Variation and Trend of Nitrate radical reactivity towards

volatile organic compounds in Beijing, China

4

- Hejun Hu¹, Haichao Wang^{1,2*}, Keding Lu^{3*}, Jie Wang¹, Zelong Zheng¹, Xuezhen Xu¹, Tianyu Zhai³,
- Xiaorui Chen⁴, Xiao Lu^{1, 2}, Momei Qin⁵Wenxing Fu⁵, Xin Li³, Limin Zeng³, Min Hu³, Yuanhang 5
- Zhang³, Shaojia Fan^{1, 2} 6
- ¹School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and 7
- 8 Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
- ²Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality
- 10 Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-
- 11 sen University), Ministry of Education, Zhuhai, 519082, China
- ³State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State 12
- Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of 13
- Environmental Sciences and Engineering, Peking University, Beijing, 100871, China. 14
- ⁴Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong 15
- Kong, <u>999077</u>, China 16
- ⁵Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 17
- 18 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing
- 19 University of Information Science and Technology, Nanjing, 210044, China
- 20 Correspondence to: Haichao Wang (wanghch27@mail.sysu.edu.cn), Keding Lu (k.lu@pku.edu.cn)

ABSTRACT. Nitrate radical (NO₃) is an important nocturnal atmospheric oxidant in the troposphere,

21 22

23

24

25

26

27

28

29 30

31

32

33 34

35

36 37

38 39 which significantly affects the lifetime of pollutants emitted by anthropogenic and biologicalbiogenic activities, especially volatile organic compounds (VOC). Here, we used one-year VOC observation data obtained in urban Beijing in 2019 to look insight tointo the level, compositions, and seasonal variation of NO₃ reactivity (k_{NO3}). We show thethat hourly k_{NO3} towards measured VOC highly varied from $<10^4$ to $0.083~\text{s}^{-1}$ with <u>a</u> campaign-averaged value (\pm standard deviation) of $0.0032\pm0.0042~\text{s}^{-1}$. There was large seasonal difference in NO₃ reactivity towards VOC with the average of 0.0024 ± $0.0026~s^{-1}, 0.0067 \pm 0.0066~s^{-1}, 0.0042 \pm 0.0037~s^{-1}, 0.0027 \pm 0.0028~s^{-1}$ from spring to winter. Alkenes such as isoprene and styrene accounted for the majority. Isoprene was the dominant species in spring, summer, and autumn, accounting for 40.0%, 77.2%, and 43.2%, respectively. Styrene only played a leading role in winter, with thea percentage of 39.8%. Sensitivity A sensitivity study shows monoterpenes, the species we did not measure, may account for a large fraction of k_{NO3} . Based on the correlation between the calculated k_{NO3} and VOC concentrations in 2019, we established localized parameterization schemes for predicting the reactivity by only using a part of VOC species. The historically published VOC data was collected using the parameterization method to reconstruct the long-term NO₃-reactivity k_{NO3} in Beijing by the parameterization method. The downward trend of lower k_{NO3} during 2011-2020 2014-2021 compared with that during 2005-2013 may be responded attribute to the reduction of anthropogenic VOC emission reduction. At last, we revealed

样式定义: 批注文字 样式定义: 批注框文本 样式定义: 页脚 样式定义:页眉 样式定义: 批注主题 样式定义: EndNote Bibliography Title 样式定义: EndNote Bibliography **样式定义:** 15 样式定义: 17 样式定义: 18 样式定义:修订1 样式定义:修订2

that NO₃ dominated the nocturnal VOC oxidation with 83% on the annual average in Beijing in 2019,
 which varied seasonally and was strongly regulated by the level of k_{NO3}, nitrogen oxide, and ozone.

42 Our results improve the understanding of nocturnal atmospheric oxidation in urban regions; and gain

the knowledge of nocturnal VOC oxidation and secondary organic pollution.

1. -Introduction

43

44

45

64

65

66 67

68

69

70

71

72 73

46 Nitrate radical (NO₃) is the main nocturnal tropospheric oxidant (Brown and Stutz, 2012; Wayne et al., 47 1991), which is mainly formed in the reaction of NO₂ and O₃. During the daytime, a A large amount of NO emitted byin cities is oxidized into NO₂ by ozone and released into O₃ in the atmosphere (R1), 48 and NO₂ continues to be oxidized into nitrate radical (NO₃) by O₃ (R2). NO₃ only presents a NO₃ is the 49 main nocturnal tropospheric oxidant (Brown and Stutz, 2012; Wayne et al., 1991) with a relatively 50 51 high concentration level at night becausedue to it has a rapid loss by photolysis rate(R3) and the 52 reaction with NO during the daytime (Stark et al., 2007), NO₃ can oxidize NO into NO₂ (R3). During 53 the nighttime, NO₃ and NO₂ react to These two reactions return NO₃ back to NO_x and thus cannot

the nighttime, NO₃ and NO₂ react to These two reactions return NO₃ back to NO_x and thus cannot contribute to effective NO_x removal. In addition, NO₃ reacts with NO₂ to form nitrous pentoxide (N₂O₅)

55 $(R4\underline{R5})$, and N_2O_5 can be decomposed to NO_3 and NO_2 $(R5\underline{R6})$, establishing a temperature-dependent

56 equilibrium.

$$NO+O_3 \rightarrow NO_2+O_2$$
 (R1)

58
$$NO_2+O_3 \rightarrow NO_3+O_2$$
 (R2)

59
$$NO_3+hv\rightarrow NO+O_2$$
 (R3)

60
$$NO_3+hv\rightarrow NO_2+O^1D$$
 (R4)

61
$$NO_3+NO \rightarrow 2NO_2$$
 (R3R5)

62
$$NO_2+NO_3+M \rightarrow N_2O_5+M$$
 (R4R6)

63
$$N_2O_5+M \rightarrow NO_2+NO_3+M$$
 (R5R7)

The main removal of NO₃ from During the nighttime, there are two kinds of reactions that have a large impact on air pollution and regulate the lifetime and budget of many trace gas phasespecies. One is the reaction with NO (R3), solar photolysis (R6, R7), and NO₃ oxidizes volatile organic compounds oxidation (R8), forming forms complex products. In addition, (R8). The other is NO₃ can be transformed into N₂O₅ and removed by heterogeneous hydrolysis (R9), providing an effective way to remove NO₂NO₂ and produce nitrate aerosol and nitryl chloride (Brown et al., 2004; Dentener and Crutz, 1993; Osthoff et al., 2008). The competition between R8 and R9 determines the fate of nocturnal nitrogen oxidation chemistry, which leads to the formation of different type secondary pollutants (Bertram and Thornton, 2009; Brown et al., 2006). SpecificallyIn particular, the degradation of VOC by NO₃, especially biogenic VOC (Ng et al., 2017), has been proven to be related to the formation of

带格式的: 字体: Times New Roman, 小四

```
organic nitrate and secondary organic aerosols (SOA) (Goldstein and Galbally, 2009; Kiendler-Scharr
74
75
      et al., 2016).
       NO<sub>3</sub>+hv→NO+O<sub>2</sub>
76
77
      NO_3+hv\rightarrow NO_2+O^4D
78
      NO<sub>3</sub>+VOC→products
                                                        (R8)
```

- $N_2O_5+H_2O_{(aq)}/C1 \rightarrow HNO_3 + \varphi C1NO_2$ (R9) 79
- 80 The high NO₃ concentration and fast reaction rate make NO₃ responsible for the sinksinking of many unsaturated hydrocarbons at night (Edwards et al., 2017; Ng et al., 2017; Yang et al., 2020). The NO₃ 81
- 82 reactivity (k_{NO3}) towards VOC, defined as the consuming capacity of NO₃ by ambient VOC, can be
- 83 calculated by Eq. 1.

