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Abstract. Although air quality guidelines generally use the atmospheric concentration of fine particulate matter (PM2.5) as the 15 

metric for air pollution evaluation and management treating all particles as equally toxic, it is inconsistent with the facts that 16 

particle toxicity are significantly related to their sources and chemical compositions. Therefore, judging the most harmful 17 

source and identifying the toxic component will be extremely helpful to optimize air quality standards and prioritize targeted 18 

PM2.5 control strategies to more protect public health effectively. The combustions of fuels, including oil, coal, and biomass, 19 

are main anthropogenic sources of environmental PM2.5, however, their discrepant contributions to health risks of mixed 20 

ambient aerosol pollution dominated by respective emission intensity and unequal toxicity of chemical components are still 21 

unclear. In order to quantify the differences among these combustion primary emissions, ten types of PM2.5 from each typical 22 

source group, i.e., vehicle exhaust, coal combustion, and plant biomass burning, were collected for comparative study with 23 

toxicological mechanisms. Totally thirty type individual combustion samples were inter-compared with representative urban 24 

ambient air PM2.5 samples, which chemical characteristics and biological effects were investigated by component analysis 25 

(carbon, metals, soluble ions) and in vitro toxicity assays (cell viability, oxidative stress, inflammatory responses) of human 26 

lung adenocarcinoma epithelial cells (A549). Carbonaceous fractions were plenteous in automobile exhaust and biomass 27 

burning, while heavy metals were more plentiful in PM2.5 from coal combustion and automobile exhaust. The overall ranking 28 

of mass-normalized cytotoxicity for source-specific PM2.5 was automobile exhaust > coal combustion > plant biomass burning > 29 

ambient urban air, possibly with differential toxicity triggers, that the carbonaceous fractions (organic carbon, OC; elemental 30 

carbon, EC) and redox-active transition metals (V, Ni, Cr) assisted by water-soluble ions (Ca2+, Mg2+, F-, Cl-) might play 31 
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important roles in inducing cellular reactive organic species (ROS) production, causing oxidative stress and inflammation, 52 

resulting in cell injury and apoptosis, thus damage human health. Coupled with the source apportionment results of typical 53 

urban ambient air PM2.5 in eastern China, reducing toxic PM2.5 form these anthropogenic combustions will be greatly beneficial 54 

to public health, especially preferentially decreasing the diesel exhaust by strengthening emission standards, then lessening the 55 

coal combustion by replacement with low-ash clean coals, and depressing the crop straw burning emissions. 56 

 57 

1 Introduction 58 

As a mixture of multiple sources, ambient particulate matter (PM) arise from anthropogenic activities are continuously 59 

deteriorating the urban air quality, particularly in developing countries. Among these, fine PM with an aerodynamic diameter 60 

of less than 2.5 µm (PM2.5) is recognized as a serious public health concern due to its long persistence in air, carcinogenicity 61 

and acute toxicity to humans (Al-Kindi et al., 2020). There were extensive epidemiological evidences that airborne PM can 62 

cause serious negative effects on human health, such as respiratory and cardiovascular diseases, genetic mutations, and 63 

developmental disorders (Chowdhury et al., 2022;Lelieveld et al., 2021;Smith, 2021;Clemens et al., 2017). Currently, either 64 

the world air quality guidelines or the national air quality standards use the mass concentration of PM2.5 as the metric for PM2.5 65 

pollution evaluation and management, in which all particles are treated as equally toxic, however, it is inconsistent with the 66 

scientific facts that particle toxicity are significantly related to their sources and chemical compositions (Shiraiwa et al., 2017). 67 

Therefore, to identify which component(s) and source(s) of ambient PM are most harmful to health, will be very helpful to 68 

optimize air quality guidelines/standards and prioritize targeted PM control strategies to more effectively protect public health  69 

(Kelly and Fussell, 2020). 70 

Besides natural sources like dust and sea spray, the vast majority of aerosols come from anthropogenic activities especially 71 

energy consumption, including the combustion of fossil fuels causing industrial emissions and automobile exhaust, and 72 

biomass burning (McDuffie et al., 2021;Wu et al., 2022). Finally, these diverse sources make the ambient air PM2.5 become a 73 

complex mixture with multiple chemical components varying with time and space, which consisting mainly of sulfate, nitrate, 74 

ammonium, organic carbon (OC), elemental carbon (EC), mineral and trace metals (Bari and Kindzierski, 2016; Kelly and 75 

Fussell, 2020). The physiological mechanisms of PM-induced cell toxicity in respiratory system have been continuously 76 

investigated with some progresses (Kelly and Fussell, 2012, 2020; Shiraiwa et al., 2017; Mack et al., 2020; Li et al., 2022b), 77 

such as the metabolic activation, oxidative stress, inflammatory response, and apoptosis, focused on by current study. In brief, 78 

after inhalation and deposition onto the epithelium, redox-active materials in PM2.5 can induce the release of reactive organic 79 

species (ROS), which cause oxidative stress (an imbalance between ROS and antioxidants, i.e., disequilibrium of the redox 80 

state of a cell) followed by inflammation and cell death. The ROS can mediate subsequent signaling pathways leading to 81 

biomolecule damage (e.g., DNA, lipid, and protein) and cellular injury, through mediating inflammatory responses including 82 

the release of pro-inflammatory cytokines like IL-6 and TNF-α by epithelial cells (Sabbir Ahmed et al., 2020; Landwehr et al., 83 
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2021). For instance, oxidative stress could trigger the induction of pro-inflammatory transcription factors, such as nuclear 109 

factor (NF)-κB, via the mitogen-activated protein kinase (MAPK) signaling pathway. Components adsorbed on particle surface, 110 

such as redox-active metals (transition metals, Fe, Ni, V, Cr, Cu), organic compounds (polycyclic aromatic hydrocarbons, 111 

PAHs; quinones), or even carbonaceous core of particles, are responsible for oxidative stress (Cachon et al., 2014; Sabbir 112 

Ahmed et al., 2020). The non-redox active metals (Zn, Pb, Al) can also influence the toxic effects of transition metals by 113 

exacerbating or lessening the production of free radicals. The EC may not be a directly toxic component of PM2.5 but rather 114 

operate as a universal carrier of combustion-derived chemicals (semi-volatile organic fractions, transition metals) of varying 115 

toxicity (Kelly and Fussell, 2020). Inorganic soluble sulphates and nitrates are acidic and can interact with and influence the 116 

solubility other compositions like metal bioavailability (Fang et al., 2017; Weber et al., 2016). However, which specific 117 

components and which particular sources are the most critical factors dominating the ambient aerosols’ health risks, still leave 118 

puzzles unsolved. 119 

Past studies performed in various countries have focused on physicochemical characterization or biological effects of 120 

ambient air PM2.5 respectively (Weagle et al., 2018;Jia et al., 2017;Wang et al., 2020). For example, the source analysis of 121 

