A10 and Figure A11, respectively. The equivalent figures for the 10th percentiles are shown in Figure A12, Figure 510 
A13 and Figure A14.  
 

 
Figure 8: 90th and 10th percentile trends for each region, for each dataset. Regions with insignificant trends are hatched. 

The analysis presented above provides valuable insights into the trends derived from downscaled and EMEP4UK 515 
data across a given domain. The downscaled and EMEP4UK trends encompass all pixels within a designated area. 
To delve deeper into the sensitivity of the trend analysis concerning sample size, we undertook a sub-sampling 
process for both the downscaled and EMEP4UK data specifically at measurement locations. The resulting annual 
mean trends are given in Table A9, demonstrating the impact of sample size on trend outcomes. However, a note 
of caution is warranted against drawing excessive conclusions from small, largely non-significant trends observed 520 
across datasets. Both the downscaled and EMEP4UK products are susceptible to sampling errors due to the 
process of condensing a coarse grid model to specific point locations. As a result, over-interpreting these trends 
might lead to misleading assumptions. Therefore, the trends derived from the gridded products are anticipated to 
be the most regionally representative when considering the entire domain. 
 525 
The UK government has a long-term objective that MDA8 ozone should not exceed a level of 100 µg/m3 more 
than ten times per year. Earlier we showed that conclusions regarding the degree to which this objective is being 
met differ substantially between the downscaled and original EMEP4UK model (Figure 6). As the downscaled 
surface, measurement data and EMEP4UK surface all have a different number of cells/stations, we look at the 
time trend in the percentage of sites or grid cells which fail to meet this, rather than the trend in absolute number. 530 
A decreasing time trend in the percentage of the UK failing to meet the objective is seen for all three datasets.  
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However, the only statistically significant trend is for the downscaled surface, at -2.19 [-4.32, -0.07] % per year. 
The EMEP4UK trend is less steep, -0.60 [-1.62, 0.43] % per year, and the measurements trend lies in between at 
-1.73 [-3.78, 0.32] % per year.  
 535 
Recalling that a core aim for our downscaling methodology was to better represent the tail behaviour of 
measurement ozone, we now consider the specific years 2003, 2006 and 2018 (hereafter “heatwave years”) which 
were significantly warmer than average (see later), and when UK ozone levels were elevated (Diaz et al., 2020). 
Figure 9 shows the number of days that exceed a level of 100 µg/m3 for each heatwave year, along with the 
number of days per year with daily maximum temperature exceeding 25 °C, the minimum heatwave temperature 540 
threshold for the UK (McCarthy et al., 2019). Yellow cells highlight areas where 100 µg/m3 is exceeded less than 
10 times per year and therefore passing the government objective. In the EMEP4UK surface, almost all the UK 
(more than 99%) is exceeding the government objective in the heatwave years. In the downscaled surface, 88%, 
87% and 53% of the UK is failing the government objective in 2003, 2006 and 2018, respectively. These 
percentages are substantially higher than the 2014–2018 average percentage of 27%, demonstrating the more 545 
frequent occurrence of exceedance days above 100 µg/m3 in heatwave years. Both the EMEP4UK and downscaled 
surfaces show a change over time in the amount of the UK exceeding the government objective in heatwave years, 
with the highest number of exceedances in 2003, and lowest in 2018. The areas with the highest number of 
exceedances are correlated with the temperature frequency maps, with more exceedances occurring where the 
number of days exceeding 25 °C, consistent with the well documented link between MDA8 ozone and temperature 550 
in the literature.  
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Figure 9: Number of days where each cell exceeds a level of 100 µg/m3 in downscaled surface ozone (left) and 555 
EMEP4UK surface ozone (middle), for heatwaves years 2003, 2006 and 2018. Also given are the number of days 
exceeding 25 °C for each heatwave year. 
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4.3 Analysis of NOX scenarios 560 
A major application of CTMs is to aid understanding of pollutant behaviour under future emissions or climate 
change scenarios. In this section we explore the effect of reductions in UK NOX emissions on ozone under 2018 
meteorological conditions. We compare four downscaled surfaces: (1) a 2018 base run, (2) a run as base but with 
a 20% reduction in UK terrestrial NOX emissions, (3) a 40% reduction, and (4) an 80% reduction (see also Section 
2.1). The year 2018 is of specific interest as it was the seventh warmest year in the UK since 1884 (Kendon et al., 565 
2019) with a mean temperature that was 0.6 °C above the 1981–2010 average. The ozone-NOX-VOC response is 
dealt with by EMEP4UK, before EMEP4UK ozone is used in our ML model and in all cases (i.e., base run + 
scenario runs). Consequently, our predicted surfaces may inherit some inaccuracies from the EMEP4UK surfaces 
resulting from the representation of ozone regimes in the CTM. However, we note that the model is widely used 
and well evaluated and has been used in this application (i.e., NOX sensitivity analysis) previously (Vieno et al., 570 
2010). 
 
