
The reviewer’s comments are in blue, and the author’s responses are in red. The line numbers 
quoted in our responses are with reference to the revised manuscript. 

Reviewer 1 
Review of Gouldsbrough “A machine learning approach to downscale EMEP4UK: analysis of 
UK ozone variability and trends” by Gouldsbrough et al. 
  
The manuscript by Gouldsbrough et al., discusses application of machine learning to 
downscale ozone results from the EMEP model over the UK.  In it, the authors use results 
from the EMP4UK model along with Gradient Boosting to develop 1x1 km fields of ozone, and 
their response to emissions.  They then use the downscaled model to look at the response of 
ozone to emissions reductions. 
  
While the paper describes an interesting potential approach to using machine learning (ML) 
to develop finer scale fields than are typically produced from chemical transport models 
(CTMs), the current paper has a number of concerns. 
  
I will start out by noting, the paper is pretty well written, and I have few concerns 
there.  Further, I like the idea of using ML to blend observations, CTM results and other data, 
as they have done here.  
  
We thank the reviewer for their comments. Responses to their individual comments are given 
below. 
 
In terms of limitations, probably the big one is their thought process on how to use the 
EMP4UK model to look at ozone response after fusing with observations.  As noted, the 
EMEP4UK model is biased, and may be even more biased than indicated in that you should 
look at bias on a location-by-location basis.  The reason bias is SO important is that if you now 
use a method to remove that bias, you can be artificially shifting in to a different ozone-NOx-
VOC response regime.  For example, let’s say the model is predicting peak ozone levels with 
a low bias.  This would indicate that it is more radical-limited that in might be in 
actuality.  Thus, the response to VOC controls would be enhanced, and NO potentially 
reduced, if not having the wrong sign.  In this application, they have not actually shown that 
the model response to controls is correct.  Without some assurance that the model is 
correctly capturing the response, using the model as a component of the GB is very 
concerning.  
 
We thank the reviewer for this interesting observation. However, there is need for 
clarification. Firstly, let us ignore the bias correction element, and instead consider 
development of a ML model purely for prediction. In this case, EMEP4UK is not included, and 
the result is a ML regression tool which can predict ozone fields across the UK using 
meteorological data and geophysical characteristics of the prediction locations as predictors 
(feature variables). Such a model must be trained at locations for which there is observational 
data, but for predictive purposes the model can be extrapolate to any location for which 
meteorological and geophysical information is available. The limitation of approach is that it 
would not allow prediction of ozone under different NOX scenarios. The next step in 
complexity is to include measured NOX and VOCs as additional feature variables in the MLE 



regression model. The resulting model is likely to give more accurate predictions at locations 
for which NOX and VOC measurements are available but is limited for predictive purposes to 
only those locations for which NOX and VOC measurements are available.  
 
To address the limitations of these two approaches, EMEP4UK ozone is included as a feature 
variable. Whilst we agree that there is unknown uncertainty associated with the EMEP4UK 
ozone fields, and that this uncertainty may well vary with location, season and ozone regime, 
both quantification and identification of the sources of this uncertainty is outside the scope 
of this study and are therefore ignored. We feel justified in doing this as EMEP4UK has 
previously been validated (Vieno et al., 2010) and is virtually identical to the open source 
EMEP MSC-W which is currently used to support European policy development by the UNECE 
Convention on Long-range Transboundary Air Pollution (CLRTAP) and the European 
Commission [http://www.emep4uk.ceh.ac.uk/].  
 
On this basis, we feel justified in using EMEP4UK ozone as an additional feature variable and 
allowing the relationship between this and measured ozone to contribute to the prediction 
of ozone. The GB model uses data to infer relationships between in-situ ozone measurements 
and ‘matched’ EMEP4UK model output, these relationships are then used to predict the in-
situ measurements from EMEP4UK output for locations at which actual in-situ measurements 
are unavailable. It is true that, in bias correcting the EMEP4UK ozone fields, the resulting ML 
ozone fields may not be consistent with the EMEP4UK NOX and VOC fields. However, the only 
way around this would be joint bias-correction of NOX and VOCs which is beyond the scope 
of current research, and certainly beyond the scope of the current paper. 
 
