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Abstract. We present a versatile, powerful, and user-friendly chemical data assimilation toolkit for 

simultaneously optimizing emissions and concentrations of chemical species based on atmospheric 10 

observations from satellites or suborbital platforms. The CHemistry and Emissions REanalysis Interface 

with Observations (CHEEREIO) exploits the GEOS-Chem chemical transport model and a localized 

ensemble transform Kalman filter algorithm (LETKF) to determine the Bayesian optimal (posterior) 

emissions and/or concentrations of a set of species based on observations and prior information, using an 

easy-to-modify configuration file with minimal changes to the GEOS-Chem or LETKF code base. The 15 

LETKF algorithm readily allows for non-linear chemistry and produces flow-dependent posterior error 

covariances from the ensemble simulation spread. The object-oriented Python-based design of 

CHEEREIO allows users to easily add new observation operators such as for satellites. CHEEREIO takes 

advantage of the HEMCO modular structure of input data management in GEOS-Chem to update 

emissions from the assimilation process independently from the GEOS-Chem code. It can seamlessly 20 

support GEOS-Chem version updates and is adaptable to other chemical transport models with similar 

modular input data structure. A postprocessing suite combines ensemble output into consolidated NetCDF 

files and supports a wide variety of diagnostic data and visualizations. We demonstrate CHEEREIO’s 

capabilities with an out-of-the-box application, assimilating global methane emissions and concentrations 

at weekly temporal resolution and 2°×2.5° spatial resolution for 2019 using TROPOMI satellite 25 

observations. CHEEREIO achieves a 50-fold improvement in computational performance compared to 

the equivalent analytical inversion of TROPOMI observations.  
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1 Introduction 

Data assimilation is a field of applied mathematics that studies the most probable combination of a 30 

physical model, observational data, and prior information to define the state of a system. Many modern 

data assimilation algorithms have been motivated by problems in numerical weather prediction [Kalnay 

2003], and the field has more recently expanded to address problems in atmospheric chemistry [Elbern 

and Schmidt, 2001; Kahnert 2008; Bocquet et al, 2015]. The physical model, also called the forward 

model, predicts the observations on the basis of knowledge of the state of the system. For assimilation of 35 

chemical concentrations (chemical data assimilation), this forward model is a chemical transport model 

(CTM) that simulates the 3-D fields of species concentrations by solving the corresponding continuity 

equations [Brasseur and Jacob, 2017]. With the advent of satellite constellations measuring atmospheric 

composition together with increasingly dense networks of surface observations, chemical data 

assimilation is now commonly used to quantify emissions [Miyazaki et al., 2017; Jiang et al., 2018; Qu 40 

et al., 2019a], to construct 3-D concentration fields for chemical reanalyses and forecasts [Miyazaki et 

al., 2015; 2020; Flemming et al., 2015; Ma et al., 2019], and to diagnose CTM biases [Emili et al., 2014; 

Stanevich et al., 2021]. The use of chemical data assimilation to quantify emissions is commonly referred 

to as an inversion in the atmospheric chemistry community.  

Most data assimilation algorithms involve the optimization of a Bayesian scalar cost function 𝐽(𝒙) 45 

assuming Gaussian error probability density functions (pdfs) [Brasseur and Jacob, 2017]: 
 𝐽(𝒙) = &𝒙 − 𝒙

𝒃
(
"(𝑷𝒃)#𝟏&𝒙 − 𝒙

𝒃
( + &𝒚 − 𝐻(𝒙)(

"𝑹#𝟏(𝒚 − 𝐻(𝒙)) (1) 

Here 𝒙 is the state vector to be optimized (consisting of emissions and/or concentrations), 𝒙𝒃 is the initial 

prediction of the state vector based on prior information or a forward model forecast, 𝑷𝒃 is the prior (also 

called background or forecast) error covariance matrix, 𝒚  is the suite of observed atmospheric 

concentrations arranged as a vector, 𝐻(∙) is an observation operator that transforms the state vector 𝒙 50 

from the state space to the observation space, and 𝑹 is the observational error covariance matrix. In the 

case of a state vector of emission fluxes, the observation operator 𝐻(∙) is a CTM mapping emissions to 

the observed concentrations. Solving for the minimum of the cost function ( ∇𝐽(𝒙) = 𝟎) defines the 

optimized posterior (also called analysis) estimate 𝒙𝒂 for the state vector.  
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In the case where 𝐻(∙) is linear (i.e., representable by a matrix), an analytic solution is available 

with closed-form characterization of the posterior error covariance matrix [Rodgers, 2000]. In nonlinear 

or high-dimensional linear cases, a variational approach can be used instead to iteratively minimize the 

cost function by numerical methods. The three-dimensional variational approach  (3D-Var) calculates the 

gradient of the cost function for observations 𝒚 in a time window sufficiently short that the time-evolution 65 

of the physical system can be neglected [Asch et al., 2016]. Four-dimensional variational assimilation 

(4D-Var) accounts for nonlinear evolution of the system over the course of an assimilation time window 

through use of the adjoint of the physical model, which requires construction of the tangent linear model 

(TLM) for the CTM; the TLM aligns the model state with observations in time while preserving the 

correct evolution of the physical system [Courtier et al., 1994].  70 

Kalman filters are a general class of data assimilation systems where the time evolution of the 

state vector is optimized by sequential assimilation of a time series of observations in which the optimal 

solution at a given time step  serves as basis for the prior estimate in the next time step. Assimilation thus 

proceeds over successive assimilation time windows, though the Kalman filter can also be run backward 

[Rodgers, 2000]. The original Kalman filter requires a linear forward model, but it can be combined with 75 

the TLM of the physical model to form the extended Kalman filter (EKF) which applies to nonlinear 

problems. The EKF has been used for atmospheric chemistry problems such as quantifying emissions of 

nitrogen oxides (NOx ≡ NO + NO2) from NO2 satellite data [Mijling and van der A, 2012; Ding et al., 

2017].  

 Ensemble Kalman filters for chemical data assimilation, including the localized ensemble 80 

transform Kalman filter (LETKF) used in this work [Hunt et al., 2007], apply an ensemble of CTM 

simulations over successive assimilation time windows to approximate the prior error covariance matrix 

𝑷𝒃 and its evolution over time.  Like EKF and 4D-VAR, LETKF can be readily applied to nonlinear 

problems; however, it avoids the need for a TLM because it is powered by an ensemble of CTM 

simulations which capture the nonlinearity of the system. Each ensemble member is initialized with 85 

random perturbations applied to emissions or concentrations of interest, and the ensemble is evolved for 

the assimilation time window using the CTM. At assimilation time, the ensemble spread is used to 

approximate the prior error covariance matrix 𝑷𝒃  and from there solve for the minimum of the cost 
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function. The ensemble is then updated to reflect the optimized state, including emissions and 100 

concentrations, and the cycle repeats as in the case of the classic Kalman filter. Localization in LETKF 

means that optimization of a given state vector element is done using only observations in a localized 

domain of influence in order to make the problem computationally tractable. In practice, even though the 

state vector optimized is quite large, the ensemble can be of modest size (typically 32 or 48 members) 

and the LETKF will converge on the correct solution as time progresses [Hunt et al., 2007]. 105 

