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Abstract. This work introduces a novel snow metric, snow water storage (SwS), defined as the integrated area under the snow

water equivalent (SWE) curve [units: length-time, e.g. meter3-days]. Unlike other widely-used snow metrics that capture snow

variables at a single point in time (e.g. maximum SWE) or describe temporal snow characteristics (e.g. length of snow season),

SwS is applicable at numerous spatial and temporal scales. This flexibility in the SwS metric enables us to characterize the in-

herent reservoir function of snowpacks and quantify how this function has changed in recent decades. In this research, changes5

in the SwS metric are evaluated at point, gridded and aggregated scales across the conterminous United States (hereafter US),

with a particular focus on 16 mountainous EPA Level III Ecoregions (ER3s). These ER3s account for 72% of the annual SwS

(SwSA) in the US, despite these ER3s only covering 16% of the US land area. Since 1982, spatially variable changes in SwSA

are observed across the US with notable decreasing SwSA trends in the western US and in the 16 mountainous ER3s. All

mountainous ER3 (except for the the Northern Highlands in New England) exhibit decreasing trends in SwSA resulting in a10

22% overall decline in SwSA across mountainous ER3s. The peak monthly SwS (SwSM) occurs in March at all spatial scales,

while the greatest percent loss of SwSM occurs early in the snow season, particularly in November. Unsurprisingly, the highest

elevations contribute most to SwSA in all mountain ranges, but the specific elevations that have experienced loss or gain in

SwSA over the 39-year study period vary between mountain ranges. Comparisons of SwS with other snow metrics underscore

the utility of SwS, providing insights into the natural reservoir function of snowpacks, irrespective of SWE curve variability15

or type (e.g. ephemeral, mountain, permanent). As we anticipate a future marked by increased climate variability and greater

variability in mountain snowpacks, the spatial and temporal flexibility of snow metrics such as SwS may become increasingly

valuable for monitoring and predicting snow water resources.

1 Introduction

Seasonal snow is a critical resource in mountainous regions and at high latitudes across the United States (US), and many other20

countries, providing an important ecosystem service by functioning as a natural and spatially-distributed reservoir (Barnett

et al., 2005). These snow reservoirs play a key role in the water cycle by storing water during the cool season and releasing

water gradually throughout the warm season when human and ecological demand is the highest (Li et al., 2017). The natural

reservoir function of snowpacks is at risk due to anthropogenic climate change, which has been shown to decrease snowpack

magnitude and persistence while increasing snowpack variability (Siirila-Woodburn et al., 2021; Scalzitti et al., 2016; Sospedra-25

Alfonso et al., 2015; Morán-Tejeda et al., 2013). The variability of climatic variables that drive snowpack variability, such as
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precipitation and temperature, has increased in the recent past and is projected to continue to increase as a result of climate

change (Scalzitti et al., 2016; Sospedra-Alfonso et al., 2015; Morán-Tejeda et al., 2013; Pendergrass et al., 2017; Ohmura,

2012). Given the vulnerability of seasonal snow water storage to climate change and the importance of snow-derived water to

municipalities, agriculture, ecosystems, and hazard forecasters, it is vital to understand how water storage in our natural snow30

reservoirs is evolving in the context of a changing climate (Immerzeel et al., 2020; Sturm et al., 2017; Barnett et al., 2005; Li

et al., 2017; Siirila-Woodburn et al., 2021).

Snow water equivalent (SWE) is a relevant snowpack characteristic for many water resources applications. SWE is the depth

of water obtained upon melting a column of snow. Having an estimate of SWE across a watershed is analogous to knowing

the stage (water elevation) in a surface reservoir; it quantifies the amount of water being stored for later use. Other directly35

measurable snow characteristics largely fall into two categories; they can be temporal snapshots that give us information about

snow magnitude at a certain point in time, or they can provide information about snow timing (Nolin et al., 2021). April 1st

SWE, snow covered area (SCA), and peak SWE (SWEmax) are examples of temporal snapshot metrics. Snow metrics that give

us information about the timing of snow include snow cover duration (SCD), date of snow onset (DSO) and date of snow

disappearance (DSD).40

Composite snow metrics, such as the Snow Storage Index (SSI) (Hale et al., 2023) and the Water Tower Index (WTI) (Viviroli

et al., 2007), are not directly measurable, but combine information streams in order to relate snowpack to water storage. The

SSI indicates the degree to which snowpack delays the timing and magnitude of surface water inputs relative to when it falls as

precipitation and the WTI identifies locations where mountain runoff contributes disproportionately to lowland water supplies.

Additionally, a global WTI was developed, which ranks all water towers in terms of their water-supplying role and downstream45

societal and ecological demand (Immerzeel et al., 2020).

A conceptual SWE curve is shown in Figure 1(a). The conceptual SWE curve referenced throughout this paper is for

mountain snowpacks and is delineated by three points; the DSO the peak SWE (SWEmax) and the DSD. SWE accumulation

begins at the DSO and continues up to a SWEmax, which may or may not occur on Apr 1 (northern hemisphere). After SWEmax,

the ablation phase of the snow season begins and the SWE depth declines until it reaches zero at the DSD. The SCD is captured50

by the width of the SWE curve. Multiple factors can result in systematic changes to the shape of the SWE curve including

climate change (Lute et al., 2015), natural land cover change such as wildfire (Gleason et al., 2019) or beetle kill (Pugh and

Small, 2012; Boon, 2007; Winkler et al., 2014) and man-made land cover change, such as forest thinning (Krogh et al., 2020;

Sun et al., 2022) or logging (Winkler et al., 2005; Troendle and Reuss, 1997).

