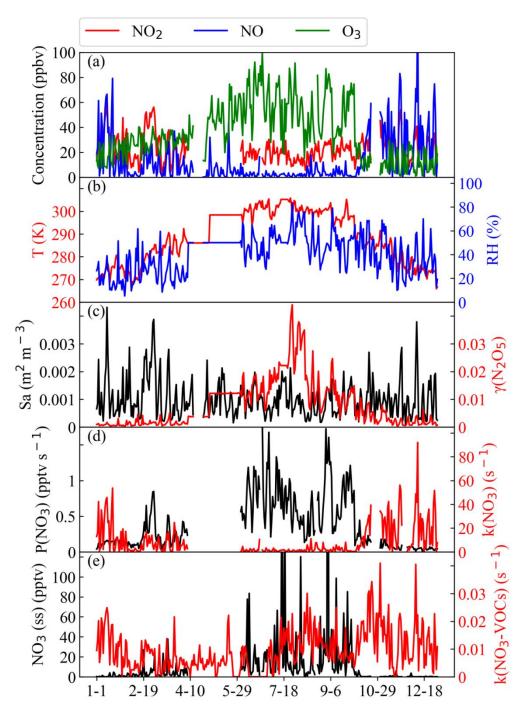
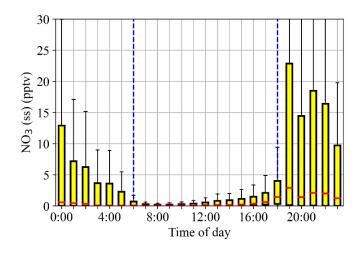
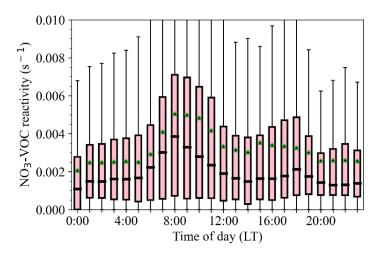

Supplement.

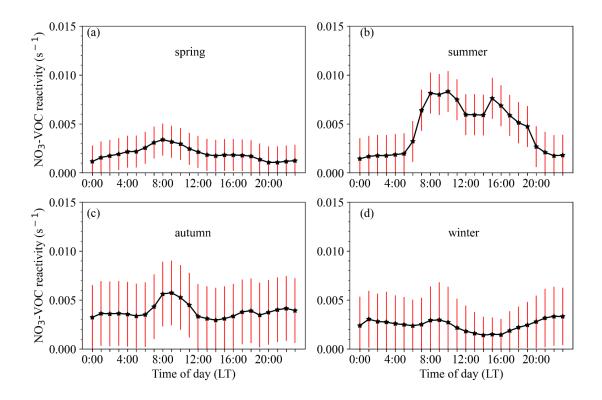
Variation and Trend of Nitrate radical reactivity towards volatile organic compounds in Beijing, China

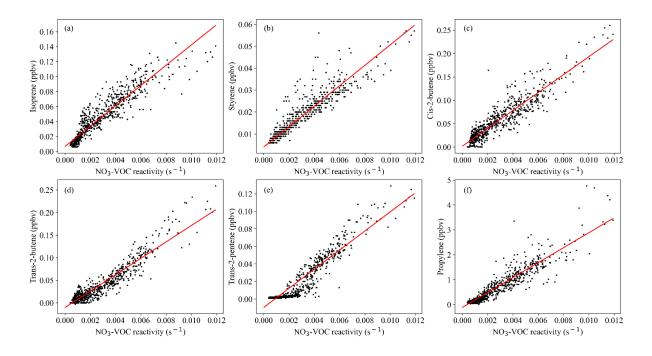

Hejun Hu et al.,

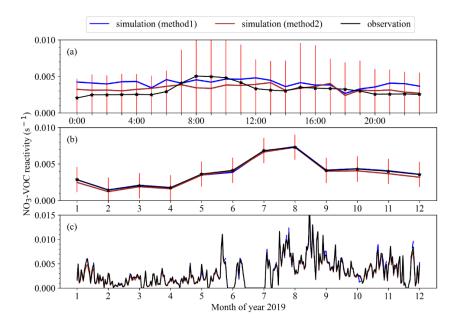
Correspondence to: Haichao Wang (wanghch27@mail.sysu.edu.cn), Keding Lu (k.lu@pku.edu.cn)