LETKF has been used extensively in chemical data assimilation, and has benefits compared with 

other algorithms, most notably the ease of implementation for a wide variety of simulations. LETKF and 

related ensemble Kalman filter methods have been used for CO2 flux inversions [Liu et al., 2016; Kong 

et al., 2022], single-species studies of NO2, SO2, and NH3 emissions [Miyazaki et al., 2012a; Dai et al., 

2021; van der Graaf et al., 2022], and analysis of methane emission trends [Feng et al., 2022; Zhu et al., 110 

2022]. Multi-species assimilation, 4D assimilation of temporally scattered observations, and flexibility in 

state vector definition are easy to implement under the LETKF framework; the algorithm also provides 

detailed error characterization including correlations as part of the solution. However, because ensemble 

methods rely on a relatively small number of simulations to simulate the problem space, the benefits of 

the LETKF come with issues of undersampling which will be discussed in section 2.2. 115 

The ability of LETKF to simultaneously assimilate concentrations and emissions is of special 

importance to atmospheric chemists. In chemical data assimilation for operational forecasting, updates 

are often only applied to concentrations but this fails to address the root issue of incorrect emissions, an 

especially acute problem for species with short lifetimes such as NOx [Inness et al., 2015]. On the other 

hand, inverse studies focused on optimizing emissions attribute all systematic discrepancies between the 120 

model and observations to emissions, even though CTM transport or observing errors may be responsible; 

indeed, CO2 flux estimates calculated via inverse methods have been shown to be sensitive to transport 

errors [Schuh et al., 2019; 2022]. Optimizing concentrations as well as emissions allows the data 

assimilation system to address both issues, assuming that prior error settings are posed appropriately. 

While this is possible to do with other algorithms, it is easy to do with LETKF due to the ability to add 125 

any additional parameter to the prior error covariance matrix and apply variable localization methods to 

optimize the application of observational constraints on different sets of concentrations and emissions. 
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Here we present the CHemistry and Emissions REanalysis Interface with Observations 

(CHEEREIO), a user-friendly tool that provides a platform for versatile LETKF chemical data 

assimilation powered by the widely-used GEOS-Chem CTM. Implemented as a lightweight wrapper for 130 

GEOS-Chem, CHEEREIO gives users the ability to design and run chemical data assimilation 

applications without modifying model source code or learning a new codebase. CHEEREIO’s flexibility 

and simple design are enabled by the LETKF algorithm and the modular structure of GEOS-Chem, in 

particular its HEMCO data input component [Keller et al., 2014; Lin et al, 2021]. CHEEREIO is designed 

to be easily configurable for a range of applications including multi-species data assimilation, joint 135 

optimization of emissions and concentrations, and near-real-time monitoring of emissions. Coded in 

Python with an object-oriented framework, CHEEREIO readily accommodates new observation 

operators such as for new satellite instruments. CHEEREIO and all of its components are open source, 

ensuring scientific transparency. CHEEREIO complements existing open-source inversion tools 

including the Joint Effort for Data Assimilation Integration (JEDI), a C++ and Fortran-based platform for 140 

model-generic data assimilation [Trémolet and Auligné, 2020], and PyOSSE, another Python-based 

platform using GEOS-Chemfor observing system simulation experiments 

(https://www.geos.ed.ac.uk/~lfeng/) [Feng et al., 2023]. For atmospheric chemistry applications, 

CHEERIO is simpler to use than JEDI and more versatile than PyOSSE. This paper provides a high-level 

overview and demonstration of CHEEREIO; detailed documentation and user support are available online 145 

(cheereio.readthedocs.io).  

2 CHEEREIO components 

2.1 The physical model: GEOS-Chem 

GEOS-Chem is a three-dimensional CTM driven by assimilated meteorological data from the Goddard 

Earth Observation System (GEOS) of the NASA Global Modelling and Assimilation Office (GMAO). 150 

Two alternative data sets can be used, either the GEOS Fast Processing (GEOS-FP) data at 0.25°×0.3125° 

native resolution or the GEOS Modern-Era Retrospective Analysis for Research and Applications, 

version 2 (MERRA-2) data at 0.5°×0.625° native resolution. Both have 1-h temporal resolution for 
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transport (archived winds) and extend from the surface to the mesopause.  It simulates atmospheric 160 

species concentrations by solving the coupled 3-D Eulerian continuity equations on a global or user-

selected nested domain at the native grid resolution of the GEOS data or at degraded resolution for 

computational economy. Input data files are regridded on the fly to user-specified resolution using the 

Harmonized Emissions Component (HEMCO) [Keller et al., 2014; Lin et al., 2021]. CHEEREIO supports 

all GEOS-Chem applications from version 13.0.0 and later including oxidant-aerosol chemistry, aerosol-165 

only, carbon gases, and mercury, either as global or nested-grid regional simulations. GEOS-Chem High 

Performance (GCHP) [Eastham et al., 2018; Martin et al., 2022], which uses distributed memory rather 

than shared memory for parallelization, is not currently supported. 

HEMCO is a critical GEOS-Chem module enabling the interface with CHEEREIO. It can apply 

gridded scaling factors stored in netCDF files to any input field, such as emissions. This allows emissions 170 

updates calculated by CHEEREIO to be seamlessly loaded into GEOS-Chem without modification of 

source code.  

2.2 The data assimilation algorithm: Localized Ensemble Transform Kalman Filter (LETKF) 

The LETKF algorithm optimizes a state vector of emissions and concentrations to minimize the cost 

function in Eq. (1) [Hunt et al., 2007]. We initialize 𝑚 ensemble members at time to and run the forward 175 

model (GEOS-Chem) in parallel for a user-specified time (termed the assimilation window) for each of 

these ensemble members. Ensemble members can be thought of as a Monte Carlo sample representing 

the spread of atmospheric conditions resulting from our uncertainty in prior emissions; each member 

represents the atmospheric conditions from a random emissions perturbation sampled from a user-

specified PDF. Before assimilation begins, the ensemble is run for a spinup period to ensure the 180 

propagation of information from the perturbed emissions. Alternatively, the problem can also be set up 

by perturbing concentrations to represent prior uncertainty in the atmospheric state. Ensemble size is 

typically between 24 and 48, with the exact number to be determined by sensitivity testing, where the 

user identifies a size that balances error minimization with computational feasibility. Because ensemble 

methods randomly sample the parameter space, increasing ensemble size gradually yields diminishing 185 

return. This is unlike the analytical approach to inversions, where the number of simulations is set by the 
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size of the state vector and diminishing return is defined by the rank of the problem [Nesser et al., 2021]. 200 

. In general, fewer ensemble members are required if there are fewer parameters to optimize [Miyazaki et 

al., 2012b; Liu et al., 2019]. After the runs complete, we construct the state vectors 𝒙𝒊𝒃 representing the 

concentrations and/or emissions to be optimized for each of the m ensemble members (indexed by i).  