PM2.5 by photochemical modelling (Bao et al., 2018), chemical composition of regional PM2.5 (Chi et al., 2022), and the 122 

mechanism of PM2.5 toxicity was independently reported recently (Jia et al., 2020). Because differences in particle composition, 123 

sources, and toxicity appear in different urban environments (Zhao et al., 2019;Borlaza et al., 2018), the source profiles of 124 

different emission inventories were applied to elucidate aerosol pollution characteristics and control strategies. For instance, it 125 

was found that straw burning during the harvest season is a major trigger of severe air pollution in many regions (Sahu et al., 126 

2021). Aerosols from open biomass burning in the Amazon had a stronger ability to induce ROS than laboratory-generated 127 

secondary organic aerosols (Tuet et al., 2019). The particle composition of motor vehicle exhaust was related to automobile 128 

types with various fuels, engines, and loads (Lin et al., 2020). A strong catalytic reactivity of metals in PM emitted from diesel 129 

vehicles was observed by dithiothreitol (DTT) assay (Jesus et al., 2018). Sulfate is a major component of PM from Xi’an city, 130 

western China, mainly released from residential coal combustion activities (Dai et al., 2019). Traffic was suggested playing 131 

the most crucial role in enhancing the toxicity of fine particles (Park et al., 2018). Although there were emerging studies on 132 

particle emission from single source, quantitatively comparative studies on multi-source pollutants as well as the differential 133 

composition and unequal toxicity of various sources are still limited.  134 

The main objective of current study was to compare the chemical components and corresponding mass-normalized 135 

toxicological effects of individual PM2.5 from various combustion sources and their unequal contributions to ambient aerosol 136 

health risks. The aim is to provide detailed guidance on the targeting and precise control of specific anthropogenic sources 137 

with prominent risks based on their pivotal toxic components. Therefore, we collected both representative ambient PM2.5 138 

samples from urban air and abundant typical source PM2.5 samples from automobile exhaust, coal combustion, and plant 139 

biomass burning. Their independent profiles of chemical compositions and in vitro cytotoxicity (cell viability, oxidative stress, 140 

and inflammatory responses) were investigated and intercompared, to assess the differences in source-to-receptor toxicity and 141 
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to infer the core toxic components and respective harmful contribution. The pivotal toxic components were identified based 162 

on the source-sink bi-directional composition-effect results, which were further used to assess the health toxicity contribution 163 

of various emission sources to ambient air PM2.5, supported by its source apportionment through positive matrix factorization 164 

(PMF) model. This study could advance the understanding to quantify the complex source contribution to high-risk PM2.5 165 

emission oriented to public health, which is imperative for precise prevention and control of atmospheric PM pollution.  166 

 167 

2 Materials and methods 168 

2.1 Collection of PM2.5 samples from primary emissions of 30 typical combustion sources and from representative 169 

ambient urban air 170 

As the main anthropogenic sources of the ambient air PM2.5 pollution, totally 30 types of primary PM2.5 samples emitted 171 

directly from automobile exhaust, coal combustion, and plant biomass burning were respectively collected as follows for both 172 

chemical and toxicological analyses.  173 

Based on the classification of automobile fuel types as well as load and tailpipe emission standards provided by the 2019 174 

Annual Report on Environmental Management of Mobile Sources in China, a total of 10 types of vehicles were chosen for 175 

exhaust investigation. They were further categorized into 7 sub-groups, including small duty gasoline coaches (SDGCs), small 176 

duty diesel coaches (SDDCs), middle duty diesel coaches (MDDCs), heavy duty diesel coaches (HDDCs), light duty diesel 177 

vans (LDDVs), middle duty diesel vans (MDDVs), and heavy duty diesel vans (HDDVs). The detailed information of these 178 

representative local automobiles was showed in Table S1. 179 

To cover all coal types consumed in the city, 10 representative types of coal were gathered for investigation. They were 180 

further classified into 4 sub-groups, including 2 types of honeycomb coal (HC), 3 types of anthracite coal (AC), and 2 types 181 

of bituminous coal (BC) mainly for restaurant or household use, and 3 types of industrial coal (IC) for coal-fired power plants 182 

and steel-smelting industry. The detailed characteristic analysis of these typical coals purchased from local market were 183 

showed in Table S2. 184 

Considering the plant biomass combustion in rural areas surrounding the megacity, 10 representative types of agricultural 185 

and forestry solid wastes were gathered for investigation. Because of the high annual production of three staple food crops 186 

(rice, wheat, and corn) as well as soybean, peanut and rapeseed, their straws generated during harvest are often used as fuels 187 

in rural households. In addition, woods were also common fuels. Therefore, straws of rice, wheat, corn, soybean, peanut, rape, 188 

and sesame, corncob, branches of peach and pine, were selected as plant biomass fuels and further divided into 2 sub-groups, 189 

including 8 types of crop straw and 2 types of firewood. The detailed characteristic analysis of these typical plant biomass 190 

fuels collected from rural areas around Nanjing city were showed in Table S3. 191 

The PM2.5 samples directly emitted from these combustion sources were collected by dilution channel sampling method 192 

(Figure S1), using a 4-channel particulate matter dilution sampler (HY-805, Hengyuan Technology Development Co., CN). 193 
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Each sampling included 3 parallel channels of quartz microfiber filter (Figure S2) and 1 channel of Teflon membrane filter 209 

with diameters of 47 mm, through a size selector for PM2.5 with a flow rate of 160 L min-1. Clean air was pumped for 10 min 210 

before and after each sample was collected. Before using, the blank quartz filters were incinerated by a muffle furnace at 211 

500 °C for 3 h to remove any possible organic matters, while Teflon filters were baked at 60 °C for 4 h. After being equilibrated 212 

in a constant temperature and humidity chamber for 24 h, the filters were weighed both before and after sampling for 213 

gravimetric measurements, then the mass of collected PM2.5 could be calculated. The sampled filters were stored in a 214 

refrigerator at -20 °C before analysis. The quartz filter loaded PM2.5 samples were used for carbon and ion analysis, and for 215 

toxicity tests, while the parallel Teflon filter loaded samples were used to determine metals. 216 

