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Abstract. This study describes a generalized computational mathematical framework, Scalable Feature Extraction and Track-

ing (SCAFET) to extract and track features from large climate datasets. SCAFET utilizes novel shape-based metrics that can

identify and compare features from different mean states, datasets, and between distinct regions. Features of interest such as

atmospheric rivers, tropical and extratropical cyclones, jet streams, etc. are extracted by segmenting the data based on a scale-

independent bounded variable called shape index (SI). SI gives a quantitative measurement of the local geometric shape of the5

field with respect to its surroundings. Compared with other widely used frameworks in feature detection, SCAFET does not

use a posteriori assumptions about the climate model or mean state to extract features of interest and levelize comparison be-

tween different models and scenarios. To demonstrate the capabilities of the method, we illustrate the detection of atmospheric

rivers, tropical and extratropical cyclones, sea surface temperature fronts, and jet streams. Cyclones and atmospheric rivers

are extracted to show how the algorithm identifies and tracks both nodes and areas from climate datasets. The extraction of10

sea surface temperature fronts exemplifies how SCAFET effectively handles curvilinear grids. Lastly, jet streams are extracted

to demonstrate how the algorithm can also detect three-dimensional features. As a generalized framework, SCAFET can be

implemented to extract and track many weather and climate features across scales, grids, and dimensions.

1 Introduction

The amount of climate data is growing exponentially owing to rapid expansions in both observational capabilities and compu-15

tational power, driven in particular by the precision and insights offered by higher resolution models (Overpeck et al., 2011;

Balaji et al., 2018). Frontier research like global cloud-resolving and large ensemble simulations leads not just to increased

volume but also to inflated velocity, variety, veracity, and value (5Vs) (Marr, 2015; Guo, 2017; van Genderen et al., 2019) of
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climate data. This makes the detection and comparative analysis of important atmospheric and oceanic features, such as atmo-

spheric rivers (ARs), tropical and extratropical cyclones, sea surface temperature fronts (SSTFs), and jet streams, an onerous20

task. Although these climate phenomena influence regional and global weather and climate with immense societal, economic,

and ecological impacts, the amount of data representing these events and features is a small percentage of the whole simula-

tion. Feature extraction considerably reduces the amount of data that needs to be stored, improving computational efficiency in

analyzing these features (Yang et al., 2016). Moreover, the mean, variability, and characteristics of features can be compared

to observational data sets as a measure of bias within model simulations, improving our understanding about the causal differ-25

ences between observations and models (Sellars et al., 2013). Thus, efficient and reliable feature extraction is vital to climate

data processing, analysis, and model development.

Despite the importance of feature extraction in climate data analysis and model development, there is little consensus on

standard best practices for feature extraction. The simplest method for extracting a feature is to use a physical threshold or

its derivative for some climate variable (SST, precipitation, wind speed, humidity, etc.), or a combination thereof, to identify30

ARs, fronts, jet streams, or tropical and extratropical cyclones (Bengtsson et al., 1982, 1995; Vitart et al., 1997; Hewson, 1998;

Koch et al., 2006; Strong and Davis, 2007; Rutz et al., 2014; Guan and Waliser, 2015). The limitations and discrepancies in

these methods arise from the somewhat arbitrary choice of physical thresholds in relation to the spatiotemporal distributions

of the climate variables. In other words, many studies choose a physical threshold that is not theoretically defined but rather

a function of the location, time span, and dataset used. Validation can then unfortunately come down to the intelligent but35

subjective human eye, or in other words tuning an absolute or relative threshold until it appears to have captured all the features

of interest while leaving out the background noise (Zarzycki and Ullrich, 2017; Vishnu et al., 2020).

Choosing an absolute threshold from climate variables for feature extraction that applies to different climate models and

spans multiple mean states and model scenarios is not straightforward. Thresholds are often applied to climate variables or

derivatives in which the features are most visible, such as relative vorticity (RV) and sea level pressure anomalies for tropical40

cyclones (e.g., Vitart et al., 1997), integrated water vapor transport (IVT) for ARs (e.g., Guan and Waliser, 2015), or the first

derivative of sea surface temperature (SST) for SST fronts (Castelao et al., 2006). Thresholds are often either empirically

derived from observational studies or calculated from a model-specific distribution, though even within the same dataset a

particular choice of threshold may be suitable for one region but not for another, given varying regional characteristics and

topography. In the case where the feature extraction threshold is an a posteriori assumption of the data set used, one must45

preprocess large, representative datasets just to calculate reasonable thresholds. While some detection methods have done well

to streamline their algorithms to reduce total runtime, the process of posterior threshold calculation for higher resolutions

and large ensemble datasets inherently becomes increasingly less efficient, highlighting the need to develop feature extraction

methods that do not use posterior assumptions.

Aside from the sensitivity of feature detection to inter-model and inter-simulation differences, feature detection is further50

complicated when trying to detect and compare features between present and future climate change scenarios as the underlying

spatiotemporal climate variable distributions change under global warming. Feature detection must be reconsidered when

applied to variables with significant and/or non-linear changes in their means and extremes in response to external forcings
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such as doubling or quadrupling carbon dioxide concentrations. It should be emphasized that applying different arbitrary

thresholds can and does lead to contradictory conclusions regarding the response of these features to greenhouse gas warming55

(Horn et al., 2014; Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al., 2023). To counter these uncertainties, methods based

on topology, machine learning, ridge extraction, edge detection, and various other image-processing techniques have been

proposed over the years (Dixon and Wiener, 1993; Post et al., 2003; Molnos et al., 2017; Biard and Kunkel, 2019; Xu et al.,

2020). While these methods offer an alternative for the extraction of features in datasets spanning different mean states, many

of these methods were developed for detecting specific rather than general features.60

The need for a general framework for extracting and tracking features from large climate datasets has been raised in various

climate science communities for the last several decades. In a pioneer study, Hodges (1994) developed a general framework

for extracting and tracking features from meteorological datasets in three steps: segmentation, filtering, and tracking. In the

segmentation step, the field is split into distinct regions by applying a threshold and defining each of the connected regions as

an object. Segmented regions are then filtered based on the characteristics of each object, and feature nodes are defined for65

the remaining objects. Finally, the feature nodes are tracked over time to produce the final output for further analysis. This

framework was further developed for cyclones, storm tracks, convective systems, ocean eddies, monsoon depressions, etc.,

(Hodges, 1995; Hogg et al., 2005; Hodges et al., 2011; Burston et al., 2014; Hurley and Boos, 2014; Pinheiro et al., 2016;

Priestley et al., 2020; Torres-Alavez et al., 2021; Karmakar et al., 2021). However, it is limited to the detection of points of

local maxima in two-dimensional scalar fields, which do not always fully characterize various features.70

In 2012 a team from the Lawrence Berkeley National Laboratory developed the Toolkit for Extreme Climate Analysis

(TECA), integrating pre-existing, physical threshold-dependent detection methods and algorithms into a comprehensive soft-

ware package that was parallelized to make the algorithms more suitable for large datasets (Prabhat et al., 2012). In a more

recent effort, a team led by Paul Ullrich at the University of California-Davis created TempestExtremes (Ullrich and Zarzycki,

2017; Ullrich et al., 2021), another computationally efficient algorithm package that uses C++ and several core functions to75

detect a variety of features. These functions are being actively developed for extraction, characterization, and uncertainty quan-

tification of weather extremes. Both TECA and TempestExtremes have been widely implemented by the climate community

and have been monumental in advancing scientific understanding of meso- and synoptic-scale processes and their connections

to long-term climate variability.