The LETKF algorithm, which we describe in the remainder of this section, is typically applied to 

very large state vectors, for which global optimization would be computationally prohibitive. The solution 205 

of Hunt et al. [2007] is to localize the calculation within a certain radius of the grid cell being optimized, 

considering only observations within that radius. Localized state vectors are formed by concatenating 

emissions at a given grid cell with concentrations within a given radius.  Beyond reducing state vector 

size, this approach creates an embarrassingly parallel problem, where the cost function can be minimized 

independently for every localized point. The Hunt et al. [2007] localization approach also minimizes 210 

spurious correlations, which emerge in ensemble approaches due to a limited sample size; because the 

Monte Carlo sample is far smaller than the dimensionality of the state vector, random points will be 

spuriously correlated in the prior covariance matrix 𝑷𝒃 encoded by the ensemble, leading to an incorrect 

assimilation increment. The spurious correlation problem is especially pronounced between distant grid 

cells where we would expect correlations to be near-zero, a problem eliminated by appropriate 215 

localization. Such localization in space is not generally useful in the analytical inversion approach, where 

distant correlations are set to zero and observations are ingested sequentially [Brasseur and Jacob, 2017].  

The precise radius used for localization should be determined by the user via sensitivity tests, considering 

that longer-lived species require larger localization radii; indeed, within a single inversion, multiple 

localization radii can be used for different components of the state vector [Miyazaki et al., 2012b]. For 220 

the remainder of the equations in this section, all vectors and matrices are localized and computations are 

performed in parallel. 

To optimize the emissions and concentrations of a given grid cell, we first construct the ensemble 

state vectors 𝒙𝒊𝒃  using model data. From these prior state vectors the prior perturbation matrix 𝑿𝒃  is 

formed from the m vector columns 𝑿𝒊𝒃: 225 
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𝑿𝒊𝒃 = 𝒙𝒊𝒃 − 𝒙𝒃333;	𝒙𝒃333 =

1
𝑚7𝒙𝒊𝒃

'

()*

 
(2) 

Here 𝑿𝒊𝒃 represents the ith column of the n x m matrix 𝑿𝒃 where n is the length of the state vector; each 

column of 𝑿𝒃 consists of the state vector from an ensemble member minus the mean state vector. The 240 

prior covariance matrix 𝑷𝒃 can be constructed by multiplying 𝑿𝒃 with its transpose (specifically, 𝑷𝒃 =

(𝑚 − 1)#*𝑿𝒃(𝑿𝒃)") but this is not used directly in LETKF calculations.  

The model predictions made during the assimilation window must be compared to observations. 

Hence we construct prior vectors of simulated observations 𝒚𝒊𝒃 and a corresponding simulated observation 

perturbation matrix 𝒀𝒃 formed from the m vector columns 𝒀𝒊𝒃: 245 

𝒀𝒊𝒃 = 𝒚𝒊𝒃 − 𝒚𝒃333;			𝒚𝒊𝒃 = 𝐻&𝒙𝒊
𝒃
(;				𝒚

𝒃333 =
1
𝑚7𝒚𝒊𝒃

'

()*

 
(3) 

4D-LETKF, the method used in CHEEREIO, constructs 𝒀𝒊𝒃 such that all simulated observations are timed 

to line up as close as possible with actual observations [Hunt et al., 2007]. 3D assimilation, by contrast, 

only aligns observations in space but uses a single model state (in particular, the state at assimilation time) 

to construct 𝒀𝒊𝒃, leading to significant representation error. For 4D-LETKF, we load in model history files 

closest in time to the observation of interest and accept a modest representation error; the user can specify 250 

the time resolution via the CHEEREIO configuration file. Hence in practice we apply the operator 𝐻(⋅) 

to the forward model history, not to the state vector which represents the model state at a specific point 

in time. Methods which make use of the TLM, like 4D-Var and EKF, avoid temporal representation error 

due to the continuous ingestion of observations on the internal time step of the TLM, but they require 

major time investment in TLM development and maintenance.  255 

Computation of the cost function in Eq. (1) involves inversion of the prior error covariance matrix 

𝑷𝒃 but this is not possible in the state space (of dimension n) because by construction 𝑷𝒃 is of rank 𝑚 −

1 (the columns of the 𝑛 × 𝑚 matrix 𝑿𝒃	sum to the 0 vector). Hence a posterior error covariance matrix 

𝑷𝒂  must be estimated in the 𝑚 − 1 dimensional subspace 𝑆  spanned by the ensemble perturbations, 

where the inverse is well-defined. The mathematics simplify by treating 𝑿𝒃 as a linear transformation 260 

from some m-dimensional space 𝑆= to 𝑆, allowing us to redefine the cost function optimization in 𝑆= where 
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the relevant quantities are well-behaved [Hunt et al., 2007]. The posterior error covariance in 𝑆= noted 265 

with a tilde 𝑷𝒂>  is an 𝑚 ×𝑚	matrix computed as follows: 
 

𝑷𝒂> =
?
(𝑚 − 1) ⋅ 𝑰
1 + Δ + 𝛾&𝒀

𝒃
(
"𝑹#*𝒀𝒃

C

#*

 
(4) 

The full derivation of 𝑷𝒂>  is given in Hunt et al. [2007]. Here 𝑰 is the 𝑚 ×𝑚	identity matrix, 𝑹 is the 

observational error covariance matrix, and 𝛾 is a regularization constant set by the user. 𝑷𝒂>  plays the same 

role in LETKF assimilation as the posterior covariance matrix 𝑷𝒂 plays in the classical Kalman filter, 

connecting the state vector entries so that the calculated update is consistent with the internal correlations 270 

of the system. The regularization constant effectively scales observational errors and is designed to 

balance the weight given to observations within the assimilation window. Δ is an inflation factor specified 

by the user, usually between 0 and 0.1, which accounts for overconfidence in the assimilated ensemble; 

Δ	does not affect the ensemble mean but it does increase the ensemble spread, with larger values pushing 

ensemble members away from the ensemble mean. In practice, ensemble spread can decrease with each 275 

assimilation cycle to values so small that the system is no longer able to update (near infinite confidence 

is given to the prior term, so subsequent observations carry no weight). Indeed, if 𝛾 balances the weight 

given to observations within the present assimilation window, Δ can be thought of as a term that balances 

the weight given to observations from all previous assimilation windows. 

 The mean posterior state vector in the original space is then given by 280 

 𝒙𝒂333 = 𝒙𝒃333 + 𝛾𝑿𝒃𝑷𝒂>&𝒀
𝒃
(
"𝑹#*(𝒚 − 𝒚𝒃333) (5) 

where 𝒚 is the vector of observations. The posterior perturbation matrix is given by 
 

𝑿𝒂 = 𝑿𝒃 D(𝑚 − 1)𝑷𝒂>E

𝟏
𝟐 

(6) 

From here, the new ensemble state vectors can be constructed by adding 𝒙𝒂333 back to each column of 𝑿𝒂. 