Since 2018 was, climatologically, an atypical year for the UK, we first compared two 2018 EMEP4UK base run 
downscaled surfaces. The first was obtained from the ML downscaling model trained on the 2001–2018 
EMEP4UK data used in Sections 3 and 4, and the second from the same downscaling model but trained only on 575 
the 2018 base run data. We found that the two sets of predicted surfaces performed almost identically in capturing 
the behaviour of the 2018 measurement data (both have an R2 of 0.74 and RMSE of ~12.15 µg/m3). These findings 
support our decision to use the downscaling model trained on the 2001–2018 data (see Section 3) to downscale 
not just the base run of 2018, but also the ozone surfaces under the three NOX scenario runs. Implicit in 
downscaling the scenarios in this way is the assumption that the associations of the input features and surface 580 
level ozone remain the same, even as NOX levels decrease. We acknowledge this as a potential limitation but note 
that similar assumptions are endemic throughout the downscaling literature.  
 
Figure 10 shows the point wise differences in downscaled annual mean, March–August mean, and 90th percentile 
ozone for the three NOX scenarios compared to the equivalent statistics for the 2018 base run. Both 20% and 40% 585 
NOX reductions result in most of the UK seeing increased annual mean ozone concentrations, except rural areas 
in Scotland. Conversely, the more drastic NOX reduction of 80% results in a decrease of annual mean ozone for 
much of the UK, particularly large portions of Southwest England, Wales, Scotland, Northern Ireland, Northwest 
England and Northeast England. In contrast to the trends seen in the annual mean, larger and more widely spread 
decreases are seen in the March–August mean for all NOX reduction scenarios, suggesting the impact on spring 590 
and summer mean ozone is greater than on the annual mean. The change in 90th percentile ozone is far more 
granular, largely due to the differences in tail behaviour of ozone at rural and urban locations. The relatively 
moderate reductions in NOX concentrations of 20% and 40% lead to increases in 90th percentile ozone in parts of 
the UK, whereas the more substantial reduction in NOX concentrations of 80% results in only very urban areas 
having increases in 90th percentile ozone, such as Manchester, Leeds, Sheffield, Birmingham, London, Newcastle, 595 
Edinburgh, Glasgow, and Aberdeen. Similar increases in high-level ozone due to NOX reductions has been show 
for several cities in the US (Gao et al., 2013) and reflect the interdependence of ozone concentrations and NOX 
mitigation strategies. Finally, a similar sensitivity analysis based on the unadjusted EMEP4UK output (Figure 
A15) exhibits a very similar pattern of ozone response. 
 600 
In summary, the above analysis demonstrates the applicability of our downscaled EMEP4UK surface to examine 
the sensitivity of UK ozone to changes in precursor emissions at high spatial resolution. These results also 
emphasise the challenges in controlling surface ozone (especially in urban areas) if NOx emissions continue to 
decline substantially – an effect which few studies have demonstrated for the UK using models to date.  
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 605 
Figure 10: Difference in annual mean (top), March–August mean (middle), and 90th percentile (bottom) MDA8 ozone 
compared to 2018 for three UK NOX scenarios: 20% reduction in NOX (left), 40% reduction in NOX (middle), 80% 
reduction in NOX (right). 
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5 Conclusions 610 
We have proposed a machine learning methodology to spatially downscale surface ozone output from the 
EMEP4UK chemical transport model from its native 5×5 km resolution to a 1×1 km resolution. Taking a 1×1 km 
interpolation of the original EMEP4UK grid as input, our algorithm uses a gradient boosting tree to predict a high-
resolution gridded ozone surface. The algorithm was trained to predict measurement data from sites across the 
UK, and in addition to the EMEP4UK data has 21 input feature variables. We find that the downscaled surface 615 
better represents the behaviour of measurement ozone, with a 128% improvement in R2 and 37% reduction in 
RMSE compared to the EMEP4UK surface. The GBT allows replication of the behaviour of complex non-linear 
systems and the ability to work with high dimensional datasets. Producing the downscaled surface using the 
proposed methodology is far quicker and less computationally expensive than running a high-resolution CTM. 
We therefore consider this methodology to be a useful post-processing tool for CTMs that can efficiently produce 620 
higher resolution ozone surfaces and, as is the case for EMEP4UK, reduce biases by incorporating information 
from measurements. A further advantage of the proposed ML downscaling model is the ability to identify the 
most important features for the prediction of MDA8 ozone. Consistent with previous work, daily maximum 2m 
temperature is found to be the most important meteorological feature, with elevated temperatures strongly 
associated with high level ozone. 625 
 
