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Abstract. This study describes a generalized
::::::::::::
computational

:::::::::::
mathematical

:
framework, Scalable Feature Extraction and Track-

ing (SCAFET) to extract and track features from large climate datasets. SCAFET utilizes novel shape-based metrics that can

efficiently identify and compare features from different mean states, datasets, and between distinct regions. Features of interest

::::
such

::
as

::::::::::
atmospheric

:::::
rivers,

:::::::
tropical

:::
and

:::::::::::
extratropical

::::::::
cyclones,

::
jet

:::::::
streams,

::::
etc. are extracted by segmenting the data based on a

scale-independent bounded variable called shape index (SI). SI gives a quantitative measurement of the local geometric shape5

of the field with respect to its surroundings.
:::::::::
Compared

::::
with

::::
other

::::::
widely

::::
used

::::::::::
frameworks

::
in

::::::
feature

:::::::::
detection,

::::::::
SCAFET

::::
does

:::
not

:::
use

:
a
:::::::::
posteriori

::::::::::
assumptions

:::::
about

:::
the

::::::
climate

::::::
model

::
or

:::::
mean

::::
state

::
to
::::::
extract

:::::::
features

::
of

:::::::
interest

:::
and

:::::::
levelize

::::::::::
comparison

:::::::
between

:::::::
different

:::::::
models

:::
and

:::::::::
scenarios. To demonstrate the capabilities of the method, we illustrate the detection of atmo-

spheric rivers, tropical and extratropical cyclones, sea surface temperature fronts, and jet streams. Cyclones and atmospheric

rivers are extracted from the ERA5 reanalysis dataset to show how the algorithm extracts both locations
:::::::
identifies

:::
and

::::::
tracks10

::::
both

:::::
nodes and areas from climate datasets. The extraction of sea surface temperature fronts exemplifies how SCAFET effec-

tively handles curvilinear grids. Lastly, jet streams are extracted to demonstrate how the algorithm can also detect 3D features.

::::::::::::::
three-dimensional

::::::::
features.

::
As

::
a

:::::::::
generalized

::::::::::
framework, SCAFET can be implemented to extract and track most

::::
many weather

and climate features
:::::
across

:::::
scales,

:::::
grids,

::::
and

:::::::::
dimensions.

1 Introduction15

The amount of climate data is growing exponentially owing to rapid expansions in both observational capabilities and compu-

tational power, driven by the need to observe and simulate ever-higher resolutions
::
in

::::::::
particular

::
by

:::
the

::::::::
precision

::::
and

:::::::
insights

::::::
offered

::
by

::::::
higher

:::::::::
resolution

::::::
models

:
(Overpeck et al., 2011; Balaji et al., 2018). Frontier research like global cloud resolving
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:::::::::::::
cloud-resolving and large ensemble simulations leads not just to increased volume but also to inflated velocity, variety, ve-

racity, and value (5Vs) of climate data (Marr, 2015; Guo, 2017; van Genderen et al., 2019) of climate data. This makes the20

detection
:::
and

::::::::::
comparative

:::::::
analysis

:
of important atmospheric and oceanic features, such as atmospheric rivers (ARs), tropical

and extratropical cyclones, sea surface temperature fronts (SSTFs), and jet streams, a daunting
::
an

:::::::
onerous task. Although these

features of interest
::::::
climate

:::::::::
phenomena

:
influence regional and global weather and climate with immense societal, economic

:
,

and ecological impacts, the amount of data representing these events and features would be
::
is a small percentage of the whole

simulation. Thus, extraction of features not only enables us to focus our analysis on high-impact rare events but can also25

considerably reduce
::::::
Feature

::::::::
extraction

:::::::::::
considerably

:::::::
reduces the amount of data that needs to be stored, improving computa-

tional efficiency in analysing
::::::::
analyzing these features (Yang et al., 2016). Moreover, the mean, variability, and characteristics of

features can be compared to observational data sets as a measure of bias within model simulationsand various parameterizations

(Sellars et al., 2013). Efficient and reliable extraction of these features is thus ,
:::::::::
improving

:::
our

::::::::::::
understanding

:::::
about

:::
the

::::::
causal

:::::::::
differences

:::::::
between

:::::::::::
observations

::::
and

::::::
models

:::::::::::::::::
(Sellars et al., 2013).