The LETKF gives error characterization from the assimilation; to obtain this, we need to transform 𝑷𝒂>  
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back from the space 𝑺G  to the original state space; since we defined 𝑺G  with the linear transformation 𝑿𝒃, 290 

the posterior error covariance matrix is given by  

 𝑷𝒂 = 𝑿𝒃𝑷𝒂>&𝑿
𝒃
(
" (7) 

With the ensemble updated and errors characterized, the ensemble can be evolved using GEOS-Chem for 

the next assimilation window. Importantly, the ensemble is not reinitialized for these new runs; the 

assimilated state of the previous assimilation window becomes the initial prior state of the next 

assimilation window. When the runs in the new assimilation window complete, the whole LETKF cycle 295 

begins again.  

 Many variations of the ensemble Kalman filter algorithms have been developed in the chemical 

data assimilation literature, each designed to better handle the behaviors of certain atmospheric 

constituents. For example, the Carbon Tracker CH4 system handles the assimilation of long-lived CH4 via 

a sliding-window approach, where surface fluxes from a given time period are estimated several times 300 

using a varying set of observations that evolve in time [Peters et al., 2005; Bruhwiler et al., 2014]. 

Similarly, the run-in-place method changes the behavior of the assimilation window to better handle long-

lived gases like CH4 [Liu et al., 2019]. With run-in-place activated, the LETKF assimilation update is 

calculated using a long period of observations (e.g. 1 week) but the assimilation window is advanced 

forward for a smaller amount of time (e.g. 1 day). Run-in-place simulations thus maintain linear growth 305 

in posterior perturbations and allow the period where the assimilation update is calculated to experience 

the emissions adjustment, giving the system more time to correct assimilation errors. CHEEREIO 

supports many of these variations on the LETKF, as discussed in Section 3. 

3 Description of the CHEEREIO platform 

In this section, we describe the implementation of the LETKF in the CHEEREIO platform. We designed 310 

this tool to ensure maximum scientific flexibility for a diverse user base, while maintaining an abstracted 

interface to make the tool easy to use. 
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3.1 General workflow 315 

Figure 1 shows a schematic of the CHEEREIO workflow including initialization, spinup, sequential 

GEOS-Chem forward model runs and LETKF assimilation, and postprocessing. Here we give a high-

level overview of how CHEEREIO can be customized and deployed for any chemical data assimilation 

applications with GEOS-Chem. In subsequent sections, we will offer more detailed descriptions of the 

software design and structure, omitting technical details provided in the web documentation 320 

(https://cheereio.readthedocs.io). 
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Figure 1: Schematic of the CHEEREIO workflow, divided into three steps: initialization, run time, and 
postprocessing. All simulations are initialized with a template GEOS-Chem run directory generated by 325 
CHEEREIO according to user-specified settings, which is then copied into an ensemble of m run 
directories, one per ensemble member, each with a unique set of emissions perturbed according to user 
settings. At run time, GEOS-Chem simulates atmospheric concentrations reflecting these perturbed 
emissions for each ensemble member, which are then compared to observations to generate an assimilated 
suite of concentrations and emissions via the LETKF procedure. After the specified period is assimilated, 330 
CHEEREIO postprocessing scripts consolidate the ensemble into a set of data files, figures, animations, 
and statistics for user analysis. Input data files are shown by dark blue cylinders at left, while user settings 
are shown at right.  
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The CHEEREIO software package includes a suite of shell and Python scripts for assimilation, 

run management, observation operations, and postprocessing, which can be separated into three main 335 

sequential periods in the CHEEREIO workflow, as shown in Figure 1: initialization time, run time, and 

postprocessing time. Before initialization begins, users specify the simulation they would like to run via 

an ensemble configuration file (ens_config.json). CHEEREIO generates a template GEOS-Chem run 

directory based on user settings, which is copied into an ensemble of m run directories, one per ensemble 

member, each with a unique set of emissions perturbed according to user settings (section 3.2). After the 340 

ensemble is initialized, the user submits a batch script which launches an ensemble of jobs, each running 

an instance of GEOS-Chem. Once the model simulation for the assimilation window completes, 

CHEEREIO gathers model output files and observation data and performs the LETKF assimilation. The 

cycle of GEOS-Chem runs and LETKF assimilation repeats until the assimilation is complete for the 

entire user-specified period. Run management and LETKF implementation are discussed in section 3.3. 345 

Upon completion, the user can execute a postprocess workflow job to make a default set of figures, 

movies, and consolidated data files; they can also deploy pre-written functions to produce custom output 

and statistics (section 3.4). In the coming sections, we expand on each of these components of the 

CHEEREIO workflow. 

3.2 Ensemble initialization 350 

The CHEEREIO ensemble initialization workflow is divided into four phases, as shown in Figure 1: (1) 

template run directory creation; (2) spin up of template run directory; (3) ensemble initialization and prior 

emissions sampling; and (4) spin up of the ensemble spread.  

Initialization begins when the user specifies the simulation they would like to run by modifying a 

configuration file (ens_config.json) which includes all model and assimilation settings. Table 1 lists 355 

important parameters that can be tuned in this configuration file. LETKF results respond strongly to the 

localization radius (LOCALIZATION_RADIUS_km), the regularization factor 𝛾 

(regularization_factor_gamma), and the ensemble inflation factor Δ  (inflation_factor), all of which 

modulate the weight given to observations in the assimilation calculation. The assimilation window length 

(assim_time) governs the timescale of the response of the LETKF system to changes in observations and 360 
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also strongly influences results. Detailed instructions on all settings are in the online documentation 

(cheereio.readthedocs.io). CHEEREIO then creates a template GEOS-Chem run directory reflecting user 

settings, which will eventually be copied into an ensemble of m run directories, one per ensemble member; 

if users modify the template before the ensemble is created, such as to customize emissions inventories, 365 

their adjustments will be reflected in each ensemble member. Hence the template run directory allows 

users to customize their simulations beyond the parameters available in the ens_config.json configuration 

file. Like any atmospheric model, CHEEREIO must be spun up before any run begins so that it reflects 

realistic atmospheric conditions; spinning up the template run directory allows the user to run one 

universal spin up simulation for all m ensemble members. 370 

Table 1. Selected parameters set by the CHEEREIO configuration file 

Parameter Description 

General parameters  

   sim_name type of GEOS-Chem simulation (oxidant-aerosol chemistry, 

aerosol-only, carbon species, mercury) 

   res Horizontal resolution  

   region For nested simulations, specifications for the nested domain 

   start_date, end_date Start and end dates for the assimilation  

   burn_in_end Discard results prior to this date  

   assim_time Length of the assimilation window 

State vector settings   

   state_vector_conc Species concentrations in state vector 

   control_vector_emis 2-D emissions in state vector 

    state_vector_conc_representation Representation of concentrations in the state vector (all 3D 

values, column sums, surface values, etc) 

Output configuration  

   HistorySpeciesConcToSave Species concentrations to save to history files 

   HemcoDiagsToProcess Which HEMCO diagnostics to include in postprocessing, such 

as total anthropogenic emissions of a given species. 
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Observation configuration  

   observed_species Species observed 

   OBSERVER_dirs Directory storing observation files 

LETKF settings  

   regularizing_factor_gamma Parameter 𝛾,	adjusts weight assigned to observations 

   inflation_factor Ensemble inflation factor Δ  

   LOCALIZATION_RADIUS_km Localization radius, in km 
 

With the template initialized, compiled, and spun up, CHEEREIO copies the template into an 

ensemble of m run directories. Each ensemble member is differentiated by a unique initial perturbation to 375 

user-specified emissions, reflecting prior uncertainty in emissions. For example, users interested in 

assimilating NO2 observations might specify that they have some prior uncertainty in NOx emissions; 

CHEEREIO will then initialize unique grids of NOx emissions in each ensemble member run directory 

by drawing samples from a user-specified PDF that perturb existing emissions inventories. These prior 

errors can be sampled from a normal distribution and can include spatial correlations specified by a 380 

correlation distance.  