Our analysis on recent years (2014–2018) finds that Southeast England and Southwest England experience higher 
March–August concentrations of ozone than other regions. We find greater inter-region differences in 
spring/summer mean ozone concentrations than annual mean. There is a clear north-south difference of high 
percentile ozone in the downscaled surface, with high ozone concentrations in the south of the UK. Low percentile 630 
ozone has the greatest inter-region variation in the downscaled surface due to the particularly low 10th percentile 
ozone concentration in London. This demonstrates the effect greater NOX concentrations in highly urban areas in 
reducing background ozone concentrations through NOX-titration. 
 
We have estimated regional trends in various statistics of ozone using data from 2001–2018 for the three datasets: 635 
EMEP4UK, downscaled surface, and measurements. Annual and March–August mean ozone decreases for all 
regions in the downscaled surface, while some regions have increasing trends in the measurements. EMEP4UK 
is the only dataset to estimate an increase in annual mean ozone for London. The proposed downscaling surface 
is useful when considering how UK ozone has changed over time as it is higher resolution than EMEP4UK, and 
provides more spatially complete coverage than measurements alone. The downscaling process also addresses the 640 
high bias present in EMEP4UK, resulting in a better reflection of high-level ozone relevant to health. We find an 
improved picture of high-level ozone when using the downscaled surface, with only 53% of the UK failing its 
government objective (to not exceed an ozone level of 100 µg/m3 more than 10 times per year) in 2018, compared 
to 99% of the UK failing this objective in EMEP4UK. Further improvement in high-level ozone is apparent from 
considering trends in 90th percentile ozone. We find significant reductions in 90th percentile ozone for half of the 645 
regions considered in the downscaled surface, with the greatest reductions in the south of the UK, particularly for 
Southeast England.  
 
Through a sensitivity analysis, we considered the effect of three NOX reduction scenarios on UK ozone 
concentrations downscaled using the proposed downscaling method. Moderate (20% and 40%) reductions in NOX 650 
concentrations are shown to increase annual mean ozone for most of the UK, whereas significant (80%) reductions 
decrease annual mean ozone for large parts of the UK. More of the UK shows a decrease in March–August mean 
ozone for all NOX scenarios, suggesting a stronger link between spring and summer ozone concentrations and 
NOX than annual mean concentrations. The differences in the tail behaviour of ozone at urban and rural locations 
is made evident in the effect of NOX reductions on 90th percentile ozone. Very urban areas see the largest increases 655 
in 90th percentile ozone when reducing NOX concentrations by 80%, this includes many of the UK’s biggest cities. 
We determine it important to further understand the effect of NOX reductions on UK ozone, as a considerable 
portion of the UK population live in these urban areas. These results reemphasise the broader challenges around 
NOX mitigation strategies. To conclude, machine learning based downscaling approaches offer a promising way 
to study pollutant trends and to assess the impact of policies for ozone and in principle other pollutants. A focus 660 
of future work will be to exploit the bias-corrected downscaled surfaces for the assessment of population exposure 
to poor air quality and to help quantify the resulting health impacts.   