::::::
Thus,

:::::::
efficient

:::
and

:::::::
reliable

::::::
feature

:::::::::
extraction

::
is
:
vital to30

climate data processing, analysis, and model development.

Despite the importance of feature extraction in climate data analysis and informed model development, there is little consen-

sus on standard best practices for feature extraction. The simplest method for extracting a feature is to use a physical threshold

::
or

::
its

::::::::
derivative

:
for some climate variable (SST, precipitation, wind speed, humidity, etc.), or a combination thereof, to identify

ARs, fronts, jet streams,
:
or tropical and extratropical cyclones (Bengtsson et al., 1982, 1995; Vitart et al., 1997; Hewson, 1998;35

Koch et al., 2006; Strong and Davis, 2007; Rutz et al., 2014; Guan and Waliser, 2015). The limitations of and discrepancies

between these methods are linked to
:::
and

:::::::::::
discrepancies

::
in

:::::
these

:::::::
methods

::::
arise

:::::
from the somewhat arbitrary choice of physical

thresholds in relation to the underlying spatio-temporal
::::::::::::
spatiotemporal

:
distributions of the climate variables. In other words,

many studies choose a physical threshold that is not theoretically defined but rather a function of the location, timespan
::::
time

::::
span, and dataset used. Validation then unfortunately comes

:::
can

::::
then

:::::::::::
unfortunately

:::::
come down to the intelligent but subjective40

human eye, or in other words tuning a
::
an

:::::::
absolute

:::
or

::::::
relative

:
threshold until it appears to have captured all the features of

interest while leaving out the background noise (Zarzycki and Ullrich, 2017; Vishnu et al., 2020).

Choosing an absolute threshold from climate variables for feature extraction that is applicable
:::::
applies

:
to different cli-

mate models and spans multiple mean states and model scenarios is not straight forward. Even within the same model,

a particular choice of threshold may be suitable for one region but not for another, given varying regional characteristics45

and topography. To account for these inter and intra-model discrepancies, thresholds are often calculated from the model-

and/or simulation-specific distribution of basic climate variable fields
:::::::::::::
straightforward.

:::::::::
Thresholds

:::
are

:::::
often

::::::
applied

::
to

:::::::
climate

:::::::
variables

::
or

:::::::::
derivatives

:
in which the features are most visible, such as relative vorticity

::::
(RV)

:
and sea level pressure anomalies

for tropical cyclones (e.g., Vitart et al., 1997)or ,
:

integrated water vapor transport
:::::
(IVT) for ARs (e.g., Guan and Waliser,

2015). Thus, before the actual detection process is applied,
:::
or

:::
the

::::
first

::::::::
derivative

::
of

::::
sea

::::::
surface

::::::::::
temperature

::::::
(SST)

:::
for

::::
SST50

:::::
fronts

::::::::::::::::::
(Castelao et al., 2006).

::::::::::
Thresholds

:::
are

:::::
often

:::::
either

:::::::::
empirically

:::::::
derived

::::
from

::::::::::::
observational

::::::
studies

::
or

:::::::::
calculated

::::
from

::
a

::::::::::::
model-specific

::::::::::
distribution,

::::::
though

::::
even

::::::
within

:::
the

::::
same

::::::
dataset

:
a
:::::::::
particular

:::::
choice

::
of

::::::::
threshold

::::
may

::
be

:::::::
suitable

:::
for

:::
one

::::::
region

:::
but

:::
not

:::
for

:::::::
another,

:::::
given

::::::
varying

:::::::
regional

::::::::::::
characteristics

::::
and

::::::::::
topography.