Users can choose to use emissions sampled from either a normal or lognormal spread. If users opt 

for lognormal emissions, then CHEEREIO samples multiplicative perturbations from a normal 

distribution centered on zero and then exponentiates to obtain a lognormally distributed sample with a 

mode of one (i.e. the prior). To meet the LETKF algorithm assumptions, in the lognormal case emissions 385 

are transformed back into a normal distribution during the LETKF calculation, before being exponentiated 

back to a lognormal for use in GEOS-Chem. Benefits of using a lognormal spread include a natural 

protection against negative scaling factors (the lognormal distribution is positive) and a more realistic 

representation of high-tail uncertainties on emissions inventories.  

CHEEREIO grants wide flexibility to users in how emissions perturbations are defined across the 390 

ensemble. Users can group emissions of multiple species together into one consolidated entry in the state 

vector (e.g. NOx), updated at once at assimilation time. Users can also differentiate emissions by source 

by separately perturbing subsets of emissions, such as methane from oil and gas and methane from 
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agriculture. The resulting assimilation will provide the user separate emissions updates for each source, 

allowing users to easily run source attribution studies. Sectoral separation of emissions is implemented 395 

naturally in the LETKF formulation by defining the state vector so that separate source sectors have 

separate 2D representations; if sources overlap in space, the assimilation update will increment both 

according to the correlation strength in the prior error covariance matrix, which the user must keep in 

mind while interpreting source separation results.  

Before the assimilation cycle begins, users must run a CHEEREIO-specific spin up process to 400 

create a spread in simulated atmospheric conditions across ensemble members, reflecting the initial 

perturbations in emissions. Because the LETKF algorithm uses spreads in simulated concentrations across 

the ensemble to approximate the prior error covariance matrix 𝑷𝒃, the model must be run for some period 

before assimilation begins in order to ensure that variations in concentrations across ensemble members 

reflects variations in emissions. If this ensemble-wide spin up is neglected or run for too short a period, 405 

𝑷𝒃 will be too small and observations will be neglected (because they will be weighted negligibly in the 

cost function). 

3.3 Runtime 

Figure 2 shows a schematic of the CHEEREIO runtime processes. From a computational cluster 

perspective, CHEEREIO is an array of m jobs, where m is the number of ensemble members specified by 410 

the user; each job is allocated p cores as specified by the user. Each job alternates between running GEOS-

Chem for an ensemble member and running assimilation scripts for a subset of grid cells — each 

parallelized separately across the p cores allocated to each job. In this section, we discuss the 

implementation and control of this complex of processes. 
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 415 

Figure 2: Schematic of CHEEREIO runtime routines and job control procedures. CHEEREIO is run as 
an array of m separate jobs on a computational cluster, one for each ensemble member. These m jobs, 
operating in parallel, alternate between running GEOS-Chem and running the LETKF algorithm for a 
subset of grid cells, as shown by the light yellow boxes; the m jobs are coordinated by a single job 
controller shared by the entire ensemble (shown in light red), ensuring that the ensemble remains 420 
synchronized. Boxes in blue show data input into CHEEREIO processes.  

3.3.1 Job control 

As shown in Figure 2, CHEEREIO begins when the user submits a job array initializing m jobs, one for 

each ensemble member, each consisting of p cores within a single node. Within each of the m jobs, the 

CHEEREIO runtime process is implemented as a shell loop that repeats until the user-specified period of 425 

interest is processed, switching smoothly between running GEOS-Chem and running LETKF assimilation 
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calculations. Because the LETKF algorithm is an embarrassingly parallel algorithm, there is no need for 

complex cross-node parallelization schemes powered by the Message Passing Interface (MPI). Instead, 

each of the m jobs (parallelized independently across p cores) is coordinated by a job controller, which 

executes the processes shown in light red on Figure 2. The job controller synchronizes GEOS-Chem runs 430 

and LETKF assimilation routines across the ensemble, ensuring that all jobs remain connected to one 

another.  

 At the start of a given assimilation window, each of the m jobs calls GEOS-Chem for the current 

assimilation window. GEOS-Chem is parallelized within each job across p cores with OpenMP. After 

completing GEOS-Chem for the assimilation window, each individual job hangs until the job controller 435 

indicates that assimilation can begin. Once all GEOS-Chem runs are complete, the job controller 

initializes the LETKF routine. Each computational core within each job (a total of mp cores) is pre-

assigned a set of grid cells to assimilate, as the LETKF algorithm is embarrassingly parallel by grid cell. 

As a result, the LETKF can make use of multi-node parallelization without MPI; assimilated grid cells 

are written to a temporary directory, which will be used to update the entire ensemble once all mp cores 440 

finish the LETKF calculation. Internal parallelization of p cores within each of the m jobs is handled by 

GNU Parallel [Tange, 2018]. Once all expected grid cells are present, the job controller gathers 

assimilated grid cell files, which represent assimilated concentrations and emissions, and overwrites 

GEOS-Chem restart files (representing initial concentrations) and emissions for each ensemble member. 

The job controller then cleans up temporary files, advances the time period of interest to the next 445 

assimilation window, and signals the job array to begin another GEOS-Chem run. If the entire period of 

interest is complete, then the job controller ends the job array. Different LETKF options, activated from 

the configuration file, change the behavior of the job control scripts; for example, with run-in-place 

activated (Section 2.2), CHEEREIO computes the LETKF assimilation update using a long period of 

observations (e.g., 1 week) but advances the assimilation forward for a smaller amount of time (e.g., 1 450 

day). 

CHEEREIO can easily handle emissions updates without GEOS-Chem source code modification 

because of the HEMCO input module [Keller et al., 2014; Lin et al., 2021]. Emission updates are 

represented by a gridded set of scaling factors, initially randomized for each ensemble member in the 
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initialization process, which are present in each ensemble member run directory in gridded COARDS-455 

compliant netCDF format. After each assimilation calculation, the file is updated by CHEEREIO to 

include the latest scaling factors and corresponding timestamp. HEMCO can read and regrid these latest 

scaling factors on the fly, apply them to the emissions fields, and feed the scaled emissions directly into 

GEOS-Chem, enabling seamless interoperability across CHEEREIO runtime processes. 