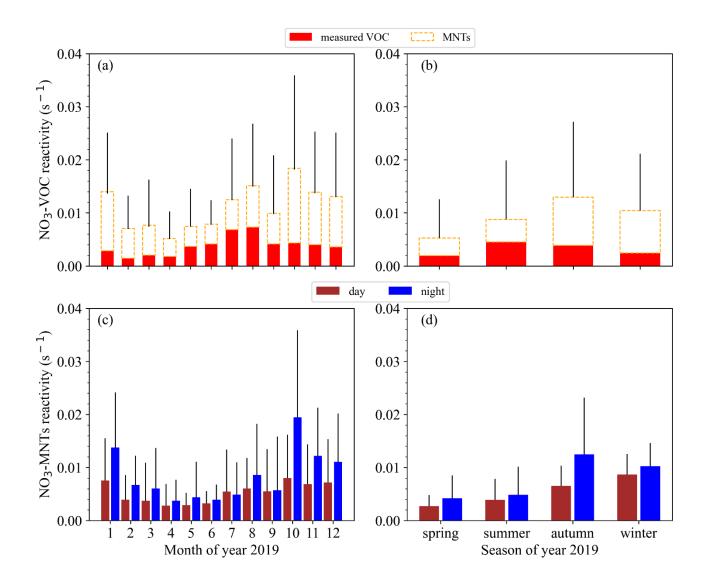

Content: Figure S1-S13 Table S1-S4 References

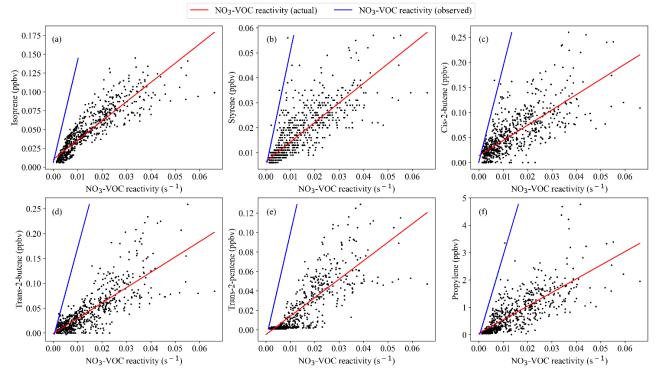

Figure S1. The intercomparing of measured and simulated isoprene in year 2019 in urban Beijing, which shows the overall overestimation of the modelling result compared with the observation.

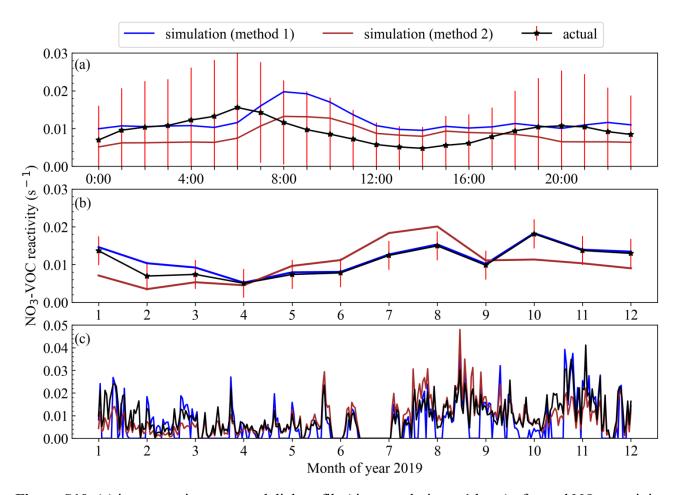

Figure S2. (a) Time series of concentrations of NO, NO₂ and O₃. (b) Time series of thermodynamic temperature and relative humidity. (c) Time series of the aerosol surface area densities and dimensionless uptake coefficients of N₂O₅, (d) Time series of NO₃ production rate and NO₃ loss term. (e) Time series of NO₃ stationary-state concentrations and the NO₃ loss term through the reaction with VOC (actual NO₃ reactivity towards VOC). All the date were averaged with the time resolution of 1 day.