The shaded regions in the other panels of Figure 1 provide plausible examples of how the SWE curve may have changed55

from the past to present day. For example, a current SWE curve could be a scaled (reduced) version of a past SWE curve

(Figure 1(b)). This would result in a later DSO, a lower SWEmax, an earlier DSD and a shorter SCD. Changes in SWE curves

could also result from a temporal shift in the historic curve (Figure 1(c)). This would not impact SWEmax or SCD, but metrics

including April 1 SWE, DSO, and DSD would be affected. Figure 1(d) gives yet another example of a theoretical current

scenario, compared to a historic one. In this case, the shape of the conceptual SWE curve is changed by repeated accumulation60

and melt events during the accumulation season. As shown in this graphic, metrics such as DSO, DSD, SCD, SWEmax, and
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April 1st SWE could all remain unchanged but it is clear that the snowpack is different than in the past. Previous literature has

quantified increasing ablation during the accumulation period by defining a ‘melt fraction’ (Musselman et al., 2021) which is

the ratio of the melt that occurs during the accumulation phase to the total melt. Their metric helps to identify snowpacks that

have considerable variance and vulnerability to warming and rain-on-snow events. Another example of changing snowpack is65

shown in Figure 1(e). Here, the SCD remains constant due to consistent DSO and DSD, but SWEmax decreases in magnitude,

resulting in less snow overall. Finally, Figure 1(f) shows a theoretical future in which DSO, DSD, SCD, April 1st SWE and

SWEmax all remain constant, but it is clear that there is less snow present throughout the season.

The conceptual SWE curve and the above discussion is focused on a mountain snowpack, a snowpack with a distinct period

of steady accumulation up to a SWEmax, followed by a similarly steady ablation season that persists throughout the winter.70

While mountain snowpacks play a key role in natural water storage, other types of snowpacks also have distinct characteristics

and are important to the hydrological cycle. For example, ephemeral snowpacks, snowpacks that tend to be have a lower cold

content than mountain snowpacks and come and go throughout the winter (Sturm et al., 1995; Hatchett, 2021), play a role

in soil moisture and runoff regimes (Livneh and Badger, 2020; Hamlet and Lettenmaier, 2007). Ephemeral snowpacks tend

to experience accumulation and ablation processes nearly in tandem (Liston and Elder, 2006). Alternatively, Greenland and75

Antarctic ice sheets primarily experience accumulation processes (Liston and Elder, 2006). While metrics such as April 1

SWE, SWEmax and SCD do a good job of characterizing mountain snowpacks, they are not as useful at capturing the transient

nature of ephemeral snowpacks or the lack of an ablation season on ice sheets.

This work aims to characterize the extent to which snowpacks serve as natural reservoirs and evaluate spatial and temporal

changes in snow water storage in a new, integrated way. As we move into a future of increased climate and snowpack variability,80

we need snow metrics that can capture diverse and dynamic snowpack regimes. As the majority of natural snow water storage in

the US occurs in mountainous regions, it is important to understand how the natural reservoir function of snowpacks is changing

across individual mountain ranges. When attempting to quantify snow water storage change, it can be difficult to merge the

scale at which most in-situ observations are available (at the point/station scale) and the scale at which snowpacks operate

as natural reservoirs (at the mountain range scale). This study presents a new spatially and temporally flexible snow metric,85

snow water storage (SwS), in order to address the reality of changing snowpack regimes and the challenge of spatial variability

between snow observations and decision making. This study examines SwS trends in mountain snowpacks by addressing the

following research questions: (1) What are the trends in monthly and annual SwS across the US at discrete point, gridded and

aggregated scales? (2) What is the role of mountainous ER3s in US SwS and how has this changed in recent decades? (3) How

does SwS relate to other common snow metrics?90
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2 Methods

2.1 Snow Water Storage Metric (SwS)

SwS quantifies the depth of water stored in snow reservoirs over time and is calculated by integrating the area under the SWE

curve:

SwS =

∫
SWE(t) dt, (1)95

where SWE has dimensions of length, and integration occurs over a time period (water year, a given month, etc.) of interest. If

daily SWE data are used for this calculation at a given point, SwS will have dimensions of meter-days, or md.

As defined above, SwS is a quantity computed at a single point, e.g. a SNOTEL location. However, the SwS metric can also

be aggregated across various spatial scales. There are numerous re-analysis products that provide spatially-distributed SWE

information on a regular grid. In this case, SwS can be computed for a horizontal area (say a particular watershed) of interest.100

In this case, the dimensions of SwS will be m3d.

SwS can also be computed for various integration periods. If the integration is done over the entire water year, this yields

annual SwS (SwSA). In the integration is for a particular month, this yields monthly SwS (SwSM). Integrating daily SWE data

over a single day produces the daily value of SwS (SwSD), but this is simply is the same as daily SWE.

SwS is the integrated area under the SWE curve, indicating the cumulative meter-days of water that was stored as a snowpack.105

SwS quantifies the degree to which a snowpack functions as a water storage reservoir. Unlike April 1 SWE, or SWE max,

SwS can be applied to mountain, ephemeral or permanent snowpacks. Unlike other storage-related metrics such as SSI and

WTI, SwS is directly measurable and does not require the combination of multiple data-streams to calculate. Ultimately, this

integrated metric helps us to understand how much water is held in our snow reservoirs and for how long.

2.2 Data110

Daily observations of SWE were obtained from Natural Resources Conservation Service (NRCS) snow telemetry (SNOTEL)

stations (Serreze et al., 1999) and from Cooperator Snow Sensors (COOP). The SNOTEL network provides data at discrete

scattered points across the western US and the COOP stations used in this study provide data across California. This study

used the 465 stations that have a period of record from at least water year 1982 to water year 2020 with less than 10% of days

missing during that period.115

This study also uses the University of Arizona SWE (UASWE) dataset (Zeng et al., 2018; Broxton et al., 2019) a daily

4-km gridded dataset that spans the US. The UASWE dataset assimilates SWE and snow depth observations into an empirical

temperature index snow model that is forced with PRISM temperature and precipitation data (Daly et al., 2008). The primary

value of this dataset is that it provides SWE estimates at locations other than the SNOTEL stations. This allows for the

aggregation of SWE information over areas of interest (Zeng et al., 2018). The UASWE product has been shown to outperform120

(Dawson et al., 2018) other gridded SWE products such as the SWE estimates from the Snow Data Assimilation System

(SNODAS, Center. 2004). Additionally, a spatially-continuous, gridded product allows us to build a more complete picture
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of spatial changes in SwS and how changes in SwS are occurring at aggregated scales. Despite the good performance of

the UASWE product, there are limitations to using any modeled SWE product. Factors such as imperfect physics, inaccurate

boundary conditions and re-scaling errors can contribute to inaccuracies in the modeled field, SWE, in this case (Sturm, 2015;125

Zhang et al., 2007).