3.3.2 Assimilation computation 460 

LETKF assimilation is implemented in CHEEREIO using a structure of nested Python objects, designed 

primarily to ensure that new observation operators can immediately plug into CHEEREIO and work 

automatically, without requiring users to have deep knowledge of the CHEEREIO code structure. We use 

Python because of its familiarity to a broad user base, because of its ease of use, and because the object-

oriented structure of the language makes it well suited to the modular design of CHEEREIO. 465 

 CHEEREIO works by creating a suite of objects called translators, which load data from gridded 

netCDF files used by GEOS-Chem runs, form one-dimensional ensemble state vectors 𝒙𝒊𝒃  and prior 

vectors of simulated observations 𝒚𝒊𝒃 that are acceptable to the CHEEREIO LETKF routine, and convert 

assimilated state vectors back into a format acceptable to HEMCO for input into GEOS-Chem. Translator 

objects are assembled in a nested structure, with low-level translators performing IO operations and basic 470 

calculations to form vectors like 𝒙𝒊𝒃 and 𝒚𝒊𝒃, which are then passed to objects that operate at a higher level 

of abstraction. Abstract objects do the actual LETKF calculations without any knowledge of the GEOS-

Chem simulation or even the user-defined rules on how to construct the state vector, enabled by the fully 

general nature of the LETKF. Because all the details of a specific simulation are handled by low-level 

translators, which are designed to easily expand to include new capabilities added by the community, 475 

users are able to modify only one small part of CHEEREIO without compromising the overall workflow.  

 For example, CHEEREIO handles observations by using objects inheriting from the 

Observation_Translator class, a low-level translator which loads observations from file and compares 

them to GEOS-Chem output. In object-oriented programming, inheritance can be thought of as a 

sophisticated form of templating. Indeed, the Observation_Translator class itself is mostly empty, and 480 

contains instructions to the user on how to write two standardized methods to (1) read observations from 
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file and process them into a Python dictionary formatted for CHEEREIO, and (2) generate simulated 

observations 𝒚𝒊𝒃  from GEOS-Chem output. Users can easily write their own class inheriting from 

Observation_Translator for a specific use case (like a particular surface or satellite instrument) by 

implementing these two methods, optionally employing a provided observation toolkit. Any class written 485 

with this strict template will then plug in automatically to the rest of the CHEEREIO workflow and can 

be activated from the main configuration file. CHEEREIO also comes with some pre-written observation 

operators (such as for the TROPOMI and OMI satellite instruments). Many different observation 

operators can be used simultaneously, making it straightforward to perform multispecies data assimilation 

or assimilation using both surface and satellite data within the CHEEREIO framework. Again, because 490 

Observation_Translators handle the details of interpreting a specific observation type, the rest of 

CHEEREIO can remain ignorant of specifics and operate in a fully abstract environment that can be 

reused for all simulations. 

The Observation_Translator template includes tools that support aggregating observations into 

“super-observations” [Eskes et al., 2003; Miyazaki et al., 2012a]. If super-observations are enabled, 495 

CHEEREIO will average observations onto the GEOS-Chem spatiotemporal grid. Users can opt to supply 

a relative or absolute error for observations and opt to either (1) apply these values consistently regardless 

of whether observations are aggregated, or (2) reduce errors as observations are aggregated following a 

square root law or another functional form supplied by the user (such as an empirical curve) to account 

for correlations and model transport error. Users can also use error statistics supplied with the 500 

observations (such as retrieval errors), with the super-observation error standard deviation calculated 

according to a function they specify. The default super-observation error standard deviation σsuper is 

calculated as follows: 
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(8) 

Here 𝜎( is an individual observation error standard deviation (in the same units as the observation), 

𝑛 is the number of observations aggregated into a super-observation, 𝑐 is the error correlation between 505 

the individual observations averaged into the super-observation, and 𝜎3045,.603 represents model transport 
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errors that can be supplied by the user. Model transport error is included as a separate term because 

transport errors are perfectly correlated for a given model grid cell and therefore irreducible by averaging. 

Model transport errors in GEOS-Chem can be estimated by the residual error method (Heald et al., 2004; 510 

Lu et al., 2021; Chen et al., 2023), though this does not account for any systematic biases from GEOS 

meteorology or the chemical mechanism. Biases in meteorology could be addressed in the future by using 

the on-line version of GEOS-Chem coupled to the GEOS model (Long et al., 2015; Hu et al., 2018; Keller 

et al., 2021). 

3.4 Postprocessing 515 

When the CHEEREIO runtime process completes, users can execute the postprocess batch script to 

automatically consolidate GEOS-Chem diagnostic and emissions output into netCDF files, along with a 

file pairing actual observations with simulated observations from the ensemble. Users can also run a 

control (“prior”) simulation with no assimilation within the CHEEREIO environment; output from this 

run is automatically handled by the postprocessing utility to produce plots and data that compare 520 

assimilated output to control output.  CHEEREIO also produces a suite of graphs and animations 

depicting a variety of output including scaling factors, concentrations, emissions, and observation 

information. All plots of results in Section 4 of this paper are generated by the CHEEREIO postprocessing 

utility with no additional code. To facilitate additional analysis, a postprocessing toolkit is provided for 

user processing of both consolidated output files and raw ensemble output. 525 

4 Example application: global optimization of methane emissions  

Here we demonstrate an end-to-end example application of CHEEREIO to the problem of optimizing 

global emissions of methane with high temporal (weekly) resolution by assimilation of TROPOMI 

satellite observations for the full year of 2019. The application uses the standard CHEEREIO 

configuration files, and all figures and statistics are automatically produced by CHEEREIO with no 530 

additional programming. There are weaknesses in the inversion parameters that we identify but do not try 

to resolve as the application is for demonstration purposes only. 
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4.1 Demonstration simulation setup 

For our demonstration, we use the methane simulation from GEOS-Chem version 14.0.2 (doi: 

10.5281/zenodo.7383492)  at 2.0°×2.5° spatial resolution and following the setup described by Qu et al. 

[2021]. Methane emissions come from anthropogenic sources including livestock, oil and gas, coal 545 

mining, landfills, wastewater, and rice cultivation, and from natural sources including wetlands and 

termites. Loss is primarily due to oxidation by OH, with additional minor terms from oxidation by Cl 

atoms, stratospheric oxidation, and soil uptake.  

Methane observations used for data assimilation are from the TROPOspheric Monitoring 

Instrument (TROPOMI) scientific product 2.2.0, shown in Figure 3 [Lorente et al, 2021]. TROPOMI 550 

retrieves daily global dry methane column mixing ratios (XCH4) at 5.5x7 km2 nadir pixel resolution at 

~13:30 local solar time. In our demonstration, we filter TROPOMI observations to include only those 

over land below 60 degrees latitude with a quality assurance value > 0.5; short wave infrared (SWIR) 

albedo between 0.05 and 0.4 to avoid biases over dark scenes or highly reflective (often desert) scenes; a 

low blended albedo (< 0.75) to avoid snow-covered scenes [Wunch et al., 2011; Lorente et al., 2021]; and 555 

SWIR aerosol optical thickness less than 0.1. As shown in Figure 3, retrieval count after filtering varies 

strongly by location. CHEEREIO regrids the native XCH4 observations on-the-fly to the GEOS-Chem 

grid resolution, as discussed later in this section.  