As the actual mixture of various source particles in real environment, totally 16 representative ambient air PM2.5 samples 217 

(each time lasting 23h) covering a year monthly were collected from December 2019 to October 2020 in an urban site 218 

surrounded by traffic, residential and commercial quarters of Nanjing city, Yangtze River Delta of eastern China, using a high-219 

volume air sampler (800 L min-1) with quartz microfiber filters. Detailed procedures and sample information were described 220 

in previous paper (Li et al., 2022a), but the purpose of using these air samples in current study was to compare them with the 221 

specific source samples for evaluating the chemical and toxicological contributions of the combustion primary sources to 222 

environmental aerosols pollution.  223 

2.2 Chemical composition analysis 224 

All collected source and ambient PM2.5 samples were conducted various component analysis (Li et al., 2023). For the 225 

concentrations of heavy metals in particulates, samples were digested by concentrated HNO3-HClO4 acids with a progressive 226 

heating program and determined by inductively coupled plasma optical emission spectrometry (ICP-OES; Optima8000, 227 

PerkinElmer), with some elements at lower concentrations measured by ICP mass spectrometry (ICP-MS; NexIONTM300X, 228 

PerkinElmer). Blank filter, reagent blank, replicates, and standard reference material (NIST SRM 1648a, urban dust) were 229 

adopted for analytical quality control, with recoveries ranged 90-110 %. Carbonaceous species (OC and EC) in PM2.5 were 230 

determined using a DRI-2001A OC/EC (Atmoslytic Inc., Calabasas, CA, USA). For the concentrations of water-soluble ions 231 

(WSIs), the main cations (Na+, K+, Mg2+, Ca2+, NH4
+) and anions (NO3

-, SO4
2-, Cl-, F-) in PM2.5 were measured by ion 232 

chromatography (IC, Thermo Fisher Scientific, USA), using the Metrosep C6-150/4.0 column for cations and the Metrosep A 233 

Supp 5 150/4.0 column for anions, respectively. 234 

2.3 Preparing mass-normalized PM2.5 suspension for cell exposure 235 

Totally 30 source and 16 ambient PM2.5 samples were also performed cytotoxicity tests. In order to elute the particles 236 

completely from the quartz membranes, the PM2.5-loaded sample filter was cut into small pieces, immerged in ultrapure water 237 

and extracted six times (30 min for each) in an ultrasonic bath at 0 °C. Although the ultrasonication might impact the ROS 238 

(Miljevic et al., 2014), the inevitable systematical error was ignored in this study. The extract was then suction filtered through 239 

a 2.6 μm pore-size nylon membrane to remove possible quartz fragments, and the bulk filtrate was freeze-dried back to pure 240 
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PM2.5 powder. Ultimately, based on particle mass, the gathered PM2.5 was dispersed by sterile phosphate-buffered saline (PBS) 255 

to a concentration of 400 mg L-1, and then diluted to PM2.5 suspension of 80 mg L-1 with serum-free Dulbecco's modified eagle 256 

medium (DMEM) medium for following in vitro cell exposure (Li et al., 2022a). 257 

2.4 Cell culture and cellular toxicity tests by in vitro PM2.5 exposure  258 

Aerosol pollution can harm lung alveoli and epithelial cells, and the A549 human lung adenocarcinoma epithelial cell has long 259 

been used as a suitable epithelial alveolar model to investigate the interactions between PM and lung epithelial cells (Park et 260 

al., 2018; Li et al., 2022b). The A549 cells were cultured in RMPI-1640 medium (Gibco, USA) supplemented with 10% fetal 261 

bovine serum (FBS, Hyclone, USA) and 1% antibiotic penicillin-streptomycin (100 U mL-1) at 37 °C in a 5% CO2 incubator. 262 

After PM2.5 exposure, cell viability and the indicators reflecting oxidative damage and inflammatory responses were 263 

determined respectively. While the cell viability assay was helpful in determining PM2.5 dose to cells, the endogenous ROS 264 

measurements revealed the status of cellular oxidative potential after PM2.5 exposure followed by the relative effects of ROS 265 

on various stages of cellular toxicity like inflammatory responses (Gali et al., 2019). The cell viability (metabolic activity) was 266 

evaluated by mitochondrial activity and determined by the methyl-thiazol-tetrazolium (MTT) assay (Chen et al., 2019). After 267 

trypsin action, the density of cells in the logarithmic growth phase was adjusted to 1 × 105 mL-1. Cell suspensions were 268 

inoculated into 96-well plates (Costar, USA) at 100 μL per well. The blank control well (without medium and PM2.5 suspension) 269 

and reagent control well (with medium but without PM2.5 suspension) were set together. After incubation for 24 h and removing 270 

the cellular supernatant, various types of PM2.5 suspension (concentration of 80 mg L-1) were added to 96-well plates and 271 

incubated for 24 h. Based on pre-experiments, the oxidative stress and inflammation response sensitively under this dose, 272 

while the cell viability can keep sufficient. Fresh medium and MTT reagent (Solarbio, Beijing, CN) were added to each well 273 

and the supernatant was discarded, then 100 μL of formazan lysate was added to each well. The optical density (OD) values 274 

were measured at 490 nm using a microplate reader (Thermo MULTISKAN FC, USA). Cell viability (%) = (OD treatment – 275 

ODblank control) / (ODreagent control – ODblank control). The levels of cellular ROS production causing oxidative stress in cells, pro-276 

inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) production for determining 277 

the expression of genes related to the inflammatory response in the supernatant were analyzed by enzyme-linked 278 

immunosorbent assay (ELISA) kits (Jiangsu Enzyme Biotechnology Co., Ltd., CN), and OD values were measured at 450 nm 279 

(Huang et al., 2020;Pang et al., 2020).  280 

2.5 Data analysis 281 

The statistical analysis was performed by IBM SPSS statistics 24 and plotted by Origin 2020b software. Spearman correlation 282 

coefficients were produced by the correlation analysis. The variance was statistically significant when the statistical test level 283 

was p < 0.05, and extremely significant when p < 0.01. Statistical analyses were performed using Kruskal–Wallis test (Kruskal 284 

and Wallis, 1952). 285 
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The source apportionment of PM2.5 mass in urban ambient air was conducted by the receptor model PMF (EPA PMF version 298 

5.0). Major constituents (OC, EC, Cu, Cr, Co, Ni, As, Pb, Mn, V, Na+, K+, Mg2+, Ca2+, NH4
+, Cl-, F-, NO3