In this study, we present a novel method called Scalable Feature Extraction and Tracking (SCAFET), which serves as a80

versatile and general framework for detecting and tracking features of various shapes and intensities across scales, grid types,

and dimensions. Simply put, SCAFET uses the curvature measurements of a given scalar field to identify distinct emergent

shapes corresponding to features of interest. The local shape calculation is finite, bounded, and scale-independent, and it can be

tuned depending on the specified feature of interest. Unlike traditional methods that rely on physical thresholds often derived

from data-specific, posterior conditions, this method relies on shape-based thresholds. As such, it separates the feature detection85

process from inter- and intra-model variation, making it less sensitive to these differences. Furthermore, this approach allows for

the complete parallelization of feature extraction along the time dimension since the detection operates independently of time.

Time-independent feature extraction offers two key advantages. Firstly, it has the potential to boost computational efficiency by
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enabling data pre-processing such as smoothing to occur in parallel, rather than requiring a single pre-processing step before

feature extraction. Secondly, it holds the promise of being developed and implemented for real-time feature extraction during90

critical events like hurricanes and tornadoes. Importantly, the code for this framework is fully open-source and written in Python

in an easy-to-use package so that even individuals with beginner-level Python skills can readily implement the algorithm (see

https://github.com/nbarjun/SCAFET/blob/master/scafet_demo.ipynb for a simple working example).

The novelty of SCAFET compared to pre-existing methods lies in feature detection that does not use a posteriori assumptions

and is based on the overall “shape” of a climate variable field, rather than arbitrary thresholding of that field or derivative. The95

core methodology for the detection of any feature is the same and can be tuned using just two variables, one for the spatial

scale and the other for the shape of the features one is looking for. For example, between the two variables, one can tune the

difference between a long filament-shaped atmospheric river and a shorter round-shaped cyclone. The algorithm applies to

both rectilinear and curvilinear grids and can also be extended to detect three-dimensional (3D) features. Even in the context

of recent advancements in feature extraction such as Tempest Extremes and TECA, SCAFET is a comprehensive, efficient,100

and easily implementable framework that aims to upgrade the feature extraction process with a novel shape-based approach

that does not rely on iterative posterior conditions and could prove to be a robust method for detecting a diverse set of features

under different mean climate states. Further discussion on the differences between SCAFET and other detection algorithms

can be found in Appendix A.

The paper is organized as follows, section 2 introduces the fundamentals of SCAFET and how it is implemented in a two-105

dimensional (2D) field. Section 3 presents three specific use cases of SCAFET, demonstrating its capabilities in detecting

various climate features across different grid types. Extraction of 3D features using jet steams as an example will be discussed

in section 4. Though the application of SCAFET is not limited to the features described here, this study focuses on atmospheric

rivers, cyclones, SST fronts, and jet streams as these examples cover a broad range of phenomena, providing users with insights

on how to adapt SCAFET to their specific use cases and requirements.110

2 Description of Scalable Feature Extraction and Tracking

SCAFET adopts the same three-step approach as outlined by Hodges (1994) -Segmentation (yellow boxes in Figure 1) , Fil-

tering (orange boxes in Figure 1), and Tracking (green boxes in Figure 1). However, before commencing these steps, SCAFET

requires initialization with essential information describing the datasets and the specific feature to be extracted (as indicated by

blue boxes in Figure 1). The key inputs for this initialization include the following:115

– Primary field (ϕp): This is a gridded dataset in which the target feature is most easily distinguishable. For instance,

cyclones are readily identified using the RV field, ARs emerge from IVT, and SSTFs are distinguished using the SST

gradient. Optionally, one or more secondary fields can be used to further constrain the detected features.

– Grid Properties: Information on the primary field’s grid including grid cell area/volume, grid distance, and coastlines

are required for calculating derivatives of the basic field and identifying landfalling locations.120
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Inputs Segmentation Tracking Outputs
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1
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spatial scales much less 

than feature scale (L)

Shape Extraction
Local shape determined 

by SI at each point:

𝑆𝐼 =
2
𝜋
tan#-

𝑘+ + 𝑘-
𝑘+ − 𝑘-

where k1 and k2 are 
eigenvalues for Hessian 
of smoothed field (𝜙!)

Primary Field

Gridded data set (𝜙") 
where feature of interest 
is visible (eg. IVT for ARs)

Object Tracking
Point of interest 

(eg centroid, point of 
maximum intensity, 
leading edge, etc.) 

tracked through time.
Closest object within pre-

defined radius (𝑟) in 
subsequent time step 

(𝑡 = 𝑛 + 1) considered as 
same object in motion. 
Object’s tracking ends 

when no objects detected 
within 𝑟 at 𝑡 = 𝑛 + 1

Further Filtering
Ephemeral objects with 

tracks lasting shorter than 
the minimum duration are 

further filtered

Filtering

Secondary Field 
(optional input)

Feature Property 
Calculation

Area, Length, Statistics 
of Intensity (mean, 

max, min) calculated 
for each object

Second gridded data set 
used to further constrain 

and filter objects 
(eg. Precip for ARs)

Filtering
Extracted objects are 

filtered to remove 
small or weak objects

Output 1*
Object Mask

Labeled mask of 
detected objects 

returned on same grid 
as the input grid

Output 2*
Object Properties
Numbered list of 

objects corresponding 
to labeled mask, and 
the properties and 
statistics associated 

with each object

*NetCDF Output Files

Figure 1. Overall schematic of SCAFET workflow and components. Inputs to the algorithm are depicted in blue, while the algorithm’s

outputs are shown in pink boxes. Processes related to the segmentation step are highlighted in yellow boxes, whereas the orange boxes

represent the filtering processes. The tracking step is denoted by green boxes. Arrows on the periphery of the boxes illustrate the flow of the

algorithm. Each section is elaborated upon in detail within the text.