Lastly, we note that an alternative approach to would be to use a ML algorithm to directly 
predict the bias, i.e. the response would be observation{s,t} - EMEP4UK{s,t} where s and t denote 
location and time respectively. Ozone predictions would be obtained by predicting the bias 
and then using this to correct the EMEP4UK ozone prediction. Whilst this approach does, in a 
sense, treat the EMEP4UK ozone outputs as a response, it does not take into consideration 
the strength of the relationships between observations and EMEP4UK output.   
 
We have added the following text to Section 4.3 of the revised manuscript: 
“The ozone-NOX-VOC response is dealt with by EMEP4UK, before EMEP4UK ozone is used in 
our ML model and in all cases (i.e., base run + scenario runs). Consequently, our predicted 
surfaces may inherit some inaccuracies from the EMEP4UK surfaces resulting from the 
representation of ozone regimes in the CTM. However, we note that the model is widely used 
and well evaluated and has been used in this application (i.e., NOX sensitivity analysis) 
previously (Vieno et al., 2010).” 
 

 
I was intrigued by Fig. 3.  From how I look at what it says, the SHAP value is typically negative 
for the response to the EMEP model.  Doesn’t this mean that most of the time, the GB model 
responds negatively?  Does this not mean that the GB model response should be in the 
opposite direction?  (It might be more precisely explained).  Even if it only means that the 
response is muted, what is the physical/chemical reasoning for such in terms of actually 
believing the model response to controls?  
  

http://www.emep4uk.ceh.ac.uk/


SHAP values should not be interpreted as classical regression coefficients or residuals, as they 
do not show directly the magnitude or functional form of the relationships between the 
features and the response. Instead, SHAP values display the difference between the average 
(expected) value of the response and the conditional average (expectation) of the response 
given a specific value of the feature. It follows that a linear regression with positive coefficient 
will have both negative (for feature values which predict below average response values) and 
positive (for feature values which predict above average responses) SHAP values.  
 
Consequently, the negative SHAP values show that inputting low EMEP4UK ozone results in 
the model predictions being lower than the average ozone value, with higher-than-average 
predictions from high EMEP4UK ozone input. Further we see a clear monotonic increase in 
SHAP values as EMEP4UK ozone increases; this is consistent with model predictions increasing 
monotonically with EMEP4UK ozone values. We conclude that the GB model is responding 
‘positively’. A similar pattern is seen with other features, e.g., daily maximum T2 for which 
negative SHAP values occur when the temperature is lower and vice versa for positive SHAP 
values. We therefore conclude that low (high) temperatures predict below (above) average 
ozone values.    
 
Lastly, we note that, of all the features, EMEP4UK ozone has the greatest range in magnitudes 
of SHAP values; this implies that EMEP4UK ozone is the most important of all features in 
explaining variability in the response. 
 
This brings up the second potential question: why not include emissions in the GB 
model?  This can help assure that the “package” (i.e., the GB model) is capturing the response 
over time, assuming that it correctly captures the response.  
 
We appreciate the reviewer's question regarding the incorporation of emissions into the GB 
model. While we acknowledge the significance of emissions in capturing temporal responses, 
we have chosen not to include EMEP4UK NOX emissions within the GB model to avoid 
introducing additional bias to the predictor features. Integrating EMEP4UK NOX emissions into 
the model would have required subjecting them to the same downscaling treatment as the 
EMEP4UK ozone data. 
 
In lieu of directly incorporating EMEP4UK NOX emissions, we have used distance to various 
road types to approximate the NOX characteristics of each location. While this approach 
indirectly encompasses the influence of NOX, a comprehensive treatment of NOX within the 
GB model is beyond the current scope of our study. Additionally, the presence of sharp 
gradients in NOX emissions introduces a potential risk of introducing spurious features during 
the downscaling process. Managing such complexities would have posed nontrivial challenges 
and extended beyond the intended focus of this paper. 
 
Our analysis in the final part of the paper is oriented towards providing a simplified sensitivity 
test to offer a preliminary assessment of the ozone response to simplified NOX emission 
reductions. We believe that the chosen framework is adequate for achieving this purpose and 
contributes valuable insights within the confines of our study's scope. 
 