Code and data availability 
The EMEP4UK ozone data is available for 2001–2015 from https://catalogue.ceh.ac.uk/documents/b0545f67-
e47c-4077-bf3c-c5ffcd6b72c8; 2016–2018 ozone data and NOX scenario data is available upon request. The 665 
XGBoost code used is available from https://doi.org/10.1145/2939672.2939785 (Chen and Guestrin, 2016). The 
measurement data is available through the R package openair: https://davidcarslaw.github.io/openair/.  
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Appendix 
This appendix contains additional figures and data to supplement the information in the main text. 

 
Figure A1: Measurement station map with number of years of data used for each station. 
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 875 
Figure A2: The region definitions for this paper (Level 1 Nomenclature of Territorial Units for Statistics). 

Table A1: Annual mean MDA8 (µg/m3) per region for 2001–2018, with 95% confidence intervals of the mean estimate 
shown in square brackets.  

Region Downscaled EMEP4UK Measurements 
East Midlands (England) 62.38 [62.37, 62.38] 75.02 [74.99, 75.05] 62.15 [61.76, 62.54] 
East of England 64.96 [64.95, 64.96] 75.89 [75.86, 75.93] 64.55 [64.23, 64.87] 
London 57.37 [57.34, 57.39] 70.41 [70.31, 70.54] 48.56 [48.37, 48.75] 
North East (England) 60.68 [60.68, 60.69] 77.31 [77.27, 77.35] 58.79 [58.30, 59.24] 
North West (England) 59.72 [59.72, 59.73] 76.39 [76.35, 76.42] 58.76 [58.46, 59.10] 
Northern Ireland 59.16 [59.15, 59.16] 77.44 [77.42, 77.46] 59.40 [58.97, 59.85] 
Scotland 62.77 [62.77, 62.77] 78.30 [78.29, 78.31] 66.14 [65.92, 66.37] 
South East (England) 66.24 [66.24, 66.25] 76.82 [76.79, 76.84] 66.49 [66.28, 66.73] 
South West (England) 67.11 [67.11, 67.12] 78.71 [78.70, 78.74] 65.43 [65.05, 65.81] 
Wales 66.61 [66.61, 66.62] 79.29 [79.26, 79.31] 64.66 [64.36, 64.92] 
West Midlands (England) 62.67 [62.66, 62.67] 75.00 [74.95, 75.03] 60.90 [60.58, 61.22] 
Yorkshire and The Humber 59.27 [59.26, 59.27] 74.90 [74.88, 74.93] 58.97 [58.57, 59.35] 
All-region mean 62.41 [62.40, 62.42] 76.29 [76.26, 76.33] 61.23 [60.91, 61.56] 
All-region sdev. (% of mean) 3.13 (5.01) 2.37 (3.10) 4.99 (8.15) 
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Table A2: March–August mean MDA8 ozone (µg/m3) per region for 2001–2018, with 95% confidence intervals of the 
mean estimate shown in square brackets.  