The EPA Level III Ecoregions (ER3s) (McMAHON et al., 2001; Omernik and Griffith, 2014), which are regions with

similar ecosystems and environmental resources, were used to identify mountainous regions and to delineate the grid cells

in the UASWE dataset that were associated with each ER3 (Figure 2). Mountainous ER3s were included in this study if at

least half of their area resided in the snow covered mask (described in section 2.3 below). Since each ER3 has similarities130

in biotic, abiotic, terrestrial and aquatic ecosystem components, examining SwS change in any given ecoregion may help us

understand ecosystem impacts that are related to changes in SwS. Numerous ER3s correspond to the major mountain regions

in the western and eastern US that serve as the largest natural reservoirs in the country.

Finally, NASA SRTM Digital Elevation data (Farr et al., 2007) were re-gridded to create a digital elevation model (DEM)

matching the grid of the UASWE product. Elevation data were used to calculate watershed hypsometry in each ER3. The135

procedure used to calculate a hypsometry grid is described in section 2.4.2.

Though the station and ER3 datasets extend beyond the conterminous US, the UASWE dataset does not. All datasets were

spatially constrained to the conterminous US in order to facilitate the comparison of results between spacial scales. A summary

of all of these datasets is provided in Table 1.

2.3 Study Area140

As noted above, this study considers both discrete station data that focus on the western US, and spatially-continuous gridded

data that cover the conterminous US. Regarding the gridded data, many locations have little to no snow. Therefore, the analysis

of the gridded product is restricted to locations that have a mean of at least 30 snow covered days per year based on the 39-

year climatology (1982-2021) of the UASWE dataset (Figure 3). As expected, snow cover duration increases with latitude and

elevation, with the longest snow cover duration found along mountain tops in the western US. In the ER3 SwS change analysis,145

all ER3s are considered that contain grid cells that meet the 30-day snow cover threshold, though the mountainous ER3s are

more closely examined since they store the bulk of our winter water.

2.4 Analysis

2.4.1 SwS Trends

To evaluate significant trends in SwSA and SwSM across the US, these quantities were computed over a 39-year period of study150

(water years 1982-2020) at stations and at UASWE grid cells, which have an area of 16 km2. The grid cell-based SWE from

the UASWE product was additionally aggregated for each ER3 in order to assess trends at larger scales. To compute SwS at

aggregated ER3 scales, the gridded SWE data within an individual ER3 were simply integrated spatially, resulting in SwS with

units of meter3-days.
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This study used the Hamed and Rao Modified MK test from the pyMannKendall python package to compute trends in SwS155

(Hussain and Mahmud, 2019). The Mann-Kendall test is a rank-based non-parametric test that is used to evaluate monotonic

(increasing or decreasing) trends in temporally-varying data (Hirsch et al., 1982). Thus, the null hypothesis is that the data are

randomly and independently ordered and the alternative hypothesis is that a monotonic trend exists in the data. Though the

Mann-Kendall test is widely used in hydrological studies, it does not account for positive autocorrelation, which increases the

probability of detecting trends when no trends exist. Because of this, many studies have turned to a modified Mann-Kendall160

test that does account for autocorrelation (Hamed and Rao, 1998).

2.4.2 Trends by Elevation in Mountainous Ecoregions

This analysis focused on 16 ER3s corresponding to the mountain ranges that receive substantial snowfall relative to surrounding

ecoregions. 12 of these ecoregions are located in the western US, and 4 ER3s are located in the eastern US. The relative

elevation of SwSA change in each ER3 is examined in this study. In order to make trends in SwSA comparable over the wide165

range of elevations across the US, the elevations of each ER3 are converted to hypsometry scores. Each ER3 boundary is used

to select co-located elevation data from the regridded NASA SRTM Digital Elevation Dataset. ER3 hypsometry is calculated

by determining the percentage of the ER3 area that falls below a given elevation within that ER3. Thus, there is 0% of the ER3

at the lowest elevation of the ER3 and 100% of the ER3 is below the highest elevation. Each elevation grid cell in the DEM is

turned into a value between 0 and 1 based on where that grid cell lies relative to other elevation grid cells within the same ER3.170

Hypsometry scores in each mountainous ER3 are then binned into 10% increments, from 0% of an ER3 below to 100% of an

ER3 below, in order to compute the mean SwSA and the percent change in each hypsometry band from 1982-2020. The percent

change in the interquartile range (IQR) of SWE was also computed for each hypsometry band from 1982-2020. To calculate

the percent change in IQR, the IQR in each ER3 is calculated for each year in the study by subtracting the 25th percentile from

the 75th percentile of SWE. The trend is evaluated in each hypsometry band following the trend analysis described in section175

2.4.1.

