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Abstract. This study describes a generalized framework, Scalable Feature Extraction and Tracking (SCAFET) to extract and

track features from large climate datasets. SCAFET utilizes novel shape-based metrics that can efficiently identify and compare

features from different mean states, datasets, and between distinct regions. Features of interest are extracted by segmenting the

data based on a scale-independent bounded variable called shape index (SI). SI gives a quantitative measurement of the local

geometric shape of the field with respect to its surroundings. To demonstrate the capabilities of the method, we illustrate the5

detection of atmospheric rivers, tropical and extratropical cyclones, sea surface temperature fronts, and jet streams. Cyclones

and atmospheric rivers are extracted from the ERA5 reanalysis dataset to show how the algorithm extracts both locations and

areas from climate datasets. The extraction of sea surface temperature fronts exemplifies how SCAFET effectively handles

curvilinear grids. Lastly, jet streams are extracted to demonstrate how the algorithm can also detect 3D features. SCAFET can

be implemented to extract and track most weather and climate features.10

1 Introduction

The amount of climate data is growing exponentially owing to rapid expansions in both observational capabilities and compu-

tational power, driven by the need to observe and simulate ever-higher resolutions (Overpeck et al., 2011; Balaji et al., 2018).

Frontier research like global cloud resolving and large ensemble simulations leads not just to increased volume but also to

inflated velocity, variety, veracity, and value (5Vs) of climate data (Marr, 2015; Guo, 2017; van Genderen et al., 2019) of cli-15

mate data. This makes the detection of important atmospheric and oceanic features, such as atmospheric rivers (ARs), tropical

and extratropical cyclones, sea surface temperature fronts (SSTFs), and jet streams, a daunting task. Although these features

of interest influence regional and global weather and climate with immense societal, economic and ecological impacts, the

amount of data representing these events and features would be a small percentage of the whole simulation. Thus, extraction
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of features not only enables us to focus our analysis on high-impact rare events but can also considerably reduce the amount of20

data that needs to be stored, improving computational efficiency in analysing these features (Yang et al., 2016). Moreover, the

mean, variability, and characteristics of features can be compared to observational data sets as a measure of bias within model

simulations and various parameterizations (Sellars et al., 2013). Efficient and reliable extraction of these features is thus vital

to climate data processing, analysis, and model development.

Despite the importance of feature extraction in climate data analysis and informed model development, there is little consen-25

sus on standard best practices for feature extraction. The simplest method for extracting a feature is to use a physical threshold

for some climate variable (SST, precipitation, wind speed, humidity, etc.), or a combination thereof, to identify ARs, fronts,

jet streams or tropical and extratropical cyclones (Bengtsson et al., 1982, 1995; Vitart et al., 1997; Hewson, 1998; Koch et al.,

2006; Strong and Davis, 2007; Rutz et al., 2014; Guan and Waliser, 2015). The limitations of and discrepancies between these

methods are linked to the somewhat arbitrary choice of physical thresholds in relation to the underlying spatio-temporal distri-30

butions of the climate variables. In other words, many studies choose a physical threshold that is not theoretically defined but

rather a function of the location, timespan, and dataset used. Validation then unfortunately comes down to the intelligent but

subjective human eye, or in other words tuning a threshold until it appears to have captured all the features of interest while

leaving out the background noise (Zarzycki and Ullrich, 2017; Vishnu et al., 2020).

Choosing an absolute threshold from climate variables for feature extraction that is applicable to different climate models35

and spans multiple mean states and model scenarios is not straight forward. Even within the same model, a particular choice

of threshold may be suitable for one region but not for another, given varying regional characteristics and topography. To

account for these inter and intra-model discrepancies, thresholds are often calculated from the model- and/or simulation-

specific distribution of basic climate variable fields in which the features are most visible, such as relative vorticity and sea

level pressure anomalies for tropical cyclones (e.g., Vitart et al., 1997) or integrated water vapor transport for ARs (e.g.,40

Guan and Waliser, 2015). Thus, before the actual detection process is applied, one must pre-process entire datasets just to

calculate reasonable thresholds that will allow for comparison within and between models. This process becomes increasingly

infeasible for higher resolutions and large ensemble data sets, highlighting the need for a method of feature extraction that is

not empirically derived and thus less sensitive to the climate mean state.

Aside from the inter and intra-model discrepancies that arise from detecting features in present and historical model sim-45

ulations, applying empirical present thresholds to detect features in future climate change scenarios is further untenable as

the underlying spatio-temporal climate variable distributions change under global warming. Feature detection must be recon-

sidered when applied to variables with significant changes in their means and extremes in response to external forcings such

as doubling or quadrupling carbon dioxide (CO2) concentrations . It should be emphasized that applying different arbitrary

thresholds can and does lead to contradictory conclusions regarding the response of these features to greenhouse gas warming50

(Horn et al., 2014; Zhao, 2020; O’Brien et al., 2022). To counter these uncertainties, methods based on topology, machine

learning, ridge extraction, edge detection, and various other image processing techniques have been proposed over the years

(Dixon and Wiener, 1993; Post et al., 2003; Molnos et al., 2017; Biard and Kunkel, 2019; Xu et al., 2020). While these meth-
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ods offer an alternative for the extraction of features in datasets spanning different mean states, many of these methods were

developed for detecting specific rather than general features.55

In this study we introduce a novel method, Scalable Feature Extraction and Tracking (SCAFET), which is a general frame-

work to detect and track features of various shapes, scales, and intensities. Simply put, SCAFET uses the curvature of a given

scalar field to identify emergent shapes that correspond with distinct features of interest. The shape is calculated as a finite,

bounded, and scale-independent quantity and can be tuned depending on the desired phenomenon. As this tuning relies on

shape-based rather than physical thresholds (see Appendix A), the characteristics of the detected features are less sensitive to60

spatio-temporal and mean state variances. This also makes the feature extraction fully parallelizable along the time dimension,