94

95

96

97

98 99

100

101

102 103

104

105 106

107 108

109

- $k_{NO3} = \sum k_i \times [VOC_i]$ Eq. 1 84
- where the $[VOC_i]$ is VOC concentrations and k_i is the corresponding reaction rate coefficients. Table S1 gives the reaction rate coefficients of NO₃ with VOC (Atkinson and Arey, 2003)(Atkinson and Arey, 86 87 2003). The contribution of VOC to the NO₃ reactivity towards with respect to different VOC varies 88 greatly, which is affected aused by the abundance of species and the reaction rate coefficients. Thus, 89 NO₃ reactivity towards VOC is also affected by temperature. Since temperature affects not only 90 affects-the temperature-dependent reaction rate coefficients but also the VOC concentrations emissions 91 in the atmosphere, especially for the emission of biogenic VOC like isoprene and monoterpenes (Wu
- 92 et al., 2020), causing leading to the variations of VOC species which that dominate k_{NO3} towards VOC
- 93 in different seasons.
 - The Previous works showed that the VOC species which dominantdominate the NO₃ reactivity vary greatly between different regions. In forests and rural areas, such as Pabstchum outside Berlin, Germany, the lush forests emitemitted a large amountnumber of monoterpenes and isoprene, accounting for the majority of k_{NO3} , which ranged from 0.0025 to 0.01 s⁻¹ (Asaf et al., 2009); (Asaf et al., 2009), In semi-arid urban areas such as Jerusalem, the emissions of BVOC are less due to the sparser vegetation, and the maximum of NO₃ reactivity was about 0.01 s⁻¹. Phenol, in which the phenol, cresol and some monoolefins emitted by road traffic arewere the main contributors (Asaf et al., 2009)(Asaf et al., 2009). In the urban regions like Houston, the industrial emissions, including isoprene and other alkenes, dominated the NO₃ reactivity (Stutz et al., 2010). In the suburbs of the city's suburbs, the k_{NO3} may be jointly affected by anthropogenic and biological biogenic volatile organic compounds. For example, the NO₃ reactivity towards VOC in Xianghe, Beijing reached $0.024 \pm 0.030 \,\mathrm{s}^{-1}$, with thea maximum value of 0.3 s⁻¹ and minimum value of 0.0011 s⁻¹. Isoprene, styrene, and 2-butene contributed to the majority most of the k_{NO3} (Yang et al., 2020).

In addition to calculating k_{NO3} by the measured VOC, an instrument was developed to directly measured. k_{NO3} in the atmosphere (Liebmann et al., 2017). On this basis, they presented the first direct measurement of NO₂-reactivity in the Finnish boreal forest in 2017 and concluded that the NO₃

带格式的: 字体: Times New Roman,

reactivity was generally high with a maximum value of 0.94 s⁻¹, displaying a strong diel variation with The above NO₃ reactivities are all calculated by the measurement of VOC concentrations. In addition to this method, an instrument was developed to measure k_{NO3} in the atmosphere directly (Liebmann et al., 2017). They presented the first direct measurement of NO₃ reactivity in the Finnish boreal forest in 2017. They concluded that the NO₃ reactivity was generally high, with a maximum value of 0.94 s⁻¹, displaying a strong diel variation with a nighttime mean value of 0.11 s⁻¹ and daytime value of 0.04 s⁻¹ (Liebmann et al., 2018a). In 2018, they presented the direct measurement in and above the boundary layer of a mountain site, with daytime values of up to 0.3 s⁻¹ and nighttime values close to 0.005 s⁻¹ (Liebmann et al., 2018b). Most importantly, the direct measurement revealed the existence of missing NO₃ reactivity in variesyarious regions, which indicated the missing NO₃ oxidation mechanisms, and. These results largely improved the understanding of nighttime chemistry.

Nevertheless, the field direct field determination of k_{NO3} is still extremely laekedlacking, especially in

urban regions- at the current stage. Until now, most works about the VOC oxidation by NO₃ waswere usually based on short-term investigations, and the analysis of the nocturnal chemical process or reactivity was carried out based on the data of a few weeks or several months. The studies Studies of nighttime chemistry based on long-term measurement data are very scarce (Vrekoussis et al., 2007; Wang et al., 2023; Zhu et al., 2022). The detailed VOC contributions to k_{NO3}, and the relationship between certain VOC and total NO₃ reactivity inon a long-time scale are also rarely studied. Our recent work reported that the increasing trend of the NO₃ production rate is caused by the anthropogenic emission changes, while the long-term and detailed NO₃ loss budget is still uncertain to some extent (Wang et al., 2023). (Wang et al., 2023). Here, we attempt to look for insight tointo the level, variations, and impacts of NO₃ reactivity by using the one-year measurement of VOC in an urban site in Beijing, the role of unmeasured VOC species (monoterpenes) in the contributions of NO₃ reactivity is also discussed. The long-term trend of NO₃ reactivity is estimated by collecting the published VOC data and the newly proposed parameterization method. At last, the regulation of NO₃ oxidation of nocturnal

VOC inoxidation by NO₃ during different seasons is was further evaluated.

带格式的:字体: Calibri, 五号,字体颜色:自动设置

2. Methods

| | | | | |

2. Method

2.1 Site description and instrumentation

The measurement was conducted at the campus of Peking University (39° 99' N, 116° 30' E)-) during the whole year of 2019. The site is situated northeast of the Beijing city center and near two traffic roads, which represents represent a typical urban and polluted area with fresh, anthropogenic emissions (Wang et al., 2017a). The measurements were made on a building roof with a height of 20 m above the ground. Measurements of VOC concentrations were performed using an automated gas chromatograph equipped with mass spectrometry or flame ionization detectors (GC-MS/FID). There are 56 kinds of VOC are measured in total, in which monoterpenes are not valid. The volatile organic compounds were pretreated by pre-freezing and collected in the deactivated quartz empty capillary at extreme-low temperature (-150 °C), then heated and delivered into the analysis system. After separation by the double chromatographic column, the low-carbon compounds C₂-C₄ were detected

带格式的: List Paragraph1,段落间距段前: 0 磅,自 后: 0 磅,行距: 多倍行距 1.14 字行 by the FID detector, and the high-carbon compounds C₅-C₁₀ were detected by the MS detector. There are 56 kinds of VOC measured in total (listed in Table S1 and the concentrations are depicted in Figure S1), in which monoterpenes measurement are not valid. NOx and O₃ were monitored by chemiluminescence (Thermo Scientific, 42i-TLE) and UV photometric methods (Thermo Scientific, 49i), respectively. A Tapered Element Oscillating Microbalance analyzer (TianHong, TH-2000Z1) was used to measure the mass concentration of PM_{2.5}. The quality assurance and quality controls of data were implemented regularly (Chen et al., 2020). Photolysis frequencies were obtained by the Tropospheric Ultraviolet and Visible (TUV) model simulation. Hourly data were processed and used in the following analysis.

2.2 Estimation of monoterpenes

 Since the measurement data did not include monoterpenes (MNTsMNT), we therefore use the measured isoprene and modelledmodeled concentration ratio of monoterpene to isoprene in the same region of the measurement site (named as Factor, Eq. 2) to estimate the ambient monoterpene concentrations (named as MNT_{obs}, Eq. 3). The Factor was obtained by the regional model (WRF/CMAQ), more details of the model simulation setup can be found in Mao et al. (2022). Briefly, the regional model CMAQ (Community Multiscale Air Quality) version 5.2 was applied to simulate air quality in eastern China, with a horizontal resolution of 36 km. Specifically, the gas-phase mechanism of SAPRC-07 and aerosol module AERO6 were used. The meteorological fields were provided by Weather Research & Forecasting (WRF) Model version 4.2. The biogenic emissions were simulated by the MEGANv2.1, which was driven by WRF as well, and the emissions of open burning were estimated with FINN. The MEIC emission inventory for 2019 (obtained via private communication) was used to represent anthropogenic emissions over China, while the emissions in the areas outside China were provided by the REAS v3.2 inventory simulation.

$$Factor = \frac{[MNT_{sim}]}{[ISO_{sim}]} \underline{\qquad} \text{Eq. 2}$$

$$[MNT_{obs}] = [ISO_{obs}] \times Factor \underline{\qquad} \text{Eq. 3}$$

We used the Factor to estimate monoterpenes level rather than $\frac{\text{modelled} \text{modeled}}{\text{monoterpene}}$ monoterpene concentrations $\frac{\text{is}}{\text{is}}$ due to the $\frac{\text{modelled} \text{modeled}}{\text{modeled}}$ isoprene is systematically higher than that of observation (Fig. S1), thusS2). Thus the using of the $\frac{\text{modelled} \text{modeled}}{\text{modeled}}$ Factor may be more reasonable. In Beijing, α -pinene and β -pinene were reported to have the highest abundance among monoterpenes (Cheng et al., 2018), with higher emissions in summer (Wang et al., 2018b; Xia and Xiao, 2019). Therefore, we use a weighted reaction rate coefficient approximated by the $\frac{\text{averagedaverage}}{\text{average}}$ value of α -pinene and β -pinene reaction rate coefficients with NO3 in the following calculations. Since the emissions of sesquiterpenes in BVOC are much lower than that of isoprene, monoterpenes, and other BVOC, thus we $\frac{\text{didn'tdid}}{\text{did}}$ not consider $\frac{\text{NO_3}}{\text{reactivity towards}}$ the contribution of sesquiterpenes to the reactivity. The detailed average diurnal variations of Factor are listed in Table S2.