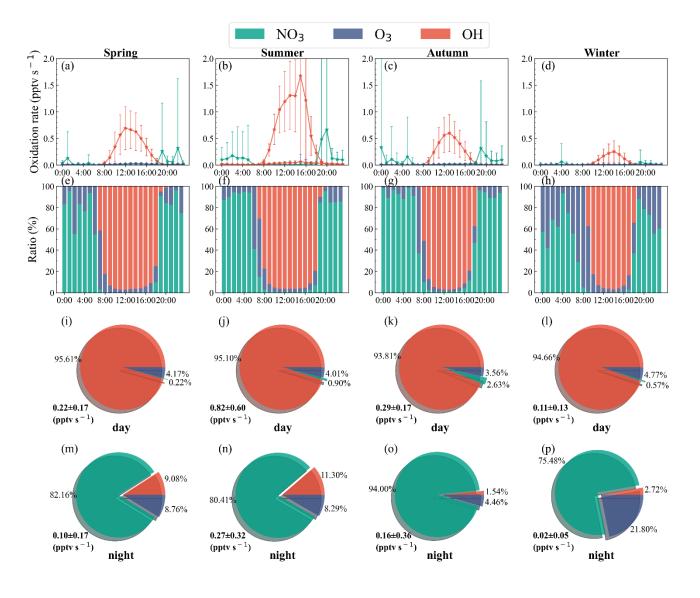

Figure S3. Median diel profile of the estimated NO₃ concentrations. The yellow boxes, the red lines and the black lines represent the box diagrams (25-75 percentiles), the median values and the error bars (+standard deviation) of NO₃ concentrations, respectively. Daytime and nighttime data are divided by the blue dotted lines.

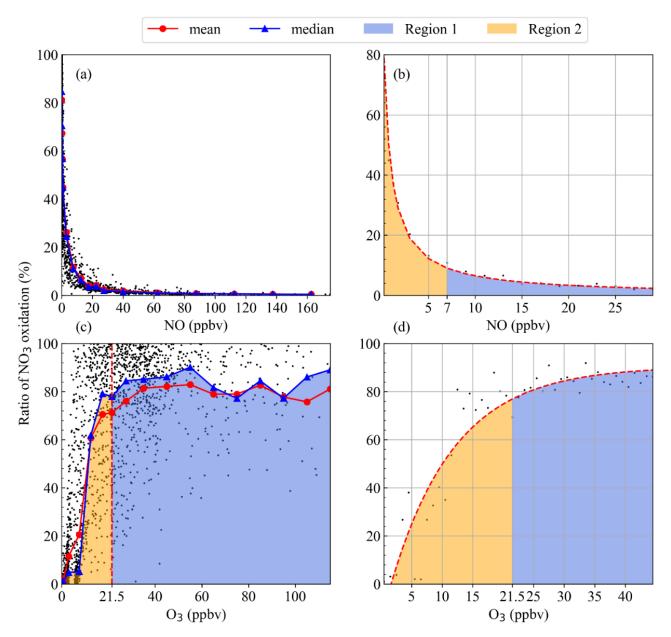

Figure S4. The box whisker plot of NO₃ reactivity towards VOC on annual average. The pink parts represent the variation range from 25 to 75 quantiles; The black bars represent error bars (\pm standard deviations) of the NO₃ reactivity towards VOC; The green asterisks and the black lines represent the average and the median value, respectively.


Figure S5. The season-averaged diel profiles of k_{NO3} . (a) - (d) respectively represent the mean diurnal profiles of k_{NO3} in four seasons. The red lines represent the error bars (± standard deviations) of the reactivity.


Figure S6. The correlation between the concentrations of isoprene, styrene, cis-2-butene, trans-2-butene, trans-2-pentene, propylene and NO₃ reactivity towards VOC. The black dots are the scattered points and the red lines are the fitting lines, the detailed correlation coefficients are summarized in Table S2.