-, and SO4
2-) were 299 

selected as input data, and a four-factor solution was chosen as the optimal solution based on an assessment of the 300 

interpretability of the source profiles and the seasonal variability of the source contributions. 301 

 302 

3 Results 303 

3.1 Contributions of combustion primary sources to urban ambient air PM2.5 304 

As shown in Figure S3, although have been significantly improved with the national air quality in recent years, the daily PM2.5 305 

concentrations of representative city Nanjing still exceeded the healthy guidelines obviously, with higher urban air PM2.5 306 

pollution level in the cold season23. Four major sources of the ambient PM2.5 were produced by the PMF model, including 307 

secondary aerosols, and primary particles of automobile exhaust, coal combustion, and plant biomass burning, which account 308 

for 34%, 27.7%, 25.2%, and 13.1% of total PM2.5 mass concentration, respectively. Their source profiles and proportions were 309 

showed in Figure 1. Therefore, although the contribution of secondary aerosols cannot be ignored, the main anthropogenic 310 

sources of urban air PM2.5 were primary emissions (66%) from the various fuel combustions. 311 

3.2 Chemical compositions of different PM2.5 from 30 combustion sources and from representative urban ambient air 312 

Typical chemical components including carbonaceous fractions, heavy metals and WSIs of all PM2.5 samples from both 313 

ambient urban air and 30 representative combustion primary sources (covering different categories of automobile exhaust, coal 314 

combustion, and plant biomass burning) were analyzed and compared with each other. 315 

According to the comparisons of PM2.5 bound carbonaceous fractions (Figure 2), automobile and biomass sourced PM2.5 316 

contained significantly higher total carbon (TC) content than coal combustion and ambient air, while the OC/EC ratio trend 317 

was ambient air > coal combustion > biomass burning > automobile exhaust sources. It indicated that the carbon content of 318 

ambient PM2.5 mixture was lower and dominated by OC than that of combustion primary sources. Figures S4-S7 showed the 319 

detailed carbon fraction characteristics (contents and ratio) of PM2.5 from each specific source. Carbonaceous fractions in 320 

automobile exhaust PM2.5 were high but the difference between OC and EC content was small. Depending on the diverse 321 

automobile fuels, loads and tailpipe emission standards, the concentrations of carbon fractions in exhaust PM2.5 varied widely 322 

with vehicle categories. The carbonaceous portion of PM2.5 gradually declines as emission regulations rise, and EC likewise 323 

declines dramatically (Figure S4). However, such differences among coal types were less, except the bituminous coal with 324 

extreme high OC (Figure S5). The carbonaceous fraction of PM2.5 from plant biomass burning differed in raw material species 325 

that tree branches source PM2.5 generally contained higher carbon contents than those from crop straws (Figure S6). 326 

Based on the grouped (Figure 3) and individual (Figures S8-S11) distributions of the measured heavy metals in various 327 

PM2.5, the V concentrations of combustion sources were generally higher while Co and Mn were lower than ambient urban air. 328 
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Coal combustion emissions carried highest levels of Pb and were enriched in Cu and As (Figure S9), while biomass burning 343 

were rich in Cr and Ni (Figure S10). However, automobile exhausts were enriched in most heavy metals, especially Cu, and 344 

Cr, Ni, V, Mn (Figure S8). Heavy metals from different types of automobile exhausts with the same emission standard varies 345 

greatly. Anthracite and industrial coal combustions contain similar heavy metals much more than bituminous coal. Generally, 346 

Pb, V, Mn, As, and Cu in branches source PM2.5 were higher than straws, while Cr, Ni, and Co were dominant and higher in 347 

straw burning emissions. A special discovery was that corn cob burning PM2.5 carried more heavy metals than corn straw and 348 

was the biomass with the highest emission levels of heavy metals. Correspondingly, ambient air PM2.5 were also rich in most 349 

metals, especially Mn, Pb, and Ni, Cu, Cr. Therefore, coal combustion sources might contribute most Pb to urban ambient air, 350 

and contribute significant Cu and As with automobile exhaust emissions, while plant biomass burning and automobile sources 351 

contribute the Cr and Ni. Besides natural dust, automobile exhaust should be the main anthropogenic source of airborne Mn. 352 

Considering the PMF source apportionments of ambient aerosols, automobile exhaust should be the main source of Cr in urban 353 

air PM2.5, and also the source for Cu together with coal combustion. 354 

According to the comparisons of water-soluble cation and anion concentrations in various PM2.5 (Figure 4), coal 355 

combustions contained highest SO4
2- and NH4

+, automobile exhausts had highest contents of NO3
-, Na+ and Ca2+, while plant 356 

biomass burning sources contained highest K+ and Cl-, but Mg2+ was the lowest for all sources. However, the urban ambient 357 

air PM2.5 contained highest NO3
- and were also dominated by SO4

2- and NH4
+, for which NO3

- should be mainly contributed 358 

by secondary aerosols and automobile primary source, SO4
2- and NH4

+ should be significantly from coal combustions. Besides 359 

NO3
-, Na+ and Ca2+, automobile source PM2.5 also had the highest F- and Mg2+ concentrations than other sources. The detailed 360 

concentration distributions of WSIs in PM2.5 from each specific source were provided in Figures S12-S14. The WSIs levels 361 

vary widely with specific source categories. PM2.5 from LDDVs-2 had the lowest amount of WSIs compared to the other 362 

automobile exhausts (Figure S12). Similar to the metal composition, bituminous coal also had the lowest WSIs among all coals 363 

(Figure S13). Compared to branches, PM2.5 from burning crop straws had much greater levels of K+, Cl-, SO4
2- and less levels 364 

of F-, NO3
- (Figure S14). 365 

To summarize, the overall concentrations of measured TC, cumulated heavy metals and WSIs in PM2.5 from each source 366 

type were showed in Figure 5. Among all source emission and environmental receptor samples, the cumulated heavy metals 367 

from coal combustion was highest and automobile exhaust was higher than ambient PM2.5, the overall carbon contents from 368 

automobile exhaust and biomass burning were both higher than ambient PM2.5, while only the cumulated soluble ions in PM2.5 369 

from primary source of coal combustion was equivalent to the ambient aerosols. In a word, chemical compositions of PM2.5 370 

distributed much diversely and varied significantly with the specific source types of combustion emissions. 371 