Their model evaluation is not well described.  Are the R2 given for how well it captures peak 
ozone daily at each site for each year?  (Is it for all sites, all days?) It seems so, and this should 
be emphasized.  It seemed like it could also be for a different metric spatially.  The table 
caption should be very precise as to what is shown.   
 
Yes, all reported R2 results are calculated across all sites and all days. We have updated the 
Table 2 and Table 3 captions to make this clearer by adding “All metrics are calculated using 
all available data i.e., daily data across all sites.”. 
 
Also, I will note, they have NOT verified the model accuracy.  They have estimated it.  Indeed, 
they should describe what they mean by verification and what metrics and cut-offs are used 
to verify the model.  As noted by Oreskes et al., (Science, ~1993) environmental models can 
not be verified.    I think in this case, they mean evaluated.   
 
We have removed the word “verified” from line 275 and have replace it with the word 
“evaluated”.  
 
I was also intrigued by why their 70/30 results are less good than the 10-fold CV.  Also, it 
seemed for an ML model, the correlations might be a bit low: more discussion is needed.  
 
The reviewer may have misread the results from the table. The 70/30 train/test results are 
better than the 10-fold CV results – average R2 results for 70/30 test is 0.80 vs 0.70 for the 10-
fold CV. Similarly, the average RMSE is lower for the 70/30 test than the 10-fold CV at 10.61 
µg/m3 vs 13.07 µg/m3, respectively.  
 
We could tune the machine learning model to produce a high correlation with measurement 
data however, this would result in an over-fitted model incapable of spatial extrapolation 
which is necessary due to the sparseness of the measurement data. We therefore tried to 
balance the performance of the model fitted to seen training with the ability to predict unseen 
data.  
 
Our results are not inconsistent with other machine learning downscaling approaches for 
ozone. Liu (2020) applied a similar method to produce a spatiotemporal surface of ozone 
concentrations in China from 2005 to 2017 and achieved a daily site cross-validation R2 score 
of 0.64 and RMSE of 27.27 µg/m3. Ren (2020) investigated various machine learning models 
to predict ozone across the US and the highest spatial validation R2 score was 0.68.  
 
In the end, I am not sure they can overcome the main concern, i.e., using the model to assess 
response to controls when the approach used is not evaluated and may actually introduce a 
bias in the response, potentially even having the wrong sign.  This needs to be further 
assessed before publication.  
 
We acknowledge the reviewer’s main concern over using the model to assess response to 
NOX controls. However, as discussed in our response to the first comment made by the 
reviewer, our objective is not to quantify the response of ozone to control variables but to 
provide a downscaled higher resolution of the EMEP4UK ozone surfaces produced under both 
current and alternative NOX scenarios. We again emphasise that the ozone-NOx-VOC 



response is dealt with by EMEP4UK before any downscaling occurs. It is also clearly well 
beyond the scope of this study to perform a detailed model evaluation of that complex 
response, though previous studies (e.g., Vieno et al., 2010) have examined some aspects. 

 

The downscaled surfaces are produced using the assumption that the functional relationships 
inferred from in-situ measurements and output from EMEP4UK run under current 
atmospheric conditions, still hold for (a) locations for which there are no in-situ 
measurements and (b) EMEP4UK ozone surfaces produced under alternative NOX scenarios. 
It is true that we cannot assess the validity of this assumption, but this criticism can be levelled 
at all downscaling methodologies – it is not a limitation that is unique to our work. Lastly, the 
controls are not used in the downscaling model, and so for our purposes it should not matter 
if the downscaling predicts ozone concentrations that are inconsistent with the raw EMEP4UK 
NOX-VOC output.  
 

Reviewer 2 
The manuscript by Gouldsbrough et al. makes use of surface ozone simulations from the 
EMEP4UK model and uses a machine learning approach to downscale this data to 1 km x 1km, 
thus providing a higher resolution dataset for assessing O3air quality but also remove a 
positive bias in the model. This is achieved by exploiting surface ozone data from the AURN. 
Overall, the manuscript is well written and provides an interesting insight of how to fuse model 
data and observations together to provide a supposedly more robust product for air quality 
assessments. [My comments/suggestions are as follows:] 
 
We thank the reviewer for their comments and suggested revisions to our manuscript. 
Responses to individual points are listed below. 
 