2.4.3 SwSA Compared to Other Snow Metrics

SwSA trends are compared to other commonly used snow metrics including April 1st SWE, SWEmax, day of SWEmax, and

SCD in order to evaluate what type of information the SwSA metric provides that other metrics do not. This is done in four

ways using the station data. First, the percent of stations with positive, positive significant, negative and negative significant180

trends in each metric are computed. Second, the trend in the annual number of snow-free periods is calculated at each station

from 1982 to 2020 to evaluate whether snowpacks are becoming more ephemeral using the Hamed and Rao Modified MK test

described in section 2.4.1. The annual number of snow-free periods is defined as the number of times in a water year there

is no snow following a period of snow. Next, the utility of the SwS metric compared to other snow metrics is shown using a

case study of SNOTEL station 706 (Quartz Mountain, Oregon), a station that has transitioned from a mountain snowpack to an185

ephemeral snowpack. Third, a regression is computed between the percent change in SwSA and each other metric above using

empirical data from the stations. Finally, the relationship between the percent changes in the empirical data is compared to the
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percent changes that would be expected based on the conceptual SWE curve. For example, the empirical relationship between

the percent change in SwSA and the percent change in SWEmax is compared to what it would be if there was a uniform scaling

in the conceptual SWE curve as shown in Figure 1(b).190

3 Results

3.1 SwS Change Trends

3.1.1 SwSA Change Trends

The average SwSA across all stations in this analysis is 60 md. The lowest SwSA found at a single station was 0 md and the

maximum SwSA observed was 510 md. Changes in SwSA range from a decrease of 122 md to an increase of 69 md over the195

period of study (Figure 4). Of the 97 SNOTEL and COOP stations with increasing trends in SwSA, only 10 had significant

(p<0.1) increases (Figure 4). Significant decreasing SwSA trends were found at 123 of the stations of the 367 stations. Losses

in SwSA ranged from 2 md to 122 md. Spatially, there are widespread decreasing SwSA trends across most of the 11 western

states that contain snow stations, with declines ranging from 17% to 87%. The 10 stations with significant increases in SwSA

range from a 6% increase to a 78% increase. The stations with increasing SwSA trends are mostly located in the Northern and200

Middle Rockies and also includes a few station in the Southern Rockies and in the Cascades.

Moving from discrete station data to the the spatially-continuous gridded UASWE data, there is a mean SwSA of 1.8e8 m3d

across grid cells (Figure 5). Mountainous ER3s in the western US have an average SwSA of over 1.4e9 m3d and the maximum

SwSA is 2.6e10 m3d. The average SwSA in much of New England and the Upper Peninsula of Michigan ranges from 3.2e8 to

6.4e8 m3d.205

The grid cell-scale change analysis yields similar geographic patterns of significant changes in SwSA in the western US as

the station-scale analysis (Figure 5). This is not surprising given that the UASWE product assimilates SNOTEL (and other)

station data. The benefit of including a spatially distributed product such as UASWE in this analysis is that it adds detail and

insight as to where changes in SwSA are occurring beyond the western US and in-between the locations where discrete stations

are located. Significant increases in grid cell SwSA are primarily found in the north-central and north-eastern US. Only 5% of210

US grid cells have significant increasing trends and have a mean percent increase of 84%. From 1986-2015, the north-central

and north-eastern US experienced an increase in annual precipitation, particularly in spring and fall, though these regions also

show spatially-variable increases in precipitation during the winter (Easterling et al., 2017). These precipitation changes may

partially explain the increases in SwSA, though these regions have also experienced increases in winter temperatures over the

same time period. Significant decreases in SwSA are more widespread and are found across the western US, the Appalachian215

Mountains, the Blue Ridge Mountains and in the Ozarks. Of the 54% of US grid cells that have decreasing trends in SwSA,

11% have significant decreasing trends. The mean percent decline in SwSA for the grid cells with significant trends is 44%.

Figure 6 indicates the raw change and percent change in SwSA across ER3s. Aggregating UASWE SwSA at ER3 scales

spatially-filters (and thus mutes) some of the grid cell-scale trends in SwSA as can be seen when comparing Figures 4 and 5.
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Of the 51 ER3s that are evaluated in this study, 19 have increasing trends and 32 have decreasing trends. Only one ER3, the220

non-mountainous Lake Agassiz Plain, has a significant positive trend in SwSA (86% increase). None of the non-mountainous

ER3s have significant decreasing SwSA trends. The specific ways in which SwSA has changed across the 16 mountainous ER3s

and how these changes relate to other snow metrics will be discussed in section 3.3.

3.1.2 SwSM Change Trends

The highest monthly mean SwSM occurs in March at stations (12.8 md), grid cells (2.7e7 m3d) and in mountainous ER3s (7.4225

m3d). Figures 7, 8, and 9 summarize trends in SwSM change evaluated at stations, UASWE grid cells and ER3s, respectively.

Significant decreases in SwSM occur across all months at all spatial scales examined. November experienced the highest

number of stations, grid cells and ER3s with significant SwSM losses compared to any other month. The greatest monthly

median percent loss of SwSM occurred in November at stations (56%) and grid cells (44%), and in March at mountainous

ER3s (61%). Looking at raw change values, the months with the greatest decrease in SwSM are not the same as the months230

with the largest percent changes. March, December and January are the months with largest decrease in median SwSM at

stations (4.6 md), grid cells (6.4e6 m3d) and mountainous ER3s (1.1e11 m3d), respectively.

Though there is an overall negative median percent change in SwSM in all winter months at the station and grid-cell scale,

February and March have higher occurrences of significant SwSM increase than any other months. At the grid cell-scale,

October, March-May and July-August all have a 0% median percent change in SwSM because most grid cells within the snow-235

cover mask are snow-free during these times. At the ER3 scale, the median percent change in SwSM is negative in all months.

Most data points that indicate significant positive increases in monthly storage are considered outliers at all spatial scales.

3.2 SwSA Change Trends in Mountainous ER3s

Analysis of mountainous ERs illuminates the large role mountains play in storing winter snow water resources as snowpack,

particularly in the western US. An average of 72% of the annual SwSA in the US (3.5e13 m3d) is held in the 16 mountainous240

ER3s, despite these ER3s only covering 16% of the US land area (Figure 6). Western mountainous ERs cover 12% of the US

land surface and store an average of 65% of the annual SwSA. Across all mountainous ER3s, there has been a 22% decline

(6.1e12 m3d) in SwSA over the 39 year period of study. Over the same time span, there has been a 24% decline in SwSA in

western mountainous ER3s, indicating that western snow reservoirs are shrinking faster than eastern snow reservoirs.

