# SUPPLEMENT FOR THE RESPONSE TO REVIEWER #2

### Number of tables:1 Number of figures: 3

### **Table list**

Table S4 in the revised supplement (Table S3 in the original submission): Comparison of the annual  $F_d$  of N and S in this and other studies (kg N/S ha<sup>-1</sup> yr<sup>-1</sup>).

#### **Figure list**

Figure 5 in the revised manuscript: The interannual variability of N and S deposition, emissions and component proportion in China from 2005 to 2020. The emission data over China were taken from MEIC.

Figure 7 in the revised manuscript: The spatial distributions of N and S deposition flux in 2005-2020.

Figure 9 in the revised manuscript: Annual mean D/E ratio of OXN, RDN and sulfur from 2005 to 2020 in different regions (a) and linear relationship between regional deposition and emissions (b-d).

Table S4 in the revised supplement (Table S3 in the original submission): Comparison of the annual  $F_d$  of N and S in this and other studies (kg N/S ha<sup>-1</sup> yr<sup>-1</sup>).

| Reference              | Study region    | Research scale   | Study     |         | Dry deposition   |          |                 |                       |        |                   | Wet/bulk deposition   |          |                   | Total deposition |      |
|------------------------|-----------------|------------------|-----------|---------|------------------|----------|-----------------|-----------------------|--------|-------------------|-----------------------|----------|-------------------|------------------|------|
|                        |                 |                  | period    | $NO_2$  | HNO <sub>3</sub> | $NO_3^-$ | NH <sub>3</sub> | $\mathrm{NH_{4}^{+}}$ | $SO_2$ | SO4 <sup>2-</sup> | $\mathrm{NH_{4}^{+}}$ | $NO_3^-$ | SO4 <sup>2-</sup> | Ν                | S    |
| This study             | China           | Grid level       | 2005-2020 | 3.4     | 5.3              | 1.7      | 10.3            | 4.2                   | 15.5   | 1.2               | 3.3                   | 4.6      | 6.4               | 32.9             | 23.1 |
| Nowlan et al. (2014)   | China           | Grid level       | 2005-2007 | 0.2     |                  |          |                 |                       |        |                   |                       |          |                   |                  |      |
| Lye and Tian (2007)    | China           | Grid level       | 2003      | 2.9     |                  |          |                 |                       |        |                   | 7.1                   | 2.8      |                   | 12.9             |      |
| Jia et al. (2014)      | China           | Grid level       | 1980-2010 |         |                  |          |                 |                       |        |                   |                       |          |                   |                  |      |
| Jia et al. (2016)      | China           | Grid level       | 2005-2014 | 0.6     | 1.1              | 0.1      | 5.4             | 0.3                   |        |                   | 13.9                  |          |                   |                  |      |
| Tan et al. (2022)      | China           | Grid level       | 2010      |         |                  |          |                 |                       |        |                   | 4.2                   | 3.4      |                   |                  |      |
| Itahashi et al. (2018) | China           | Grid level       | 2010      |         |                  |          |                 |                       |        |                   | 3.5                   | 2.5      |                   |                  |      |
| Zhao et al. (2017)     | China           | Grid level       | 2008-2012 | 0.3     | 1.7              | 1.0      | 0.5             | 2.6                   |        |                   | 6.6                   | 3.4      |                   | 18.1             |      |
| Xu et al. (2015)       | China           | 43 sites         | 2010-2014 | 0.2-9.8 | 0.2-16.6         | 0.1-4.5  | 0.5-16.0        | 0.1-11.7              |        |                   | 1.0-19.1              | 0.5-20.1 |                   | 39.9             |      |
| Xu et al. (2019)       | China           | 32 sites         | 2010-2015 | 3.1     | 5.2              | 1.4      | 9.6             | 3.7                   |        |                   | 11.4                  | 10.3     |                   |                  |      |
| Wen et al. (2020)      | China           | 66 sites         | 2011-2018 |         |                  | 22.5     |                 |                       |        |                   | 19.4                  |          |                   |                  |      |
| Pan et al. (2012)      | North China     | 10 sites         | 2007-2010 | 0.8-4.5 |                  | 2.2-3.1  | 8.1-64.2        | 1.7-5.5               |        |                   | 10.3-22.0             | 3.4-10.2 |                   | 60.6             |      |
| Pan et al. (2013)      | North China     | 10 sites         | 2007-2010 |         |                  |          |                 |                       | 32.4   | 12.8              |                       |          | 19.6              |                  | 64.8 |
| Zhu et al. (2015)      | China           | Grid level       | 2013      |         |                  |          |                 |                       |        |                   | 7.3                   | 5.9      |                   |                  |      |
| Yu et al. (2016)       | China           | 43 sites         | 2009-2014 |         |                  |          |                 |                       |        |                   |                       | 32.9     | 116.0             |                  |      |
| Yu et al. (2019)       | China           | Grid level       | 1985-2015 | 0.8     | 2.0              | 2.7      | 0.5             | 4.3                   |        |                   | 5.9                   | 4.2      |                   | 20.4             |      |
| Li et al. (2019)       | China           | Grid level       | 2010      |         |                  |          |                 |                       |        |                   |                       |          | 71.5              |                  |      |
| Li et al. (2020)       | China           | Grid level       | 2011-2016 |         |                  |          |                 |                       |        |                   | 5.9                   | 13.3     | 33.4              |                  |      |
| Liu et al. (2016a)     | Southwest China | 1 site           | 2003-2013 |         |                  |          |                 |                       |        |                   | 17.5                  | 8.2      | 21.7              |                  |      |
| Liu et al. (2016b)     | China           | 225 data records | 2003-2014 |         |                  |          |                 |                       |        |                   | 6.8                   | 5.4      |                   |                  |      |
| Liu et al. (2016c)     | China           | 174 sites        | 2000-2013 |         |                  |          |                 |                       |        |                   |                       |          | 23.0              |                  |      |
| Liu et al. (2017a)     | China           | Grid level       | 2010-2012 |         |                  |          |                 |                       |        |                   |                       | 5.8      |                   |                  |      |