$$Factor = \frac{[MNT_{sim}]}{[ISO_{sim}]} \frac{\text{Eq. 2}}{\text{Eq. 3}}$$

$$[MNT_{obs}] = [ISO_{obs}] \times Factor \frac{\text{Eq. 3}}{\text{Eq. 3}}$$

带格式的:字体:非倾斜,非上标/下标 **带格式的:**下划线颜色:自动设置

 带格式的:
 非上标/下标

 带格式的:
 下划线颜色:
 自动设置

 带格式的:
 fontstyle01, 字体:
 小四

 带格式的:
 rontstyle01

 带格式的:
 下划线颜色:
 自动设置

 带格式的:
 字体:
 五号, 字体颜色:
 红色

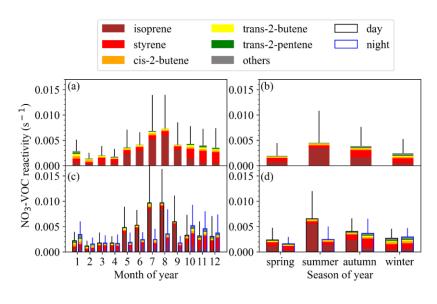
2.3 VOC oxidation rate by NO₃

- To study the reaction of NO₃ and VOC during the nighttime, we estimated the NO₃ concentrations by 187 steady-state calculation. This method is widely used to estimate the concentrations of short-lived 188
- 189
 - substances like NO₃₅, by assuming its production and loss rates are balanced in a specific time range.
- Given sufficient time, the steady state can be reached for NO₃ at night, in which the production and 190 191 loss terms are approximately balanced (Brown, 2003; Crowley et al., 2010). The Here the production
- 192 terms of NO₃ isare the reaction of NO₂ and O₃, and the loss terms of NO₃ includes include reactions
- with VOC, reaction with NO, heterogeneous reaction, and photolysis. The steady-state NO₃ mixing 193
- 194 ratios are expressed by Eq. 4 (Brown and Stutz, 2012)4 (Brown and Stutz, 2012).

195
$$[NO_3]_{ss} = \frac{k_{NO_2 + O_3}[NO_2][o_3]}{\sum k_i \times [VOC_i] + k_{NO + NO_3}[NO] + J_{NO_3} + k_{het} K_{eq}[NO_2]} \qquad \text{Eq. 4}$$

- Where J_{NO3} is the sum of the photolysis coefficients of the two photolysis reactions of NO₃. The k_{het} is 196
- 197 the heterogeneous uptake rate of N₂O₅ on the aerosol surface, which can be calculated by Eq. 5.
- $k_{het} = 0.25 \times \gamma \times S_a \times c$ Eq. 5 198
- Where γ is the dimensionless uptake coefficient of N₂O₅ parameterized by Eq. 6 (Evans and Jacob, 199
- 2005; Hallquist et al., 2003; Kane et al., 2001), Sa (m² m⁻³) is the aerosol surface area density estimated 200
- by the level of PM_{2.5} (Wang et al., 2021), and c is the mean molecular velocity of N₂O₅. 201
- $\gamma = \alpha \times 10^{\beta}$ 202

- $\alpha = 2.79 \times 10^{-4} + 1.3 \times 10^{-4} \times RH 3.43 \times 10^{-6} \times RH^2 + 7.52 \times 10^{-8} \times RH^3$ 203
- $\beta = 4 \times 10^{-2} \times (T 294) \ (T > 282K)$ 204
- $\beta = -0.48 \ (T < 282K)$ 205 Eq. 6
- The reaction rate coefficients of NO2 and O3, NO and NO3, and the equilibrium constant for the forward 206
- and reverse Reactions (R4) and (R5) are temperature dependent. We have adopted JPL evaluation 207
- 208 reports for the reaction rate coefficients. The time series of hourly-related parameters in estimating
- 209 the steady-state NO₃ and the diurnal cycle of NO₃ concentrations were shown in Fig. \$253 and Fig.
- 210 \$354. To compare the VOC oxidation of by NO₃ towards VOC with other oxidants, we estimated OH
- 211 concentrations by the slope that extracted from the measured OH and $J_{\rm O1D}(\rm s^{-1})$ in North China (Tan et
- 212 al., 2017)) (Eq. 7), where J_{0^1D} used in this study was obtained by the TUV model simulations. The
- VOC oxidation rate (R_{NO3}) and the ratio of VOC oxidized by NO₃ to the total oxidation rate can be 213
- 214 calculated by Eq. 8.
- $[OH] = 4.1 \times 10^{11} cm^{-3} s^{-1} \times J_{O^1D}$ Eq. 7 215
- $R_{NO_3} \approx \frac{\sum k_i \times [VOC_i][NO_3]}{\sum k_i \times [VOC_i][OH] + \sum k_i \times [VOC_i][NO_3] + \sum k_i \times [VOC_i][O_3]}$ 216 Eq. 8


where k_i represents the corresponding reaction rate coefficients of different VOC with oxidants.

3. Results and discussion

3.1 NO₃ reactivity calculated by measured VOC

During the campaign, the hourly k_{NO3} towards measured VOC (named as $k_{\text{NO3_mea}}$) highly varied from <10⁻⁴ to 0.083 s⁻¹ with campaign-averaged value (\pm standard deviation) of 0.0032 \pm 0.0042 s⁻¹. The $k_{\text{NO3_mea}}$ displayed a strong diel variation on the annual average (Fig. \$4\$5). In previous studies, the NO3 reactivity towards VOC was reported to be 0.024 \pm 0.030 s⁻¹ on average in a suburban site in summer in North China (Yang et al., 2020); and highly varied between 0.005 - 0.3 s⁻¹ in the mountaintop site in summer (Liebmann et al., 2018c). Our result is one order of magnitude lower, which may reflect the huge difference of $k_{\text{NO3_mea}}$ in different environments and sampling time. Certainly, it may be attributed to the reason that calculated k_{NO3} here did not include some species, such as monoterpenes-, phenol, cresol and so on. The diurnal variations of $k_{\text{NO3_mea}}$ had strong seasonal variability (Fig. \$5\$6). The diurnal variations in winter and spring were relatively weak, and the variations—in summer and autumn were largestrong, with clear peaks at 9:00-10:00 and 15:00, respectively. The $k_{\text{NO3_mea}}$ in spring, summer, and autumn reached the daily maximum value between 8:00 a.m. and 10:00 a.m. (spring: 0.0034 s⁻¹, summer: 0.0083 s⁻¹, autumn: 0.0057 s⁻¹). In winter, it reached the maximum value of 0.0033 s⁻¹ at about 22:00.

As shown in Fig. 1a, the k_{NO3} mea reached the highest in August and lowest in February, which was largely affected by the level of isoprene and styrene. For example, isoprene contributed ~80% to the reactivity in August. The k_{NO3} mea towards isoprene reached the maximum in August and the minimum in February, which was consistent with the previous previously reported change of in isoprene concentrations in Beijing (Cheng et al., 2018). Figure 1b The k_{NO3 mea} shows a large seasonal difference in $\frac{1}{10000}$ mea with the average value of 0.0024 ± 0.0026 s⁻¹, 0.0067 ± 0.0066 s⁻¹, 0.0042 ± 0.0037 s⁻¹, $0.0027 \pm 0.0028 \text{ s}^{-1}$ from spring to winter. Table $\frac{\text{S2S3}}{\text{S3}}$ shows the specific contributions of the top six species to k_{NO3 mea} in different seasons (and Fig. S4). Isoprene was the dominant species, accounting for 40.0%, 77.2\\displays, and 43.2\% in spring, summer, and autumn. By comparison, styrene only played a leading role in winter, accounting for 39.8%. Of Among the species which contributed to k_{NO3} meaning a leading role in winter, accounting for 39.8%. Beijing, isoprene and styrene contributed most to the overall k_{NO3} mea $(60\% \sim 90\%)$, followed by cis-2-butene, trans-2-butene, trans-2-pentene, and proplyene (5%~15%) with another individual VOC less than 2%. Our results are consistent with previous studies in Beijing that k_{NO3} was mainly contributed by isoprene (Yang et al., 2020), indicating that the critical role of isoprene in NO₃ reactivity in Beijing. From summer to autumn, the dominant species changed from isoprene to styrene, while from winter to spring, the dominant species changed from styrene to isoprene. This indicated the AVOC and BVOC controls control k_{NO3} mea alternately. Overall, the k_{NO3} mea displayed a characteristic of high in summer and autumn and low in winter and spring.