– Feature Properties: The algorithm requires information on the properties of the target feature. This includes estimated

spatial scale, shape, eccentricity (for 2D features only), minimum length, minimum area, minimum volume (for 3D

feature only), minimum duration, and maximum distance per time step.

In the SCAFET scheme, segmentation, filtering, and tracking are developed and coded as separate Python libraries. This

design allows users to substitute any of these components with their own methods while still being able to execute the algorithm.125

Once all three steps have been executed, the algorithm yields two outputs: one provides information about the properties of the

detected objects, and the other produces a labelled mask highlighting the feature of interest on the input grid (pink boxes in

Figure 1).

2.1 Segmentation

The core operation for the feature extraction involves categorizing points within a scalar field into one of five shapes. This130

categorization is achieved using curvature measurements obtained from the eigenvalues of the Hessian of the basic field. These
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five selected shapes (see Figure 2) are an abridged version of the shapes described in previous studies (Koenderink and van

Doorn, 1992). Depending on the specific feature of interest, one or more shapes are extracted from the primary field. The

segmentation process starts with scale-space selection of the field to remove smaller scales of variability that are background

noise compared to the feature of interest. Lastly, the algorithm calculates SI to estimate the local geometric shape at each point.135

2.1.1 Scale-space Selection

Scale-space selection is a widely used technique in image processing, signal processing, and computer vision (Lindeberg,

2014). In our current study, scale-space selection involves applying a Gaussian smoothing kernel to suppress variability smaller

than the chosen smoothing scale (σ) (see https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.smooth_gaussian.ht

ml for implementation of Gaussian smoothing). Mathematically, scale-space selection is performed by convolving the primary140

field (ϕp) with a Gaussian function, expressed as follows:

ϕs(x,y, . . .) = ϕp(x,y, . . .) ∗
1

2πσ
e−(x2+y2+...)/2σ2

(1)

In the context of the meso-synoptic scale processes examined in this study, scale-space selection filters out smaller micro-

scale features to isolate features like cyclonic vortexes or atmospheric rivers. Notably, this function can be adjusted to the spatial

scale of interest and could also be used to filter out synoptic-scale features in isolating micro- and meso-scale processes. In145

climate datasets, grid spacing is not always uniform. To account for that, we adapt the above equation to be “grid-aware”. The

input for the smoothing scale is provided in kilometers, and based on this input, we calculate the value of σ while considering

the grid size. Notably, the value of σ remains constant when smoothing is applied along each longitude, but it varies along each

circle of latitude. For future studies, researchers may explore other, more advanced scale-space selection methods to further

refine their analyses.150

2.1.2 Local Shape Extraction

The local geometric shape of the field, ϕs is calculated as a function of the eigenvalues (k1 and k2) of the Hessian of the

magnitude of the field (|ϕs|), where the Hessian is given by,

H (|ϕs|) =


∂2|ϕs|
∂x2

∂2|ϕs|
∂x∂y

∂2|ϕs|
∂y∂x

∂2|ϕs|
∂y2

 (2)
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Figure 2. Selected shapes used in this study and the values of the shape index associated with each of them. The X and Y axis are a set of

general axis while Z(X,Y ) = sin(2X)+ cos(2Y ). Regions within Z(X,Y ) satisfying conditions for different shapes are isolated to show

the geometry associated with them.

In the context of simple differential geometry, we can determine whether a point is a local maximum or a local minimum155

based on the eigenvalues k1 and k2. Specifically, if k2 ≤ k1 < 0 then the point under consideration is a local maximum, whereas

if k1 ≥ k2 > 0, the point is a local minimum. The criterion is primarily applicable to nodal features such as tropical cyclones

or monsoon depressions. To expand our ability to identify a range of features, we use shape index (SI) (Koenderink and van

Doorn, 1992), a quantitative measure of the local shape of the field defined as,

SI(k1,k2) =
2

π
tan−1

[
k2 + k1
k2 − k1

]
(3)160

Where k1 and k2 are the two eigenvalues, satisfying k1 ≥ k2, for the Hessian matrix. It is important to clarify that in the

original work by (Koenderink and van Doorn, 1992), the principal curvatures, not the eigenvalues of the field, are utilized to

calculate the SI. However, the disparity between SI calculated using principal curvatures and SI derived from eigenvalues is

exceedingly minimal in climate data analysis. The SI is used to categorize the primary field into distinct shapes (see Figure 2).

The choice of SI values is contingent upon the specific type of feature to be extracted. For example, we select caps and domes165

when extracting features such as atmospheric depressions or cyclones, whereas ridges, caps, and domes are chosen when

targeting features like ARs and fronts.

SI is designed to be a bounded value (range -1 to 1) independent of the magnitude of the field (Figure 3). In simple terms,

SI provides a continuous and quantitative measurement of the geometric shape of the field with respect to its immediate

background field. This concept is similar to how a climate scientist’s trained eye identifies features based on differences in170

color or value contrast, though SI is arguably a more objective and precise measure of geometric shape. These characteristics

make SI particularly well-suited for feature extraction from datasets with varying mean states, in contrast to traditional physical

threshold-based methods. In addition to the two eigenvalues, the shape extraction provides us with corresponding eigenvectors.

The eigenvector for k1 points perpendicular to the local ridge direction while that of k2 is parallel to it. This allows us to impose

further constraints, such as the coherence of transport or flow with respect to the local ridge when ϕs is a vector field. This175

capability is aptly demonstrated in the context of AR detection, as discussed in subsection 3.1.

7



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
K1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

K2

Saddle

Ridge

Cap /
Dome

RutCup /
Trough

1.000

0.875

0.625

0.375

0.000

0.375

0.625

0.875

1.000

Sh
ap

e 
In

de
x

Figure 3. Sensitivity of the shape index (SI) to eigenvalues k1 and k2. The X and Y axes represent values of the two eigenvalues used for

calculating the shape index while the color indicates the value of the shape index. Shapes corresponding to SI regimes are labelled. Shapes

corresponding to SI regimes are labelled.

2.2 Filtering

Once the target features are extracted, properties like area, location, mean, minimum, and maximum values of different prop-

erties are calculated for each of the objects. A series of filtering is carried out to remove objects that do not satisfy certain

conditions regarding (a) grid properties like area, length, region masks, etc. (b) primary field properties like magnitude and180

direction, and (c) constraints from the secondary field(s). The primary aim of the filtering process is to remove small, weak, or

ephemeral objects.

2.3 Tracking

The properties extracted for each object include key positional details, such as its centroid, and endpoints, as well as the

locations of maximum and minimum intensity of input field within each object. To follow objects through time, one of these185

positional attributes is tracked. In the present study, we employ a straightforward tracking method. For each object at time step

n, we identify the closest object to it at time n+1. If this identified object is closer than a predefined radius r, we consider it

to be the same object in motion. The radius r is defined in kilometers based on the maximum translation speed of the object

and the temporal frequency of the input data. At this stage, it is possible to filter out short-lived features as needed. While

this uncomplicated tracking approach may not be suitable for micro-scale processes, it can be adapted to incorporate greater190

complexity if necessary.