as the detection is carried out independent of the time information. SCAFET utilizes some of the modern python packages like

xarray to handle NetCDF files and dask to parallelize the detection process in any machine with multiple cores. The code for

this framework is fully open-source and written in Python in an easy-to-use package so that even beginner-level Python users

can easily implement the algorithm.65

The need for a general framework in extracting and tracking features from large climate datasets has been raised in various

climate science communities for the last several decades. In a pioneer study, Hodges developed a three-step general framework

for extracting and tracking features from meteorological datasets. The first step is segmentation, where the field is split into

distinct regions by applying a threshold and then labelling each of the connected regions as an object. Later, feature nodes are

extracted by filtering out regions outlined in the first step based on the characteristics of each object. Finally, the feature nodes70

are tracked over time to produce the final output for dynamical analysis. This framework was developed further for cyclones,

storm tracks, convective systems, ocean eddies, monsoon depressions, and more (Hodges, 1995; Hogg et al., 2005; Hodges

et al., 2011; Burston et al., 2014; Hurley and Boos, 2014; Pinheiro et al., 2016; Priestley et al., 2020; Torres-Alavez et al.,

2021; Karmakar et al., 2021). However, it is limited to the detection of points of local maxima in two-dimensional scalar fields,

which do not always fully characterize various features.75

In 2012 a team from the Lawrence Berkeley National Laboratory developed the Toolkit for Extreme Climate Analysis

(TECA), integrating pre-existing, physical threshold-dependent detection methods and algorithms into a comprehensive soft-

ware package that was parallelized to make the algorithms more suitable for large datasets (Prabhat et al., 2012). In a more

recent effort, a team led by Paul Ullrich at the University of California-Davis created TempestExtremes (Ullrich and Zarzycki,

2017; Ullrich et al., 2021), another algorithm package that uses several core functions to detect a variety of features. These80

functions are being actively developed for extraction, characterization and uncertainty quantification of weather extremes.

Both TECA and TempestExtremes have been widely implemented by the climate community and have been monumental in

advancing scientific understanding of meso and synoptic scale processes and their contributions to long-term climate trends.

Further discussion on the differences between SCAFET and other detection algorithms can be found in Appendix A. Even in

the context of these recent advancements, SCAFET aims to upgrade the detection process to be less sensitive to the physical85

thresholds used while presenting a novel shape-based approach to feature extraction.

The novelty of SCAFET compared to pre-existing methods lies in the use of a comprehensive mathematical framework for

extracting different features based on the overall “shape” of a climate variable field, rather than thresholding of that field. The
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core methodology for the detection of any feature is the same and can be tuned using just two variables, one for the spatial scale

and the other for the shape of features one is looking for. For example, between the two variables one can tune the difference90

between a long filament-shaped atmospheric river and a shorter round-shaped cyclone. The algorithm is applicable to both

rectilinear and curvilinear grids and can also be extended to detect three-dimensional (3D) features. In a nutshell, SCAFET is

mathematically comprehensive, computationally efficient, and easily implementable, and could prove to be a robust method

for detecting a diverse set of features under different mean climate states.

The paper is organized as follows, section 2 describes the basics of SCAFET and how it is implemented in a two-dimensional95

(2D) field. Section 3 provides three SCAFET use cases for the detection of various climate features and different grid types.

Extraction of 3D features will be discussed in section 4. Though the application of SCAFET is not limited to the features

described here, this study showcases atmospheric rivers, cyclones, SST fronts, and jet streams to cover a broad range of

phenomena through which users could learn to adapt SCAFET to their needs.

2 Description of Scalable Feature Extraction and Tracking100

SCAFET follows the same three processes as discussed by Hodges -Segmentation, Filtering and Tracking (yellow boxes in

Figure 1). Before starting the this process, SCAFET is initialized with information describing the datasets and the type of

feature to be extracted (blue boxes inFigure 1). Primary inputs includes the following.

– A primary field (ϕp): This is a gridded dataset in which the feature to be extracted is most clearly visible. Optionally,

one or more secondary fields can be used to further constrain the detected features.105

– Grid Properties: Information on the primary field including grid cell area/volume, grid distance, and coastlines are

required for calculating derivatives of the basic field and identifying landfalling locations.

– Object properties: The algorithm requires information on the feature properties. This includes approximate spatial

scale, shape, eccentricity (for 2D features only), minimum length, minimum area, minimum volume (for 3D feature

only), minimum duration, and maximum distance per time step. (see section 3 and section 4 for examples)110

As the segmentation, filtering, and tracking are mutually independent in the SCAFET scheme, users can replace any of them

and still run the algorithm. After implementing all three steps, two outputs are obtained: one describing the properties of the

detected objects and the other containing the labelled mask of the feature of interest in the input grid (pink boxes in Figure 1).

2.1 Segmentation

The core operation behind the extraction of features is to classify points in a scalar field into one of five shapes using the115

two principal curvature measurements derived as eigenvalues of the Hessian of the basic field. The five chosen shapes (see

Figure 2) are an abridged version of the shapes described in previous studies (Koenderink and van Doorn, 1992). Depending on

the feature of interest, one or more shapes are extracted from the primary field. Segmentation starts with scale-space selection
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Figure 1. The overall schematic, workflow, and components of SCAFET. The inputs, processes/calculations, and outputs of the algorithm

are shown in blue, yellow, and pink boxes respectively. The arrows in the periphery of the boxes represent the workflow of the algorithm.