3.3 Cell viability, oxidative stress and inflammation levels exposed to various mass-normalized PM2.5 372 

Multiple toxicological endpoints (cell viability, oxidative stress, and inflammation) that facilitate identifying the specific 373 

particle triggering ROS and inflammatory responses resulting in cell death were evaluated for source-specific PM2.5. After 24 374 
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h exposure to the same dose of different PM2.5 obtained from specific emission sources, the A549 lung cells also showed varied 382 

toxicological responses (Figure 6). The survival rate of cells exposed to automobile exhaust PM2.5 was much lower than 383 

ambient air PM2.5 (Figure 6.1). Automobile exhaust PM2.5 induced the highest ROS production in cells higher than biomass 384 

burning and both sources were also much higher than ambient PM2.5 (Figure 6.2). Coal combustion induced the highest cellular 385 

IL-6 production followed by automobile exhaust that was also higher than ambient air PM2.5, while the PM2.5 from automobile 386 

exhaust and biomass burning induced similarly higher cellular production of TNF-α than ambient PM2.5 (Figure 6.3, 6.4). 387 

These results suggested that, combustion primary emission PM2.5 had stronger ability to induce oxidative stress and 388 

inflammatory injury in lung cells than ambient air PM2.5, thus resulted in the higher probability of apoptosis induction (Victor 389 

and Gottlieb, 2002;Wang et al., 2013). Generally, the mass-normalized PM2.5 from primary source of automobile exhaust 390 

posed the strongest overall toxicity. Therefore, to protect public health by controlling PM2.5 pollution, the anthropogenic 391 

combustions were key target sources, especially the most toxic automobile PM2.5 should be reduced preferentially.  392 

3.4 Correlations between various PM2.5 components and toxicity endpoints 393 

Spearman correlation coefficients between chemical compositions and cellular toxicological response indicators were applied 394 

to screen the key components of all PM2.5 involved in cell injury (Figure 7). It was found that, the degrees of correlations 395 

varied with the toxicological mechanisms of different airborne chemicals. Based on the overall PM2.5 samples from various 396 

sources, the pro-inflammatory cytokine IL-6 showed significantly strong positive correlations with some heavy metals (As, 397 

Pb, V, Cu), while TNF-α and oxidative stress (ROS) had similar significantly positive correlations with aerosol components 398 

of carbon fractions (EC, OC) and transtion metals (V, Cr, Ni). The TNF-α also showed positive correlation with water soluble 399 

Cl- and K+, and ROS correlated with F-, Ca2+ and Mg2+. 400 

 401 

4 Discussion 402 

4.1 New chemical markers for source apportionments of ambient air PM2.5 403 

Combustion emissions are key anthropogenic sources contributing to urban air PM2.5, through both primary and secondary 404 

aerosols, which were 66% and 34% calculated by PMF model, respectively (Figure 1). The high concentrations of chemical 405 

markers are usually used in source analysis, such as ammonium sulfate and nitrate for secondary aerosols which are originated 406 

mainly from the gaseous precursors (e.g., NH3, SO2 and NOX) (Mahilang et al., 2021), the EC, Cu, Mn, and Ni for vehicle 407 

exhaust (Srivastava et al., 2021) , the As, Pb, OC, EC, SO4
2- and relatively low NO3

-/SO4
2- ratios for coal combustion (Dai et 408 

al., 2020), soluble K+ and Cl- for plant burning (Jain et al., 2020). The detailed chemical species of these specific source 409 

emission PM2.5 samples also supported the results. Moreover, low OC/EC ratio of high TC content, high NO3
-, F-, Na+, Ca2+ 410 

and Mg2+, V and Mn of automobile exhaust; Pb and As, SO4
2- and NH4

+ of coal combustion; soluble K+ and Cl-, and high 411 

OC/EC ratio of high TC for plant biomass burning found in current study (Figures 2-5), could also be corresponding potential 412 
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aerosol source markers. The principal aim of this paper was to assess and contrast the chemical composition and potential 437 

harmfulness of PM arising from diverse anthropogenic sources, thus natural sources, like fugitive soil dust, were not included 438 

in the source examination. 439 

4.2 Common PM2.5 components related to specific combustion sources 440 

Generally, the automobile exhaust PM2.5 had high TC content and low OC/EC value with considerable EC content (Figure 2), 441 

varying with specific vehicle types (Figure S4). The contents of the carbon fractions from diesel vehicles were higher than 442 

gasoline exhausts, and the OC/EC ratios of diesel exhausts were much lower than gasoline vehicles, owing to both considerable 443 

contents of EC and OC from diesel vehicle emission PM2.5. Some diesel vehicles showed higher EC emissions with age, so 444 

exhaust cleaning devices for them are suggested. In addition, the amounts of OC and EC in exhausts gradually decreased with 445 

the strengthened emission standards they met (Wong et al., 2020). In PM2.5 samples obtained from coal combustion (Figure 446 

S5), the TC contents of bituminous coals were significantly higher than that of honeycomb coals, anthracite coals, and 447 

industrial coals, because bituminous coals contain higher volatile fraction, which is composed of organic matter. Therefore, 448 

besides the way of combustion and the use of combustion stoves, the coal quality related to different coal types and origins 449 

determine the carbonaceous fractions of the PM emitted by coal combustion (Zhang et al., 2022). In the PM2.5 samples from 450 

plant biomass combustion (Figure S6), OC contents were generally higher than EC contents, except that pine branches 451 

contained higher EC and rapeseed straw had considerable contents of EC and OC. Dominated by OC (Figure S7), the 452 

concentrations of carbonaceous fractions in urban ambient air samples varied seasonally (Flores et al., 2020;Xu et al., 2019). 453 

Combining the TC contents and OC/EC ratios, carbonaceous components in ambient PM2.5 mainly originate from semi-volatile 454 

organic compounds (SVOCs) (Wang et al., 2018) and combustion primary emissions for OC (Kang et al., 2018), and 455 

automobile exhaust for EC (Barraza et al., 2017). Thus, to control ambient carbon aerosol pollution, besides reducing the  456 

precursor emissions of secondary organic aerosols (SOA), controlling primary aerosols especially EC from diesel vehicles 457 

were key measures. 458 

Airborne redox-active metals are usually linked with the oxidation stress of PM2.5. Different types of automobiles emitted 459 

diverse metal contents (Figure S8). Metal elements in automobile exhaust are primarily contributed by fuels, lubricants, and 460 

engine component abrasion. Because Mn is a common antidetonator that delays and prevents the oxidation of hydrocarbons 461 

and increases the octane number, which not only increases the thermal efficiency of the engine but also improves the emission  462 

performance of the vehicle (Cheung et al., 2010), the Mn content was greater in gasoline vehicle exhausts than in diesel 463 

vehicles. Although there are multi-sources of traffic Pb emissions such as fuel combustion and brake wear (Wang et al., 464 