| Reference                 | Study region    | Research scale | Study     | Dry deposition  |                  |          |                 |                       |                 |                   | Wet/bulk deposition   |          |                   | Total deposition |          |
|---------------------------|-----------------|----------------|-----------|-----------------|------------------|----------|-----------------|-----------------------|-----------------|-------------------|-----------------------|----------|-------------------|------------------|----------|
|                           |                 |                | period    | NO <sub>2</sub> | HNO <sub>3</sub> | $NO_3^-$ | $\mathrm{NH}_3$ | $\mathrm{NH_{4}^{+}}$ | SO <sub>2</sub> | SO4 <sup>2-</sup> | $\mathrm{NH_{4}^{+}}$ | $NO_3^-$ | SO4 <sup>2-</sup> | Ν                | S        |
| Liu et al. (2017b)        | China           | Grid level     | 2012      |                 |                  | 1.5      |                 |                       |                 |                   |                       |          |                   |                  |          |
| Liu et al. (2021)         | China           | Grid level     | 2008-2016 |                 |                  |          |                 |                       |                 |                   | 6.5                   |          |                   |                  |          |
| Luo et al. (2016)         | China           | 16 sites       | 2010-2012 |                 |                  |          |                 |                       | 2.3-26.5        | 0.5-3.4           |                       |          |                   |                  |          |
| Ge et al. (2014)          | China           | Grid level     | 2007      |                 |                  |          |                 |                       |                 |                   | 9.1                   | 9.1      | 48.8              | 35.0             | 83.3     |
| Kuribayashi et al. (2012) | China           | 6 sites        | 2001-2005 |                 |                  |          |                 |                       | 23.5            | 3.8               |                       |          |                   | 49.4             |          |
| Zhang et al. (2017)       | China           | Grid level     | 2007-2014 | 0.005-8.54      |                  |          |                 |                       |                 |                   |                       |          |                   |                  |          |
| Zhou et al. (2021)        | China           | Grid level     | 2013-2018 | 2.1-3.1         |                  |          |                 |                       | 7.5-18.4        |                   |                       |          |                   |                  |          |
| Qiao et al. (2015a)       | Sichuan, China  | 1 site         | 2010-2011 |                 |                  |          |                 |                       |                 |                   | 1.4                   | 1.3      | 8.1               |                  |          |
| Qiao et al. (2015b)       | Sichuan, China  | Grid level     | 2010-2011 |                 |                  |          |                 |                       |                 |                   |                       | 0.3      | 2.8               |                  |          |
| Zhang et al. (2022)       | Tibetan Plateau | 27 sites       |           |                 |                  |          |                 |                       |                 |                   |                       |          |                   |                  |          |
| Larssen et al. (2011)     | South China     | 4 sites        | 2001-2004 |                 |                  |          |                 |                       |                 |                   | 0.4-0.9               | 0.2-0.5  | 0.9-1.9           | 0.4-2.5          | 1.5-10.5 |
| Jiang et al. (2020)       | Hunan, China    | 5 sites        | 2015-2016 |                 |                  |          |                 |                       | 8.6             |                   |                       |          | 18.2              |                  | 26.8     |

# Table S4 (continued)

Figure 5 in the revised manuscript: The interannual variability of N and S deposition, emissions and component proportion in China from 2005 to 2020. The emission data over China were taken from MEIC.