3 Application to 2D Features

In this section, we showcase how SCAFET is employed to detect cyclonic vortices, ARs, and SSTFs from various climate

datasets. These examples serve to illustrate the versatility of SCAFET as applied to different types of features and grids, though

all the examples in this study follow the same general process shown in Figure 1. Each subsection has a table of parameters195

detailing the properties of the desired feature. The properties include the feature’s typical spatial scales, shape index (SI)
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regime, minimum length, minimum area, object eccentricity, and minimum duration of its track. To determine the quantitative

values for these properties, we refer to a consensus among previous studies, which are cited within each section. A detailed

examination of the sensitivity of these parameters in relation to the detected features, using AR detection as an example, can be

found in Supplementary Section 1. In addition to the results discussed in the following sections, supplementary videos are also200

included for each of the features. The primary objective of this work is to demonstrate SCAFET’s capability to detect a variety

of features. Consequently, we present results for the long-term climatology of each of the features, enabling a comparison with

other published detection algorithms.

3.1 Atmospheric Rivers

According to the American Meteorology Society’s glossary of meteorology, ARs are “long, narrow, and transient corridors of205

strong horizontal water vapor transport that are typically associated with a low-level jet stream ahead of the cold front of an

extratropical cyclone” (Ralph et al., 2018). A substantial portion of the precipitation and water vapor transport in midlatitude

regions is concentrated within ARs (Guan and Waliser, 2015). These atmospheric phenomena play a significant role in midlat-

itude hydrology, contributing to more than 50% of the extreme precipitation and wind events in the region (Waliser and Guan,

2017; Nash et al., 2018). The ability to accurately detect, forecast, and project future ARs is of utmost importance for both210

extreme weather preparedness as well as for water resource management in basins worldwide.

The ambiguity in AR projections and AR detection tools (ARDTs) stems from the lack of a clear quantitative definition

of ARs in strength, length, narrowness, and other such parameters used in detection. In comparison with other criteria, the

choice of threshold for AR strength has a significant effect on the inferences drawn between the detection schemes (Zhao,

2020; O’Brien et al., 2022; Nellikkattil et al., 2023). Many ARDTs determine this threshold empirically from the dataset itself,215

which renders them sensitive to spatiotemporal variations and changes in mean-state conditions (Shields et al., 2018). SCAFET

defines ARs as long (length > 2000 km), narrow (eccentricity > 0.75) regions of strong water vapor transport (SI > 0.375), and

significant precipitation (minimum AR precipitation > 1mmday−1) (see Table 1 for complete details). The sensitivity of these

parameters in AR detection to the characteristics of detected ARs is discussed in Supplementary Section 1. This approach

reduces the sensitivity of AR characteristics to arbitrary strength thresholds, making it easier to compare ARs across different220

mean state conditions.

To illustrate how SCAFET identifies ARs, we utilized daily mean data from the European Centre for Medium-Range Weather

Forecasts (ECMWF) Reanalysis Version 5 (ERA5; Hersbach et al. (2020)) for the period 2000 to 2019. The key fields of interest

included the daily mean integrated water vapor transport (IVT) as the primary field and the daily mean total precipitation as the

secondary variable. All the datasets employed share a spatial resolution of 0.25◦×0.25◦. The vector field, IVT is calculated as,225

IV Tx=−1

g

300hPa∫
1000hPa

q.Udp (4)
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IV Ty =−1

g

300hPa∫
1000hPa

q.Vdp (5)

|IV T |=
√
IV Tx2 + IV Ty2 (6)

To detect AR-like structures, SCAFET employs a search for specific shapes, such as ridges, caps, and domes (see Figure 2).

Following the process outlined in Figure 1, SI is calculated after applying a grid-aware smoothing technique that suppresses230

variability smaller than 1000 km (Figure 4(a)). Once SI is calculated for |IVT| (Figure 4(b)), regions where SI > 0.375 are

passed on to the next stage for filtering. To maximally utilize the vector qualities of the primary field, we ensure that the local

transport direction (arrows in Figure 4(a)) and local ridge direction (arrows in Figure 4(b)) do not deviate by more than 45◦.

The local ridge direction is identified as the eigenvector corresponding to the smallest eigenvalue (k2). Filtering based on the

grid properties removes candidates that are too small (length < 2000 km and area < 2× 106km2), or too wide (eccentricity235

≤ 0.75). To eliminate AR-like objects with low strength (precipitation < 1 mmday−1) we constrain our results with the

secondary field, total precipitation, within the object’s area. The use of precipitation as a strength indicator is relevant given its

significant socio-economic impact. In line with other ARDTs, we impose a regional mask to filter out AR-like structures along

the equatorial belt. All these steps can be applied in parallel along the time axis, and at each time step AR-like structures similar

to those shown in Figure 4(c) are identified. Once all ARs are detected, the tracking algorithm is applied to the daily data to240

filter out ARs that last less than one day. Tracking is performed based on the centroid of each identified object. The closest

objects within a distance of 4000 km between two consecutive time steps are considered the same object evolving over time

(Figure 4(d)). The annual mean frequency of the detected AR objects and their seasonality are shown in Figure 4(e), (f), and

(g). SCAFET’s identification of ARs is consistent with other ARDTs, both in terms of detecting single events and determining

their mean climatology, as further detailed in the Supplementary Section 2 (see also Lora et al. (2020)).245

3.2 Tropical and Extratropical Cyclones

In the scientific literature, cyclones are generally described as large weather systems ranging from 500–4000 km in size,

characterized by strong cyclonic circulation, low pressure at their center, and exceptionally high winds around it (Emanuel,

2003; Schultz et al., 2019; Encyclopaedia, 2022). The dynamics and characteristics of cyclones can vary depending on factors

such as their genesis location and translation speeds. For instance, cyclones generated near the equator, commonly referred to250

as tropical cyclones, are typically smaller in size compared to those formed in midlatitudes, known as extratropical cyclones.