 
Figure 3: TROPOMI observations used in CHEEREIO demo for weekly inversion of methane emissions. 560 
(a) Average TROPOMI XCH4 for 2019, after filtering as described in the text. (b) Number of TROPOMI 
observations used. Values are plotted on the GEOS-Chem 2ox2.5o grid.   

A subset of the assimilation settings for this demonstration, passed to CHEEREIO through the 

configuration file, is listed in Table 2. The state vector includes weekly time-dependent global 3-D 
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concentrations as well as emissions on the 2°×2.5° grid over land excluding poleward of 60o. We use a 

24-member ensemble, consistent with the LETKF ensemble size used for carbon fluxes in Liu et al. 

[2019]. Each ensemble member is initialized with randomized methane emissions on the 2°×2.5° grid that 

range from approximately 50% to 150% of prior values, based on a user-specified prior error parameter. 

Initial emissions for individual members are sampled from a normal distribution with spatial correlation 575 

and are normalized so that the initial ensemble mean emissions equal the prior emissions on the 2.0×2.5o 

grid. We spin up the model for each ensemble member for four months with these initial emissions, and 

then further multiplicatively increase the ensemble standard deviation of methane concentrations by a 

factor of five; the goal of this scaling is to emulate a much longer spin up run of GEOS-Chem. We then 

adjust each ensemble member by the same global multiplicative factor so that the ensemble mean methane 580 

concentrations are equal to TROPOMI observations at the start of the assimilation period. Furthermore, 

we discard the first two months of assimilated output; we find that the LETKF system has a lag time 

between when assimilation begins (November 2018) and when emissions updates begin to stabilize, 

which we call the burn-in period. To reduce the time required for burn-in, for November and December 

2018 we use a high regularization constant of γ = 5 to artificially increase the weight of observations 585 

during the burn-in period. 

The user does not specify how assimilation increments are split between emissions and 

concentrations: the LETKF formalism simultaneously updates different aspects of the state vector, 

emissions and concentrations included, solely according to the correlations between state vector elements 

represented in the prior error covariance matrix 𝑷𝒃 , which is determined by the spread of the CTM 590 

ensemble. The prior error in concentrations is determined by the spread in concentrations resulting from 

the perturbed emissions in each ensemble member. Nevertheless, performance can be enhanced by 

establishing different parameters for different components of the state vector, such as using different 

localization radii or inflation schemes [Miyazaki et al., 2012b; Bisht et al., 2023].  

 595 

Table 2. Selected parameters from CHEEREIO configuration file for methane demonstration 

Parametera Value 

General parameters  
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   sim_name CH4 

   res 2.0°×2.5° 

   start_date, end_date 20181101, 20200101 

   burn_in_end 20181225 

   assim_time 168b 

State vector settings   

   state_vector_conc CH4 

   control_vector_emis CH4  

   state_vector_conc_representation 3D 

Output configuration  

   HemcoDiagsToProcess EmisCH4_Total 

Observation configuration  

   observed_speciesc CH4_TROPOMI : CH4 

  TROPOMI_dirsc CH4 : /path/to/tropomi/netcdf/files 

LETKF settings  

   regularizing_factor_gamma 1 

   inflation_factor 0.03  

   LOCALIZATION_RADIUS_km 500 
aParameter descriptions are in Table 1 
bHours, equal to 1 week 
cMany parameters are supplied in key:value form; details in the online documentation 600 

Following ensemble spinup and the burn-in months, we run the model with assimilation for one 

year (2019). We simultaneously assimilate 3D concentrations of methane as well as emissions; the 

LETKF algorithm natively computes prior error variance from the ensemble spread (for example, 

accounting for strong error correlation in the vertical). We use an assimilation period of one week and 

optimize grid cells following a horizontal localization radius of 500 km. We use an inflation factor Δ =605 

0.03 and a regularization constant γ = 1. Moreover, we impose a zero floor on emissions; a lognormal 

emissions spread (Section 3.2) would be a better way to prevent negative emissions [Maasakkers et al., 

2019]. We aggregate TROPOMI methane observations into “super-observations” on the GEOS-Chem 
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2.0°×2.5° grid, reducing errors following Eq. (8), with individual observation error 𝜎7 = 17 ppb, transport 610 

error 𝜎3045,.603 = 6.1 ppb, and error correlation 𝑐 = 0.28, values determined empirically for TROPOMI 

methane by Chen et. al. [2023]. 

4.2 Posterior solution and evaluation 

Figure 4 shows the adjustment of global methane concentrations (left) and emissions (right) from the 

assimilation calculation relative to the prior emission inventory used in the Control simulation. The 615 

Control simulation produces methane concentrations slightly higher than observed by TROPOMI in 

January-June, leading to a downward correction of emissions. In July the situation reverses sharply as the 

Control simulation falls well below TROPOMI observations, likely because of seasonal underestimate of 

prior emissions from boreal wetlands and rice cultivation [Maasakkers et al., 2019]. The assimilation 

responds with increased emissions but with a 1-month time lag reflecting the need to accumulate sufficient 620 

observations to inform the state vector.  CHEEREIO’s run-in-place capability (Section 3.3.1) would allow 

the LETKF algorithm to mitigate this lag, as would a sliding-window approach such as that used by the 

Carbon Tracker CH4 system [Bruhwiler et al., 2014; Liu et al., 2019].  

 

Figure 4: Time-dependent corrections to global methane concentrations and emissions from the weekly 625 
LETKF assimilation of TROPOMI observations as demonstrated by CHEEREIO. The left panel shows 
the global mean methane dry column mixing ratios (XCH4) in the TROPOMI observations, the Control 
simulation using prior emissions, and the simulation using posterior emissions. The right panel shows the 
global prior and posterior emissions. Posterior values are ensemble means from the assimilation (standard 
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deviations from ensemble members as dotted lines).  The assimilation was conducted for one year from 
January through December 2019.  

Figure 5 shows the prior and posterior emissions for December 2019, along with the posterior 

error standard deviation. Figure 6 evaluates the ability of the posterior simulation to better fit the 

TROPOMI observations in that same month. Model bias is reduced by the LETKF assimilation procedure, 640 

with a mean bias of 1.2 ± 10.6 ppb in the ensemble (assimilated) mean as compared to −16.1 ± 12.3 

ppb in the prior (no assimilation) simulation.  

 

 
Figure 5: Prior and posterior estimates of methane emissions in December 2019, and error standard 645 
deviations on the posterior estimates.  The posterior estimates are the means of the 24-member ensemble 
and the posterior error standard deviations are defined by the spread in the ensemble.  
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Figure 6: Comparison of simulated dry column mixing ratios (XCH4) with prior or posterior emissions 650 
to TROPOMI observations for December 2019. Values are monthly mean differences between the 
simulated XCH4 (with TROPOMI observation operator applied) and the TROPOMI observations. Mean 
bias and standard deviation are given inset. 