Region Downscaled EMEP4UK Measurements 
East Midlands (England) 71.12 [71.11, 71.13] 86.42 [86.38, 86.44] 71.35 [70.85, 71.82] 
East of England 75.14 [75.13, 75.14] 88.07 [88.04, 88.10] 74.17 [73.78, 74.59] 
London 68.90 [68.87, 68.93] 84.37 [84.27, 84.49] 58.04 [57.78, 58.34] 
North East (England) 66.09 [66.08, 66.10] 85.18 [85.13, 85.22] 66.16 [65.59, 66.74] 
North West (England) 65.57 [65.56, 65.58] 85.20 [85.17, 85.23] 66.48 [66.12, 66.90] 
Northern Ireland 62.76 [62.75, 62.77] 82.61 [82.57, 82.65] 63.35 [62.78, 63.94] 
Scotland 66.30 [66.29, 66.30] 83.66 [83.65, 83.68] 70.64 [70.34, 70.95] 
South East (England) 75.56 [75.55, 75.57] 87.86 [87.83, 87.89] 75.07 [74.79, 75.34] 
South West (England) 73.05 [73.05, 73.06] 86.12 [86.10, 86.15] 71.91 [71.38, 72.46] 
Wales 71.51 [71.50, 71.51] 85.84 [85.81, 85.87] 69.21 [68.81, 69.58] 
West Midlands (England) 70.40 [70.39, 70.40] 85.06 [85.03, 85.09] 69.32 [68.89, 69.71] 
Yorkshire and The Humber 66.69 [66.69, 66.70] 85.19 [85.16, 85.22] 67.02 [66.45, 67.52] 
All-region mean 69.42 [69.41, 69.43] 85.47 [85.43, 85.50] 68.56 [68.13, 68.99] 
All-region sdev. (% of mean)  4.04 (5.82) 1.57 (1.83) 4.75 (6.93) 

 
Table A3: Regional average 90th percentiles of MDA8 ozone (µg/m3) for 2001–2018, with 95% confidence intervals of 
the mean estimate shown in square brackets.  885 

Region Downscaled EMEP4UK Measurements 
East Midlands (England) 82.58 [82.59, 82.56] 97.22 [97.17, 97.26] 84.87 [84.27, 85.57] 
East of England 86.52 [86.53, 86.51] 98.11 [98.08, 98.14] 87.32 [86.78, 87.91] 
London 82.52 [82.57, 82.48] 96.71 [96.44, 96.94] 77.19 [76.88, 77.47] 
North East (England) 77.84 [77.85, 77.83] 96.18 [96.13, 96.24] 80.22 [79.38, 80.74] 
North West (England) 78.32 [78.34, 78.32] 96.90 [96.86, 96.95] 81.34 [81.01, 81.76] 
Northern Ireland 75.61 [75.62, 75.60] 95.59 [95.55, 95.63] 79.00 [78.28, 79.56] 
Scotland 79.03 [79.04, 79.03] 95.41 [95.40, 95.42] 86.20 [85.90, 86.50] 
South East (England) 87.86 [87.87, 87.84] 99.48 [99.43, 99.53] 89.48 [89.13, 89.77] 
South West (England) 85.53 [85.54, 85.52] 98.99 [98.95, 99.03] 89.63 [88.94, 90.07] 
Wales 83.88 [83.89, 83.87] 98.72 [98.69, 98.75] 86.41 [86.00, 86.84] 
West Midlands (England) 81.90 [81.91, 81.89] 97.22 [97.18, 97.28] 84.07 [83.59, 84.78] 
Yorkshire and The Humber 78.38 [78.39, 78.37] 96.23 [96.19, 96.28] 82.52 [81.60, 83.26] 
All-region mean 81.66 [81.65, 81.68] 97.23 [97.17, 97.29] 84.02 [83.48, 84.52] 
All-region sdev (% of mean) 3.86 (4.72) 1.34 (1.37) 4.04 (4.80) 

 
Table A4: Regional average 10th percentiles of MDA8 ozone (µg/m3) for 2001–2018, with 95% confidence intervals of 
the mean estimate shown in square brackets.  