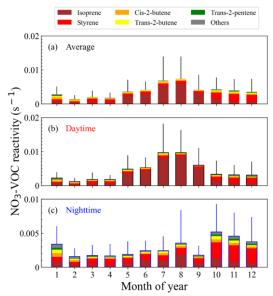


Figure 1. (a b) Histograms of monthly and seasonal averaged kNO3_mea and the compositions. (e d) Histograms of monthly and seasonal averaged kNO3_mea and during the compositions divided intoday (a), daytime (black frames)b), and nighttime (blue framesc). The color denotes the contributions of different VOC species. The black and blue lines represent the error bars of the reactivity \(\frac{1}{2} \) standard

带格式的: 默认段落字体,字体: Calibri,五号,非倾斜,字体颜色: 自动设置

(带格式的: 默认段落字体,字体: Calibri, 五号,字体 颜色:自动设置

deviations).

Figure 1-c 4 showed 1b-c shows the $k_{\rm NO3_mea}$ towards measured VOC display clear day-night differences in summer and winter, especially in summer. The NO₃ reactivity towards VOC in the daytime reached the value of 0.010 s⁻¹ in July and August, which was much higher than 0.002 s⁻¹ in the nighttime. The variations were mainly caused by the diel variations of isoprene concentrations. Reversely, the reactivity was higher at night and lower in the daytime in winter, which was due to the high AVOC level in the morning and at night (Lee and Wang, 2006). Specifically, styrene concentrations at night increased significantly in the stable nocturnal boundary layer, resulting in relatively higher reactivity.

In urban areas of Beijing, isoprene origins from anthropogenic and biologicalbiogenic sources, in which the anthropogenic sources of isoprene are mainly traffic emissions (Li et al., 2013; Riba et al., 1987; Zou et al., 2015). In summer, isoprene mainly origins from plant, and in winter origins from the combustion of engine fuel. In spring and autumn, there are mixed effects of anthropogenic and biological origins (Li et al., 2013). The isoprene emissions of biological The isoprene emissions from biogenic sources in Beijing were one order of magnitude larger than that of anthropogenic sources (Yuan et al., 2009). This indicates the concentrations of isoprene at the environmental level in the urban areas of Beijing isare not affected by the traffic vehicles, but mainly by plants in Beijing (Cheng et al., 2018). As an aromatic hydrocarbon, styrene origins from both anthropogenic and biogenic sources in the atmosphere (Miller et al., 1994; Mogel et al., 2011; Schaeffer et al., 1996; Tang et al., 2000; Zielinska et al., 1996; Zilli et al., 2001), such as the laminar flame of engine fuel (Meng et al., 2016), industrial production (Radica et al., 2021) and other human activities. The dominant source of styrene in Beijing is the local vehicles emissions (Li et al., 2014). Some vegetation, such as evergreen and oleander, can also release natural styrene (Wu et al., 2014), however, due to the dense industrial distribution in the urban area and the much lower level of these biogenic styrene compared with isoprene, we believedbelieve that the styrene in the atmosphere in Beijing is mainly resulted from anthropogenic origins. It is believed that human activities in winter, such as heating, gasoline, and diesel combustion, increased, meanwhile, the reduction of temperature and radiation resulted in the reduction of biogenic isoprene emissions, explained the conversion of dominance of NO3 reactivity from summer to winter.

The NO₃ reactivity towards MNTs (named as $k_{\text{NO3-MNTs}}$) was estimated by the method mentioned in section 2.2. After taking MNTs into account, the total $k_{\text{NO3-MNTs}}$ was greatly enlarged, with the campaign-averaged value of $0.0061 \pm 0.0088 \, \text{s}^{-1}$, resulting in our results comparable with previous research results. The NO₃ reactivity towards MNTs was higher in autumn and winter and lower in spring and summer (Fig. S7). Considering the corresponding reactivity towards monoterpenes, the total NO₃ reactivity towards VOC changed from (summer > autumn > winter > spring) to (autumn > winter > summer > spring), highlighting the impact of the monoterpene variations on the reactivity. The NO₃ reactivity towards MNTs displayed significant differences between daytime and nighttime (Fig. S7c-d). The reactivity at night in all months was higher than that in the daytime, especially from October to January, highlighting the role of biogenic monoterpenes in nocturnal NO₃ chemistry (Li et al., 2013; Riba et al., 1987). To evaluate the contribution of monoterpenes to the total k_{NO3} , we calculated the fraction (F_{MNTs}) by Eq. 9.

域代码已更改

$$F_{MNTs} = \frac{k_{NO_3_MNTs}}{k_{NO_3_total}}$$
 Eq. 9

Figure 2a displays the differences between the $k_{\rm NO3~mea}$ and $k_{\rm NO3~total}$. Monoterpenes were very important for NO₃ reactivity, and the F_{MNTs} varied from 40% to 80%, with strong seasonal variations. The MNTs accounted for NO₃ reactivity of nearly 80% in winter and spring. In the seasons when isoprene no longer dominated, the measured reactivity accounted for a small fraction, and the corresponding reactivity towards AVOC, such as styrene, was smaller than that of monoterpenes. As shown in Fig. 2b, the measured VOC had high fractions in the daytime and low at night, especially in May and August. The measured VOC in the daytime accounted for more than 60% of $k_{\rm NO3~total}$, which was closely related to the increasing concentrations of isoprene in the summer daytime. The reactivity towards MNTs accounted for a large fraction of reactivity at night.

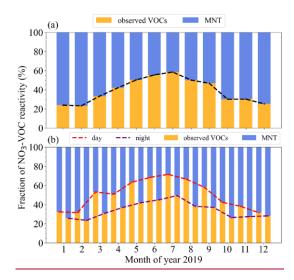
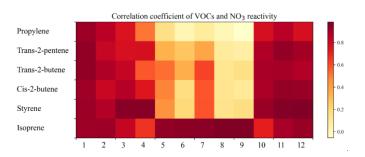


Figure 2. (a) Fractions of the $k_{NO3 \text{ total}}$. (b) Fractions of the $k_{NO3 \text{ total}}$ divided into daytime (left) and nighttime (right). The colors on the stacked bar plot indicate the different fractions as they are donated in the legend. The lines represent the monthly-averaged variations of the NO_3 reactivity towards MNTs.


3.2 Parameterization of NO3 reactivity

We examined the correlation of key VOC concentrations and $k_{\text{NO3_mea}}$. Figure S6_S8 gives the case in January, for example. To a certain extent, the variations of $k_{\text{NO3_mea}}$ were closely linked to the variations of the concentrations of main contributors. It is worth noting that in January, trans-2-butene had a higher correlation coefficient with $k_{\text{NO3_mea}}$, which exceeded that of isoprene and styrene. This indicates that higher contributions may not imply a_stronger correlation. Fig. 23 shows the correlation coefficients and the fitting equations between VOC concentrations and k_{NO3} in each month (detailed in Table S3S4). According to the correlation coefficients, we can select the strongest indicator corresponding to thea certain month as the variable of the parameterization method. Here we didn't

import the VOC with small contributions into the parameterization method, because these indicators had no practical significance for $k_{\text{NO3_mea}}$. In this way, we established the first parameterization method (Method 1) by using the strongest indicator in each month and which can be found in Table \$3\$\text{S4}\$ (Eq. 10):

$$NO_3 reactivity_{sim1} = \frac{a_t \times [VOC_t] + b_t a}{2} \times [VOC] + b$$
 Eq. 10

where, a, b, and [VOC, VOC] respectively represent the slope, the intercept, and the VOC species concentrations (ppbv) used for parameterization in each month. Throughout the year, the The correlation coefficients between isoprene concentrations and kNO3_mea were high throughout the year, ranging from 0.67 to 0.98, especially in summer. The correlation coefficients between styrene concentrations and the reactivity reached a maximum in autumn and winter, which can elearly display the indication of these two species (isoprene and styrene) in different seasons.