Each section is explained in detail in text.

of the field to remove smaller scales of variability that are background noise compared to the feature of interest. Next, the local

geometric shape is calculated.120

2.1.1 Scale-space Selection

Scale-space selection is a very common tool used in image and signal processing, as well as computer vision (Lindeberg,

2014). In this current work, the scale-space selection is limited to the application of a gaussian smoothing kernel to suppress

variability less than the smooth scale (σ). Scale-space selection is mathematically implemented as a convolution of the primary

field (ϕp) with a gaussian function given as,125

ϕs = ϕp(x,y, ..) ∗
1

2πσ
e−(x2+y2)/2σ2

(1)

In the context of the meso-synoptic scale processes explored in this study, scale-space selection will filter out smaller micro-

scale features to isolate features like cyclonic vortexes or atmospheric rivers. However, this function can be adjusted to the
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spatial scale of interest and could even theoretically be used to filter out synoptic scale features in isolating micro-meso scale

processes. In climate datasets, the grids are not always uniformly spaced. To account for that, we adapt the above equation to130

be “grid-aware”. This is implemented by calculating the value of σ along each circle of latitude. In future studies, one could

experiment with other, more sophisticated scale-space selection methods.

2.1.2 Local Shape Extraction

The local geometric shape of the field, ϕs is calculated as a function of the eigenvalues (k1 and k2) of the Hessian of the

magnitude of the field (∥ϕs∥), where the Hessian is given by,135

H (∥ϕs∥) =




∂∥ϕs∥
∂x2

∂∥ϕs∥
∂xy

∂∥ϕs∥
∂yx

∂∥ϕs∥
∂y2


 (2)
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Figure 2. The abridged version of the shapes used in this study and the values of the shape index associated with each of them. The X and Y

axis are a set of general axis while Z(X,Y ) = sin(2X) + cos(2Y ). Regions within Z(X,Y ) satisfying conditions for different shapes are

isolated to show the geometry associated with them.

From simple differential geometry, we know that if k2 ≤ k1 < 0, the point under consideration is a local maximum, whereas

if k1 ≥ k2 > 0, the point is a local minimum. The applicability of such a criterion for feature extraction is limited to nodal

features like tropical cyclones or monsoon depressions. To induce continuity in the shape extraction, we use shape index (SI)

(Koenderink and van Doorn, 1992), a quantitative measure of the local shape of the field defined as,140

SI =
2
π
tan−1

[
k2 + k2

k2− k1

]
(3)

Where k1 and k2 are the two eigenvalues, satisfying k1 ≥ k2, for the Hessian matrix. The SI is used to classify the primary

field into distinct shapes (see Figure 2). The values of the SI selected are set depending on the type of feature to be extracted.
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For instance, caps and domes are selected to extract features such as atmospheric depressions or cyclones. Ridges, caps, and

domes are selected to extract ARs and fronts.145

SI is designed to be a bounded value (range -1 to 1) independent of the magnitude of the field (Figure 3). In simple terms,

SI gives a continuous quantitative measurement of geometric shape of the field with respect to its immediate background field.

This might be similar to how the trained eye of a climate scientist detects features from color/value contrast, though SI is

arguably a more objective measure of geometric shape. These characteristics make it more suitable for feature extraction from

datasets with varying mean states compared to traditional physical threshold-based methods. In addition to the two eigenvalues,150

the shape extraction provides us with corresponding eigenvectors. The eigenvector for k2 points perpendicular to the local ridge

direction while that of k1 is parallel to it. This allows us to set further constrains on the local shape extraction if ϕs is a vector

field, as demonstrated in the detection of ARs in subsection 3.1.

10 5 0 5 10
K1

10

5

0

5

10

K2

Shape Index

1.000

0.875

0.625

0.375

0.000

0.375

0.625

0.875

1.000

Figure 3. Sensitivity of shape index to eigenvalues k1 and k2. The X and Y axis represent values of the two eigenvalues used for calculating

shape index while the color indicates the value of shape index.

2.2 Filtering

Once the right shapes are extracted, properties like area, location, mean, minimum, and maximum values of different properties155

are calculated for each of the objects. A series of filtering is carried out to remove objects which do not satisfy certain conditions

regarding (a) grid properties like area, length, region masks, etc. (b) primary field properties like magnitude and direction, and

(c) constraints from secondary field(s). The aim of the filtering process is mainly to remove small or weak objects. Since

filtering is applied to the extracted objects rather than an entire field, computational cost is decreased relative to other methods.
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2.3 Tracking160

The extracted properties of each object include positional information for the center, maximum, and minimum values. To track

objects through time, one of the pieces of the positional information is used. In the current study, a simple radius is defined

and the closest object within the given radius to each object at time n is clustered and identified from time n+1 as the same

object in motion. While this simple tracking method may not translate to micro-scale processes, it could be modified with more

complexity if necessary.165

3 Application to 2D Features

In this section, we exemplify SCAFET to detect cyclonic vortices, ARs, and SSTFs from various climate datasets. While the

highlighted examples demonstrate SCAFET’s broader capabilities as applied to diverse features and grid types, all the examples

go through the same general process shown in Figure 1. Each subsection has a table of parameters detailing the properties of

the desired feature. The properties include typical spatial scales of the feature, shape index (SI), minimum length, minimum170

area, object eccentricity, and minimum duration of the track. The quantitative values for the properties are obtained from a

consensus of previous studies referenced within each section. Apart from the results discussed in the sections below, videos for

each feature are also attached in the supplementary section. As the aim of this work is to demonstrate the ability of SCAFET

to detect various features, the results for long term climatology for each of the features presented for comparison with other

published detection algorithms.175

3.1 Atmospheric Rivers

According to the American Meteorology Society’s glossary of meteorology, atmospheric rivers (ARs) are “long, narrow, and

transient corridors of strong horizontal water vapor transport that are typically associated with a low-level jet stream ahead

of the cold front of an extratropical cyclone” (Ralph et al., 2018). Much of the precipitation and water vapor transport in

midlatitudes occur within AR structures (Guan and Waliser, 2015). They are also responsible for over 50% of the extreme180

precipitation and wind events in the midlatitude region (Waliser and Guan, 2017; Nash et al., 2018). Detection and accurate

projection of ARs are crucial for extreme weather preparedness as well as for water resource management in basins across the

globe.