Of the 16 mountainous ER3s (outlined in red), only the Northeastern Highlands has a (non-significant) increasing SwSA245

trend, while the other 15 mountainous ER3s have decreasing SwSA trends. This means that the snow water storage in 94% of

mountainous ER3s has declined from 1982-2020. Five of the mountainous ER3s, the Cascades, the Eastern Cascade Slopes

and Foothills, the Southern Rockies, the Idaho Batholith and the Arizona/New Mexico Mountains, have significant decreasing

SwSA trends, with a mean percent decrease of 38%.

Table 2 summarizes the fraction of US SwSA in each mountainous ER3, the percent change in SwSA from water years 1982250

to 2020, and the p-value associated with the percent change. In the western US, the Middle Rockies are responsible for the

greatest fraction (12%) of SwSA in the country, followed by the Southern Rockies (10%) and the Idaho Batholith (8%). SwSA
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has declined in all mountainous ER3s in the western US over the last 39 years. The greatest declines in western SwS were in

the Arizona/New Mexico Mountains (56% decline), the Eastern Cascade Slopes (40% decline) and Foothills and the Cascades

(39% decline). All eastern mountainous ER3s showed declines in SwSA over the last 39 years with the exception of one, the255

Northeastern Highlands. The Northeastern Highlands are responsible for the greatest fraction (4%) of SwSA in the eastern US

where SwSA increases 13% over the last 39 years. The greatest decline in SwSA in the eastern US was in the Ridge and Valley

(11% decline), which holds an average of 0.2% of US SwSA.

The greatest SwSA is found in the highest 10% of mountainous ER3s elevations (Figure 10). Most mountainous ER3s have

decreasing trends in SwSA across all hypsometry bins, though the Sierra Nevada (5), the Wasatch and Uinta Mountains (19),260

the Southern Rockies (21), the North Central Appalachians (62) and the North Cascades (77) show increasing trends in SwSA

at low elevations with decreasing trends at higher elevations. The Northern Highlands is the only ER3 that shows increasing

trends in SwSA at all elevations. Increasing trends in SwSA at low elevations in some ER3s may partially be a result of very

low SwSA to begin with, thus small changes in SwSA may suggest large percent changes.

By looking at the percent change trends in the IQR of SWE, this study gives an idea of how interannual SWE variability has265

changed from 1982-2020 (Figure 10). Several ER3s have increases in the SWE IQR of the lowest hypsometry bands, which

correspond to the lowest parts of ER3s. This could be a result of increasing snow variability as freezing levels move to higher

elevations, resulting in increased irregularity in precipitation form. In the middle and upper hypsometry bands of most ER3s,

there is largely a decrease in the IQR. This may be a result of declining snowpacks, which would allow for less variability in

the range of SWE values overall. The Northern Highlands, Ridge and Valley, Central Appalachians and North Cascades stand270

out in that they have increasing tends in IQRs across most hypsometry bands.

3.3 SwSA Compared to Other Snow Metrics

Figure 11 demonstrates how the conceptual SWE curve is changing in each of the ER3s based on the trend analysis of four

common snow metrics; DSO, SWEmax, SWEmax day of water year (Dmax), and DSD. Trends in DSO, SWEmax, Dmax, and DSD

were evaluated because these metrics serve as anchor points that define the boundaries of the conceptual SWE curve. These275

conceptual SWE curves are superimposed on the observed mean SWE curves for the first and last 20 years of study in each

ER3. With the exception of the Northern Highlands and the North Cascades, the 2020 SWE curve (solid red line) delineates

a smaller conceptual SWE curve than in 1982 (dotted red line). The specific anchor points that cause the shrinkage of the

conceptual SWE curve are variable across ER3s. Of the ER3s that experienced significant (p < 0.1) decreases in SwSA, the

Southern Rockies and the Arizona/New Mexico mountains also had significant changes in the DSO, DSD and SWEmax. The280

Cascades, the Eastern Cascade Slopes and Foothills and the Idaho Batholith also experienced significant declines in SwSA.

These three ER3s had significantly earlier DSDs. Although evaluating change at the anchor points tells us how the conceptual

SWE curve is changing, the actual SWE curve is not a triangle and is subject to complex patterns of change including notable

accumulation- and ablation-season SWE variability. A comparison of the mean SWE curves from beginning and end of the

study period yields a smaller SWE curve in the last decade of study in all western ER3s, though the eastern ER3s (Northeastern285

Highlands, North Central Appalachians, Ridge and Valley and Central Appalachians) have more nuanced change in the SWE
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curve. These subtler shifts involve certain aspects of the snow season having higher SWE values in the first decade of study

while other parts of the snow season have higher SWE values in the later period of study. The SwS metric accounts for these

complex patterns and is able to quantify natural reservoir storage and change.

Trends in snow metrics (SwSA, April 1st SWE, SWEmax and SCD) are not changing in the same direction at all stations290

(Figure 12). SNOTEL and COOP stations were placed to capture mountain snowpack regimes where snow increases up to a

maximum value throughout the accumulation season and then disappears across the ablation season. April 1st SWE, SWEmax,

SwS and SCD are snow metrics that are useful for characterizing and monitoring change in mountain snowpack regimes and

describe points relevant to a conceptual SWE curve. While trends in these metrics have changed in the same direction at 286

of the 465 SNOTEL and COOP stations, 38.5% of stations have non-uniform inter-metric trend directions. This means that if295

trends in only one snow metric were to be examined, it could paint an incomplete picture of change.