2019;Panko et al., 2019), the automobile exhaust Pb content of gasoline vehicles were greater than diesel vehicles owing to 465 

oil combustion. Moreover, for the same vehicle type (LDDVs-1 and 2; HDDVs-1 and 2; SDGCs-1 and 2), the stricter the 466 

emission standard required, the lower the exhaust metal contents. The metal contents in the PM2.5 of trucks was higher than 467 

that of passenger cars (Wu et al., 2016). In the combustion PM2.5 of 10 coal types (Figure S9), Pb contents were the highest 468 
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than other heavy metals, similar to available findings (Zhang et al., 2020). The PM2.5 metals from bituminous coal were 485 

significantly lower than other coal types, because indicated by the coal quality analysis, bituminous coal has a low ash content 486 

which is mainly derived from non-combustible minerals in coal. These findings suggested that coal maturity might be an 487 

important factor influencing the metal composition of particulates emitted from coal combustion (Shen et al., 2021;Zhang et 488 

al., 2021). Heavy metal contents in biomass burned PM2.5 varied much widely with raw plant types (Figure S10), although 489 

dominated by Cr and Ni. Different plant species and even different plant parts differ significantly in their ability to uptake and 490 

accumulate metals from soil (Zhao et al., 2020). Moreover, because of the high enrichment factors of some metals for crop 491 

straws (Zhang et al., 2016;Sun et al., 2019), they also released more Cr, Ni, and Co during burning than fuelwoods. Total metal 492 

emissions were highest in corn cob but lowest in peanut straw burning PM2.5. The heavy metals enriched in urban ambient air 493 

PM2.5 demonstrated a seasonal pattern (Chen et al., 2018;Hsu et al., 2016) (Figure S11). Contents of V, Co, and As were 494 

relatively low and are less affected by seasonal changes. Accordingly, supported by the metal profiles of anthropogenic 495 

combustion sources and ambient aerosols, to control the environmental airborne heavy metal pollution, the Pb, Cu and As 496 

from honeycomb, anthracite and industrial coal combustion, Cu from vehicle exhausts and especially V from light duty diesel 497 

van with the CN.Ⅲ emission standard and Mn from gasoline vehicles, Cr and Ni from biomass especially crop straws burning, 498 

should be key targets. 499 

Epidemiological studies have also shown the mortality closely related to the WSIs such as sulfate and nitrate in aerosols 500 

(Ostro et al., 2009;Liang et al., 2022). Among the WSIs contents of various automobile exhaust PM2.5 (Figure S12), NO3
- and 501 

Ca2+ were the most abundant anion and cation, respectively. The high NO3
- in the automobile PM2.5 may be due to NOx 502 

production during high-temperature combustion (Hao et al., 2019), while the high Ca2+ content should be related to additives 503 

in automobile fuels and calcium-based lubricants (Yang et al., 2019). Moreover, the exhaust WSIs decreased with the 504 

strengthened automobile emission standards required. Coal combustion PM2.5 contained relatively higher SO4
2- and NH4

+ 505 

concentrations followed by Cl- than other WSIs species (Figure S13). Among various coal types, industrial coals emitted 506 

highest SO4
2- followed by honeycomb and industrial coal with also high NH4

+, but bituminous coals emitted low WSIs which 507 

were mainly NO3
-, F- and Na+, Ca2+. The WSIs emission factors of honeycomb coal were generally higher than those of lump 508 

coal (Yan et al., 2020). For biomass combustion emissions (Figure S14), Cl- and K+ were dominant WSIs in PM2.5 from straw-509 

type fuels (Tao et al., 2016;Sillapapiromsuk et al., 2013), but fuelwood-type combustion emitted high NO3
-. Plant species 510 

absolutely determine the emissions (Liao et al., 2021). Finally, there were also high levels of NO3
-, SO4

2-, and NH4
+ in ambient 511 

air PM2.5 (Zhang et al., 2019) (Figure S15). Consequently, implied by the WSIs species distributed in combustion primary 512 

sources and environmental PM2.5, to control the aerosols ions pollution, the NO3
- from vehicle exhausts and fuelwood burning; 513 

SO4
2- and NH4

+ from honeycomb, anthracite and industrial coal combustion; Cl- and K+ from biomass especially crop straw 514 

burning, should be principal targets, by stricter automobile emission standards or using clean coals. 515 

4.3 PM2.5 toxicity related to specific sources by pivotal chemical components 516 
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The complexity of the sources and compositions of atmospheric PM2.5 leads to different toxicological effects (Newman et 528 

al., 2020;Kelly, 2021). The toxicological effects of PM2.5 are not comparable among different studies owing to distinct 529 

exposure concentrations, biological models, endpoints, and PM2.5 generation methods (Park et al., 2018; Kelly and Fussell, 530 

2020). In this study, we employed same exposure conditions and biological endpoints, in order to obtain comparable toxicity 531 

data for PM2.5 from different sources. Our mass-normalized results demonstrated that automobile exhaust PM2.5 induced the 532 

highest lethality and cellular ROS and TNF-α production, coal combustion PM2.5 induced the highest cellular IL-6 production, 533 

plant biomass burning PM2.5 induced considerable cellular TNF-α and ROS production (Figure 6). Generally, various toxicities 534 

of combustion emission primary PM2.5 were much greater than the urban ambient air PM2.5 (Figure 6), owing to the higher 535 

concentrations of specific toxic components in PM2.5 from these sources. The supplementary information had included 536 

exhaustive cytotoxicity indicators from each individual source (Figure S16-S19). While the survival rate of cell exposed to 537 

CN.III emission standard PM2.5 was the lowest and the capacity to induce cells to produce ROS was the highest for CN.IV, 538 

automobile exhaust had a similar potential to cause cells to produce inflammatory cytokines (Figure S16). The capability to 539 

induce IL-6 production in cells was highest for industrial coal PM2.5, whereas bituminous coal had the highest survival rate of 540 

cells and TNF-α induction capacity (Figure S17). From the Figure S18 we can see that the PM2.5 cytotoxicity of straws and 541 

branches burning was analogous, but it should be noted that the cell viability of various straw PM2.5 differs significantly, that 542 

may be related to the raw fuel characteristics.  543 

These possible mechanisms were implied by the overall relationships between the measured chemical components with 544 

cytotoxicity indicators of PM2.5 from various specific sources (Figure 7). In general, both TNF-α and ROS were significantly 545 

positively correlated with carbonaceous fractions and redox-active transition metals (V, Cr, Ni), which were main contributors 546 

of automobile exhausts and biomass burning. The IL-6 was significantly positively correlated with some heavy metals (As and 547 