The ambiguity in the AR detection schemes stems from the quantitative definition of strength, length, narrowness, and other

parameters used in detection. In comparison with other criterion, choosing how to fix the threshold for AR strength changes the185

inferences drawn between the detection schemes. Most of the AR detection algorithms empirically derive this threshold from

dataset directly, making it sensitive to spatio-temporal and mean-state variances (Shields et al., 2018). SCAFET defines ARs

as long (length > 2000km) narrow (eccentricity > 0.85) regions of strong water vapor transport (SI >0.375) and precipitation

(minimum AR precipitation > 1mm/day) (see Table 1 for complete details). This makes the comparison of AR characteristics

between different mean states less sensitive to arbitrary strength thresholds.190
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To demonstrate how ARs are detected using SCAFET, we used the daily mean European Centre for Medium-Range Weather

Forecasts (ECMWF) Reanalysis Version 5 (ERA5) data (Hersbach et al., 2020) for the period 2000 to 2019. The magnitude

of daily mean integrated water vapor transport (IVT) is the basic field and the daily mean total precipitation is the secondary

variable. All the datasets used have a spatial resolution of 0.25o×0.25o. The vector field, IVT is calculated as,

IV Tx=−1
g

300hPa∫

1000hPa

q.Udp (4)195

IV Ty =−1
g

300hPa∫

1000hPa

q.Vdp (5)

∥IV T∥=
√
IV Tx2 + IV Ty2 (6)

To detect AR-like structures, SCAFET looks for shapes such as ridges, caps, and domes (see Figure 2). Following Figure 1,

shape index (SI) is calculated after applying a grid aware smoothing that suppresses variability smaller than 1000km (Fig-

ure 4(a)). Once SI is calculated for ∥IV T∥ (Figure 4(b)), regions where SI > 0.375 is passed on to the next stage for filtering.200

To maximally utilize the vector qualities of the primary field, we ensure that the local transport direction (arrows in Figure 4(a))

and local ridge direction (arrows in Figure 4(b)) do not deviate by more than 45circ. The local ridge direction is defined as the

eigenvector corresponding to the larger eigenvalue (k1). Filtering based on the grid properties removes small (length < 2000km

and area < 1e12km2), and wide (eccentricity < 0.75) candidates. The secondary field, total precipitation within each object is

used as to filter out weak (precipitation < 1mm/day) AR-like structures. Precipitation is used to assess the strength of AR as205

it is the most socio-economically relevant. Following other AR detection methods, we have also imposed a regional mask to

get rid of AR-like structures along the equatorial belt. All the previously mentioned steps can be applied in parallel along the

time axis, making it computationally fast. Each time step will identify AR-like structures similar those shown in Figure 4(c).

Once all ARs are identified, a simple tracking algorithm is implemented on the daily data to filter out ARs that last less than

two days. Tracking can be implemented based on one of the location parameters, i.e., the center, maximum, or minimum points210

of each detected object. For ARs, we use the centroid of each detected object to track it. Closest objects within a distance of

4000km between two time steps are considered the same object progressing in time (Figure 4(d)). The annual mean frequency

of the detected AR objects and their seasonality is shown in Figure 4(e), (f), and (g). The spatial distribution can be found to be

within the uncertainty induced by other detection algorithms from the Atmospheric River Tracking Method Intercomparison

Project (ARTMIP) catalog (Lora et al., 2020).215
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Figure 4. Major steps in the detection of Atmospheric Rivers. (a) is the smoothed primary field, which is the vertically integrated water

vapor transport (IVT). The smoothing removes variability smaller than 1000 km from the IVT. The arrows in (a) represent the direction of

unsmoothed IVT. (b) shows the magnitude (shading) of shape index (SI) and direction of the local ridge (arrows) calculated from (a). In

the next step ridges, caps, and domes are extracted from (b) and weak and small AR candidates are filtered out. The AR objects after this

filtering is shown in (c). Finally all the objects in (c) are tracked as shown in (d) to obtain tracks as well as other properties like mean IVT

and precipitation. Objects that does not last more than one day is removed in this step. AR annual mean frequency for the period 2000 to

2019 is shown in (e), the anomaly for November to March (f), and May to September (g) relative to the annual mean are also plotted.
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No. Property Value Unit

Se
gm

en
ta

tio
n 1 Smooth Scale 2000 km

2 Angle Coherence 45 degrees

3 Selected Shape (0.375,1.0] -

Fi
lte

ri
ng

1 Minimum Length 2000 km

2 Minimum Area 2×105 km2

3 Eccentricity [0.75, 1.0] -

4 Minimum Precipitation 1 mm/day

5 Latitude Mask (-20, 20) degrees

Tr
ac

ki
ng 1 Minimum Duration 24 hours

2 Maximum Distance per timestep 1000 km

Table 1. The table shows the values of all the different parameters used in the detection of ARs. Rows for each step−segmentation, filtering,

and tracking− are grouped together and labeled.
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3.2 Tropical and Extratropical Cyclones

Cyclones are defined in the literature as large (500–4000 km) regions of strong cyclonic circulation with low pressure at

the center and extremely high winds around it (Emanuel, 2003; Schultz et al., 2019; Encyclopaedia, 2022). The dynamics

and characteristic of cyclones will be slightly different based on the genesis location, translations speed etc. For instance,

cyclones formed near the equator (tropical cyclones) are in general smaller in area compared to that of the cyclones formed in220

midlatitudes (extratropical cyclones). Independent of this, they produce extremely high rainfall, and winds along the track and

flooding, landslides, and severe damage to infrastructure along the coastlines where it makes landfall (Knutson et al., 2010;