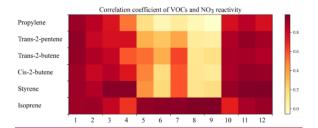
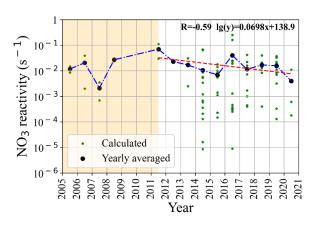


Figure 23. The thermodynamic diagramheat map of the monthly correlation between VOC concentrations and $k_{\text{NO3_mea}}$. Colored blocks indicate different correlations, by which the best indicator can be selected for the parameterization method of each month.

Besides the indicator parameterization method, we can also select only a part of VOC that contribute most of $k_{\text{NO3_mea}}$ as a representative. Here we approximated NO₃ reactivity towards total VOC to the reactivity towards these top 6 species, namely: isoprene, styrene, cis-2-butene, trans-2-butene, trans-2-pentene, and proplyene. Thus, the second parameterization method (Method 2) can be expressed by Eq. 11:


带格式的: 默认段落字体,字体: Calibri,五号,非倾斜,字体颜色: 自动设置

NO_3 reactivity_{sim2} = $\sum_{i=1}^{6} k_i \times [VOC_i]$ Eq. 11

where $[VOC_i]$ is the VOC concentrations and k_i is the corresponding reaction rate coefficients with NO₃. It should be noted that this parameterization method of NO₃ reactivity towards VOC may be localized.

To evaluate the effectiveness of the two parameterization methods established above, we estimated the k_{NO3} in the different time scalescales, and compared them with the determined $k_{\text{NO3}_\text{mea}}$ by all measured VOC. As shown in Fig. \$759, both-two methods can well capture the level and variations of $k_{\text{NO3}_\text{mea}}$, indicating the parametrization feasibility. Method 1 can easily and quickly estimate NO₃ reactivity towards VOC by using a single indicator. In areas where a single VOC specie dominates NO₃ reactivity towards VOC is dominated by a single VOC specie for a long time, such as forest areas, suburbs, and rural areas (BVOC dominant), this method would have a good performance. Method 2 had a better performance, while more VOC species are needed. In urban areas, especially in urban areas where the contributors had different chemo diversity with strong seasonality, this method should be more suitable. Since the two methods lower the bar for estimating NO₃ reactivity by using VOC measurement data, we can look into investigate the level of NO₃ reactivity by using the reported VOC measurement data in the past.

We collected the historical measurement data of VOC concentrations in Beijing (Supporting file. S1) and estimated NO₃ reactivity by theusing parameterization methods. We found the level of NO₃ reactivity mainly ranged from 0.001 to 0.1 s⁻¹ in Beijing in the past decades (Fig. 3). Due to the limitation of data, we cannot find a trend of NO₃ reactivity before 2011. While during 2011-2020,4). During 2014-2020, a large amount of VOC data in urban Beijing presented and be collected in this study. We calculated the $k_{\text{NO3_mea}}$ by detailed VOC with respect to concerning the data provided by the literatures literature, and estimated the NO₃ reactivity by parameterization methods if the reported data in the literatures is are limited. As shown in Fig. 3, an overall decrease trend of 4. NO₃ reactivity ean be found during 2011-2020 was relatively lower after 2014 than before. We inferred that the level of isoprene during this period may be varied small 5 since the change of biogenic emission unlikely to change much may not be significant. Thus, we proposed that the decrease of lower NO₃ reactivity during the past decade may be attributed to the anthropogenic emission reduction of anthropogenic VOC. It should be noted that this estimation suffers from the uncertainty, nevertheless, this trend and characterization of NO₃ reactivity in Beijing is helpful to understand the nighttime chemistry in Beijing.

0.10 Average (2005-2013) Calculated NO₃ reactivity (s - 1) 80.0 90.0 60.0 10.0 Average (2014-2021) Yearly-median 5002 ⁴00.0 Year 2013 -2018 -2007 -2008 2009 -2010 2015 -2016 -2017 -2019 -2020 -2011

374 375

376

377

378

379

380

381

382 383

384

385

386

373

372

Figure 34. The reconstructed NO₃-reactivity calculated by the reported VOC concentrations in Beijing calculated the reconstructed NO₃ reactivity record from 2005-2021. The averaged NO₃ reactivity calculated by the reported VOC data in each campaign is plotted as the star. The yearly averaged median values of NO₃ reactivity (black dot) between 2011-2019 shows a decline in each year show high during 2005-2013 and relatively low during 2014-2021. It should be noted that the monoterpenes are not considered here.

3.3 NO₃-reactivity towards monoterpenes

After taking MNTs into account, the total k_{NO3} (named as $k_{\text{NO3_total}}$) was greatly enlarged, with campaign-averaged value of $0.0061 \pm 0.0088 \text{ s}^{-1}$, resulting in our results comparable with previous research results. The NO₃-reactivity towards MNTs (named as $k_{\text{NO3_MNTs}}$) was higher in autumn and winter and lower in spring and summer (Fig. S8). Considering the corresponding reactivity towards monoterpenes, the total NO₃-reactivity towards VOC changed from (summer > autumn > winter > spring) to (autumn > winter > summer > spring), highlights the impact of the monoterpene variations

on the reactivity. The NO₂ reactivity towards MNTs displayed significant differences between daytime and nighttime (Fig. S8c d). The reactivity at night in all months was higher than that in the daytime, especially from October to January, highlights the role of biogenic monoterpenes in nocturnal NO₂ chemistry (Li et al., 2013; Riba et al., 1987). To compare the measured and the total NO₃ reactivity towards VOC, we calculated the fraction (F_{MNTs}) by Eq. 12.

域代码已更改

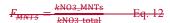


Figure 4a displays the differences between the $k_{\rm NO3_mes}$ and $k_{\rm NO3_total}$. Monoterpenes were very important for NO₂ reactivity, and the F_{MNTs} varied from 40% to 80%, with strong seasonal variations. The MNTs accounted for NO₂-reactivity nearly 80% in winter and spring. In the seasons when isoprene no longer dominated, the measured reactivity accounted for a small fraction, and the corresponding reactivity towards AVOC such as styrene was smaller than that of monoterpenes. As shown in Fig. 4b, the measured VOC had high fractions in the daytime and low at night. Especially in May and August. The measured VOC in the daytime accounted for more than 60% of $k_{\rm NO3_total}$, which was closely related to the increasing concentrations of isoprene in the summer daytime. The reactivity towards MNTs accounted for a large fraction of reactivity at night—

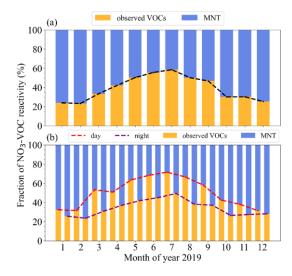


Figure 4. (a) Fractions of the k_{NO3_total}. (b) Fractions of the k_{NO3_total} divided into daytime (left) and nighttime (right). The colors on the stacked bar plot indicate the different fractions as they are donated in the legend. The lines represent the monthly averaged variations of the NO₂ reactivity towards MNTs.

WeAfter considering MNTs, we updated the parameterization method established before by using the relationship between reactivity and VOC concentrations, including monoterpenes. The updated parameterization Method 1 used the same principle as introduced in Sect 3.2, with fitting slopes changing significantly (Fig. S9Figure S10). Table S4 gives S5 shows the specific correlation

coefficients between six key VOC concentrations and $k_{\text{NO3_total}}$. The updated Method 2 considered the sum contributions of six VOC and the estimated MNTs by isoprene concentration. We reevaluated the two updated parameterization methods (single VOC and six VOC, respectively). Overall, the performance of the two methods are is reasonable, and the updated Method 1 is better than that of Method 2 in general (Fig. 810).811). We evaluated this parameterization on datasets of other years (shown in Fig S12) and showed a robust performance.