Region Downscaled EMEP4UK Measurements 
East Midlands (England) 41.52 [41.50, 41.53] 52.02 [51.94, 52.09] 37.09 [36.38, 37.79] 
East of England 42.05 [42.04, 42.07] 51.79 [51.71, 51.87] 39.25 [38.69, 40.04] 
London 29.18 [29.12, 29.23] 40.57 [40.25, 40.79] 16.96 [16.65, 17.27] 
North East (England) 45.32 [45.31, 45.33] 58.97 [58.88, 59.04] 36.11 [34.80, 36.80] 
North West (England) 41.71 [41.70, 41.73] 56.10 [56.01, 56.17] 31.52 [30.72, 32.29] 
Northern Ireland 44.42 [44.41, 44.43] 60.97 [60.92, 61.00] 38.88 [38.27, 39.61] 
Scotland 48.31 [48.31, 48.31] 61.49 [61.47, 61.51] 45.34 [44.99, 45.66] 
South East (England) 44.13 [44.12, 44.15] 54.18 [54.10, 54.24] 41.09 [40.63, 41.55] 
South West (England) 49.22 [49.21, 49.22] 60.95 [60.91, 60.99] 38.72 [37.78, 39.48] 
Wales 50.28 [50.27, 50.29] 62.08 [62.04, 62.11] 39.90 [39.17, 40.42] 
West Midlands (England) 42.27 [42.26, 42.29] 53.48 [53.40, 53.55] 35.86 [35.37, 36.63] 
Yorkshire and The Humber 40.31 [40.30, 40.33] 52.82 [52.74, 52.89] 34.63 [33.80, 35.45] 
All-region mean 43.23 [43.21, 43.24] 55.45 [55.36, 55.52] 36.28 [35.60, 36.92] 
All-region sdev (% of mean) 5.49 (12.70) 6.13 (11.05) 7.00 (19.30) 
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Table A5: Annual mean trend of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% confidence intervals of 
the mean estimate shown in brackets. Significant trends are in bold.  

Region Downscaled EMEP4UK Measurements 
East Midlands (England) -0.15 [-0.42, 0.13] 0.05 [-0.16, 0.26] 0.24 [-0.08, 0.55] 
East of England -0.16 [-0.46, 0.15] -0.07 [-0.27, 0.12] 0.09 [-0.19, 0.36] 
London -0.06 [-0.38, 0.26] 0.43 [0.20, 0.66] -0.23 [-0.50, 0.05] 
North East (England) -0.19 [-0.41, 0.03] -0.10 [-0.30, 0.09] -0.18 [-0.42, 0.06] 
North West (England) -0.09 [-0.34, 0.15] 0.03 [-0.18, 0.24] 0.29 [-0.02, 0.59] 
Northern Ireland -0.10 [-0.32, 0.12] -0.16 [-0.36, 0.04] -0.06 [-0.27, 0.15] 
Scotland -0.17 [-0.40, 0.05] -0.16 [-0.38, 0.06] 0.18 [-0.04, 0.39] 
South East (England) -0.26 [-0.56, 0.04] -0.04 [-0.26, 0.17] 0.06 [-0.24, 0.37] 
South West (England) -0.25 [-0.55, 0.04] -0.11 [-0.32, 0.10] 0.19 [-0.10, 0.47] 
Wales -0.25 [-0.50, 0.00] -0.14 [-0.34, 0.05] -0.13 [-0.36, 0.11] 
West Midlands (England) -0.17 [-0.45, 0.11] 0.03 [-0.18, 0.23] 0.28 [-0.01, 0.56] 
Yorkshire and The Humber -0.13 [-0.35, 0.10] 0.01 [-0.17, 0.19] 0.33 [0.02, 0.64] 

 

 
Figure A3: Regional yearly boxplots of annual mean MDA8 ozone for the downscaled surface, for 2001–2018.  895 
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Figure A4: Regional yearly boxplots of annual mean MDA8 ozone for the EMEP4UK surface, for 2001–2018.  
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Figure A5: Regional yearly boxplots of annual mean MDA8 ozone for the measurement data, for 2001–2018.  

Table A6: March–August mean trends of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% confidence 900 
intervals of the mean estimate shown in brackets. Significant trends are in bold. 