Mendelsohn et al., 2012; Ranson et al., 2014). With the rise in sea level and enhanced intensity of cyclones in response to

warming, identification and future projection of cyclones is gaining a lot of attention from the climate community (Woodruff

et al., 2013).225

No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 1500 km

2 Selected Shape (0.625,1.0] -

Fi
lte

ri
ng

1 Minimum Length 20 km

2 Minimum Area 104 km2

3 Eccentricity [0.0,1.0] -

4 Minimum Vorticity 10−6 s−1

5 Minimum Max. Windspeed 10 ms−1

Tr
ac

ki
ng

1 Minimum Duration 48 hours

2 Maximum Distance per timestep 500 km

3 Net Minimum Displacement 1000 km

Table 2. Same as in table Table 1, but for detecting tropical and extratropical cyclones

Once again, discrepancies between the different detection algorithms can be traced back different choices of physical thresh-

olds or functions on size, wind speeds, vorticity or surface pressure anomaly. Even though most studies converge on the

conclusions for present and future characteristics of cyclones, ironing out the details such as the changes in genesis rate, dura-
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tion are hindered by the uncertainties in the detection methods (Ulbrich et al., 2009; Neu et al., 2013; Horn et al., 2014; Walsh

et al., 2015). In this study, SCAFET identifies cyclones as regions of strong local maxima of cyclonic circulation (SI > 0.625)230

with maximum wind speeds greater than 10m/s. This definition is able to identify strong cyclonic vorticities all over the globe

including, but not limited to, tropical and extratropical cyclones. The basic field used for cyclone detection is the absolute value

of cyclonic relative vorticity (ζ) defined as,

ζ =∇×U (7)

Where U is the 6 hourly wind speeds at 10 meters from surface obtained from ERA5 reanalysis with a spatial resolution235

of 0.25◦× 0.25circ (Hersbach et al., 2020). The magnitude of wind speed at 10 meters is used as the secondary field. Other

cyclone related variables like the surface pressure anomaly, and potential temperature can also be used as secondary field to

identify/classify cyclones.

In contrast with ARs, cyclones are detected using a scalar field, and in this case cyclonic relative vorticity. A grid-aware

gaussian smoothing is applied to suppress spatial variability smaller than 750 km (Figure 5(a)). The smoothing scale was240

chosen so that we can identify both tropical and extratropical cyclones. Caps and dome shapes (SI > 0.625) from the smoothed

relative vorticity is identified as potential cyclones (Figure 5(b)). The next step is to filter out objects with area less than

104km2, and diameter less than 20km. Once the aforementioned spatial characteristics are fulfilled, we can further filter out

weak cyclonic vorticities (relative vorticity < 10−6s−1), and maximum wind speed < 10ms−1) giving us all the strong cyclonic

systems identified for a given time step (Figure 5(c)). All the processes described can be parallelized along the time dimension245

as in the AR example. Once all potential cyclones are identified, they are tracked like AR tracking algorithm. However, the

radius for search is limited to 1000km as we are using 6 hourly data and translations speeds of cyclones are much lower than

150km/h. A minimum duration of 48 hours and a minimum total displacement of 500km is applied to isolate propagating

cyclonic circulations from stationary ones. An example of a tracked cyclone, commonly known as cyclone Dorian (Lixion

A. Avila and Hagen, 2020) is compared with the observed track from IBTrACS dataset (Knapp et al., 2010, 2018) Figure 5(d)).250

In comparison to the observed track, SCAFET’s track is much longer as we use a more relaxed condition on ζ and winds

speed thresholds. Another reason for the longer track is that, SCAFET does not distinguish between tropical and extratropical

cyclones and would end up following the vorticity while it transitions from tropical to midlatitude storms. The long-term

averages for cyclone frequency and its seasonal variability are comparable with other studies (e.g., Ullrich and Zarzycki, 2017).

Unlike other cyclone detection algorithms, SCAFET does not identify cyclones as a point object, but as a surface encompassing255

the point of maximum ζ. This will help us study the nuanced properties of cyclones like the maximum and minimum values of

wind speed, precipitation within the whole cyclone structure.

13

https://doi.org/10.5194/egusphere-2023-592
Preprint. Discussion started: 9 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 5. Major steps in the detection of cyclones. (a) Smoothed primary field, which in this case is the absolute value of cyclonic relative

vorticity (ζ). The smoothing removes variability smaller than 750 kms from ζ. (b) Magnitude of SI calculated from (a). In the next step, caps,

and domes are extracted from (b) and weak and small cyclone candidates are filtered out. Cyclonic vorticities after this filtering are shown

in (c) with the background color representing the unsmoothed values of ζ. Finally, all the objects in (c) are tracked as shown in (d) to obtain

tracks as well as other properties like wind speeds and vorticity. Track obtained for cyclone "Dorian" from SCAFET is compared with that

of the track from IBTrACS dataset (d). Objects that do not last more than 48 hours are removed in this step. The annual mean frequency

cyclone occurrence for the period 2000 to 2020 is shown in (e), the anomalous cyclone frequencies for JJA (f), and DJF (g) relative to the

annual mean are also plotted.
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3.3 Sea Surface Temperature Fronts

SST fronts are the confluence regions of different water masses. They are often manifested as having strong horizontal gradi-

ents in temperature, salinity, density, and other characteristics (Bowman, 1978; Legeckis, 1978; Fedorov, 1986; Yoder et al.,260

1994). Frontal structures are often observed in much smaller spatio-temporal scales than the other features described in this

study. Accurate identification of SSTFs are important as these features are often associated with strong upwelling, and high

biogeochemical productivity (Clayton et al., 2014, 2021; Nagai and Clayton, 2017). Identification of SSTFs also demonstrates

how SCAFET can be used to detect features in curvilinear grids.

Most previous frontal detection algorithms use edge detection algorithms and the gradient of sea surface temperature and/or265

height and to identify fronts (Canny, 1986; Castelao et al., 2006). We use the magnitude of daily mean SST horizontal gradient

as the primary field for the detection of SST fronts. The SSTs were obtained from a fully coupled, ultra-high-resolution

(≊ 10km) CESM v1.2.2 simulation of present day mean climate (Small et al., 2014; Chu et al., 2020). The data is fed into

SCAFET in the tripolar POP grid. To demonstrate the detection process, the analysis is confined to the Kuroshio frontal and

extension domain for the last 10 years of the simulation.270

Frontal structures, ridges, caps, and domes are extracted very similarly as in the detection of ARs. A spatial smoothing of

approximately 30km is applied before extracting the frontal structures. From the extracted SSTF candidates, objects with a

mean SST gradient lower than 10−4K/m is removed. So are circular (eccentricity < 0.5) and small (area < 1000km2) objects.