Major Comments: 
1. In the machine learning approach, you use surface O3 observations but could you also 

exploit information on NO2 and aerosols from AURN. O3 is influenced by concentrations of 
both, so would having surface data to constrain the biases you have in precursor pollutants 
help with the O3 downscaling? Also, would other meteorological variables (e.g. model 
cloud cover and photolysis) and surface type variables (e.g. vegetation cover and 
roughness – for deposition) help constrain the O3 downscaling? 

 
We appreciate the reviewer's suggestion regarding the potential use of additional data 
sources, such as NO2 and aerosol measurements from the AURN, as well as the inclusion of 
other meteorological and surface type variables, to enhance the ozone downscaling in our 
machine learning approach. We recognize that incorporating these additional features could 
potentially provide valuable information for further constraining the ozone downscaling 
model. Considering the reviewer's suggestion, we plan to explore the inclusion of these 
additional variables in future research to investigate their impact on improving the ozone 
downscaling accuracy. This would involve retraining and re-evaluating the model using an 
expanded dataset that includes the suggested variables. However, given the scope of the 
current study, we regret that we are unable to incorporate these variables in the analysis at 
this time. 
 



2. I’m not an expert in machine learning but as the AURN O3 data is used in the downscaling 
approach, would an independent data set be more appropriate for assessing the skill of 
it? From what I understand, you use the “training data” from the AURN data (i.e. a sub-
selection) and then apply the method to all the data to generate the final product. 
However, if you then use the same data to evaluate the product, I’m not sure this can be 
deemed “independent” and a suitable evaluation of the product. Would it be worthwhile 
comparing the final product and EMEP4UK with an independent O3 observational data set 
to see if this downscaling approach truly works. E.g. ozonesonde. Or are there separate 
EMEP sites not included in the AURN data? 

 
We appreciate the reviewer's point regarding the evaluation of our downscaling approach 
using the same dataset for training and evaluation. We agree that independent validation is 
crucial for assessing the model's performance. We used a 10-fold site cross-validation 
strategy. In this strategy, we divided the AURN dataset into ten subsets. The model was 
trained on nine subsets, while the remaining subset served as the evaluation set. We repeated 
this process ten times, ensuring that each subset was used for evaluation exactly once. By 
adopting this approach, we aimed to simulate the model's performance at locations where it 
has not encountered information during training. 
 
To ensure the model's ability to generalize and avoid overfitting, we carefully tuned the model 
to strike a balance between model complexity and generalization, allowing the model to 
capture underlying relationships between the input variables and the target ozone variable 
effectively. This approach ensures that the model learns representative patterns and 
associations from the training data while avoiding over-reliance on specific instances or noise 
in the dataset. 
 
Although an entirely independent ozone observational dataset might provide further 
validation, we believe that our cross-validation approach, coupled with appropriate model 
tuning, has enabled the model to extrapolate its learnings to unseen locations. Besides, we 
are unaware of any long-term independent surface ozone data over the UK that could serve 
this purpose. 
 
3. The average and trends values are calculated for EMEP4UK, the downscaled product and 

the observations on a regional basis. However, I’m concerned that you are potentially 
getting regional domain statistics for the modelled data and then comparing with 
observations but there is a substantial representation bias (i.e. lots more model pixels then 
surface observational sites). Therefore, in your supporting information document, I think 
you need to see if the model/downscaled metrics are sensitive if you only sample the 
model/downscaled data like the observations. 

 
We appreciate the reviewer's attention to this aspect of our analysis. Indeed, when comparing 
regional domain statistics with observations, it's expected that a reduced sample size, as seen 
in observations, could yield different trend and average statistics. However, one of the key 
conclusions drawn from our study is that relying solely on a limited number of point locations 
may lead to a different understanding of regional behaviour compared to the more 
comprehensive and robust perspective provided by considering the entire region. 
 



For the reviewer’s benefit, we did consider how the statistics would differ when using smaller 
measurement location samples for each of the regional model results. We calculated the 
yearly mean trends using all cells within a region and compared to selecting only nearest cell 
locations to the measurement stations (see  
Table 1 below). The metrics are indeed sensitive to selecting few sparse samples in both the 
downscaled and original EMEP4UK surfaces, as might be expected.  
 