3.43 Nighttime VOC oxidation

Here we examined the role of NO₃ in the VOC oxidation in Beijing 2019. As shown in Fig. <u>\$S13</u>, OH oxidized most of VOC during the daytime, with the oxidation rate <u>reached_reaching</u> the maximum value of 0.6 pptv s⁻¹ in the afternoon. Compared with OH, the VOC oxidation rates by O₃ and NO₃ in the daytime were remarkably lower. From 18:00 to 6:00, the <u>characteristics of nocturnal chemical in Beijing were significant. The</u> ratios of VOC oxidized by NO₃ kept above 80%, <u>and</u> the contribution of O₃ was relatively weak, which is consistent with that reported in high NOx regions(Chen et al., 2019; Edwards et al., 2017; Wang et al., 2018a). The VOC oxidation rate by NO₃ presented a single peak at 19:00 with the value of 0.25 pptv s⁻¹, which is the same magnitude as that by OH in the daytime, illustrating the importance of NO₃ in VOC oxidation as shown in the previous studies (Wang et al., 2017a), <u>highlightimplying</u> the importance of nocturnal chemistry for organic nitrate and SOA formation.

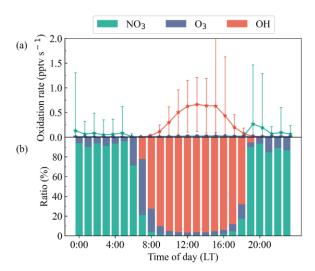


Figure 5. (a) Median diurnal profile of VOC oxidation rate by OH, NO₃ and O₃. The colored lines are error bars (+standard deviation). (b) Fractions of VOC oxidation rate by atmospheric oxidants.

The VOC oxidation rate by NO₃ and oxidation fractions had strong seasonal variabilities in Beijing. As shown in Fig. <u>\$115</u>, the nighttime oxidation rate (summer > spring > autumn > winter) was affected by NO₃ concentrations and the total NO₃ reactivity towards VOC. In summer, the NO₃ oxidation rate

presented a single peak, with a maximum value of 0.7 pptv s⁻¹ at 20:00, and remained around 0.1 pptv s⁻¹ at the rest of the night. The rate at 21:00-5:00 was relatively constant. The rate in winter was lower, with the two maximum values of 0.06 pptv s⁻¹ presented at 19:00 and 4:00, which were further lower than the average value of the other three seasons. The results were good agreementagreed with the previous studies, in which the VOC oxidation rate by NO₃ concentrations contained was high from 19:00-23:00 (Wang et al., 2017b). There was a competition between NO₃ and O₃ in the nighttime VOC oxidation in Beijing. Although the NO₃ oxidation rate at night was higher than that of O₃ throughout the year, the changes of O₃ oxidation rate had a significant impact on significantly impacted the ratios of VOC oxidized by NO₃. The ratios of nighttime VOC oxidized by NO₃ in Beijing were higher in autumn, and then in spring, summer, and winter. Although the O₃ concentrations in winter decreased, the competitiveness of NO₃ in VOC oxidation decreased more due to the decline of NO₃ concentrations. The competitiveness of O₃ in VOC oxidation was relatively enhanced, resulting in a significant decline in the ratios of VOC oxidized by NO₃.

3.5 Regulation of nighttime VOC oxidation

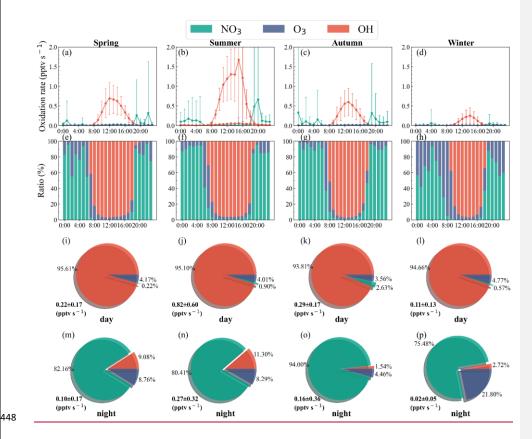
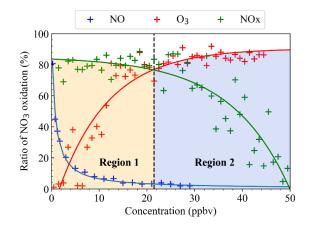


Figure 5. (a-d) Median diurnal profiles (±standard deviation) of VOC oxidation rate by atmospheric


oxidants in different seasons. (e-h) Fractions of VOC oxidation rate by atmospheric oxidants in different seasons. (i-p) Pie charts representing the daytime and the nighttime VOC oxidation rate by OH, NO₃, and O₃ during different seasons, with the averaged values and standard deviations.

3.4 Relationship between O₃/NO_x and nocturnal VOC oxidation by NO₃

To understand the importance of nighttime VOC oxidized by NO₃, we defined the fraction of VOC oxidation rate by NO₃ to the total oxidation rate as nocturnal VOC oxidation ratio by NO₃ (R_{NO3}, see Section 2.3 for its calculation) and explored the relationship between the nocturnal oxidation ratios of NO₃ (R_{NO3}) ratio and the nighttime concentrations of NO₄, O₃ and NO₂ NO₂. It is found that a strong nonlinear relationship between them (shown in Figure 6). The R_{NO3} had negative correlation coefficients with NO concentrations. With the increase of NO concentrations at night, the ratios decreased exponentially. When the NO concentrations increased at low NO condition conditions, it could cause a significant decline in the ratios of VOC oxidized by NO₃. While at high NO condition, the ratios were not sensitive to the increase of NO concentrations (Fig. S12S14), indicating that the nighttime NO concentrations in Beijing strongly controlled the ratios effectively. It can be expected since the increase of NO concentrations controlled the NO₃ loss term, then caused the decrease of NO₃ concentration. When the NO concentrations exceeded a threshold value, (7 ppbv), the NO₃ loss was totally dominated by NO.

带格式的: 段落间距段前: 0 磅, 段后: 0 磅

带格式的:字体颜色:自动设置

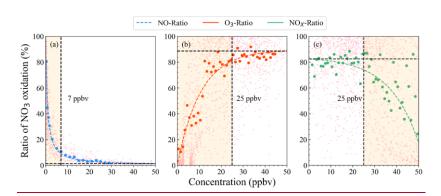


Figure 6_k Fitting diagrams between the ratios of nighttime VOC oxidized by NO₃ and the-concentrations of NO₅, O₃-and NO₃. In Region 1, the ratio is more sensitive to O₃, while less sensitive to NO₃-In Region 2, it is more sensitive to NO₃-while less sensitive to O₃-(a), O₃ (b), and NO₃ (c). The light pink scattered dots represent the oxidation ratios at different concentrations, and the solid dots represent the median value of each bin of oxidation ratios corresponding to each concentration range. Colored dot lines represent the fitting results of the solid median dots. And the black dot line in each panel shows a threshold to divide the curve into two regimes. In (a), the regime is divided into NO-limited (<7 ppbv) and NO-saturated (>7 ppbv); in (b) and (c), a threshold of 25 ppbv divide the curves into NO₃ (O₃) limited and saturated regimes. The results showed in (b) and (c) are representative of low NO condition (<7 ppbv).

The ratios of nighttime VOC oxidized by NO₃ also had a strong nonlinear relationship with O₃ and NO_x concentrations. O₃ concentrations have one positive and one negative contribution to the R_{NO3}. The positive effect is that increasing O₃ concentration increases the NO₃ production rate, which increases the NO₃ steady-state concentrations and then increase the ratios. And the negative is increasing O₃ concentrations increases the reaction rate between VOC and O₃, which increase the competitiveness of O₃ in VOC oxidation and then decrease the ratios. Figure. S12S14 also shows the relationship between the R_{NO3} and the concentrations of O₃. While O₃ concentrations were below 21.525 ppbv, the ratios were very sensitive to O₃ level, which fast increased with O₃ concentrations. While the ratio become became not sensitive and remained relatively constant when the O₃ concentrations exceeded 21.525 ppbv. It can be explained that when the O₃ concentrations were low, the NO₃ production rate was more sensitive to the increase of O₃ concentrations. In this case, O₃ mainly affects the ratios positively. When the O₃ concentrations were high, the positive effect of O₃ tended to be constant, indicates indicating the two opposite effects overall keepkept in balance.

When the NO_xNO_x concentrations were low (<u>i.</u>e.g., <21.5., <25 ppbv), the R_{NO3} werewas less sensitive to NO_xNO_x , remaining relatively constant with the further increase. It is believed that the The increase of NO_3 loss rates through the N_2O_5 heterogeneous reaction and the NO reaction werewas believed to be kept in balance with the NO_3 production rate increased by NO_2 concentrations. At high NO_x condition the ratios sensitively decreased with the increase of NO_xNO_x concentrations, which is explained that by the increase of NO_3 loss rates by NO, resulting in a decline in the ratios.