Unlike AR detection, SSTFs are not tracked as ocean fronts are stationary rather than transported into other regions. The

detected frontal frequency shows familiar patterns and seasonality as in previous studies (Xi et al., 2022).275

No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 30 km

2 Selected Shape (0.375, 1.0] -

Fi
lte

ri
ng

1 Minimum Length 500 km

2 Minimum Area 103 km2

3 Eccentricity (0.5,1.0] -

4 Minimum SST Gradient 10−4 Km−1

Table 3. Same as in table 1 but for detecting Sea Surface Temperature Fronts (SSTFs)
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Figure 6. Major steps in the detection of sea surface temperature fronts (SSTFs). (a) Magnitude of shape index (SI) calculated from the

smoothed primary field, which is the horizontal gradient of sea surface temperature (∇SST). The smoothing removes variability smaller

than 15 km from ∇SST. In the next step, ridges, caps, and domes are extracted from (b) and weak and small SSTF candidates are filtered

out. SSTFs after this filtering are shown in (b) with the background color representing the unsmoothed values of ∇SST. The annual mean

frequency SSTF occurrence for the 10 years of the present climate simulation is shown in (c), the anomalous frontal frequencies for JJA (d),

and DJF (e) relative to the annual mean are also plotted.

4 Application to 3D Features

In this section, we show how to extend SCAFET to detect features from three-dimensional (3D) primary fields. The scale-

space selection is carried out by applying gaussian smoothing along the three dimensions separately. Also, a 3D basic field

would yield three eigenvalues (k1 ≥ k2 ≥ k3) rather than two. Here, SI can be calculated by combining the eigenvalues in three

different ways. The SI calculated using k1 and k2 is used for the extraction of jet streams as it provides a more conservative280

estimate for the jet domain (see Supplementary Figure S1).
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4.1 Jet Streams

Independent of the dynamics, jet streams are manifested as narrow regions in the upper atmosphere with relatively high wind

speeds compared to its surroundings (Koch et al., 2006). Apart from the obvious direct impact on aviation, the location and

characteristics of jet streams strongly influence surface weather conditions. For instance, a persistent jet in boreal summer can285

lead to extreme heat and flooding events while a meandering jet in the winter induces extreme cold spells in the midlatitudes

(Petoukhov et al., 2013; Coumou et al., 2014; Kretschmer et al., 2016). Further, the northward movement of jet streams

in response to greenhouse warming leads to the poleward propagation of tropical cyclones (Studholme et al., 2021). Thus

accurate and robust detection of jet streams are fundamental in the prediction and projection of mean and extreme weather

systems. Similar to the detection of other weather phenomenon discussed in this study, most previous studies use a physical290

threshold in identifying jet locations. Moreover, most of these studies except Limbach et al. and Kern et al. identifies jet

streams as either a one- or two-dimensional features. Here we intend to demonstrate the capability of SCAFET to detect jet

streams as a three-dimensional structure. Since the scope of this section is limited to the validation of the detection method, we

have only shown jet detection in three selected time steps. A video showing the results for a longer period can be seen in the

supplementary section.295

The primary field used in the extraction of jet streams is the six-hourly, three-dimensional wind speeds obtained from ERA5

reanalysis data with a spatial resolution of 1◦ with 37 vertical levels Hersbach et al. (2020). The magnitude of wind speed is

calculated as:

W =
√
U2 +V 2 (8)

Where, U and V are the zonal and meridional wind velocities.300

Comparable to detection of 2D features, the detection process starts by applying a gaussian smoothing to remove wavelengths

less than 6000km in the horizontal dimensions. No smoothing is applied along the vertical dimension. Next, SI is calculated

using the two largest eigenvalues k2 and k3. Regions corresponding to ridges, caps, and domes (SI > 0.375) are isolated for

filtering. Filtering removes objects with volume less than 1000km3, horizontal length less than 5000km, and maximum wind

speed within each object less than 50m/s. In the current version of SCAFET, the tracking algorithm is not applied on jet305

detection (see Figure 7).
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Raw 3D wind speeds Jet streams extracted

Figure 7: Three dimensional jet streams 
extracted using SCAFET. (a), (c), (e) shows 
the magnitude three dimensional wind 
speed for 2022-08-01 00:00, 2022-08-01 
06:00, and 2022-08-01 00:00 respectively. 
The three dimensional jet streams extracted 
for the corresponding time period is show in 
(b), (d), and (e) respectively.  

(a)

(e)

(c)

(b)

(d)

(f)

Figure 7. 3D jet streams extracted using SCAFET. (a), (c), (e) shows the magnitude 3D wind speed for 2022-08-25 00:00, 2022-08-28 06:00,

and 2022-08-31 18:00 respectively. The 3D jet streams extracted for the corresponding time period is show in (b), (d), and (e) respectively.
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 6000 km

2 Selected Shape (0.375,1.0] -

Fi
lte

ri
ng

1 Minimum Length 5000 km

2 Minimum Height 5 km

3 Minimum Volume 500 km3

4 Minimum Area 105 km2

5 Minimum Max. Wind speed 50 m/s

Table 4. Same as in Table 1 but for Jet Streams.
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5 Conclusions

In this study we introduced a new framework and algorithm package for extracting and tracking meso-synoptic scale features

from large climate datasets, called Scalable Feature Extraction and Tracking (SCAFET). As the volume and diversity of ob-

servational and model climate data grow, an alternative method to physical threshold-dependent feature detection is necessary310

to compare features within and between observational and model data sets. Furthermore, a novel shape-based approach for

feature extraction will give us further insights into detection method discrepancies in projections and aid the community in

building scientific consensus. To demonstrate the ability of SCAFET in advancing these goals, we illustrated 2D detection of

atmospheric rivers (ARs), tropical and extratropical cyclones, sea surface temperature fronts, and 3D detection of jet streams.