The inability of common one-dimensional snow metrics to reflect snow storage change is particularly apparent when snow-

packs transition from one snow regime to another, such as a permanent snowpack transitioning to a mountain snowpack or a

mountain snowpack transitioning to an ephemeral snowpack. In our observational record, this study finds that snow regimes

are becoming increasingly ephemeral at many station locations. This study found the number of annual snow-free periods has300

significantly increased at 23% of stations over the last 38 years. The Quartz Mountain (OR) SNOTEL station (706) provides an

example of where a snowpack has increased in ephemerality (Figure 13). This station went from an average of 1.7 snow-free

periods per water year over the first decade of study to an average of 6.3 snow-free periods per water year over the last decade

of study. A side-by-side comparison of trends in SwSA, April 1st SWE, SWEmax and SCD, illustrates how the SwS metric is

able to capture complex change, such as is associated with an ephemeral snowpack. At the Quartz Mountain station, there are305

significant negative trends in SwS and SWEmax, no trend in April 1st SWE and a positive trend in SCD (Figure 13). In this

example, April 1st SWE is largely not relevant as a snow monitoring metric because the majority of years are snow-free on

April 1st at this location. This station is interesting because it has opposite significant trends in SWEmax, which is decreasing,

and SCDs, which are increasing. Since SwSA is the integral of the SWE curve, both magnitude and duration of snow cover are

incorporated into its calculation. This allows the SwS metric to provide a robust picture of the degree to which the snowpack310

is serving as a reservoir for water storage and how that reservoir function may be changing.

There are other ways to demonstrate the utility of SwS as an additional tool for gaining insight into our changing snowpack.

April 1st SWE is overwhelmingly the metric cited by water resource managers as the singular measure of the season’s snow.

But, how do changes in that measure correspond to changes in others? First, Figure 14 shows the relationships between percent

changes in various snow metrics of interest. It can next be useful to return to the idea of a conceptual SWE curve (Figure 1(a)).315

Based on this simple geometry, the SwSA is given by

SwSA =
1

2
SWEmaxSCD. (2)

If the geometry of the conceptual SWE curve were to be preserved over time, the SWE curve would be uniformly scaled

(Figure 1(b)). In this scenario, one would expect the percent change in SWEmax and SCD to each be half the percent change

in SwS. However, the regression plots in Figure 14 reveal that the percent change in SCD is roughly 26% that of the percent320
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change in SwS. And it is found that the percent change in SWEmax is 86% that of the percent change in SwSA. What this means

is that the conceptual SWE curve has been flattening over the period of study of the data at stations. So, relying on a single

metric like April 1st SWE gives an incomplete assessment of the storage of snow throughout a full season, and a more holistic

metric like SwS may be more informative when considering a full snow season.

4 Discussion325

SwS is a unique snow metric because it essentially has unlimited degrees of freedom - any change in the SWE curve (e.g.

changes in SWE magnitude, timing, variability, etc.) will be captured in its calculation. Thus, regardless of how the SWE

curve changes, the SwS metric is able to provide information about water storage in natural reservoirs at a given location.

SwS is different from the other common snow metrics discussed in this paper (April 1 SWE, SCD, SWEmax) because the

other metrics have 1 degree of freedom - they provide data on one dimension of the SWE curve. The flexibility of the SwS330

metric is particularly useful when attempting to quantify storage in snowpacks that have fundamental shifts in their SWE

curve. As demonstrated above, the SwS metric can still quantify natural reservoir storage when a snowpack has transitioned

from a mountain-type snowpack to an ephemeral type. If a snowpack were to transition from a permanent snowpack to a

mountain-type snowpack, the SwS metric would also be able to provide information on the storage.

Of the snow metrics discussed in this paper, SwS is uniquely positioned to capture storage change at aggregated scales,335

across the full SWE curve. Metrics such as DSO, SWEmax, DSD, SCD, etc. are essentially anchor points for the conceptual

SWE curve. Though it can be beneficial to note changes at any of these points, change can also happen in-between these anchor

points, such as an increase in accumulation season ablation or an increase in ablation season accumulation as is seen across

mountainous ER3s in Figure 11. This type of change has already been documented as changing melt fractions (Musselman

et al., 2021). At aggregated scales, such as across a watershed, snowpack variability (due to landscape features such as aspect340

or elevation) influences the SWE curve between the anchor-point metrics. Change that occurs between the anchor-point metrics

is not inherently captured by these metrics. Since the SwS metric can accommodate various spatial scales, it is able to capture

natural reservoir storage regardless of variability in snow change or snowpack fluctuations that occur in-between anchor point

metrics.

The widespread losses of SwSA over the last 39 years reported in this study are consistent with the broader narrative of snow-345

pack change literature, which has established declines in snow covered area, snow cover duration, April 1st SWE, SWEmax,

etc (Rupp et al., 2013; Mote et al., 2018; Notarnicola, 2020; Marshall et al., 2019; Bormann et al., 2018; Choi et al., 2010;

Huning and AghaKouchak, 2018). Losses of winter snowpack are largely attributed to increasing global temperatures (Hamlet

et al., 2005), which have resulted from a combination of natural variability and anthropogenic-caused climate warming (Rupp

et al., 2013; Pederson et al., 2013). The declining trends in SwSA are a reflection of declining trends in SwSM in nearly every350

month, at every scale. The greatest percent losses in SwSM occur early in the snow season, particularly in November. The

loss of early season SwS is consistent with previous work that used satellite imagery and reported that DSO is occurring later

(Notarnicola, 2020). While future work could explore the exact mechanistic drivers of predominantly decreasing SwSA trends,
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these findings are reasonable in the context of mechanistic drivers explored in other snow change literature. From an energy

budget standpoint, snow falling at warmer temperatures (as a result of climate warming) and overall shallower snowpacks (due355

to reduced snowfall fractions) contribute to reduced cold content and more readily ripening snowpacks (Jennings and Molotch,

2020). Additionally, shallower snowpacks are susceptible to enhanced snowmelt from the albedo feedback as vegetation and

soil are exposed (Kapnick and Hall, 2010). Though the majority of SwSA trends are declining, the north central plains and the

Northeastern Highlands show increasing SwSA trends. Snowmelt and rain-on-snow are known to be flood generating mecha-

nisms in New England, Minnesota and along the Mississippi and Missouri Rivers (Collins, 2009; Novotny and Stefan, 2007;360

Wiel et al., 2018; Olsen et al., 1999). The increasing SwS trends in these regions may therefore have implications for flood

hazards.