带格式的: 段落间距段前: 0 磅, 段后: 0 磅 **带格式的:** 字体: 加粗

带格式的:字体:倾斜,下标

(带格式的:字体:倾斜,下标

To better understand the nonlinear effect of NO₂ and O₃ on the nighttime VOC oxidation, we further explored the effect of O₃ concentration on the ratios existing in different concentrations of NO₂. As shown in Fig. S13S15, in higher concentrations of NO₂, the threshold of lower O₃ concentrations werewas required for the R_{NO3} to become constant, which reflected the couple influences of NO₂ and O₃ on nighttime VOC oxidation through the nonlinear response, and indicated that in the environment richen in NO₂, nocturnal NO₃ chemistry easily tended to be more dominant.

4. Conclusions and implications

In this study, we showed that the NO₃ reactivity towards measured VOC highly varied with strongbig seasonal differences, which was mainly driven by isoprene concentrations. The top 6 contributors to the measured NO₃ reactivity towards VOC were isoprene, styrene, cis-2-butene, trans-2-butene, trans-2-pentene, and propylene. Among them, isoprene and styrene contributed most of the reactivity. In addition, monoterpenes are proposed to be a significant source of NO₃ reactivity. Recently studies showed thethat anthropogenic emissions contributes contribute significantly to the ambient MNTs concentrations bythrough biomass burning, traffic and volatile chemical product emissions in the urban regions, it would further enhance the importance of nocturnal NO₃ oxidation (Coggon et al., 2021; Nelson et al., 2021; Peng et al., 2022; Qin et al., 2020; Wang et al., 2022). It should be noted that the estimated contributions of MNTs only considered the biogenic emissions and may be represent the lower bias, thus, Thus we highlight the importance of field observation of MNTs for advancing the understanding the nighttime NO₃ chemistry. In addition, it should be noted that we didn't take the contributions of OVOC into account, since the reaction rate coefficients of OVOC with NO₃ are small (Ambrose et al., 2007).

Looking <u>for</u> insight to the trend and evolution of detailed NO₃ chemistry is very scare, but it can <u>reallybe</u> helpful to understand <u>the</u> response of the nocturnal chemistry on the emission change at a large time scale. Limited by the non-extensive and non-continuous observation, we cannot obtain the long-time measurement of all the VOC species in multiple sites. Since isoprene and styrene are good indicators of NO₃ reactivity in different seasons, at least as we <u>shownshowed</u> in urban Beijing, those can be used to estimate the NO₃ reactivity towards VOC to reestablish the long-term trend of NO₃ reactivity in urban regions for further evaluation of its history of nighttime chemistry. We admitted that the estimation of <u>the NO₃</u> reactivity trend <u>maymight</u> be highly uncertain, but this attempt may be very helpful to know the level and overall change of nighttime chemistry.

We showed that NO_3 dominated the nighttime VOC oxidation in Beijing, but the oxidation ratio had a strong nonlinear relationship with O_3 and NO_2NO_2 concentrations. With the NO_2 concentrations decreased decreasing, the threshold values of O_3 between the sensitive regime and non-sensitive regime tended to increase, indicative of the nighttime oxidation by NO_3 would be more easily affected by the level of O_3 with the implementimplementation of sustaining NO_2 reduction in the future. The threshold

values of O₃ can provide an effective basis for the measures to control nocturnal chemical and secondary organic aerosols pollution in the typical urban region.

Code/Data availability. The datasets used in this study are available from the corresponding author upon request (wanghch27@mail.sysu.edu.cn; k.lu@pku.edu.cn).

带格式的:字体:倾斜,下标

- Author contributions. H.C.W. and K.D.L. designed the study. H.J.H. and H.C.W. analyzed the data with input from J.W., Z.L.Z., X.Z.X., T.Y.Z., X.R.C., X.L., M.M.Qand S.J.F., W.X.F. provided the modelledmodeled monoterpene and isoprene data, X.L., L.M.Z., M.H., and Y.H.Z. organized this field
- campaign and provided the field measurement dataset. H.J.H. and H.C.W. wrote the paper with input
- 541 from K.D.L.

- Competing interests. The authors declare that they have no conflicts of interest.
 - Acknowledgments. This project is supported by the National Natural Science Foundation of China (42175111, 21976006)-), the Guangdong Major Project of Basic and Applied Basic Research (grant no. 2020B0301030004), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23lgbj002). Thanks for the data contributed by the field campaign team.

Reference.

- Ambrose JL, Mao H, Mayne HR, Stutz J, Talbot R, Sive BC. Nighttime nitrate radical chemistry at Appledore island, Maine during the 2004 international consortium for atmospheric research on transport and transformation. Journal of Geophysical Research-Atmospheres 2007; 112: 19.
- Asaf D, Pedersen D, Matveev V, Peleg M, Kern C, Zingler J, et al. Long-Term Measurements of NO3 Radical at a Semiarid
 Urban Site: 1. Extreme Concentration Events and Their Oxidation Capacity. Environmental Science & Technology
 2009: 43: 9117-9123.
- Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds. Chemical Reviews 2003; 103: 4605-4638.
- Bertram TH, Thornton JA. Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmospheric Chemistry and Physics 2009; 9: 8351-8363.
- Brown SS. Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3and N2O5. Journal of Geophysical Research 2003; 108.
- Brown SS, Dibb JE, Stark H, Aldener M, Vozella M, Whitlow S, et al. Nighttime removal of NOx in the summer marine boundary layer. Geophysical Research Letters 2004; 31: 5.
- Brown SS, Ryerson TB, Wollny AG, Brock CA, Peltier R, Sullivan AP, et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 2006; 311: 67-70.
- Brown SS, Stutz J. Nighttime radical observations and chemistry. Chemical Society Reviews 2012; 41: 6405-6447.
- Chen X, Wang H, Liu Y, Su R, Wang H, Lou S, et al. Spatial characteristics of the nighttime oxidation capacity in the Yangtze River Delta, China. Atmospheric Environment 2019; 208: 150-157.
- Cheng X, Li H, Zhang YJ, Li YP, Zhang WQ, Wang XZ, et al. Atmospheric isoprene and monoterpenes in a typical urban area of Beijing: Pollution characterization, chemical reactivity and source identification. Journal of Environmental Sciences 2018; 71: 150-167.
- Coggon MM, Gkatzelis GI, McDonald BC, Gilman JB, Schwantes RH, Abuhassan N, et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the National Academy of Sciences of the United States of America 2021; 118.
- Crowley JN, Schuster G, Pouvesle N, Parchatka U, Fischer H, Bonn B, et al. Nocturnal nitrogen oxides at a rural mountainsite in south-western Germany. Atmospheric Chemistry and Physics 2010; 10: 2795-2812.
- Dentener FJ, Crutz PJ. Reaction of N2O5on tropospheric aerosols: impact on the global distributions of NOx, O3, OH. Journal of Geophysical Research 1993; 98: 7149-7163.
- Edwards PM, Aikin KC, Dube WP, Fry JL, Gilman JB, de Gouw JA, et al. Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience 2017; 10: 490-+.

带格式的:字体颜色:自动设置

Evans MJ, Jacob DJ. Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen
 oxides, ozone, and OH. Geophysical Research Letters 2005; 32: 4.