::
In

:::
the

::::
case

::::::
where

:::
the

::::::
feature

:::::::::
extraction

::::::::
threshold
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:
is
:::
an

:
a
:::::::::
posteriori

:::::::::
assumption

:::
of

:::
the

:::
data

:::
set

::::
used, one must pre-process entire

:::::::::
preprocess

:::::
large,

:::::::::::
representative

:
datasets just to

calculate reasonable thresholdsthat will allow for comparison within and between models. This process becomes increasingly55

infeasible
:
.
:::::
While

:::::
some

::::::::
detection

:::::::
methods

:::::
have

::::
done

::::
well

::
to

:::::::::
streamline

::::
their

::::::::::
algorithms

::
to

::::::
reduce

::::
total

:::::::
runtime,

:::
the

:::::::
process

::
of

:::::::
posterior

::::::::
threshold

::::::::::
calculation for higher resolutions and large ensemble data sets

::::::
datasets

:::::::::
inherently

:::::::
becomes

:::::::::::
increasingly

:::
less

:::::::
efficient, highlighting the need for a method of feature extraction that is not empirically derived and thus less sensitive to

the climate mean state
:
to
:::::::
develop

::::::
feature

:::::::::
extraction

:::::::
methods

:::
that

:::
do

:::
not

:::
use

::::::::
posterior

::::::::::
assumptions.

Aside from the inter and intra-model discrepancies that arise from detecting features in present and historical model simulations,60

applying empirical present thresholds to detect features in
:::::::::
sensitivity

::
of

::::::
feature

::::::::
detection

::
to

::::::::::
inter-model

:::
and

::::::::::::::
inter-simulation

:::::::::
differences,

:::::::
feature

::::::::
detection

::
is

::::::
further

:::::::::::
complicated

:::::
when

:::::
trying

:::
to

:::::
detect

::::
and

::::::::
compare

:::::::
features

:::::::
between

:::::::
present

::::
and fu-

ture climate change scenarios is further untenable as the underlying spatio-temporal
::::::::::::
spatiotemporal

:
climate variable distribu-

tions change under global warming. Feature detection must be reconsidered when applied to variables with significant
:::::
and/or

::::::::
non-linear

:
changes in their means and extremes in response to external forcings such as doubling or quadrupling carbon dioxide65

(CO2) concentrations. It should be emphasized that applying different arbitrary thresholds can and does lead to contradictory

conclusions regarding the response of these features to greenhouse gas warming (Horn et al., 2014; Zhao, 2020; O’Brien et al., 2022)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Horn et al., 2014; Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al., 2023). To counter these uncertainties, methods based

on topology, machine learning, ridge extraction, edge detection, and various other image processing
::::::::::::::
image-processing

:
tech-

niques have been proposed over the years (Dixon and Wiener, 1993; Post et al., 2003; Molnos et al., 2017; Biard and Kunkel,70

2019; Xu et al., 2020). While these methods offer an alternative for the extraction of features in datasets spanning different

mean states, many of these methods were developed for detecting specific rather than general features.

In this study we introduce a novel method, Scalable Feature Extraction and Tracking (SCAFET), which is a general

framework to detect and track features of various shapes, scales, and intensities. Simply put, SCAFET uses the curvature

of a given scalar field to identify emergent shapes that correspond with distinct features of interest. The shape is calculated75

as a finite, bounded, and scale-independent quantity and can be tuned depending on the desired phenomenon. As this tuning

relies on shape-based rather than physical thresholds (see ), the characteristics of the detected features are less sensitive to

spatio-temporal and mean state variances. This also makes the feature extraction fully parallelizable along the time dimension,

as the detection is carried out independent of the time information. SCAFET utilizes some of the modern python packages like

xarray to handle NetCDF files and dask to parallelize the detection process in any machine with multiple cores. The code for80

this framework is fully open-source and written in Python in an easy-to-use package so that even beginner-level Python users

can easily implement the algorithm.

The need for a general framework in
::
for

:
extracting and tracking features from large climate datasets has been raised in various

climate science communities for the last several decades. In a pioneer study, Hodges developed a three-step
:::::::::::::
Hodges (1994)

::::::::
developed

:
a
:
general framework for extracting and tracking features from meteorological datasets . The first step is segmentation85

, where
:
in

:::::
three

:::::
steps:

:::::::::::
segmentation,

::::::::
filtering,

:::
and

::::::::
tracking.