Pb, V and Cu), which were main contributors of coal combustion sources. Potential mechanisms include that, carbon fractions 548 

bound in PM2.5 could be transformed into reactive metabolites and then induce ROS production in cells (Stevanovic et al., 549 

2019), and the PM2.5 bound transition metals could also induce ROS production through the Fenton reaction and disrupt the 550 

function of enzymes in cells (Verma et al., 2010;Sørensen et al., 2005; Zou et al., 2016). Oxidative stress can lead to 551 

inflammatory infiltration of neutrophils and stimulate immune cells to produce inflammatory cytokines, among which TNF-α 552 

and IL-6 play important roles in the inflammation development (Xu et al., 2020). Ultimately, excessive production of ROS 553 

leads to dysfunctional endoplasmic reticulum responses and dysfunctional lipid metabolism in ROS bursts can result in cell 554 

membrane damage and even cell death (Piao et al., 2018;Zhao et al., 2004). There have been some related supporting reports. 555 

For instance, the OC and EC were significantly associated with biological responses of PM from vehicle emissions collected 556 

in tunnels (Niu et al., 2020). The polar or quinone fractions of PAHs in diesel engine exhaust particles significantly contributed 557 

to the heightened toxic response (Xia et al., 2004). The PM2.5 generated from biomass burning contained a substantial 558 

concentration of carbonaceous components. In addition, Cr and Ni in PM10 from straws were highly associated with ROS (Li 559 

et al., 2023). In current study, cellular ROS was also correlated with water soluble Ca2+, F-, and Mg2+, which were main 560 
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contributors of automobile exhaust PM2.5. The Ca2+ controls the membrane potential and regulates mitochondrial adenosine 841 

triphosphate (ATP) production, and excessive Ca2+ leads to energy loss and more ROS production (Madreiter-Sokolowski et 842 

al., 2020). Moreover, the TNF-α was also positively correlated with water soluble Cl- and K+, which were main contributors 843 

of plant burning PM2.5. Therefore, the accumulations of some organic matters with high carbonaceous content (OC, EC) in 844 

PM2.5 typically from automobile exhausts and plant biomass burning, redox-active metals (V, Cr, Ni) and water-soluble anions 845 

(Cl-, F-) and cations (Ca2+, Mg2+) contributed by various combustions, might induce ROS production in cells, cause cellular 846 

damage through oxidative stress and inflammatory responses, impair cell viability and finally harm human health. 847 

Considering the multi-endpoints measured and the PM2.5 toxicity mechanisms mentioned above, based on the cell viability 848 

first, and then ROS followed by inflammatory markers, together with the significantly related toxic chemical composition 849 

contents (Park et al., 2018), we put forward a general sequence of overall mass-normalized toxicity for these combustion 850 

source PM2.5 to managers. To improve the urban environmental air quality for best public health benefits by controlling 851 

aerosols pollution, considering the differential toxicity intensity of each chemical component and their contributions from 852 

various sources to ambient aerosols, preferential targets of specific primary PM2.5 sources and bound pollutants to be controlled 853 

are suggested as following sequence: Reducing all anthropogenic combustions, especially decreasing the automobile exhaust 854 

PM2.5 with high contents of EC, transition metals (V, Cu, Ni, Cr), and ions (Ca2+, Mg2+, F-, Na+) from diesel exhausts by 855 

strengthening the emission standards, then lessening the coal combustion with high heavy metals (As, Pb, Cu) by replacement 856 

with low-ash clean coals, and depressing the biomass burning with high OC, Ni, Cr, Cl- and K+ from crop straw emissions. 857 

4.4 Limitations and perspectives 858 

In current study, we selected A549 cell based on previous abundant experimental experiences and also because it has been 859 

used popularly in in vitro toxicology studies to elucidate the cellular and molecular mechanisms of PM involved in lung for 860 

many decades (Li et al., 2022b). However, recently the human normal bronchial epithelial cell BEAS-2B was preferred over 861 

the human lung adenocarcinoma epithelial cell A549. For instance, both cells were used in an aerosol study (Bonetta et al., 862 

2017), results of which highlighted the higher sensitivity of BEAS-2B cells respect to A549 also in samples with low level of 863 

pollutants, because the PM0.5 samples from Italian towns can induce genotoxicity in normal cells while cancer cells might be 864 

resistant to their adverse effects. Therefore, although our results are reasonable under the same exposure conditions, there were 865 

still potential limitations of A549 cells since they may be more resistant to exposure to external compounds, and the generally 866 

more sensitive BEAS-2B cells are suggested for future studies.  867 

In toxicity assessments, cell vitality reflects the overall health of cells, encompassing factors such as cell membrane integrity, 868 

intracellular metabolic activity, and cell proliferation capacity. Decreased cellular vitality may be associated with cell damage, 869 

toxic effects, or cellular apoptosis. Inflammation markers are employed to assess the extent and nature of inflammatory 870 

reactions, including the production of cytokines and inflammatory mediators, as well as the activation status of inflammatory 871 

cells. Inflammation is a complex physiological response, typically delineated by the immune and inflammatory reactions of 872 
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the body to stimuli such as injury or infection. Alterations in inflammation markers can indicate the intensity and nature of the 917 

inflammatory response. In this study, multiple biological responses of epithelial cells to various PM2.5 were evaluated, 918 

including that, cell viability evaluated the mitochondrial dehydrogenase activity of the living cells, excessive intracellular ROS 919 

formation induced by PM2.5 was responsible for oxidative stress to the cells, cytokines IL-6 and TNF-α were determined for 920 

the effect of PM2.5 on pro-inflammatory response in cells. In general, in vitro data can be used to rank various types of particles 921 

in terms of the toxic potential including possible carcinogenicity. Each marker will help to understand the hazard and toxicity 922 

of PM2.5. However, the toxicity of PM2.5 may be the result of multiple components acting through disparate physiological 923 

mechanisms, with inconsistent relationships among endpoints (Park et al., 2018). For instance, in BEAS-2B cells, oxidative 924 

stress generated by H2O2 exposure often results in cytotoxicity rather than by stimulating cytokine/chemokine responses, 925 

sometimes no correlation between oxidative damage and cytokine/chemokine responses. Moreover, TNF-α gene was not 926 