Figure 7 in the revised manuscript: The spatial distributions of N and S deposition flux in 2005-2020.

Figure 9 in the revised manuscript: Annual mean D/E ratio of OXN, RDN and sulfur from 2005 to 2020 in different regions (a) and linear relationship between regional deposition and emissions (b-d).



#### References

Ge, B. Z., Wang, Z. F., Xu, X. B., Wu, J. B., Yu, X. L., and Li, J.: Wet deposition of acidifying substances in different regions of China and the rest of East Asia: modeling with updated NAQPMS, Environ. Pollut., 187, 10-21, <u>https://doi.org/10.1016/j.envpol.2013.12.014</u>, 2014.

Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S.-i., Pan, Y., and Wang, Y.: A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia, Atmos. Chem. Phys., 18, 2835-2852, https://doi.org/10.5194/acp-18-2835-2018, 2018.

Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., and Zuo, Y.: Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements, Sci. Rep., 6, 19810, https://doi.org/10.1038/srep19810, 2016.

Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., Zuo, Y., Zhang, D., and Wang, Q.: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity, Sci. Rep., 4, 3763, <u>https://doi.org/10.1038/srep03763</u>, 2014.

Jiang, W., Zhu, X., Shen, J., Huang, Z., Gong, D., Li, Y., and Wu, J.: Atmospheric sulfur deposition in a paddy rice region in the hilly region in central china, China Environ. Sci., 40, 4848-4856, http://www.zghjkx.com.cn/EN/Y2020/V40/I11/4848, 2020. (in Chinese)

Kuribayashi, M., Ohara, T., Morino, Y., Uno, I., Kurokawa, J.-i., and Hara, H.: Long-term trends of sulfur deposition in East Asia during 1981–2005, Atmos. Environ., 59, 461-475, https://doi.org/10.1016/j.atmosenv.2012.04.060, 2012.

Larssen, T., Duan, L., and Mulder, J.: Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China: implications for acidification, Environ. Sci. Technol., 45, 1192-1198, https://doi.org/10.1021/es103426p, 2011.

Li, R., Cui, L., Fu, H., Zhao, Y., Zhou, W., and Chen, J.: Satellite-based estimates of wet ammonium (NH<sub>4</sub>-N) deposition fluxes across China during 2011-2016 using a space-time ensemble model, Environ. Sci. Technol., 54, 13419-13428, https://doi.org/10.1021/acs.est.0c03547, 2020.

Li, R., Cui, L., Zhao, Y., Meng, Y., Kong, W., and Fu, H.: Estimating monthly wet sulfur (S) deposition flux over China using an ensemble model of improved machine learning and geostatistical approach, Atmos. Environ., 214, 116884, <u>https://doi.org/10.1016/j.atmosenv.2019.116884</u>, 2019.

Liaw, A. and Wiener, M.: Classification and regression by randomForest, 18-22,

Liu, L., Zhang, X., and Lu, X.: The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China, Environ Sci. Pollut. Res. Int., 23, 6363-6375, https://doi.org/10.1007/s11356-015-5844-1, 2016a.

Liu, L., Zhang, X., Wang, S., Lu, X., and Ouyang, X.: A review of spatial variation of inorganic nitrogen (N) wet deposition in China, PLoS One, 11, e0146051, https://doi.org/10.1371/journal.pone.0146051, 2016b.

Liu, L., Zhang, X., Wang, S., Zhang, W., and Lu, X.: Bulk sulfur (S) deposition in China, Atmos. Environ., 135, 41-49, <u>https://doi.org/10.1016/j.atmosenv.2016.04.003</u>, 2016c.

Liu, L., Yang, Y., Xi, R., Zhang, X., Xu, W., Liu, X., Li, Y., Liu, P., and Wang, Z.: Global wetreduced nitrogen deposition derived from combining satellite measurements with output from a chemistry transport model, J. Geophys. Res., 126, https://doi.org/10.1029/2020jd033977, 2021.

Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Chen, D., Zhang, X., Wang, S., and Zhang, W.: Estimation of monthly bulk nitrate deposition in China based on satellite NO<sub>2</sub> measurement by the Ozone Monitoring Instrument, Remote Sens. Environ., 199, 93-106, https://doi.org/10.1016/j.rse.2017.07.005, 2017a.

Liu, L., Zhang, X., Zhang, Y., Xu, W., Liu, X., Zhang, X., Feng, J., Chen, X., Zhang, Y., Lu, X., Wang, S., Zhang, W., and Zhao, L.: Dry particulate nitrate deposition in China, Environ. Sci. Technol., 51, 5572-5581, https://doi.org/10.1021/acs.est.7b00898, 2017b.