- Goldstein AH, Galbally IE. Known and unexplored organic constituents in the Earth's atmosphere. Geochimica Et Cosmochimica Acta 2009; 73: A449-A449.
- Hallquist M, Stewart DJ, Stephenson SK, Cox RA. Hydrolysis of N2O5 on sub-micron sulfate aerosols. Physical Chemistry Chemical Physics 2003; 5: 3453-3463.
- Kane SM, Caloz F, Leu MT. Heterogeneous Uptake of Gaseous N₂O₅ by (NH₄)₂SO₄, NH₄HSO₄, and H₂SO₄ Aerosols. The Journal of Physical Chemistry A 2001; 105: 6465-6470.
- Kiendler-Scharr A, Mensah AA, Friese E, Topping D, Nemitz E, Prevot ASH, et al. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters 2016; 43: 7735-7744.
- Lee BS, Wang JL. Concentration variation of isoprene and its implications for peak ozone concentration. Atmospheric Environment 2006; 40: 5486-5495.
- Li L, Li H, Zhang XM, Wang L, Xu LH, Wang XZ, et al. Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China. Journal of Environmental Sciences 2014; 26: 214-223.
- Li L, Wu F, Meng X. Seasonal and Diurnal Variation of Isoprene in the Atmosphere of Beijing. Environmental Monitoring in China 2013: 29: 120-124.
- Liebmann J, Karu E, Sobanski N, Schuladen J, Ehn M, Schallhart S, et al. Direct measurement of NO3 radical reactivity in a boreal forest. Atmospheric Chemistry and Physics 2018a; 18: 3799-3815.
- Liebmann JM, Muller JBA, Kubistin D, Claude A, Holla R, Plass-Dulmer C, et al. Direct measurements of NO3 reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity. Atmospheric Chemistry and Physics 2018b; 18: 12045-12059.
- Liebmann JM, Muller JBA, Kubistin D, Claude A, Holla R, Plass-Dülmer C, et al. Direct measurements of NO<sub>3</sub> reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity. Atmospheric Chemistry and Physics 2018c; 18: 12045-12059.
- Liebmann JM, Schuster G, Schuladen JB, Sobanski N, Lelieveld J, Crowley JN. Measurement of ambient NO3 reactivity: design, characterization and first deployment of a new instrument. Atmospheric Measurement Techniques 2017; 10: 1241-1258.
- Mao J, Li L, Li J, Sulaymon ID, Xiong K, Wang K, et al. Evaluation of Long-Term Modeling Fine Particulate Matter and Ozone in China During 2013–2019. Frontiers in Environmental Science 2022; 10.
- Meng X, Hu EJ, Li XT, Huang ZH. Experimental and kinetic study on laminar flame speeds of styrene and ethylbenzene. Fuel 2016; 185: 916-924.
- Miller RR, Newhook R, Poole A. Styrene production, use and human exposure. Critical Reviews in Toxicology 1994; 24: S1-S10.
- Mogel I, Baumann S, Bohme A, Kohajda T, von Bergen M, Simon JC, et al. The aromatic volatile organic compounds toluene, benzene and styrene induce COX-2 and prostaglandins in human lung epithelial cells via oxidative stress and p38 MAPK activation. Toxicology 2011; 289: 28-37.
- Nelson BS, Stewart GJ, Drysdale WS, Newland MJ, Vaughan AR, Dunmore RE, et al. In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics 2021; 21: 13609-13630.
- Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, et al. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics 2017; 17: 2103-2162.

Osthoff HD, Roberts JM, Ravishankara AR, Williams EJ, Lerner BM, Sommariva R, et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geoscience 2008; 1: 324-328.

- Peng Y, Mouat AP, Hu Y, Li M, McDonald BC, Kaiser J. Source appointment of volatile organic compounds and evaluation of anthropogenic monoterpene emission estimates in Atlanta, Georgia. Atmospheric Environment 2022; 288.
- Qin M, Murphy BN, Isaacs KK, McDonald BC, Lu Q, McKeen SA, et al. Criteria pollutant impacts of volatile chemical products informed by near-field modelling. Nature Sustainability 2020; 4: 129-137.
- Radica F, Della Ventura G, Malfatti L, Guidi MC, D'Arco A, Grilli A, et al. Real-time quantitative detection of styrene in atmosphere in presence of other volatile-organic compounds using a portable device. Talanta 2021; 233: 7.
- Riba ML, Tathy JP, Tsiropoulos N, Monsarrat B, Torres L. Diurnal variation in the concentration of α and β -pinene in the landes forest (France). Atmospheric Environment 1987; 21: 191-193.
- Schaeffer V, Bhooshan B, Chen S, Sonenthal J, Hodgson A. Characterization of Volatile Organic Chemical Emissions From Carpet Cushions. Journal of the Air & Waste Management Association (1995) 1996; 46: 813-820.
- Stark H, Lerner BM, Schmitt R, Jakoubek R, Williams EJ, Ryerson TB, et al. Atmospheric in situ measurement of nitrate radical (NO3) and other photolysis rates using spectroradiometry and filter radiometry. Journal of Geophysical Research-Atmospheres 2007; 112: 11.
- Stutz J, Wong KW, Lawrence L, Ziemba L, Flynn JH, Rappengluck B, et al. Nocturnal NO3 radical chemistry in Houston, TX. Atmospheric Environment 2010; 44: 4099-4106.
- Tan ZF, Fuchs H, Lu KD, Hofzumahaus A, Bohn B, Broch S, et al. Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals. Atmospheric Chemistry and Physics 2017; 17: 663-690.
- Tang WC, Hemm I, Eisenbrand G. Estimation of human exposure to styrene and ethylbenzene. Toxicology 2000; 144: 39-50.
- Vrekoussis M, Mihalopoulos N, Gerasopoulos E, Kanakidou M, Crutzen PJ, Lelieveld J. Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean. Atmospheric Chemistry and Physics 2007; 7: 315-327.
- Wang H, Lu K, Chen X, Zhu Q, Chen Q, Guo S, et al. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science & Technology Letters 2017a; 4: 416-420.
- Wang H, Lu K, Guo S, Wu Z, Shang D, Tan Z, et al. Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics 2018a; 18: 9705-9721.
- Wang H, Ma X, Tan Z, Wang H, Chen X, Chen S, et al. Anthropogenic monoterpenes aggravating ozone pollution. National Science Review 2022.
- Wang H, Wang H, Lu X, Lu K, Zhang L, Tham YJ, et al. Increased night-time oxidation over China despite widespread decrease across the globe. Nature Geoscience 2023.
- Wang HC, Lu KD, Chen SY, Li X, Zeng LM, Hu M, et al. Characterizing nitrate radical budget trends in Beijing during 2013-2019. Science of the Total Environment 2021; 795: 9.
- Wang HC, Lu KD, Guo S, Wu ZJ, Shang DJ, Tan ZF, et al. Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics 2018b; 18: 9705-9721.
- Wang HC, Lu KD, Tan ZF, Sun K, Li X, Hu M, et al. Model simulation of NO3, N2O5 and CINO2 at a rural site in Beijing during CAREBeijing-2006. Atmospheric Research 2017b; 196: 97-107.
- Wayne RP, Barnes I, Biggs P, Burrows JP, Canosa-Mas CE, Hjorth J, et al. The nitrate radical: physics, chemistry, and the atmosphere. Atmospheric Environment, Part A (General Topics) 1991; 25A: 1-203.
- Wu K, Yang X, Chen D, Gu S, Lu Y, Jiang Q, et al. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research 2020; 231.
- Wu L, Sun Y, Tian Y, Su D. Composition Spectrum of Biogenic Volatile Organic Compounds Released by Typical Flowers in

66	7 Beijing. Enuivonmental Science and Technology 2014; 37: 154-158.
66	8 Xia C, Xiao L. Estimation of biogenic volatile organic compounds emissions in Jing-Jin-Ji. Acta Scientiae Circumstantiae
66	9 2019; 39: 2680-2689.
67	O Yang Y, Wang YH, Zhou PT, Yao D, Ji DS, Sun J, et al. Atmospheric reactivity and oxidation capacity during summer at a
67	suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics 2020; 20: 8181-8200.
67	2 Yuan ZB, Lau AKH, Shao M, Louie PKK, Liu SC, Zhu T. Source analysis of volatile organic compounds by positive matrix
67	factorization in urban and rural environments in Beijing. Journal of Geophysical Research-Atmospheres 2009;
67	4 114: 14.
67	5 Zhu J, Wang S, Zhang S, Xue R, Gu C, Zhou B. Changes in NO3 Radical and Its Nocturnal Chemistry in Shanghai From 2014
67	to 2021 Revealed by Long - Term Observation and a Stacking Model: Impact of China's Clean Air Action Plan.
67	Journal of Geophysical Research: Atmospheres 2022; 127.
67	8 Zielinska B, Sagebiel JC, Harshfield G, Gertler AW, Pierson WR. Volatile organic compounds up to C-20 emitted from motor
67	9 vehicles; Measurement methods. Atmospheric Environment 1996; 30: 2269-2286.
68	0 Zilli M, Palazzi E, Sene L, Converti A, Del Borghi M. Toluene and styrene removal from air in biofilters. Process Biochemistry
68	1 2001; 37: 423-429.
68	Zou Y, Deng X, Li F, Wang B, Tan H, Deng T, et al. Variation characteristics, chemical reactivity and sources of isoprene in
68	the atmosphere of Guangzhou. Acta Scientiae Circumstantiae 2015; 35: 647-655.