Regardless of their origin, cyclones have the potential to unleash intense rainfall, powerful winds along their path, and can lead

to flooding, landslides, and severe damage to coastal infrastructure when they make landfall (Knutson et al., 2010; Mendelsohn

et al., 2012; Ranson et al., 2014). Moreover, the impact of cyclones is becoming a subject of heightened public concern due to

rising sea levels and the potential for increased cyclone intensity in response to global warming. Thus, the identification and255

future projection of cyclones are a subject of growing attention and importance for the climate community (Woodruff et al.,

2013).
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Figure 4. Major steps in the detection and tracking of Atmospheric Rivers. (a) Smoothed primary field of vertically integrated water vapor

transport (IVT). Smoothing removes variability smaller than 1000 km from the IVT. The arrows in (a) represent the direction of unsmoothed

IVT. (b) Magnitude (shading) of the shape index (SI) and direction of the local ridge (arrows) direction calculated from smoothed IVT. (c)

Labeled AR objects after filtering out weak, small, and ephemeral candidates. (d) Example of tracked AR centroids and marked time, inlay

shows object’s area mean IVT over time. (e) AR annual mean frequency for the period 2000 to 2019. (f-g) AR Frequency anomaly relative

to the annual mean for (f) November to March, and (g) May to September.
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No. Property Value Unit

Se
gm

en
ta

tio
n 1 Smooth Scale 2000 km

2 Angle Coherence 45 degrees

3 Selected Shape (0.375,1.0] -

Fi
lte

ri
ng

1 Minimum Length 2000 km

2 Minimum Area 2×106 km2

3 Eccentricity [0.75, 1.0] -

4 Minimum Precipitation 1 mmday−1

5 Latitude Mask (-20, 20) degrees

Tr
ac

ki
ng 1 Minimum Duration 24 hours

2 Maximum Distance per Timestep 4000 km

Table 1. The table presents the values for various parameters used in the detection of ARs using SCAFET. The rows for each step, including

segmentation, filtering, and tracking are grouped together and labelled.

Once again, discrepancies among different detection algorithms can be attributed to varying choices of physical thresholds

or constraints related to factors such as size, wind speeds, vorticity, or surface pressure anomalies. While most studies generally

agree on the present and future characteristics of cyclones, resolving details such as the changes in genesis rate and durations260

is complicated by the uncertainties in the detection methods (Ulbrich et al., 2009; Neu et al., 2013; Horn et al., 2014; Walsh

et al., 2015). In this study, SCAFET identifies cyclones as regions of strong local maxima of cyclonic circulation (SI > 0.625)

and maximum wind speeds exceeding 10 ms−1. This definition enables the detection of robust cyclonic vorticities worldwide,

including but not limited to tropical and extratropical cyclones. The primary field used for cyclone detection is the absolute

value of cyclonic relative vorticity (ζ) defined as,265

ζ =∇×U (7)

Where U is the 6-hourly wind speeds at 10 meters above the surface obtained fro1mmdaym the ERA5 reanalysis dataset

with a spatial resolution of 0.25◦ × 0.25◦ (Hersbach et al., 2020). The magnitude of wind speed at 10 meters is utilized as
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 1500 km

2 Selected Shape (0.625,1.0] -

Fi
lte

ri
ng

1 Minimum Length 20 km

2 Minimum Area 105 km2

3 Eccentricity [0.0,1.0] -

4 Minimum Vorticity 10−6 s−1

5 Minimum Max. Windspeed 10 ms−1

Tr
ac

ki
ng

1 Minimum Duration 48 hours

2 Maximum Distance per Timestep 500 km

3 Net Minimum Displacement 1000 km

Table 2. Same as in table Table 1, but for parameters and values relevant to detecting tropical and extratropical cyclones.

the secondary field to constrain detection. Additional cyclone-related variables such as surface pressure anomaly and potential

temperature can also serve as secondary fields for the identification and classification of cyclones.270

In contrast with ARs, the detection of cyclones relies on a scalar field, specifically in this case the cyclonic relative vorticity

|ζ|. First, the data is pre-processed with grid-aware Gaussian smoothing to suppress spatial variability smaller than 750 km

(Figure 5(a)). The chosen smoothing scale allows us to identify both tropical and extratropical cyclones. Caps and dome

shapes (SI > 0.625) are then identified within the smoothed |ζ| field as potential cyclones (Figure 5(b)). Subsequently, objects

with an area less than 105km2 and a diameter less than 20 km are filtered out. Once these spatial criteria are met, we can275

further refine our selection by excluding weak cyclonic vorticities |ζ|< 10−6s−1 and slow maximum wind speed < 10 ms−1,

resulting in the identification of robust cyclonic systems for a given time step (Figure 5(c)). Similar to the AR example, all the

described steps can be parallelized along the time dimension. Once potential cyclones are identified, they are tracked using a

methodology similar to the AR tracking algorithm. However, in this case, the radius for search is limited to 1000 km since we

are using 6-hourly data, and the translation speeds of cyclones are notably slower than 150 kmh−1. A minimum duration of280

48 hours and a minimum total displacement of 500 km is applied to distinguish moving cyclonic circulations from stationary

ones. An example of a tracked cyclone, commonly known as “Dorian” (Avila et al., 2020) is compared with the observed
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track from IBTrACS (Knapp et al., 2010, 2018) dataset (Figure 5(d)). In comparison to the observed track, SCAFET’s track is

much longer due to the more relaxed conditions applied to cyclonic vorticity and wind speed. Additionally, SCAFET does not

differentiate between tropical and extratropical cyclones, which can result in tracking the object throughout its transition from285

a tropical cyclone to a midlatitude storm. Despite this difference, the long-term averages for cyclone frequency and its seasonal

variability calculated using SCAFET are comparable with other studies (e.g., Ullrich and Zarzycki, 2017). What sets SCAFET

apart from other conventional cyclone detection algorithms is its approach to identifying cyclones not as point objects, but as

encompassing surfaces around the point of maximum |ζ|. This enables a more comprehensive analysis of cyclone properties,

including maximum and minimum values of wind speed and precipitation within the entire cyclone structure.290

Figure 5. Major steps in the detection and tracking of cyclones. (a) Smoothed primary field of cyclonic relative vorticity (|ζ|). The smoothing

removes variability smaller than 750 kms from |ζ|. (b) Magnitude of SI for the primary field. (c) Filtered cyclonic objects with the background

color representing unsmoothed values of ζ. (d) Track obtained for cyclone “Dorian” from SCAFET compared with the track from the

IBTrACS dataset. (e) Annual mean frequency of cyclone occurrence for the period 2000 to 2020. (f-g) Anomalous cyclone frequencies

relative to the annual mean for (f) JJA and (g) DJF.
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3.3 Sea Surface Temperature Fronts

SST fronts are regions where different water masses come together. They are typically characterized by strong horizontal

gradients in temperature, salinity, density, and other properties (Bowman, 1978; Legeckis, 1978; Fedorov, 1986; Yoder et al.,

1994). Unlike the larger meso to synoptic scale features discussed in this study, frontal structures are often observed in much

smaller spatiotemporal scales. Accurate identification of SSTFs is essential because these features are frequently associated295

with strong upwelling and high levels of biogeochemical productivity (Clayton et al., 2014, 2021; Nagai and Clayton, 2017).