detected in BEAS-2B cells exposed to atmospheric PM collected from Benin, but the gene expression of other inflammatory 927 

cytokines (IL-1β, IL-6, and IL-8) were significantly induced, and decreasing cell viability was highly correlated with high 928 

secretion of all studied cytokines (Cachon et al., 2014). Therefore, in the present study, it was impossible to analyze all 929 

chemicals in PM2.5 and determine all related toxicological endpoints, so unmeasured chemicals and endpoints might also play 930 

roles in the incongruous or unexplained results, and we also can’t over-explain the mechanisms just based on statistical 931 

relations. To overcome these hurdles, standardization of toxicological studies (experimental methodologies) and reporting 932 

guidelines are necessary for tracking and comparing results.  933 

This study ranked the unequal “toxic effects” based on the same mass concentration of PM2.5 exposure in body lung fluid 934 

system, while the “health risks” usually relating to the inhalation exposure concentration of PM2.5 in ambient air were not 935 

calculated and evaluated quantitatively. Moreover, non-linear concentration-response functions for various endpoints and 936 

different exposure concentrations might also limit using toxicological data straightforwardly to predict health effects 937 

(morbidity, mortality) in human populations, so drawing conclusions precisely quantifying/ranking the health risks of PM2.5 938 

from specific sources or of individual PM2.5 components is still not an easy task (Kelly and Fussell, 2020). Therefore, coupled 939 

with source apportionment and exposure level of ambient aerosols pollution, toxicology combined with epidemiology studies 940 

are essential for linking these factors and understanding scientific mechanisms to reach conclusions. 941 

 942 

5 Conclusions 943 

In current study, we found that 2/3 mass of urban ambient air PM2.5 in a representative megacity of eastern China originated 944 

from primary sources of anthropogenic combustions including coal, automobile, and biomass. Because of the significant 945 

differences in the chemical compositions, the diverse PM2.5 from both mixed ambient air and directly from individual 946 

combustion sources showed much differential mass-normalized in vitro toxicity to the human lung epithelial cells, either for 947 

the environmental aerosol samples collected from different seasons, or for the primary emissions of PM2.5 from various specific 948 
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source types. According to the comparative study and correlation analysis, the carbonaceous fractions (OC, EC) and redox-956 

active heavy metals (V, Ni, Cr) assisted by water-soluble ions (Ca2+, Mg2+, F-, Cl-) might play important roles in inducing 957 

cellular ROS production, causing oxidative stress and inflammation, resulting in cell injury and apoptosis, thus damage human 958 

health. These toxic pollutants accumulated in specific-source PM2.5 varied by the emission types and raw fuel properties. 959 

Combined with chemical composition and general cytotoxicity rank, the preferential controlling targets of specific combustion 960 

sources should be automobile exhaust (diesel vehicles with emission standards inferior to CN.Ⅳ), coal combustion (high ash 961 

and high sulfur coals), and plant biomass burning (crop straws). Although showing the synthetic effects of mixed compositions 962 

and complex sources, besides preventing the secondary aerosols from combustions, preferentially targeted reductions of these 963 

primary sources of toxic PM2.5 direct emissions, would produce the greatest benefits for public health with improved ambient 964 

air quality. Overall, this paper provides a precise, oriented, effective, efficient, and economical composition-source-based 965 

strategies for urban aerosols pollution control. However, as a prospect, the detailed mechanisms for unequal toxicity of PM 966 

with complicated components from various sources and their quantitative contributions to the health effects of ambient air 967 

PM2.5 mixture still need in-depth study. 968 
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 1255 

Captions of figures 1256 

Figure 1. The PMF factor profiles of various components and source percentages of secondary aerosol, automobile exhaust, 1257 

coal combustion, and plant biomass burning contributing to the urban ambient air PM2.5. 1258 

Figure 2. Carbon contents (mg kg−1) and ratio in PM2.5 from various specific sources (n=10 for each combustion source and 1259 

n=16 for urban ambient air). 1260 

Figure 3. Heavy metal contents (mg kg−1) in PM2.5 from various specific sources (n=10 for each combustion source and n=16 1261 

for urban ambient air). 1262 

Figure 4. Water-soluble ion (WSI) contents (mg kg−1) in PM2.5 from various specific sources (n=10 for each combustion 1263 

source and n=16 for urban ambient air). 1264 

Figure 5. Cumulated typical measured components (mg kg−1) in PM2.5 from various specific sources (n=10 for each 1265 

combustion source and n=16 for urban ambient air). 1266 

Figure 6. Cell viability, oxidative stress and inflammation levels of human alveolar epithelial cell lines (A549) exposed to 1267 

PM2.5 suspension (80 mg L-1) from various specific sources (n=10 for each combustion source and n=16 for urban ambient 1268 

air). 1269 

Figure 7. Overall correlations between typical cellular toxicological responses and chemical compositions of PM2.5 from 1270 

various sources (*p < 0.05，#p<0.01; n=46). 1271 
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Figure 1. The PMF factor profiles of various components and source percentages of secondary aerosol, automobile exhaust, 1276 

coal combustion, and plant biomass burning contributing to the urban ambient air PM2.5.  1277 
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   1284 

Figure 2. Carbon contents (mg kg−1) and ratio in PM2.5 from various specific sources (n=10 for each combustion source and 1285 

n=16 for urban ambient air). 1286 
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 1288 

Figure 3. Heavy metal contents (mg kg−1) in PM2.5 from various specific sources (n=10 for each combustion source and 1289 

n=16 for urban ambient air). 1290 
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 1292 

Figure 4. Water-soluble ion (WSI) contents (mg kg−1) in PM2.5 from various specific sources (n=10 for each combustion 1293 

source and n=16 for urban ambient air). 1294 
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  1297 

Figure 5. Cumulated typical measured components (mg kg−1) in PM2.5 from various specific sources (n=10 for each 1298 

combustion source and n=16 for urban ambient air). The letters a and b are significant groups classified by Kruskal–Wallis 1299 

test, p < 0.05. 1300 
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 1304 

Figure 6. Cell viability, oxidative stress and inflammation levels of human alveolar epithelial cell lines (A549) exposed to 1305 

PM2.5 suspension (80 mg L-1) from various specific sources (n=10 for each combustion source and n=16 for urban ambient 1306 

air). The letters a, b and c are significant groups classified by Kruskal–Wallis test, p < 0.05. 1307 
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Figure 7. Overall correlations between typical cellular toxicological responses and chemical compositions of PM2.5 from 1312 

various sources (*p < 0.05, #p<0.01; n=46). 1313 
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