We have therefore added the following text “and therefore more comprehensive regional 
estimates” to line 435 of the manuscript. However, we do not wish to add more tables and 
results to the paper to avoid lengthening the paper further and diluting our main message. 
We note again that our best estimates are from the cell-wise product as opposed to the sparse 
measurement data.  
 

Table 1: Annual mean trend of MDA8 ozone (µg/m3/yr) per region for 2001–2018, with 95% 

confidence intervals of the mean estimate shown in brackets. Downscaled and EMEPUK estimates are 

from nearest cell locations to measurement stations only. Significant trends are in bold.  

Region Downscaled EMEP4UK Measurements 

East Midlands (England) 0.04 [-0.30, 0.37] 0.33 [0.10, 0.56] 0.24 [-0.08, 0.55] 

East of England -0.16 [-0.47, 0.14] 0.15 [-0.09, 0.39] 0.09 [-0.19, 0.36] 

London -0.11 [-0.42, 0.20] 0.48 [0.25, 0.72] -0.23 [-0.50, 0.05] 
North East (England) -0.43 [-0.68, -0.17] 0.11 [-0.11, 0.33] -0.18 [-0.42, 0.06] 

North West (England) 0.13 [-0.13, 0.40] 0.39 [0.18, 0.60] 0.29 [-0.02, 0.59] 

Northern Ireland -0.03 [-0.23, 0.16] -0.06 [-0.26, 0.14] -0.06 [-0.27, 0.15] 

Scotland -0.24 [-0.47, -0.02] 0.20 [-0.03, 0.42] 0.18 [-0.04, 0.39] 

South East (England) -0.11 [-0.39, 0.17] 0.12 [-0.09, 0.35] 0.06 [-0.24, 0.37] 

South West (England) -0.22 [-0.46, 0.04] 0.00 [-0.21, 0.22] 0.19 [-0.10, 0.47] 
Wales -0.21 [-0.46, 0.04] 0.21 [-0.01, 0.42] -0.13 [-0.36, 0.11] 

West Midlands (England) 0.06 [-0.23, 0.35] -0.66 [0.45, 0.87] 0.28 [-0.01, 0.56] 

Yorkshire and The Humber 0.09 [-0.14, 0.33] 0.38 [0.21, 0.57] 0.33 [0.02, 0.64] 

 
4. Section 4.1: I do not fully understand the benefit of this section. Does 5-years really 

provide you with enough information on the inter-annual variability? You look at trends 
over the full time period, so you might as well look at the full data set? Or at least include 
the first 5-year period and compare that with the 2014-2018 period. That would let you 
assess inter-annual variability at the start and end of the record. Then use the trend 
analysis to look at long-term changes (i.e. rates) with time. 

 
The objective of Section 4.1 is to offer a recent average representation of UK ozone behaviour. 
Recognizing the significant impact of inter-annual variability, particularly for metrics like yearly 
exceedance counts, we use a 5-year average to strike a balance between capturing these 
variations and providing a stable depiction of the data. This approach offers a reasonable 
assessment of the variables under scrutiny while mitigating some of the inherent year-to-year 
fluctuations. It is worth also acknowledging the substantial content already within the main 
text, which includes numerous figures, and an additional 15 figures and 8 tables within the 
appendix. Given the number of metrics potentially involved, the analysis suggested by the 
Reviewer would add substantial further length, and dilute the focus, while not being required 
to support our main conclusions. 
 



Minor Comments: 
Line 74: Delete ozone at end of line. 
 
The duplicate “ozone” has been removed. 
 
Line 100: Add , after “In Section 4”. 
 
A comma has been added on line 100 after “In Section 4”. 
 
Line 141: Should that be 2001-2017? 
 
Yes, it should be 2001-2017. The Weather Research and Forecast (WRF) model version 3.7.1 
was used in generating EMEP4UK data for 2001-2017, and WRF4.1 was used to generate 
EMEP4UK ozone for 2018.  
 
Line 153: Would it be better to compare with NAEI emission data for e.g. 2019 and not 2020  
as the latter was influenced by COVID19 and probably over-exaggerates the true emission 
decrease. 
 