Luo, X., Pan, Y., Goulding, K., Zhang, L., Liu, X., and Zhang, F.: Spatial and seasonal variations of atmospheric sulfur concentrations and dry deposition at 16 rural and suburban sites in China, Atmos. Environ., 146, 79-89, <u>https://doi.org/10.1016/j.atmosenv.2016.07.038</u>, 2016.

Lye, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data, J. Geophys. Res., 112, <u>https://doi.org/10.1029/2006jd007990</u>, 2007.

Nowlan, C. R., Martin, R. V., Philip, S., Lamsal, L. N., Krotkov, N. A., Marais, E. A., Wang, S., and Zhang, Q.: Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements, Global Biogeochem. Cycles, 28, 1025-1043, <u>https://doi.org/10.1002/2014gb004805</u>, 2014.

Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12, 6515-6535, https://doi.org/10.5194/acp-12-6515-2012, 2012.

Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Spatial distribution and temporal variations of atmospheric sulfur deposition in Northern China: insights into the potential acidification risks, Atmos. Chem. Phys., 13, 1675-1688, https://doi.org/10.5194/acp-13-1675-2013, 2013.

Qiao, X., Xiao, W., Jaffe, D., Kota, S. H., Ying, Q., and Tang, Y.: Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China, Sci. Total Environ., 511, 28-36, <u>https://doi.org/10.1016/j.scitotenv.2014.12.028</u>, 2015a.

Qiao, X., Tang, Y., Hu, J., Zhang, S., Li, J., Kota, S. H., Wu, L., Gao, H., Zhang, H., and Ying, Q.: Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results, Sci. Total Environ., 532, 831-839, https://doi.org/10.1016/j.scitotenv.2015.05.108, 2015b.

Tan, J., Su, H., Itahashi, S., Tao, W., Wang, S., Li, R., Fu, H., Huang, K., Fu, J. S., and Cheng, Y.: Quantifying the wet deposition of reactive nitrogen over China: Synthesis of observations and models, Sci. Total Environ., 851, 158007, https://doi.org/10.1016/j.scitotenv.2022.158007, 2022.

Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., Luo, X., Shen, J., Wang, W., Li, K., Pan, Y., Zhang, L., Li, W., Collett, J. L., Jr., Zhong, B., Wang, X., Goulding, K., Zhang, F., and Liu, X.: Changes of nitrogen deposition in China from 1980 to 2018, Environ. Int., 144, 106022, https://doi.org/10.1016/j.envint.2020.106022, 2020.

Xu, W., Zhang, L., and Liu, X.: A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China, Sci. Data, 6, 51, <u>https://doi.org/10.1038/s41597-019-0061-2</u>, 2019.

Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lu, S. H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z., Dore, A. J., Tang, S., Collett, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China, Atmos. Chem. Phys., 15, 12345-12360, https://doi.org/10.5194/acp-15-12345-2015, 2015.

Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X., Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of atmospheric nitrogen deposition in China over the past decade, Nature Geosci., 12, 424-431, <u>https://doi.org/10.1038/s41561-019-0352-4</u>, 2019.

Yu, H., He, N., Wang, Q., Zhu, J., Xu, L., Zhu, Z., and Yu, G.: Wet acid deposition in Chinese natural and agricultural ecosystems: Evidence from national-scale monitoring, J. Geophys. Res.: Atmospheres, 121, 10,995-911,005, https://doi.org/10.1002/2015jd024441, 2016.

Zhang, B., Li, Z., Feng, Q., Gui, J., Zhao, Y., and Zhang, B.: Environmental significance of atmospheric nitrogen deposition in the transition zone between the Tibetan Plateau and arid region, Chemosphere, 307, 136096, https://doi.org/10.1016/j.chemosphere.2022.136096, 2022.

Zhang, X. Y., Lu, X. H., Liu, L., Chen, D. M., Zhang, X. M., Liu, X. J., and Zhang, Y.: Dry deposition of NO<sub>2</sub> over China inferred from OMI columnar NO<sub>2</sub> and atmospheric chemistry transport model, Atmos. Environ., 169, 238-249, <u>https://doi.org/10.1016/j.atmosenv.2017.09.017</u>, 2017.

Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y., and Duan, L.: Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance, Atmos. Environ., 153, 32-40, <u>https://doi.org/10.1016/j.atmosenv.2017.01.018</u>, 2017.

Zhou, K., Zhao, Y., Zhang, L., and Xi, M.: Declining dry deposition of NO<sub>2</sub> and SO<sub>2</sub> with diverse spatiotemporal patterns in China from 2013 to 2018, Atmos. Environ., 262, 118655, https://doi.org/10.1016/j.atmosenv.2021.118655, 2021.

Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., and Jia, Y.: The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems, Sci. Total Environ., 511, 777-785, <u>https://doi.org/10.1016/j.scitotenv.2014.12.038</u>, 2015.