Spatial scale has long been a topic of conversation in snow hydrology as certain processes that occur at very small scales

contribute to considerable within-grid cell heterogeneity as one scales up from point to grid cell to regional scales (Blöschl and

Sivapalan, 1995; Molotch and Bales, 2005). This works finds differences in the magnitude and timing of significant changes in365

SwSA and SwSM when different spatial scales are compared. For example, less of the US landscape shows significant changes

in SwSA in the ER3 analysis compared to the grid cell analysis. Thus, the aggregation of SwSA into ER3s filters some of the

grid cell-scale spatial SwSA trends. Temporally, there is a higher fraction of sites with a significant positive increase in SwSM

from October - March in the grid cell analysis compared to the ER3 analysis. This indicates that local significant increases in

SwSM at grid cell-scales are offset by smaller magnitude increases in SwSM or decreases in SwSM at many locations once the370

SwSM is aggregated to ER3 scales. From a water resources perspective, these findings underscore the importance of choosing

an appropriate aggregation scale in order to accomplish management goals.

In the western US, where snowmelt is vital to supplementing warm-season water supplies, about 70% of runoff in moun-

tainous regions originates as snow (Li et al., 2017). Snowpacks also play an important role in climate, ecological processes

and recreation in both eastern and western mountains. Across all mountainous ER3s, there has been a 22% decline in SwSA375

over the 39 year period of study. The ER3 mountain ranges considered in this work include the headwaters to 13 of the 18

water basins located in the US, underscoring the importance of these natural reservoirs to water resources. The loss of SwS in

these regions is of further concern as the warm season is projected to increase in length due to anthropogenic climate warming

(Mallakpour et al., 2018; Padrón et al., 2020; Siler et al., 2019). Siler et al. (2019) also suggests that declining snow trends

may accelerate once the current natural climate mode changes because natural variability has slowed the decline of western380

snowpacks since the 1980s. The capacity of natural snow reservoirs is declining in most of the western US and across most

mountain ranges in the US. Since declining trends are expected to continue into the future, monitoring our natural snow reser-

voirs is essential. Metrics that are highly flexible in space and time (like SwS) can be used in monitoring change and evaluating

future projections.

SwSA, the changes in SwSA, and the variability in SWE are all influenced by elevation. The greatest amount of snow water385

storage occurs on a disproportionately small fraction of our landscape - at the highest elevations of mountainous ER3s. Almost

all mountainous ER3s are losing SwSA at all elevations. In the majority of mountainous ER3s, the highest elevations have

experienced the greatest losses SwSA over the last 39 years. The elevation-dependent changes in our natural snow reservoirs
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are likely associated to documented elevation-dependant changes in temperature and precipitation (Wang et al., 2014; Harpold

et al., 2012; Pepin et al., 2015, 2022; Qixiang et al., 2018). Winter temperatures have increased significantly in the recent390

past (Vose et al., 2017), which increases the vapor pressure deficit in the atmosphere and may enhance sublimation and vapor

fluxes (Harpold et al., 2012). Higher elevations have also warmed at faster rates than their low elevation counterparts, where

there have been increasing trends in precipitation (Wang et al., 2014; Pepin et al., 2022). Wang et al. (2014) suggests that

elevational warming amplification is likely associated with effective moisture convection. These mechanistic drivers are a

plausible explanation for finding the greatest SwSA loss at the highest elevations.395

This work also finds elevation-dependant changes in SWE variability. SWE variability has likely increased as a result of

winter freezing levels moving to higher elevations (Catalano et al., 2019), an increased fraction of precipitation falling as rain

instead of snow and more rain falling on snow (McCabe et al., 2007), all of which are related to increasing winter temperatures.

Decreases in SWE variability at higher elevations, where there are declining trends in SwSA, may be a result of shallower

snowpacks overall.400

5 Conclusions

A new snow metric, SwS, is defined and used to identify where and to what extent water storage in natural snow reservoirs has

already changed in the observational record. Mountains, especially western mountains, play an disproportionate role in natural

water storage relative to the surrounding landscape. High-elevation natural snow reservoirs are responsible for the greatest

SwSA, and have generally experienced the greatest declines in SwSA. Declines in SwSA are associated with a fundamental405

shift in the shape of the conceptual SWE curve as it appears to be flattening across stations. As we move into a future of

increased snow variability, diminished snowpacks and as more of the winter snow landscape transitions to ephemeral regimes,

temporally static metrics such as April 1 SWE and SWEmax may become less representative of our snowpacks. Concurrently,

it may be useful to have metrics such as SwS that can adapt to a wide range of circumstances. Spatially and temporally flexible

metrics such as SwS may become increasingly valuable particularly when it comes to monitoring change.410

Declining storage in our natural snow reservoirs has broad implications for human and ecological systems. Natural snow

reservoirs help to increase water storage far beyond the capacity of man-made reservoirs in the western US, supporting their

roll in linking cool-season precipitation to warm-season water demand. As one of the most robust projected impacts of climate

change is a continued increase in air temperatures, it is likely that declining trends in SwSA will continue. Water managers,

planners and decision makers will need to account for these declines in natural snow water storage as they relate to streamflows415

for fish migration and recreation, municipal and agricultural water supplies and flood hazards. Though this paper does not

focus on future predictions of snowpack, SwS could be a useful tool for understanding how our natural snow reservoirs change

in the future. Change in our natural snow reservoirs is multidimentional and already happening. Metrics are needed that can

capture this complexity of change.
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Figure 1. Conceptual illustration of a SWE curve and various ways that it could change from past to present.
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Table 1. Summary of data used in this work.