We thank the reviewer for this suggestion and have updated the text to instead include the 
1970–2019 emission reduction of 73% in lines 154-155 of the updated manuscript. 
 
Line 175: Distance to road acts as a proxy for NO2 concentration. Is this a linear relationship 
or treated as non-linear in your work as I suspect there would be a sharp drop off with distance 
in NO2 concentration? 
 
All relationships between measurement ozone and input feature (including distance to road) 
are treated as non-linear due to the nature of the tree-based machine learning model used. 
 
Line 178: Is this definition of London based on a subjective choice? 
 
Yes, this is a subjective choice. A bounding box was a simple way of defining the London area. 
 
Line 185: Would it not make sense to get data for Northern Ireland as well since you have got 
extra data sets for the other nations of the UK? 
 
We are not aware of additional ozone monitoring networks for Northern Ireland that are not 
already included within the AURN network. 
 
Line 188: Is 3-years a long enough record for a surface site to be included in the analysis. Since 
you are using this data to produce a data set for trend analysis, I would suspect 5-year at least 
but 10-years would be better. 
 
We recognise that a longer record length would allow for better representation of a location 
to be incorporating within the model. However, restricting site inclusion to 5 or more years 
results in far less sites being able to be included within the model. We therefore chose a 3-
year minimum to balance spatial density of sites with temporal representation of a location.  



 
Lines 208-209: What quantitative approach do you use to implement Steps 3 and 4? I.e. what 
is used to determine no improved predictive skill in the approach? 
 
The metrics from the validation experiments, both the 70/30 train/test experiment and 10-
fold CV, were used to determine when the model was sufficiently tuned. Further increases in 
performance for the 70/30 train/test experiment resulted in poor performance in the 10-fold 
CV test, as the model was overfitting to the training data. 
 
Line 239: What do you mean by “long-tail”? Not normally distributed? 
 
Yes, long tailed data refers to a distribution of data where large values occur infrequently, and 
the data is therefore not normally distributed. We have added “i.e., non-normally distributed 
data with few but large extreme values” to the sentence to expand on this within the 
manuscript. 
 
Line 401: Defra 2021b reference style needs changing. 
 
We have removed the parenthesis around this reference. 
 
Figure 9 and Lines 495-497: I do not see the correlations between temperature anomaly and 
number of days where data > 100 ug/m3. Please quantify this relationship. Also, you are 
comparing number of days per heatwave with temperature anomaly. How long were the heat 
waves? Sample sizes suitable in time to get a relationship between ΔT and N Days?? 
 
We agree with the reviewer that the Figure 9 did not show a clear correlation between 
temperature anomaly and number of days exceeding 100 µg/m3. We have updated the figure 
to show the number of days exceeding 25°C instead of the temperature anomaly and have 
included the following within the text: “number of days per year with daily maximum 
temperature exceeding 25 °C, the minimum heatwave temperature threshold for the UK 
(McCarthy et al., 2019)”. We believe this better shows the temperature-ozone exceedance 
relationships for the given years.  
 
Figure A3 and similar: Instead of plotting all the data points for each year, would it be better 
to show the percentile values (e.g. 10, 25, 50, 75 and 90%) as this might be clearer and tell 
you more about the distribution for that year. With all data points plotted, some of the detail 
is difficult to resolve by the naked eye. 
 
We agree with the reviewer’s suggested to show more meaningful summaries of each year’s 
data. We have updated Figures A3 – A14. The figures now show the yearly boxplots to better 
demonstrate the distribution of data for each year. 
 
Figure A5: The AURN data tends to be more variable per year than the model data and 
downscaled data. Why is this and would this have an important impact on your downscaling 
approach. From what I can see, the downscaled data is struggling to capture the full variability 
in the observations? Especially for London. 
 



We acknowledge that Figure A5 did not show the same level of variability per year in the 
downscaled surface compared to the measurement data, however we believe this to be due 
to the style of plot as the data points are too small and transparent to see in the downscaled 
figure compared with the larger and more opaque points in the measurement figure. We have 
updated Figure A5 to show the yearly distributions of data using boxplots, better 
demonstrating the variability within the downscaled data.   
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