Each application was intended to give characteristic examples from which users can customize SCAFET for their own research315

purposes.

Apart from the obvious benefits like a more generalized framework and parallelized implementation, SCAFET, more impor-

tantly, provides a novel perspective on how we could define various features in climate datasets covering large periods of time,

in which the mean climate varies significantly. Instead of extracting features from physical thresholds, we can identify them

based on their local shape in the field and refine the analysis by optionally applying a minimum threshold on the extracted320

objects. This approach provides a view of the continuous changes in feature properties that account for mean state changes.

Since results of meso-synoptic scale studies are sensitive to thresholds in a varying mean state, conclusions inherently depend

on the feature extraction method. Such varying conclusions are noticed while studying the response of ARs to greenhouse

warming Zhao (2020); O’Brien et al. (2022). Thus physical threshold-independent algorithms such as SCAFET may be crucial

in furthering scientific understanding and climate model development.325

Undertaking a more fundamental level research into differential geometry and mathematical derivation of the relationship

between SI and local geometric shape could transform the way we identify extreme events from large datasets. Due to its

design, SCAFET does not require a priori climate information to identify features. This property can be utilized to develop

simple web-based solutions for identifying and warning public against presence of extreme weather systems.

Author contributions. ABN wrote the software package and prepared the manuscript draft with inputs from co-authors. TAO and DL was330

involved in developing a mathematical framework for the algorithm. JEC provided input and guidance on the detection and tracking of

tropical and extratropical cyclones. JYL, TAO, DL, and JEC contributed equally on the manuscript revisions.

Code and data availability. The latest version of the Scalable Feature Extraction and Tracking (SCAFET) algorithm can be downloaded

from https://github.com/nbarjun/SCAFET. The version of the codes used for feature extraction and creating relevant figures in this

manuscript can be downloaded from https://doi.org/10.5281/zenodo.7767301. A sample dataset for the curvilinear SST data is also included335

in the repository. The directory also includes sample outputs for various features discussed in the manuscript. The ERA 5 reanalysis data with

varying resolutions can be downloaded from https://cds.climate.copernicus.eu/cdsapp. Single-level variables like 10m wind are obtained
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from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form, while three-dimensional variables can be

extracted from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form. To see the exact codes used for
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Appendix A: Shape Based Feature Extraction on Simple Datasets

The aim of this section is to demonstrate how shape-based matrices can be used to extract features from simple mathematical

functions. This section is indented to provide readers with more insights into the basic principle behind shape-based feature355

extraction and how it differs from other published methods. We have also tried to demonstrate some properties of shape-based

feature extraction methods like its insensitivity to mean state changes and linear trends.

A1 Application to 1D datasets

In this section, we are constructing an analogy between application of SCAFET on a 2D dataset and shape-based feature

extraction from a one-dimensional dataset. The purpose of this discussion is not to advocate for a shape-based extraction of360

features from 1D datasets but to help the readers understand its strengths and weaknesses.

Conventionally, for any differentiable curve C, the curvature is measured as the instantaneous rate of change of direction

of a along the curve. Simply put, the curvature is measured as the rate of change of the unit tangent to the curve at any given

point. An osculating circle can be used to intuitively represent the curvature of a surface or a curve (see Figure A1). At any

point P, the curvature, k is the reciprocal of the radius (R) of the circle. The sign of k determines if the curve has a concave365
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Figure A1. A schematic representation of measuring curvature of a curve C at point P. At P the curvature is the reciprocal of the radius R of

the osculating circle. In differential geometry, an osculating circle is defined as the circle passing through the point P and a pair of additional

points infinitesimally close to P.

or a convex curvature. More information and mathematical proof for these concepts can be found in any standard differential

geometry textbooks.

Following the derivation of Shape Index (SI) for 2D datasets, we could normalize the curvature for a function f to give the

shape parameter as,

K =
2
π
tan−1(f ′′) (A1)370

Values of K closer to 1 can be identified as regions of local minima while K closer to -1 are regions of local maxima (black

curve in Figure A2). Depending on the severity of the extreme event, one could choose a value for K to get regions of local

maxima (red caps in Figure A2) and local minima (green caps in Figure A2). The curvature of the function is insensitive to

linear trends and mean state changes as the application of the same shape thresholds identifies identical regions as local maxima

and minima in a simple trigonometric curve (blue curve in Figure A2) and the same curve with an added linear trend (orange375

curve in Figure A2). The values of K for both curves are represented by the black line inFigure A2. Thus, it can be used to

identify extreme events from datasets without being affected by the background state changes.

A2 Application of SCAFET to simple Geostrophic Motion

In this section we demonstrate the application of SCAFET to a simple geostrophic rotational motion. The goal of this discussion

is to see how shape-based extraction of 2D features differ from other conventional methods used. The calculation of SI involves380

the computation of the two eigenvalues, k1 and k2 of the hessian of any gridded dataset. As discussed in the previous section,

the measurement of curvature, k1 and k2 can be visualized as the reciprocal of the radius of two osculating circles orthogonally

intersecting at a point in the surface. Large negative eigenvalues represent surfaces with strong convex curvature while positive
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Figure A2. Shape extraction for a simple one-dimensional curves given by f = sin2x +3cos5x and f +0.5x = sin2x +3cos5x +0.5x.

The first one is a simple trigonometric curve while the second curve includes a linear trend as is evident from their functional forms. The

magnitudes of both the functions are shown in the left Y axis while the right Y axis indicates the values of the shape parameter (K). Note

that K is same for both the functions. The green and red highlighting on the curves indicates the regions where K > 0.99 and K <−.99.