Dataset Hosting agency Data Type Temporal resolution Spatial resolution

Snow Telemetry

(SnoTel)

Natural Resources

Conservation Ser-

vice (NRCS)

Point obser-

vations

Stations were selected with a

period of record starting in wa-

ter year 1982 and less than 10

percent of days missing

N/A

Cooperator Snow

Sensors (COOP)

Natural Resources

Conservation Ser-

vice (NRCS)

Point obser-

vations

Stations were selected with a

period of record starting in wa-

ter year 1982 and less than 10

percent of days missing

N/A

University of

Arizona SWE

(UASWE)

National Snow and

Ice Data Center

(NSIDC)

Gridded

product

water year 1982-present 4km x 4km

NASA SRTM Digi-

tal Elevation

Google Earth Engine

(GEE)

Gridded

product

N/A 30m x 30m

EPA Level III Ecore-

gions

Google Earth Engine

(GEE)

Vector data N/A N/A
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Figure 2. Map of ER3s in the US. Mountainous ER3s are colored and labeled.
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Figure 3. Study area for the UASWE dataset indicated by color shading showing the mean number of SCDs across the contiguous US in

locations that have a minimum average of 30 snow covered days/year over the period of study.
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Figure 4. Change in SwSA [md] (a) and percent change in SwSA (b) across US stations from water years 1982-2020. Large outlined circles

indicate stations with p < 0.1.
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Figure 5. Change in SwSA [md] (a) and percent change in SwSA (b) across the UASWE dataset. Stippling indicates locations with p < 0.1.
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Figure 6. Change in SwSA [md] (a) and percent change in SwSA (b) aggregated across ER3s over water years 1982-2020. Stippling indicates

ER3s with p < 0.1.
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Figure 7. Changes (significance p < 0.1) in SwSM across US stations, in dimensional (a) units and in terms of percent change (b). The

rectangle indicates the interquartile range, with the middle bar indicating the median. The blue pluses are outlier points. Panel (c) shows the

fraction of stations that had significant increases or decreases in SwS.
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Figure 8. As in Figure 7, but for the gridded UASWE dataset.
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Figure 9. As in Figure 7, but for changes in SwSM aggregated across ER3s from water years 1982-2020. Red components of this Figure

indicate the results only considering mountainous ER3s.
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Table 2. Overview of SwSA in mountainous ER3s. Bold p-values are significant at p < 0.1.

ER3 code and name ER3 elevation [m]

(minimum, maxi-

mum)

Average frac-

tion of US

SwSA

Percent change

from 1982 to

2020

p-

value

West

4: Cascades 4, 3531 0.078 -39.0 0.08

5: Sierra Nevada 402, 3910 0.036 -37.7 0.23

9: Eastern Cascade Slopes and Foothills 73, 2622 0.023 -38.6 0.09

11: Blue Mountains 386, 2647 0.034 -25.6 0.16

15: Northern Rockies 368, 2106 0.08 -24.8 0.15

16: Idaho Batholith 618, 3298 0.083 -22.3 0.09

17: Middle Rockies 937, 3796 0.116 -18.7 0.19

19: Wasatch and Uinta Mountains 1107, 3671 0.032 -29.1 0.14

21: Southern Rockies 1473, 4032 0.098 -33.5 0.001

23: Arizona/New Mexico Mountains 805, 3451 0.009 -56.2 0.02

41: Canadian Rockies 973, 2550 0.039 -12.7 0.33

77: North Cascades 48, 2359 0.072 -6.7 0.66

East

58: Northeastern Highlands 23, 1436 0.035 13.1 0.68

62: North Central Appalachians 170, 755 0.002 -2.4 0.94

67: Ridge and Valley 61, 1315 0.002 -11.5 0.73

69: Central Appalachians 215, 1337 0.003 -9.8 0.68
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Figure 10. SwSA in each mountainous ER3 as a function of ER3 hypsometry. Teal line indicates the average SwSA in each hypsometry bin

from water years 1982-2020 (left axis). Solid red line indicates the percent change in A as a function of hypsometry for each mountainous

ER3 over the time period of study (right axis). Black × symbols indicate where the percent change in SwSA is significant (p < 0.1). Dashed

red line indicates the percent change in the IQR of daily SWE as a function of hypsometry in each mountainous ER3 over the time period of

study (right axis). Black o symbols indicate where the percent change in the IQR is significant (p<0.1). Refer to Table 2 for ER3 names.
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Figure 11. Observed SWE curves for mountainous ER3s shown with historic and current conceptual SWE curves. The black dotted line

indicates the mean SWE curve from the first 20 years of our study period in each ER3 (1982-2002). The solid black line indicates the mean

SWE curve from the last 20 years of our study period for each ER3 (2000-2020). Light blue shading indicates the interquartile range of

observed daily SWE and grey shading indicates the minimum and maximum range of observed daily SWE. Red ER3 labels signify ER3s

that had a significant decrease in SwSA over the period of study. The red dotted line indicates the conceptual SWE curve for each ER3 at the

start of our study period (1982) based on the trend analysis of DSO, SWEmax, Dmax, and DSD. The solid red line indicates the conceptual

SWE curve for each ER3 at the end of our study period (2020). Red stars on the x-axis indicate significant decreases in DSO, Dmax, and

DSD. Red stars on the y-axis indicate significant decreases in SWEmax. There were no significant increases in any of the snow metrics. Refer

to Table 2 for ER3 names.
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Figure 12. Trend directions in SwSA (top left), April 1st SWE (top right), SWEmax (bottom left) and SCD (bottom right) across stations that

do not have the same trend directions across all metrics.
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Figure 13. SWE curves from every second water year from 1982-2020 at the Quartz Mountain SNOTEL station.
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Figure 14. Regression of percent change in SwSA with percent change in April 1 SWE (a), SWEmax (b) and SCD (c). Regression of SWEmax

with SCD (d).
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