::
In

:::
the

:::::::::::
segmentation

:::::
step, the field is split into distinct regions by

applying a threshold and then labelling
::::::
defining

:
each of the connected regions as an object. Later, feature nodes are extracted

by filtering out regions outlined in the first step
:::::::::
Segmented

::::::
regions

:::
are

::::
then

::::::
filtered

:
based on the characteristics of each object

:
,

3
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:::
and

::::::
feature

:::::
nodes

:::
are

:::::::
defined

:::
for

:::
the

:::::::::
remaining

::::::
objects. Finally, the feature nodes are tracked over time to produce the final

output for dynamical
:::::
further

:
analysis. This framework was developed further

:::::
further

:::::::::
developed

:
for cyclones, storm tracks,90

convective systems, ocean eddies, monsoon depressions, and more
::::
etc., (Hodges, 1995; Hogg et al., 2005; Hodges et al., 2011;

Burston et al., 2014; Hurley and Boos, 2014; Pinheiro et al., 2016; Priestley et al., 2020; Torres-Alavez et al., 2021; Karmakar

et al., 2021). However, it is limited to the detection of points of local maxima in two-dimensional scalar fields, which do not

always fully characterize various features.

In 2012 a team from the Lawrence Berkeley National Laboratory developed the Toolkit for Extreme Climate Analysis95

(TECA), integrating pre-existing, physical threshold-dependent detection methods and algorithms into a comprehensive soft-

ware package that was parallelized to make the algorithms more suitable for large datasets (Prabhat et al., 2012). In a more

recent effort, a team led by Paul Ullrich at the University of California-Davis created TempestExtremes (Ullrich and Zarzy-

cki, 2017; Ullrich et al., 2021), another
:::::::::::::
computationally

:::::::
efficient

:
algorithm package that uses

:::
C++

::::
and several core functions

to detect a variety of features. These functions are being actively developed for extraction, characterization
:
, and uncertainty100

quantification of weather extremes. Both TECA and TempestExtremes have been widely implemented by the climate commu-

nity and have been monumental in advancing scientific understanding of meso and synoptic scale
:::::
meso-

::::
and

::::::::::::
synoptic-scale

processes and their contributions
::::::::::
connections to long-term climate trends. Further discussion on the differences between

SCAFET
:::::::::
variability.

::
In

:::
this

::::::
study,

:::
we

:::::::
present

:
a
:::::
novel

:::::::
method

::::::
called

:::::::
Scalable

:::::::
Feature

:::::::::
Extraction

::::
and

::::::::
Tracking

::::::::::
(SCAFET),

::::::
which

:::::
serves

:::
as105

:
a
:::::::
versatile

::::
and

:::::::
general

:::::::::
framework

:::
for

::::::::
detecting

::::
and

:::::::
tracking

:::::::
features

:::
of

::::::
various

::::::
shapes

::::
and

:::::::::
intensities

::::::
across

::::::
scales,

::::
grid

:::::
types,

:::
and

:::::::::::
dimensions.

::::::
Simply

::::
put,

::::::::
SCAFET

:::::
uses

:::
the

::::::::
curvature

:::::::::::::
measurements

::
of

::
a

:::::
given

:::::
scalar

:::::
field

::
to

:::::::
identify

:::::::
distinct

:::::::
emergent

::::::
shapes

::::::::::::
corresponding

:::
to

::::::
features

:::
of

:::::::
interest.

:::
The

:::::
local

:::::
shape

::::::::::
calculation

:
is
::::::

finite,
::::::::
bounded,

:::
and

::::::::::::::::
scale-independent,

:::
and

::
it

:::
can

::
be

:::::
tuned

:::::::::
depending

:::
on

:::
the

::::::::
specified

::::::
feature

::
of

:::::::
interest.

::::::
Unlike

:::::::::
traditional

:::::::
methods

:::
that

::::
rely

:::
on

:::::::
physical

:::::::::
thresholds

::::
often

:::::::
derived

::::
from

:::::::::::
data-specific,

::::::::
posterior

:::::::::
conditions,

::::
this

::::::
method

:::::
relies

:::
on

::::::::::
shape-based

::::::::::
thresholds.

::
As

:::::
such,

::
it

::::::::
separates

:::
the110

::::::
feature

::::::::
detection

::::::
process

:::::
from

:::::
inter-

:
and other detection algorithms can be found in . Even in the context of these recent

advancements, SCAFET aims to upgrade the detection process to be
:::::::::
intra-model

::::::::
variation,

:::::::
making

::
it

:
less sensitive to the

physical thresholds used while presenting a novel shape-based approach to
::::
these

::::::::::
differences.