The use of CHEEREIO to optimize methane emissions represents a substantial improvement in 

computational performance relative to an analytical inversion approach. Qu et al., [2021] previously 655 

applied the analytical approach with GEOS-Chem to optimize global methane emissions at 2°×2.5° 

resolution for 2019. Their formulation had 4190 state vector elements, which required a total of 4190 

perturbed GEOS-Chem simulations. By contrast, our approach only required 24 GEOS-Chem simulations 

to form the ensemble. Within CHEEREIO, the model spent an average of 29.8% of wall time running 

GEOS-Chem and 70.2% running LETKF routines. The relatively high overhead of LETKF routines 660 

appears in part because the methane GEOS-Chem simulations are relatively fast; full oxidant-aerosol 

chemistry simulations are considerably more expensive but will have a similar LETKF overhead cost. 

Accounting for the relatively high LETKF overhead of CHEEREIO, we achieve a factor of 52x reduction 

in computational costs relative to an equivalent analytical inversion. On an annual basis, our results 

suggest a 6.5% increase in global emissions relative to the prior, while Qu et al., [2021] suggests an 665 

increase of 2.6% in global emissions for 2019 but they also decreased global tropospheric OH by 5.7% 

(86% of the total methane sink). Thus our results are globally consistent. Some spatial patterns are 

consistent between the two inversions (increases in South and East Asia) while others are not (North 

America and Europe), Qu et al. [202]) used an older version of TROPOMI data more subject to retrieval 
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artifacts, as documented by Lorente et al. [2021]. Further comparison of LETKF and analytical inversions 

using the same observations would be of interest.   

5 Conclusions and future development 680 

We presented the CHemistry and Emissions REanalysis Interface with Observations (CHEEREIO), a 

user-friendly Python-based tool that supports localized ensemble transform Kalman filter (LETKF) 

chemical data assimilation (including emissions inversion) powered by the GEOS-Chem chemical 

transport model (CTM). CHEEREIO provides application-ready and versatile software for users to 

exploit observations of atmospheric composition from satellites and other platforms to infer emissions 685 

and optimize 3-D concentration fields, including error characterization. The CHEEREIO source code is 

available for download at https://github.com/drewpendergrass/CHEEREIO and is documented at 

https://cheereio.readthedocs.io. 

We choose the LETKF algorithm because of its general applicability for linear and nonlinear 

problems, multiple observational data streams, flexible state vector definition, and error characterization 690 

of the solution. Its ensemble-based structure is well suited to developing a simple but powerful tool that 

requires neither the forward model adjoint nor modifications to model source code, and that can be run 

on supercomputing clusters as an embarrassingly parallel task. Use of GEOS-Chem as forward model 

allows a wide range of applications to tropospheric and stratospheric chemistry, as well as simpler linear 

problems (such as CO2 or methane inversions), on regional scales with spatial resolution down to 25 km 695 

(native resolution of GEOS-Chem) as well as global scales. A critical component of GEOS-Chem is its 

data input module HEMCO, which allows emissions updates from the assimilation steps to pass 

seamlessly to GEOS-Chem without code modification. 

We designed CHEEREIO so that users can specify their data assimilation problem through a basic 

configuration file expressing the state vector to be optimized, the prior information, the GEOS-Chem 700 

specifications (type of simulation, resolution, assimilation period), and the LETKF parameter 

information. LETKF implementation is handled under the hood by a suite of CHEEREIO scripts that do 

not require user familiarity. Users can readily add new observation operators as needed without modifying 

the rest of the CHEEREIO code base. 
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 We demonstrated CHEEREIO’s ability with an example application of assimilating 715 

concentrations and emissions of atmospheric methane for one full year using observations from the 

TROPOMI satellite instrument. The entire demonstration was run out-of-the-box, with no additional 

coding beyond the base CHEEREIO code. Output figures and statistics presented here were auto-

generated by the CHEEREIO postprocessing utility. Accounting for the relatively high overhead of the 

LETKF computation in the methane case, our approach represents a factor of 52 reduction in 720 

computational cost relative to an equivalent analytical inversion. Because of computational cost savings, 

we envision CHEEREIO’s methane data assimilation can serve as a global complement to the regional 

nested-grid simulations offered by the Integrated Methane Inversion (IMI), a similar software platform 

designed for analytical methane inversions [Varon et al., 2022] 

More work can be done to improve CHEEREIO and expand its capability. Although CHEEREIO 725 

is designed as a lightweight software wrapper that is accessible to the GEOS-Chem community, future 

development will incorporate software components from the Joint Effort for Data Assimilation 

Integration (JEDI). I; n particular, we plan to support observation operators implemented as part of the 

JEDI Unified Forward Operator (UFO) initiative, allowing users to leverage the wide library of 

instruments supported by JEDI without duplicating code themselves. The LETKF algorithm is agnostic 730 

to the forward model, making it practical in theory to use any chemical transport model as forward model 

for CHEEREIO. In practice, models that use HEMCO for emissions input would be easiest to support. 

The NASA GEOS and NCAR CESM Earth system models have adopted HEMCO [Lin et al., 2021], and 

the LETKF approach implemented in CHEEREIO would allow optimization of emissions as part of 

chemical data assimilation in these models. A benefit of assimilation within coupled meteorology-735 

chemistry models is that transport errors could be explicitly represented.  

Because CHEEREIO is designed to take advantage of the embarrassingly-parallel LETKF 

algorithm without using shared memory, it is reasonably straightforward to extend the system to models 

parallelized with MPI such as the high-performance version of GEOS-Chem (GCHP). Further 

improvements to the LETKF parallelization routine, in particular methods to share memory resources 740 

within Python, can also be applied to reduce I/O overhead, reduce memory use, and improve assimilation 

wall time. CHEEREIO can be ported on the cloud, taking advantage of GEOS-Chem and satellite data 

Deleted: , a C++ and Fortran-based platform for model-generic 
data assimilation [Trémolet and Auligné, 2020]. 

Deleted: i745 
Deleted: I

Deleted: weather
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already hosted there [Zhuang et al., 2019, 2020; Varon et al., 2022], thus bringing compute capacity to 

big data rather than requiring cumbersome data downloads. Cloud implementation would facilitate the 

development of near-real-time chemical data assimilation products for emissions monitoring and air 

quality forecasts. 

Code availability 755 

The CHEEREIO 1.0 source code is available at https://github.com/drewpendergrass/CHEEREIO and is 

documented at https://cheereio.readthedocs.io. The version of CHEEREIO used in this paper is archived 

at doi.org/10.5281/zenodo.7781437. GEOS-Chem version 14.0.2 source code is archived at 

doi.org/10.5281/zenodo.7383492. 

Data availability 760 

The CHEEREIO model output from the demonstration section of the paper is available at  

https://doi.org/10.5281/zenodo.7806312, and contains all necessary data for reproducing figures 3-6 

including prior methane emissions, posterior methane emissions, and TROPOMI XCH4 paired with 

simulated prior and posterior GEOS-Chem XCH4. The raw TROPOMI science data fed into CHEEREIO 

is available from SRON (https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/, last accessed 765 

April 6, 2023) or on request. 
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