Additionally, the detection of SSTFs serves as an example of how SCAFET can be applied to identify features in curvilinear

grids.

Many prior SSTF detection algorithms rely on edge detection techniques and the gradient of sea surface temperature and/or

height to identify these structures (Canny, 1986; Castelao et al., 2006). In our approach, we utilize the magnitude of the daily300

mean SST horizontal gradient as the primary field for detecting SST fronts. The SST data is obtained from a fully coupled,

ultra-high-resolution (≊ 10 km) CESM v1.2.2 simulation of present-day mean climate (Small et al., 2014; Chu et al., 2020;

Nellikkattil et al., 2023). The data is processed by SCAFET in the tripolar POP grid. To illustrate the detection process, the

analysis focuses on the Kuroshio frontal and extension region for the last 10 years of the simulation.

The extraction of frontal structures using the selected shapes of ridges, caps, and domes is similar as in the detection of ARs.305

Prior to extraction, a spatial smoothing of approximately 30 km is applied. From the extracted SSTF candidates, objects with

a mean SST gradient lower than 10−4Km−1 are removed. Circular (eccentricity < 0.5) and small (area < 1000 km2) objects

are also filtered out. It is worth noting that, in contrast to AR detection, frontal structures are not tracked. The detected frontal

frequency exhibits general patterns and seasonality consistent with findings in previous studies (Xi et al., 2022).

No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 30 km

2 Selected Shape (0.375, 1.0] -

Fi
lte

ri
ng

1 Minimum Length 500 km

2 Minimum Area 103 km2

3 Eccentricity (0.5,1.0] -

4 Minimum SST Gradient 10−4 Km−1

Table 3. Same as in Table 1 but for parameters and values relevant to detecting Sea Surface Temperature Fronts (SSTFs).
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Figure 6. Major steps in the detection of sea surface temperature fronts (SSTFs). (a) Magnitude of SI as calculated from the smoothed

primary field of the horizontal gradient of sea surface temperature (∇SST). Smoothing removes variability smaller than 15 km from ∇SST.

Filtered SSTF objects, in units of Kelvin per kilometer (Kkm−1), where background color represents unsmoothed values of ∇SST. (c)

Annual mean frequency of SSTF occurrence across a 10-year period in the present climate simulation. (d-e) Anomalous frontal frequencies

relative to the annual mean for (d) JJA and (e) DJF.

4 Application to 3D Features310

This section introduces the extension of SCAFET to detect features within three-dimensional (3D) primary fields. The process

of scale-space selection involves applying Gaussian smoothing independently along each of the three dimensions. Notably,

a 3D field yields three eigenvalues (k1 ≥ k2 ≥ k3) instead of the usual two. In this context, the SI can be calculated in three

different ways by combining these eigenvalues.

For the extraction of jet streams, the SI calculated using k1 and k2 (the two largest eigenvalues) is used as it provides a315

more conservative estimate for the jet-like structure (see Appendix subsection A3 and Supplementary Figure S7). The decision
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to exclude the smallest eigenvalue, denoted as k3, is based on empirical observations. Empirical evidence suggests that when

dealing with regions exhibiting positive maxima (convex curvature), both SI(k1,k2) and SI(k1,k3) effectively capture the

shape. Meanwhile, SI(k2,k3) has a trivial application (refer to Figure A4). Conversely, for concave shapes, both SI(k1,k3)

and SI(k2,k3) represent the shape, while the conditions for SI(k1,k2) become redundant given that they are satisfied by320

SI(k1,k3) and SI(k2,k3).

4.1 Jet Streams

Jet streams, regardless of the underlying dynamics, are narrow, high-wind-speed regions in the upper atmosphere with faster

wind speeds compared to their surroundings (Koch et al., 2006). These jet streams have a significant impact on aviation and

strongly influence surface weather conditions. For example, a persistent jet stream in boreal summer can result in extreme heat325

and flooding events, while a meandering jet stream in winter leads to severe cold spells in the midlatitudes (Petoukhov et al.,

2013; Coumou et al., 2014; Kretschmer et al., 2016). Additionally, the northward movement of jet streams due to greenhouse

warming contributes to the poleward propagation of tropical cyclones (Studholme et al., 2021). Thus accurately detecting and

characterizing jet streams is crucial for predicting and projecting both climatology and extreme weather systems.

Much like the detection of other weather phenomena discussed in this study, previous research typically employs a physical330

threshold to identify jet streams. Furthermore, with the exceptions of Limbach et al. (2012) and Kern et al. (2018), most studies

identify jet streams as either one or two-dimensional features. However, it is important to emphasize that this section’s focus is

primarily on illustrating the method for detecting jet streams rather than validation of any analysis with published work. There

is currently limited analysis available for comparing with a 3D perspective of jet streams, highlighting the need for such an

approach. As a result, we present examples of jet stream detection in three selected time steps. A more comprehensive analysis335

and discussion regarding of the long-term characteristics of jet streams will be a topic for future research. For those interested,

a video showcasing the results over an extended period can be found in the supplementary section.

The primary field used in the extraction of jet streams is the 6-hourly, three-dimensional wind speeds obtained from ERA5

reanalysis data set, with a spatial resolution of 1◦ with 37 vertical levels (Hersbach et al., 2020). The magnitude of wind speed

is calculated as,340

W =
√
U2 +V 2 (8)

where U and V are the zonal and meridional wind velocities.

The detection process for jet streams begins similarly to the detection of 2D features. Gaussian smoothing is used to remove

variability less than 3000 km in the horizontal dimensions. No smoothing is applied along the vertical dimension. Next, SI is

calculated using the two largest eigenvalues, k1 and k2. The vertical dimension for the three-dimensional wind speed is given in345

pressure coordinates. To calculate the gradient as change in wind speeds per kilometer, a rudimentary conversion from pressure

to height coordinates is used (refer to Wallace and Hobbs (1977, pg. 60-61), and https://unidata.github.io/MetPy/latest/api/gen

erated/metpy.calc.pressure_to_height_std.html for further details).
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 6000 km

2 Selected Shape (0.375,1.0] -

Fi
lte

ri
ng

1 Minimum Length 5000 km

2 Minimum Height 5 km

3 Minimum Volume 106 km3

4 Minimum Max. Wind speed 50 ms−1

Table 4. Same as in Table 1 but for parameters and values relevant for detecting jet streams.

Similar to the detection of ARs, regions characterized by the selected shapes of ridges, caps, and domes (SI > 0.375) are

isolated for filtering. Filtering is then applied to remove objects with a volume less than 106km3, a horizontal length less than350

5000 km, and a maximum wind speed within each object less than 50 ms−1. In the current version of SCAFET, the tracking

algorithm is not applied to jet detection (see Figure 7). The detailed list of parameters used in the detection of jet streams is

given in Table 4.