:::::::::::
Furthermore,

:::
this

::::::::
approach

::::::
allows

::
for

::::
the

::::::::
complete

::::::::::::
parallelization

::
of

:::::::
feature

::::::::
extraction

:::::
along

::::
the

::::
time

:::::::::
dimension

:::::
since

:::
the

::::::::
detection

::::::::
operates

::::::::::::
independently

::
of

::::
time.

::::::::::::::::
Time-independent

::::::
feature

:::::::::
extraction

:::::
offers

::::
two

:::
key

::::::::::
advantages.

::::::
Firstly,

::
it
::::
has

:::
the

:::::::
potential

:::
to

:::::
boost

::::::::::::
computational115

::::::::
efficiency

::
by

::::::::
enabling

:::
data

:::::::::::::
pre-processing

::::
such

::
as

:::::::::
smoothing

::
to

:::::
occur

::
in

:::::::
parallel,

:::::
rather

::::
than

::::::::
requiring

:
a
:::::
single

:::::::::::::
pre-processing

:::
step

::::::
before

:
feature extraction.

::::::::
Secondly,

::
it

:::::
holds

:::
the

:::::::
promise

:::
of

:::::
being

:::::::::
developed

::::
and

:::::::::::
implemented

:::
for

::::::::
real-time

:::::::
feature

::::::::
extraction

::::::
during

::::::
critical

:::::
events

:::
like

:::::::::
hurricanes

:::
and

:::::::::
tornadoes.

::::::::::
Importantly,

:::
the

::::
code

:::
for

:::
this

:::::::::
framework

::
is

::::
fully

::::::::::
open-source

::::
and

::::::
written

::
in

::::::
Python

::
in

:::
an

:::::::::
easy-to-use

:::::::
package

:::
so

:::
that

:::::
even

:::::::::
individuals

::::
with

::::::::::::
beginner-level

::::::
Python

:::::
skills

:::
can

:::::::
readily

:::::::::
implement

::
the

:::::::::
algorithm

:::
(see

:
https://github.com/nbarjun/SCAFET/blob/master/scafet_demo.ipynb

:::
for

:
a
::::::
simple

:::::::
working

:::::::::
example).120

The novelty of SCAFET compared to pre-existing methods lies in the use of a comprehensive mathematical framework for

extracting different features
::::::
feature

:::::::
detection

::::
that

::::
does

::::
not

:::
use

:
a
:::::::::

posteriori
:::::::::
assumptions

::::
and

::
is based on the overall “shape”

of a climate variable field, rather than
:::::::
arbitrary

:
thresholding of that field

::
or

::::::::
derivative. The core methodology for the detection

4
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of any feature is the same and can be tuned using just two variables, one for the spatial scale and the other for the shape of

::
the

:
features one is looking for. For example, between the two variables

:
, one can tune the difference between a long filament-125

shaped atmospheric river and a shorter round-shaped cyclone. The algorithm is applicable
:::::
applies

:
to both rectilinear and

curvilinear grids and can also be extended to detect three-dimensional (3D) features. In a nutshell
::::
Even

::
in
::::

the
::::::
context

:::
of

:::::
recent

::::::::::::
advancements

::
in

::::::
feature

::::::::
extraction

:::::
such

::
as

:::::::
Tempest

::::::::
Extremes

::::
and

:::::
TECA, SCAFET is mathematically comprehensive,

computationally a
:::::::::::::
comprehensive,

:
efficient, and easily implementable ,

::::::::
framework

::::
that

::::
aims

::
to

:::::::
upgrade

:::
the

::::::
feature

:::::::::
extraction

::::::
process

::::
with

::
a

:::::
novel

::::::::::
shape-based

::::::::
approach

:::
that

:::::
does

:::
not

:::
rely

:::
on

:::::::
iterative

::::::::
posterior

:::::::::
conditions and could prove to be a robust130

method for detecting a diverse set of features under different mean climate states.
::::::
Further

:::::::::
discussion

:::
on

::
the

::::::::::
differences

:::::::
between

:::::::
SCAFET

::::
and

::::
other

::::::::
detection

:::::::::
algorithms

::::
can

::
be

:::::
found

::
in

:
Appendix A.