Figure S7. (a) is a campaign-averaged diel profile (time resolution = 1 hour) of measured NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. (b) is a mean monthly profile of measured NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of measured NO₃ reactivity towards VOC. (c) depicts the time series of measured daily NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of measured NO₃ reactivity towards VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of measured NO₃ reactivity towards VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of measured NO₃ reactivity towards VOC and the reactivity estimated by the two parameterization methods.


Figure S8. The histograms of monthly (a) and seasonal-averaged (b) NO₃ reactivity towards estimated MNTs. The black lines are the error lines (+ standard deviation) of NO₃ reactivity towards MNTs (thick lines). The histograms of monthly (c) and seasonal-averaged (d) NO₃ reactivity towards MNTs divided into daytime and nighttime data. The black lines are the error lines (+ standard deviation) of NO₃ reactivity towards MNTs.


Figure S9. (a) - (f) respectively depict the correlation plots of key VOC concentrations and the actual NO₃ reactivity (w/MTs) towards VOC in January. The black dots are the scattered points the red lines are the fitting lines. To aid comparison, the fitting lines of the observed reactivity (w/o MTs) are also plotted (blue).

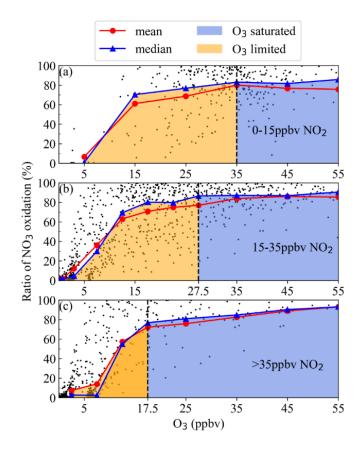

Figure S10. (a) is a campaign-averaged diel profile (time resolution = 1 hour) of actual NO₃ reactivity toward VOC (including monoterpenes) and the actual reactivity estimated by the two parameterization methods. (b) is a mean monthly profile of actual NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of actual NO₃ reactivity towards VOC. (c) depicts the time series with time resolution of one day of actual NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of actual NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of actual NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of actual NO₃ reactivity toward VOC and the reactivity estimated by the two parameterization methods. The red lines are error bars of actual NO₃ reactivity toward VOC.

Figure S11. (a-d) Median diurnal profiles of VOC oxidation rate by atmospheric oxidants in different seasons. The error bars (\pm standard deviation) are plotted. (e-h) Fractions of VOC oxidation rate by atmospheric oxidants in different seasons. The oxidation fraction by different oxidants is differentiated by colors. (i-p) Pie charts representing the daytime and the nighttime VOC oxidation rate by OH, NO₃ and O₃ during different seasons, with the averaged values and standard deviations.

Figure S12. Fitting diagrams between ratios of nighttime VOC oxidized by NO_3 and concentrations of NO (a and b) and O_3 (c and d). The colored regions indicate the different effects of NO or O_3 concentrations on the ratios. Region 1 and region 2 respectively represent "strong effect" and the "weak effect" of NO or O_3 concentrations.

Figure S13. (a) (b) (c) respectively depict the fitting diagrams between the ratio of nighttime VOC oxidized by NO₃ and O₃ concentrations existing in different NO₂ concentrations. To aid comparison, the NO₂ concentrations and the threshold values of O₃ are marked in the figures. Colored regions represent different effects of O₃ concentrations donated in the legend.