Region Downscaled EMEP4UK Measurements 
East Midlands (England) -0.47 [-0.86, -0.07] -0.32 [-0.56, -0.08] -0.01 [-0.42, 0.40] 
East of England -0.46 [-0.88, -0.04] -0.43 [-0.65, -0.21] -0.21 [-0.60, 0.18] 
London -0.34 [-0.77, 0.10] 0.17 [-0.06, 0.39] -0.51 [-0.89, -0.13] 
North East (England) -0.40 [-0.71, -0.08] -0.40 [-0.62, -0.18] -0.44 [-0.76, -0.12] 
North West (England) -0.32 [-0.65, 0.02] -0.28 [-0.50, -0.06] 0.11 [-0.26, 0.47] 
Northern Ireland -0.22 [-0.53, 0.09] -0.36 [-0.59, -0.13] -0.24 [-0.51, 0.02] 
Scotland -0.32 [-0.67, 0.02] -0.37 [-0.62, -0.11] 0.00 [-0.33, 0.33] 
South East (England) -0.58 [-1.02, -0.15] -0.39 [-0.62, -0.16] -0.21 [-0.63, 0.2] 
South West (England) -0.52 [-0.95, -0.09] -0.41 [-0.64, -0.18] -0.02 [-0.46, 0.41] 
Wales -0.46 [-0.82, -0.10] -0.44 [-0.65, -0.23] -0.40 [-0.77, -0.02] 
West Midlands (England) -0.46 [-0.85, -0.06] -0.33 [-0.57, -0.10] 0.02 [-0.38, 0.41] 
Yorkshire and The Humber -0.35 [-0.68, -0.02] -0.29 [-0.50, -0.08] 0.15 [-0.29, 0.59] 

 
 

 
Figure A6: Regional yearly boxplots of March–August mean MDA8 ozone for the downscaled surface, for 2001–2018.  905 
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Figure A7: Regional yearly boxplots of March–August mean MDA8 ozone for the EMEP4UK surface, for 2001–2018.  

 

Figure A8: Regional yearly boxplots of March–August mean MDA8 ozone for the measurement data, for 2001–2018.  
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Table A7: 90th percentile trends of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% confidence intervals 910 
of the mean estimate shown in brackets. Significant trends are in bold.  

Region Downscaled EMEP4UK Measurements 
East Midlands (England) -0.57 [-1.12, -0.02] -0.55 [-0.90, -0.20] -0.17 [-0.63, 0.28] 
East of England -0.61 [-1.18, -0.04] -0.75 [-1.09, -0.40] -0.50 [-1.02, 0.02] 
London -0.48 [-1.14, 0.19] -0.16 [-0.48, 0.16] -0.51 [-0.95, -0.07] 
North East (England) -0.39 [-0.77, -0.01] -0.52 [-0.79, -0.25] -0.59 [-0.95, -0.22] 
North West (England) -0.29 [-0.69, 0.11] -0.42 [-0.70, -0.14] -0.19 [-0.57, 0.20] 
Northern Ireland -0.16 [-0.49, 0.16] -0.26 [-0.50, -0.02] -0.33 [-0.62, -0.03] 
Scotland -0.27 [-0.62, 0.09] -0.43 [-0.74, -0.13] -0.11 [-0.45, 0.22] 
South East (England) -0.74 [-1.35, -0.12] -0.63 [-0.97, -0.28] -0.36 [-0.87, 0.14] 
South West (England) -0.55 [-1.06, -0.05] -0.48 [-0.79, -0.18] -0.03 [-0.47, 0.40] 
Wales -0.48 [-0.90, -0.06] -0.47 [-0.74, -0.19] -0.37 [-0.80, 0.05] 
West Midlands (England) -0.50 [-1.02, 0.02] -0.41 [-0.74, -0.09] 0.01 [-0.42, 0.45] 
Yorkshire and The Humber -0.39 [-0.82, 0.05] -0.42 [-0.70, -0.15] -0.04 [-0.53, 0.46] 

 

 
Figure A9: Regional yearly boxplots of 90th percentile MDA8 ozone for the downscaled surface, for 2001–2018.  
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 915 
Figure A10: Regional yearly boxplots of 90th percentile mean MDA8 ozone for the EMEP4UK surface, for 2001–2018.  