:

The paper is organized as follows, section 2 describes the basics
::::::::
introduces

:::
the

::::::::::::
fundamentals of SCAFET and how it is

implemented in a two-dimensional (2D) field. Section 3 provides three SCAFET use cases for the detection of
::::::
presents

:::::
three

::::::
specific

:::
use

:::::
cases

:::
of

::::::::
SCAFET,

::::::::::::
demonstrating

:::
its

::::::::::
capabilities

::
in

::::::::
detecting

:
various climate features and

:::::
across

:
different grid135

types. Extraction of 3D features
::::
using

:::
jet

::::::
steams

:::
as

::
an

::::::::
example

:
will be discussed in section 4. Though the application of

SCAFET is not limited to the features described here, this study showcases
::::::
focuses

:::
on

:
atmospheric rivers, cyclones, SST

fronts, and jet streams to
::
as

::::
these

:::::::::
examples cover a broad range of phenomenathrough which users could learn ,

:::::::::
providing

::::
users

::::
with

:::::::
insights

::
on

::::
how

:
to adapt SCAFET to their needs.

:::::::
specific

:::
use

::::
cases

::::
and

:::::::::::
requirements.

:

2 Description of Scalable Feature Extraction and Tracking140

SCAFET follows the same three processes as discussed by Hodges
::::::
adopts

:::
the

:::::
same

:::::::::
three-step

::::::::
approach

::
as

::::::::
outlined

:::
by

::::::::::::
Hodges (1994) -Segmentation , Filtering

::::::
(yellow

:::::
boxes

::
in Figure 1)

:
,
::::::::
Filtering

::::::
(orange

:::::
boxes

::
in

:
Figure 1

:
),
:
and Tracking (yellow

::::
green

:
boxes in Figure 1). Before starting the this process, SCAFET is initialized with

::::::::
However,

::::::
before

::::::::::
commencing

:::::
these

:::::
steps,

:::::::
SCAFET

:::::::
requires

:::::::::::
initialization

::::
with

:::::::
essential information describing the datasets and the type of

::::::
specific feature to be extracted

(
:
as

::::::::
indicated

:::
by blue boxes in Figure 1). Primary inputs includes the following.

:::
The

::::
key

:::::
inputs

:::
for

::::
this

::::::::::
initialization

:::::::
include145

::
the

:::::::::
following:

:

– A primary
:::::::
Primary

:
field (ϕp): This is a gridded dataset in which the feature to be extracted is most clearly visible.

:::::
target

::::::
feature

:
is
:::::
most

:::::
easily

:::::::::::::
distinguishable.

:::
For

::::::::
instance,

:::::::
cyclones

:::
are

::::::
readily

::::::::
identified

:::::
using

:::
the

:::
RV

::::
field,

::::
ARs

:::::::
emerge

::::
from

::::
IVT,

:::
and

::::::
SSTFs

:::
are

:::::::::::
distinguished

:::::
using

:::
the

::::
SST

::::::::
gradient. Optionally, one or more secondary fields can be used to

further constrain the detected features.150

– Grid Properties: Information on the primary field
:
’s
::::
grid

:
including grid cell area/volume, grid distance, and coastlines

are required for calculating derivatives of the basic field and identifying landfalling locations.

– Object properties
:::::::
Feature

:::::::::
Properties: The algorithm requires information on the feature properties

::::::::
properties

:::
of

:::
the

:::::
target

::::::
feature. This includes approximate

::::::::
estimated spatial scale, shape, eccentricity (for 2D features only), minimum

5



Inputs Segmentation Tracking Outputs

Grid Properties

• Grid distance, 
area, & volume

• Coastlines

Feature Properties
Parameters and values 

constraining shape, 
scale, location, etc.

Smoothing
Space-Scale Selection

𝜙! = 𝜙" 𝑥, 𝑦, … ×
1
2𝜋𝜎 𝑒

#(%!&'!&⋯ )/+,

𝜎 = 𝑓 𝑔𝑟𝑖𝑑, 𝐿

Removes variability for 
spatial scales much less 

than feature scale (L)

Shape Extraction
Local shape determined 

by SI at each point:

𝑆𝐼 =
2
𝜋
tan#-

𝑘+ + 𝑘-
𝑘+ − 𝑘-

where k1 and k2 are 
eigenvalues for Hessian 
of smoothed field (𝜙!)