NOC	k (298K)	A Factor	Ea/R	D (
VOC	$(10^{15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	$(10^{12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	(K)	Ref	
ethane	0.005	/	/	1	
ethylene	0.210	3.3	2880	2	
propane	0.035	/	/	1	
propylene	9.490	0.459	1156	1	
isobutane	0.106	3.05	3060	2	
n-butane	0.046	2.76	3279	1	
acetylene	0.210	/	/	4	
trans-2-butene	390	0.390	0	2	
1-butene	13.5	0.314	938	1	
cis-2-butene	352	/	/	1	
cyclopentane	0.140	0.00014	0	2	
sopentane	0.162	2.99	2927	2	
n-pentane	0.087	/	/	1	
1-pentene	15	/	/	1	
rans-2-pentene	390	0.390	0	2	
Isoprene	700	3.15	450	1	
cis-2-pentene	350	0.350	0	2	
2,2-dimethylbutane	0.440	0.00044	0	2	
2,3-dimethylbutane	0.440	/	/	1	
2-methylpentane	0.180	/	/	1	
3-methylpentane	0.220	/	/	1	
1-hexene	0.180	/	/	1	
n-hexane	0.110	0.00011	0	2	
2,4-dimethylpentane	0.150	/	/	1	
methylcyclopentane	0.320	/	/	3	
2-methylhexane	0.180	0.00018	0	2	
cyclohexane	0.140	/	/	1	
2,3-dimethylpentane	0.330	/	/	3	
3-methylhexane	0.180	0.00018	0	2	
Benzene	0.015	/	/	1	
2,2,4-trimethylpentane	0.090	/	/	1	
n-heptane	0.150	/	/	1	
methylcyclohexane	0.420	/	/	5	
2,3,4-trimethylpentane	0.440	/	/	3	
2-methylheptane	0.130	/	/	5	
3-methylheptane	0.160	/	/	5	
oluene	0.070	/	/	1	
n-octane	0.190	/	/	1	
ethylbenzene	0.300	/	/	1	
n-nonane	0.230	/	/	1	
m,p-xylene	0.380	/	/	1	

Table S1. Reaction rate coefficients of VOC with NO3 used in our study

o-xylene	0.410	/	/	1
styrene	1500	/	/	1
iso-propylbenzene	1	0.001	0	2
n-propylbenzene	1	0.001	0	2
m-ethyltoluene	0.900	0.00090	0	2
p-ethyltoluene	0.860	0.00086	0	2
n-decane	0.280	/	/	1
1,3,5-trimethylbenzene	0.880	/	/	1
o-ethyltoluene	0.900	0.00090	0	2
1,2,4-trimethylbenzene	1.8	/	/	1
1,2,3-trimethylbenzene	1.9	/	/	1
m-diethylbenzene	7	/	/	5
p-diethylbenzene	8.6	/	/	5
n-undecane	0.330	/	/	5
n-dodecane	0.380	/	/	5
limonene	12200	/	/	1
α-pinene	6160	1.19	-490	1
β-pinene	2510	/	/	1
sabinene	10000	/	/	1
myrcene	11100	/	/	1
3-carene	9100	/	/	1
ocimene	22000	/	/	1
2-carene	19000	/	/	1
acetone	0.015	/	/	1

ref1:(Atkinson and Arey, 2003)

ref2: (Brown et al., 2011)

ref3: (Ambrose et al., 2007)

ref4: IUPAC

ref5: Estimated

	1		5	5	1			
	Spring		Summer		Autumn		Winter	
	VOC	Fraction	VOC	Fraction	VOC	Fraction	VOC	Fraction
1	isoprene	40.04%	isoprene	77.16%	isoprene	43.21%	styrene	39.77%
2	styrene	37.86%	styrene	11.95%	styrene	36.09%	isoprene	20.42%
3	trans-2-butene	7.76%	cis-2-butene	4.20%	cis-2-butene	6.00%	cis-2-butene	11.95%
4	cis-2-butene	4.27%	trans-2-butene	3.51%	trans-2-butene	4.85%	trans-2-butene	4.85%
5	propylene	2.05%	propylene	0.67%	trans-2-pentene	2.81%	trans-2-pentene	2.81%
6	trans-2-pentene	1.75%	trans-2-pentene	0.39%	propylene	1.72%	propylene	1.72%

Table S2. Species contributions to NO₃ reactivity towards top six VOC in different seasons.

Table S3. Correlation coefficients and fitting equations between VOC concentrations and k_{NO3} in each month (where y represents VOC concentrations (ppbv), x represents the reactivity (s⁻¹)). We selected the indicators with the best correlation coefficients.