5 Conclusions

In this study, we introduced a novel computational mathematical framework and an open-source Python package for extracting355

and tracking features from large climate datasets, called Scalable Feature Extraction and Tracking (SCAFET). The purpose of

SCAFET is to tackle the challenges posed by the increasing volume and diversity of climate data by providing an alternative to

traditional physical threshold-based feature detection methods. It enables the comparison of features between observational and

model data with different mean states by attempting to remove the need for posterior data-specific assumptions. Furthermore,

SCAFET introduces a novel shape-based approach to feature extraction, which helps uncover discrepancies in climate projec-360

tions due to differences in detection methods and aims to help the community in building scientific consensus. To demonstrate

SCAFET’s capabilities and its potential in advancing these goals, we showcased its ability to detect various features, including

two-dimensional features such as atmospheric rivers (ARs), tropical and extratropical cyclones, sea surface temperature fronts,

as well as the detection of three-dimensional jet streams. Each application serves as an illustrative example from which users

can customize SCAFET for their specific research needs.365

SCAFET offers several significant advantages, including a more comprehensive framework and parallel computing im-

plementation for efficiency. However, its most noteworthy contribution lies in offering a novel perspective on how we can
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Three dimensional winds Extracted Jet streams

(a) (b)

(c)

(e) (f)

(d)

Figure 7. 3D jet streams extracted using SCAFET. Magnitude of 3D wind speed for (a) 2022-08-28 12:00, (c) 2022-08-28 18:00, and (e)

2022-08-29 00:00. Extracted 3D jet streams for corresponding periods are shown in (b), (d), and (f) respectively. The reader is encouraged

to view the full video of these snapshots in the supplementary information.
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relatively define various features within climate datasets that span extensive periods marked by significant changes in mean

climate. Rather than relying on empirically-derived, data-specific physical thresholds for feature extraction, SCAFET identi-

fies features using shape-based absolute thresholds and the locally estimated shape within the field. This methodology offers370

a unique viewpoint, enabling us to observe the continuous changes in feature properties while accounting for shifts in the

mean climate state. This approach is particularly valuable as meso-synoptic scale studies are highly sensitive to thresholds in

a dynamically changing mean climate state. Consequently, the conclusions drawn from such studies can vary significantly, as

demonstrated in research examining the response of ARs to greenhouse warming (Zhao, 2020; O’Brien et al., 2022; Nellikkat-

til et al., 2023). Thus, algorithms like SCAFET which are not influenced by data-specific conditions of various climate models375

play a crucial role in advancing scientific understanding and facilitating climate model development.

In conclusion, delving deeper into the principles of differential geometry to elucidate the physical interpretation of the

relationship between SI and local geometric shape has the potential to revolutionize our approach to feature extraction from

large datasets. This avenue of research has the promise of significantly enhancing the algorithm’s robustness and reliability.

It’s worth noting that, at present, SCAFET may not surpass the computational efficiency of other well-established feature380

extraction methods discussed above (see Supplementary Section 2.2). However, ongoing efforts to optimize and streamline

the algorithm for improved computational efficiency continue. One notable strength of SCAFET’s design is its independence

from dataset-specific posterior information when identifying features. Moreover, the shape-based thresholds used for detecting

specific features remain consistent across various grids, datasets, and climatologies. Between these strengths and the full

parallelization of the feature detection method, there are exciting possibilities for further development. This may eventually385

enable the algorithm to be used in operational feature identification and early-warning systems for extreme weather events.
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Appendix A: Shape Based Feature Extraction on Simple Datasets

This section demonstrates how shape-based feature extraction can be performed on scalar fields represented by simple, ideal-

ized mathematical functions. It is intended to provide readers with more insights into the basic principles behind shape-based

feature extraction and how it differs from other conventional methods. We have also tried to showcase some properties of

shape-based feature extraction methods like its insensitivity to linear mean state trends.415

A1 Application to 1D datasets

In this section, we draw an analogy between the use of SCAFET on a two-dimensional (2D) dataset and shape-based feature

extraction from a one-dimensional (1D) dataset. Our intention is not to promote the use of shape-based extraction of features

from 1D datasets but rather to provide readers with a fundamental understanding of this approach, along with its strengths and

limitations.420

For any differentiable curve C, the curvature is measured as the instantaneous rate of change of direction along the curve.

Simply put, the curvature is measured as the rate of change of the unit tangent to the curve at any given point. An osculating

circle can be used to intuitively represent the curvature of a surface or a curve (see Figure A1). At any point P, the curvature,

k is the reciprocal of the radius (R) of the circle. The sign of k determines if the curve has a concave or a convex curvature.

More information and mathematical proof for these concepts can be found in any standard differential geometry textbook.425

Following the derivation of Shape Index (SI) for 2D datasets, we calculate the local shape of a function f using the shape

parameter, defined as

21



Figure A1. Schematic representation of curvature measurement of a curve C at point P. At P, the curvature is the reciprocal of the radius R of

the osculating circle. In differential geometry, an osculating circle is defined as the circle passing through the point P and a pair of additional

points infinitesimally close to P.

K =
2

π
tan−1(f ′′) (A1)

Values of K closer to 1 are identified as regions of local minima while K closer to -1 are regions of local maxima (black

curve in Figure A2). Depending on the magnitude of the function, one could adjust the value of K to obtain regions of local430

maxima (red caps in Figure A2) and local minima (green caps in Figure A2). The curvature of the function is insensitive to

linear trends and mean state changes. This is evident as the application of identical shape thresholds identifies the same regions

of the curves as local maxima and minima, whether on the base curve (blue curve in Figure A2) or on the same curve with an

added linear trend (orange curve in Figure A2). The values of K for both curves are represented by the black line in Figure A2.

Thus, the shape parameter can be used to identify the local minima and maxima from a 1D dataset despite background state435

changes.

A2 Application of SCAFET to simple Geostrophic Motion

In this section, we apply SCAFET to a basic geostrophic rotational motion. The goal of this discussion is to illustrate how the

shape-based extraction of 2D features differs from conventional methods. The calculation of SI involves the computation of the

two eigenvalues, k1 and k2 of the Hessian matrix for any gridded dataset. As discussed in the previous section, the curvature440

measurement provided by k1 and k2 can be visualized as the reciprocal of the radius of two osculating circles that intersect

orthogonally at a point on the surface. Large negative eigenvalues signify surfaces with strong convex curvature, while positive

values correspond to troughs or cups.