 
Figure A11: Regional yearly boxplots of 90th percentile MDA8 ozone for the measurement data, for 2001–2018.  
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Table A8: 10th percentile trends of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% confidence intervals 
of the mean estimate shown in brackets. Significant trends are in bold. 920 

Region Downscaled EMEP4UK Measurements 
East Midlands (England) 0.42 [0.14, 0.69] 0.75 [0.40, 1.09] 0.80 [0.45, 1.15] 
East of England 0.40 [0.10, 0.69] 0.60 [0.27, 0.92] 0.71 [0.42, 1.01] 
London 0.53 [0.22, 0.84] 1.19 [0.75, 1.62] 0.17 [-0.04, 0.37] 
North East (England) 0.07 [-0.16, 0.31] 0.37 [0.05, 0.68] 0.28 [-0.03, 0.59] 
North West (England) 0.24 [-0.07, 0.54] 0.61 [0.27, 0.96] 0.81 [0.42, 1.20] 
Northern Ireland -0.01 [-0.30, 0.27] -0.03 [-0.30, 0.24] 0.20 [-0.12, 0.52] 
Scotland -0.06 [-0.29, 0.17] 0.04 [-0.21, 0.29] 0.57 [0.27, 0.86] 
South East (England) 0.34 [0.03, 0.64] 0.68 [0.30, 1.07] 0.70 [0.44, 0.96] 
South West (England) 0.10 [-0.18, 0.38] 0.40 [0.05, 0.75] 0.53 [0.24, 0.82] 
Wales -0.01 [-0.26, 0.24] 0.23 [-0.08, 0.53] 0.21 [0.01, 0.41] 
West Midlands (England) 0.36 [0.03, 0.69] 0.78 [0.40, 1.16] 0.83 [0.48, 1.18] 
Yorkshire and The Humber 0.26 [0.03, 0.49] 0.57 [0.27, 0.88] 0.86 [0.53, 1.20] 

 

 
Figure A12: Regional yearly boxplots of 10th percentile MDA8 ozone for the downscaled surface, for 2001–2018. 
Background dots are  
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 925 
Figure A13: Regional yearly boxplots of 10th percentile MDA8 ozone for the EMEP4UK surface, for 2001–2018.  

 
Figure A14: Regional yearly boxplots of 10th percentile MDA8 ozone for the measurement data, for 2001–2018.  
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Table A9: Annual mean trend of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% confidence intervals of 
the mean estimate shown in brackets. Downscaled and EMEPUK estimates are from nearest cell locations to 930 
measurement stations only. Significant trends are in bold.  

Region Downscaled EMEP4UK 
East Midlands (England) 0.04 [-0.30, 0.37] 0.33 [0.10, 0.56] 
East of England -0.16 [-0.47, 0.14] 0.15 [-0.09, 0.39] 
London -0.11 [-0.42, 0.20] 0.48 [0.25, 0.72] 
North East (England) -0.43 [-0.68, -0.17] 0.11 [-0.11, 0.33] 
North West (England) 0.13 [-0.13, 0.40] 0.39 [0.18, 0.60] 
Northern Ireland -0.03 [-0.23, 0.16] -0.06 [-0.26, 0.14] 
Scotland -0.24 [-0.47, -0.02] 0.20 [-0.03, 0.42] 
South East (England) -0.11 [-0.39, 0.17] 0.12 [-0.09, 0.35] 
South West (England) -0.22 [-0.46, 0.04] 0.00 [-0.21, 0.22] 
Wales -0.21 [-0.46, 0.04] 0.21 [-0.01, 0.42] 
West Midlands (England) 0.06 [-0.23, 0.35] -0.66 [0.45, 0.87] 
Yorkshire and The Humber 0.09 [-0.14, 0.33] 0.38 [0.21, 0.57] 
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Figure A15: Original EMEP4UK difference in annual mean (top), March–August mean (middle), and 90th percentile 
(bottom) MDA8 ozone compared to 2018 for three UK NOX scenarios: 20% reduction in NOX (left), 40% reduction in 935 
NOX (middle), 80% reduction in NOX (right). 