VOC	Jan		Feb		Mar		Apr	
	R	equation	R	equation	R	equation	R	equation
isoprene	0.92	y=13.56x+0.0068	0.92	y=15.74x+0.0017	0.83	y=10.09x+0.0035	0.66	y=7.02x+0.011
styrene	0.92	y=4.65x+0.0041	0.88	y=5.41x+0.002	0.96	y=15.69x-0.0011	0.98	y=18.79x-0.008
cis-2-butene	0.92	y=19.13x+0.0017	0.82	y=22.56x-0.0004	0.87	y=7.44x-0.0018	0.74	y=5.50x+0.0011
trans-2-butene	0.94	y=18.15x-0.010	0.88	y=14.69x-0.005	0.83	y=8.58x-0.0014	0.58	y=5.89x+0.0065
trans-2-pentene	0.95	y=10.89x-0.0096	0.82	y=7.21x-0.004	0.77	y=4.42x-0.0019	0.78	y=3.29x-0.0021
propylene	0.92	y=299.85x-0.12	0.86	y=284.25x-0.004	0.76	y=119.19x+0.027	0.51	y=85.13x+0.099
VOC		May		Jun		Jul		Aug
	R	equation	R		R		R	
isoprene	0.94	y=45.46x-0.024	0.96	y=45.51x-0.0063	0.96	y=45.36x-0.012	0.98	y=55.49x-0.062
styrene	0.44	y=3.46x+0.0061	0.20	y=3.49x+0.0018	0.59	y=3.33x-0.0006	0.13	y=0.68x+0.016
cis-2-butene	0.48	y=2.32x+0.0034	0.18	y=2.29x+0.0012	0.58	y=2.63x+0.018	0.12	y=0.75x+0.025
trans-2-butene	0.53	y=4.53x+0.0081	0.35	y=4.44x+0.0016	0.62	y=3.27x+0.0087	0.12	y=0.53x+0.013
trans-2-pentene	0.34	y=1.06x-0.0001	0.27	y=0.51x+0.0	0.38	y=0.87x-0.0033	0.088	y=0.155x+0.002
propylene	0.15	y=18.69x+0.1026	0.0133	y=26.40x+0.0207	0.0849	y=6.32x+0.1298	0.0062	y=2.33x+0.1432
VOC		Sep		Oct		Nov		Dec
	R	equation	R	equation	R	equation	R	equation
isoprene	0.98	y=55.87x-0.049	0.72	y=14.47x+0.025	0.90	y=9.66x+0.0064	0.93	y=7.28x+0.011
styrene	0.17	y=0.70x+0.014	0.93	y=13.18x-0.0076	0.97	y=14.88x-0.0	0.98	y=16.49x-0.0012
cis-2-butene	0.096	y=0.42x+0.016	0.89	y=8.24x+0.0007	0.94	y=9.15x-0.0022	0.93	y=7.56x-0.0042
trans-2-butene	0.16	y=0.49x+0.0039	0.90	y=9.81x-0.010	0.90	y=8.69x-0.0067	0.88	y=7.08x-0.0086
trans-2-pentene	0.068	y=0.10x+0.0019	0.88	y=5.42x-0.0067	0.94	y=6.03x-0.0042	0.91	y=5.82x-0.0038
propylene	-0.055	y=-0.23x+0.17	0.78	y=86.00x+0.018	0.86	y=123.56x+0.058	0.78	y=184.23x+0.004

Table S4. Correlation coefficients and fitting equations between VOC concentrations and the actual NO₃ reactivity towards VOC (including monoterpenes) in each month (where y represents VOC concentrations (ppbv), x represents the actual reactivity (s^{-1})). The indicators and corresponding parameterization equations are colored.