The red highlighted are tagged as extreme maxima events and those highlighted with green are be characterized as extreme minima events.

values are identified as troughs or cups. To demonstrate the characteristics and strengths of feature detection based on Shape

Index (SI) let’s consider a simple rotation wind field (see Figure A3(a) vectors) given by385

ug =−Ωy (A2)

vg =Ωx (A3)

Where Ω is a constant and x,y represents the grid. In the current example the value of Ω is set as 105rad/s. The geopotential

height (h) of the field (see Figure A3(a) shading) is used as our primary field to identify features using shape index (SI). h is

estimated as,390

h=
Ωf
2g

(x2 + y2) (A4)

f and g are the Coriolis parameter and the gravitational constant respectively. SI is calculated from the eigenvalues of the

hessian of h using the formula,

SI =
2
π

arctan
[
k2 + k1

k2− k1

]
(A5)
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Where the eigen values k1 and k2 are given by,395

k12 =
fζg
2g

±
√(

f

2g

)2

−
(
f

g

)2
∂vg

∂x

∂ug

∂y
+
∂ug

∂x

∂vg

∂y
(A6)

Where ζg is the geostrophic vorticity. Which gives SI as,

SI =
2
π
tan−1




ζg

−2

√(
ζg

2

)2

− ∂vg

∂x
∂ug

∂y + ∂ug

∂x
∂vg

∂y


 (A7)

A detailed derivation of the above equation can be found in Appendix B. Plugging in the values for the rotational motion,

we get400

ζg =∇2h= Ωf/g (A8)

∂ug

∂x
=
∂vg

∂y
= 0 (A9)

∂vg

∂x

∂ug

∂y
= Ω2 (A10)

Therefore,

SI =
2
π
tan−1

[
Ω2

−
√

Ω2−Ω2

]
=−1 (A11)405

Thus, SCAFET classifies the whole domain with the anticlockwise rotational motion as a trough with SI≊-1 regardless of

the absolute value of the field or Ω. A traditional method that uses thresholding directly on the geopotential height would

identify regions depending on the value of the threshold on h. However, the value of the threshold must be adjusted depend-

ing on the mean (time) and background (space) state. Another widely used practice is to define a threshold on the smallest

eigenvalue. The intention of such methods is to identify extreme features based on the strength of the curvature rather than410

the actual value of the field. TempestExtremes, a feature extraction framework previously discussed, follow this method to

identify Atmospheric Rivers from gridded datasets. In the current example, this would correspond to thresholding on fΩ/g.

In other words, TempestExtremes would only detect the trough if the value of Ω is greater than the predetermined threshold.

Contrastingly, SCAFET would identify the trough as a trough regardless of the actual value of the field or Ω. Hence, we see

that feature extraction using SI and other published methods can give us different results depending on the input data as they415

are looking at different properties of the field.
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Figure A3. Comparing different feature extraction techniques on synthetic rotational wind field. (a) The geopotential height (h) (shading)

of the rotational wind field (arrows). h is defined as Ωf(x2 + y2)/2g, where f = 10(− 4)1/s, g = 9.805m/s and Ω = 105rad/s. (b) The

magnitude of the smallest eigen value. From the equation, the smallest eigen value can be derived as fΩ/g = 1.0199. (c) Shows the value

of the shape index (SI). From the equations and the plot, we can see that the value of SI =−1 throughout the domain.
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Appendix B: Derivation of Shape Index for Geostrophic Motion

The complete derivation of the SI for geostrophic wind fields are shown in this section. The result from the derivation is used

in the previous section. Let h be the geopotential height at a certain level. The hessian of h is given by.

H(h) =




∂2h
∂x2

∂2h
∂x∂y

∂2h
∂y∂x

∂2h
∂y2


 (B1)420

The eigen values of the symmetric matrix H is calculated by solving the quadratic equation.

(
∂2h

∂x2
−λ

)(
∂2h

∂y2
−λ

)
−

(
∂2h

∂x∂y

)2

= 0 (B2)

Which can be expanded as;

λ2−λ
(
∂2h

∂x2
+
∂2h

∂y2

)
+
∂2h

∂x2
.
∂2h

∂y2
−

(
∂2h

∂x∂y

)2

= 0 (B3)

λ2−λ∇2h+
∂2h

∂x2
.
∂2h

∂y2
−

(
∂2h

∂x∂y

)2

= 0 (B4)425

NOTE: The geostrophic vorticity (ζg) is defined as

ζg =
g

f
∇2h (B5)

The geostrophic velocities are defined as

ug =− g

f

∂h

∂y
=−∂ψ

∂y
(B6)

vg =
g

f

∂h

∂x
=
∂ψ

∂x
(B7)430

Where ψ is the geostrophic stream function. This implies.

∂2h

∂x2
=
f

g

∂2ψ

∂x2
=
f

g

∂vg

∂x
(B8)

∂2h

∂y2
=
f

g

∂2ψ

∂y2
=−f

g

∂ug

∂y
(B9)

Adding the abovementioned relationships to equation (3)

λ2− λf

g
ζg −

f2

g2

∂vg

∂x

∂ug

∂y
+
f2

g2

∂ug

∂x

∂vg

∂y
(B10)435

Solving for λ we get
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λ12 =
fζg
2g

±
√(

f

2g

)2

−
(
f

g

)2
∂vg

∂x

∂ug

∂y
+
∂ug

∂x

∂vg

∂y
(B11)

λ12 =
f

g


ζg

2
±

√(
ζg
2

)2

− ∂vg

∂x

∂ug

∂y
+
∂ug

∂x

∂vg

∂y


 (B12)

Thus the shape index for h

SI =
2
π
arctan




ζg

−2

√(
ζg

2

)2

− ∂vg

∂x
∂ug

∂y + ∂ug

∂x
∂vg

∂y


 (B13)440
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