To demonstrate the characteristics and advantages of feature detection based on SI, let’s consider a simple rotational wind

field (see Figure A3(a) vectors) given by,445
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Figure A2. Comparison of shape extraction between a simple one-dimensional curve, given by f = sin2x+3cos5x (blue curve) and

f+0.5x= sin2x+3cos5x+0.5x (orange; the blue curve with a linear trend). Left Y-axis shows magnitude of both functions, right Y-axis

indicates values of the shape parameter (K). Note that value of K is the same for both functions. The green and red highlighting on the

curves shows regions where K > 0.99 and K <−.99, corresponding to regions of local maxima and minima, respectively.

ug =−Ωy (A2)

vg =Ωx (A3)

Where Ω is a constant (Ω= 105rads−1) and x,y represents the grid. The geopotential height (h) of the field (see Figure A3(a)

shading) is used as our primary field in calculating SI, computed as,

h=
Ωf

2g
(x2 + y2) (A4)450

where f and g are the Coriolis parameter and the acceleration due to gravity, respectively. SI is calculated from the eigen-

values of the Hessian of h using the formula,

SI(k1,k2) =
2

π
tan−1

[
k2 + k1
k2 − k1

]
(A5)

Where the eigenvalues k1 and k2 are given by,
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k12 =
fζg
2g

±

√(
f

2g

)2

−
(
f

g

)2
∂vg
∂x

∂ug
∂y

+
∂ug
∂x

∂vg
∂y

(A6)455

Where ζg is the geostrophic vorticity. Which gives SI as,

SI(k1,k2) =
2

π
tan−1

 ζg

−2

√(
ζg
2

)2

− ∂vg
∂x

∂ug

∂y +
∂ug

∂x
∂vg
∂y

 (A7)

A detailed derivation of the above equation can be found in Appendix B Plugging in the values for the rotational motion, we

get

ζg =∇2h=Ωf/g (A8)460

∂ug
∂x

=
∂vg
∂y

= 0 (A9)

∂vg
∂x

∂ug
∂y

=Ω2 (A10)

Therefore,

SI =
2

π
tan−1

[
Ω2

−
√
Ω2 −Ω2

]
=−1 (A11)

Thus, SCAFET classifies the whole domain with anticlockwise rotational motion as a trough with SI≊-1 regardless of465

the absolute value of the field or Ω. In contrast, traditional methods that rely on thresholding the geopotential height would

identify regions based on the chosen threshold of h, which would need to be adjusted depending on the mean (time) and

background (space) state. Another common approach is to establish a threshold on the smallest eigenvalue, aiming to identify

extreme features based on the curvature strength rather than the field’s actual value. TempestExtremes (Ullrich and Zarzycki,

2017), a feature extraction framework discussed in the main text, follows this method to detect Atmospheric Rivers from470

gridded datasets. In the current example, this approach would correspond to setting a threshold on fΩ/g. In other words,

TempestExtremes would only identify a trough if the value of Ω exceeds the pre-determined threshold. SCAFET, on the other

hand, identifies the trough region as a trough regardless of the specific value of the field or Ω. This illustrates how feature

extraction using SI and other published methods can yield different results depending on the input data, as they focus on

distinct properties of the field.475

A3 Application of SCAFET to 3D Fields

This section aims to demonstrate the detection of a cylindrical volume within a three-dimensional scalar field. To illustrate the

effectiveness of the SI in identifying 3D structures embedded within scalar fields, we offer a straightforward example of how SI
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Figure A3. Comparison between two feature extraction techniques on an idealized example of rotational wind field. (a) The geopotential

height (h) (shading) of the rotational wind field (arrows). h is defined as Ωf(x2 + y2)/2g, where f = 10−4s−1, g = 9.805ms−1 and

Ω= 105rad s−1. (b) Magnitude of the smallest eigenvalue, derived from the equation as fΩ/g = 1.0199, illustrating a uniform field as

expected. (c) Value of the SI where SI =−1 throughout the domain, as expected.

can be used to isolate a cylinder embedded in a scalar field defined by f = sin(3X)+ cos(4Y )cos(Z). It is worth mentioning

that this specific problem bears significant similarities to the task of identifying 3D jet cores.480

As explained in section 4, a three-dimensional field provides us with three eigenvalues satisfying the condition k1 ≥ k2 ≥ k3.

The SI can be computed using SI(k1,k2), SI(k1,k3), or SI(k2,k3). Setting a threshold of SI > 0.375 effectively isolates the

cylinder when using either SI(k1,k2) or SI(k1,k3) (see Figure A4(b-d)). Between these two options, SI(k1,k2), which uti-

lizes the two largest eigenvalues, imposes a more conservative criterion for identifying the embedded cylinder. The percentage

of data identified as the cylinder is provided in the title of each plot in Figure A4. Notably, employing SI(k2,k3) is not suitable485

as it fails to isolate the desired cylinder shape effectively. The choice of using SI(k1,k2) is specifically tailored for extracting

convex shapes or local maxima. Interestingly, to identify concave shapes or local minima, one should utilize the SI derived

from the two smallest eigenvalues, namely, SI(k2,k3).

While the simple example presented here may not provide a comprehensive illustration of 3D feature detection, we hope

that it encourages further fundamental research into 3D feature extraction to expand the capabilities of analysis and increase490

precision.
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Simple 3D Field SI(k1,k2)>0.375 (16%) SI(k1,k3)>0.375 (19%) SI(k2,k3)>0.375 (61%)

(a) (b) (c) (d)

Figure A4. Various approaches for extraction of a 3D cylinder from a scalar field. (a)Simple scalar field represented by sin(3X)+cos(4Y )∗

cos(Z) is shown. (b-d) The extracted cylinders by applying the conditions (b) SI(k1,k2)> 0.375, while in (c) SI(k1,k3)> 0.375 and (d)

SI(k2,k3)> 0.375 are shown. The values enclosed in parentheses within the figure titles indicate the percentage of data that satisfies the

respective conditions applied in each case.

Appendix B: Derivation of Shape Index for Geostrophic Motion

The complete derivation of the SI for geostrophic wind fields is shown in this section. The result from the derivation is used in

Appendix A.

Let h be the geopotential height at a certain level. The Hessian of h is given by495

H(h) =

 ∂2h
∂x2

∂2h
∂x∂y

∂2h
∂y∂x

∂2h
∂y2

 (B1)

The eigenvalues of the symmetric matrix H is calculated by solving the quadratic equation.(
∂2h

∂x2
−λ

)(
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−
(
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which can be expanded as;
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NOTE: The geostrophic vorticity (ζg) is defined as

ζg =
g

f
∇2h (B5)
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The geostrophic velocities are defined as

ug =− g

f

∂h

∂y
=−∂ψ

∂y
(B6)505
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f
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=
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∂x
(B7)

Where ψ is the geostrophic stream function. This implies.
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Adding the abovementioned relationships to equation (3)510
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Solving for λ we get
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Thus the shape index for h515
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