VOC		Jan		Feb		Mar		Apr
	R	equation	R	equation	R	equation	R	equation
isoprene	0.88	y=2.55x+0.010	0.89	y=2.79x+0.0044	0.84	y=2.05x+0.0074	0.5431	y=1.71x+0.014
styrene	0.76	y=0.78x+0.0064	0.68	y=0.79x+0.0041	0.68	y=2.47x+0.0089	0.7515	y=4.35x+0.0025
cis-2-butene	0.71	y=3.0469x0.014	0.61	y=3.17x+0.0089	0.72	y=1.33x+0.0021	0.7151	y=1.55x+0.0028
trans-2-butene	0.80	y=3.08x-0.0012	0.79	y=2.43x-0.0014	0.67	y=1.50x+0.0033	0.4244	y=1.31x+0.010
trans-2-pentene	0.83	y=1.89x-0.0048	0.82	y=1.33x-0.0031	0.81	y=0.97x-0.0006	0.7981	y=0.99x-0.0013
propylene	0.76	y=49.88x+0.044	0.73	y=45.10x+0.079	0.54	y=18.81x+0.10	0.4047	y=20.16x+0.14
VOC		May		Jun		Jul		Aug
	R	equation	R	equation	R	equation	R	equation
isoprene	0.56	y=14.57x+0.019	0.66	y=20.88x+0.001	0.74	y=22.32x+0.014	0.68	y=22.10x+0.0086
styrene	0.70	y=2.27x+0.0029	0.45	y=2.221x+0.001	0.49	y=1.77x+0.0001	0.50	y=0.97x+0.0071
cis-2-butene	0.62	y=1.33x+0.0024	0.27	y=1.34x+0.0009	0.50	y=1.50x+0.017	0.38	y=0.82x+0.019
trans-2-butene	0.45	y=1.97x+0.0095	0.24	y=2.24x+0.0019	0.50	y=1.72x+0.0094	0.41	y=0.71x+0.0066
trans-2-pentene	0.61	y=0.84x-0.0019	0.45	y=0.34x-0.0001	0.27	y=0.38x-0.0023	0.37	y=0.28x-0.0004
propylene	0.21	y=10.16x+0.097	0.069	y=15.08x+0.018	0.19	y=5.20x+0.11	0.19	y=3.46x+0.11
VOC		Sep		Oct		Nov		Dec
		equation	R	equation	R	equation	R	equation
isoprene	0.51	y=11.88x+0.063	0.57	y=2.31x+0.045	0.89	y=2.69x+0.0078	0.93	y=2.31x+0.0075
styrene	0.52	y=0.76x+0.0097	0.82	y=2.28x+0.007	0.83	y=3.69x+0.0076	0.88	y=4.71x-0.0035
cis-2-butene	0.43	y=0.57x+0.012	0.81	y=1.48x+0.009	0.90	y=2.50x-0.0003	0.85	y=2.19x-0.0056
trans-2-butene	0.62	y=0.72x-0.001	0.83	y=1.78x-0.0007	0.88	y=2.42x-0.0054	0.79	y=2.02x-0.0096
trans-2-pentene	0.59	y=0.30x-0.0007	0.84	y=1.01x-0.0019	0.89	y=1.63x-0.0027	0.88	y=1.78x-0.006
propylene	0.18	y=2.37x+0.15	0.68	y=14.70x+0.12	0.71	y=29.93x+0.13	0.62	y=47.06x+0.045

Ref:

- Ambrose JL, Mao H, Mayne HR, Stutz J, Talbot R, Sive BC. Nighttime nitrate radical chemistry at Appledore island, Maine during the 2004 international consortium for atmospheric research on transport and transformation. Journal of Geophysical Research-Atmospheres 2007; 112: 19.
- Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds. Chemical Reviews 2003; 103: 4605-4638.
- Brown SS, Dube WP, Peischl J, Ryerson TB, Atlas E, Warneke C, et al. Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. Journal of Geophysical Research-Atmospheres 2011; 116: 15.
- Cheng X, Li H, Zhang YJ, Li YP, Zhang WQ, Wang XZ, et al. Atmospheric isoprene and monoterpenes in a typical urban area of Beijing: Pollution characterization, chemical reactivity and source identification. Journal of Environmental Sciences 2018; 71: 150-167.
- Li L, Wu F, Meng X. Seasonal and Diurnal Variation of Isoprene in the Atmosphere of Beijing. Environmental Monitoring in China 2013; 29: 120-124.
- Xie X, Shao M, Liu Y, Lu SH, Chang CC, Chen ZM. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmospheric Environment 2008; 42: 6000-6010.
- Yin LY, 2012. I. Investigation on Atmospheric Volatile Organic Compounds of Different Types of Stations in North China. (Master thesis). , 2012.