Primary Field

Gridded data set (𝜙") 
where feature of interest 
is visible (eg. IVT for ARs)

Object Tracking
Point of interest 

(eg centroid, point of 
maximum intensity, 
leading edge, etc.) 

tracked through time.
Closest object within pre-

defined radius (𝑟) in 
subsequent time step 

(𝑡 = 𝑛 + 1) considered as 
same object in motion. 
Object’s tracking ends 

when no objects detected 
within 𝑟 at 𝑡 = 𝑛 + 1

Further Filtering
Ephemeral objects with 

tracks lasting shorter than 
the minimum duration are 

further filtered

Filtering

Secondary Field 
(optional input)

Feature Property 
Calculation

Area, Length, Statistics 
of Intensity (mean, 

max, min) calculated 
for each object

Second gridded data set 
used to further constrain 

and filter objects 
(eg. Precip for ARs)

Filtering
Extracted objects are 

filtered to remove 
small or weak objects

Output 1*
Object Mask

Labeled mask of 
detected objects 

returned on same grid 
as the input grid

Output 2*
Object Properties
Numbered list of 

objects corresponding 
to labeled mask, and 
the properties and 
statistics associated 

with each object

*NetCDF Output Files

Figure 1. The overall
:::::
Overall

:
schematic ,

:
of
::::::::

SCAFET workflow , and componentsof SCAFET. The inputs, processes/calculations, and

outputs of
:::::
Inputs

::
to the algorithm are shown

::::::
depicted

:
in blue,

::::
while

:::
the

::::::::
algorithm’s

::::::
outputs

:::
are

:::::
shown

::
in
::::

pink
::::::

boxes.
:::::::
Processes

::::::
related

:
to
:::

the
::::::::::
segmentation

::::
step

::
are

:::::::::
highlighted

::
in

:
yellow

::::
boxes, and pink

::::::
whereas

:::
the

:::::
orange

:
boxes respectively

:::::::
represent

:::
the

::::::
filtering

:::::::
processes.

The arrows in
::::::
tracking

:::
step

::
is

::::::
denoted

::
by

:::::
green

:::::
boxes.

::::::
Arrows

::
on

:
the periphery of the boxes represent

::::::
illustrate

:
the workflow

:::
flow of the

algorithm. Each section is explained
:::::::
elaborated

::::
upon

:
in detail in

::::
within

:::
the text.

length, minimum area, minimum volume (for 3D feature only), minimum duration, and maximum distance per time step.155

(see and for examples)

As the
:
In

:::
the

::::::::
SCAFET

:::::::
scheme, segmentation, filtering, and tracking are mutually independent in the SCAFET scheme, users

can replace any of them and still run
::::::::
developed

::::
and

:::::
coded

::
as

:::::::
separate

:::::::
Python

:::::::
libraries.

::::
This

::::::
design

::::::
allows

::::
users

:::
to

::::::::
substitute

:::
any

::
of

:::::
these

::::::::::
components

:::::
with

::::
their

::::
own

:::::::
methods

:::::
while

::::
still

:::::
being

::::
able

::
to
:::::::

execute
:
the algorithm. After implementing

::::
Once

all three steps , two outputs are obtained: one describing
::::
have

::::
been

::::::::
executed,

::::
the

::::::::
algorithm

:::::
yields

::::
two

:::::::
outputs:

:::
one

::::::::
provides160

:::::::::
information

:::::
about

:
the properties of the detected objects,

:
and the other containing the labelled mask of

:::::::
produces

:
a
:::::::
labelled

:::::
mask

::::::::::
highlighting the feature of interest in

::
on the input grid (pink boxes in Figure 1).
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2.1 Segmentation

The core operation behind the extraction of features is to classify points in
::
for

:::
the

::::::
feature

::::::::
extraction

:::::::
involves

::::::::::
categorizing

::::::
points

:::::
within

:
a scalar field into one of five shapesusing the two principal curvature measurements derived as

:
.
::::
This

::::::::::::
categorization165

:
is
::::::::

achieved
:::::
using

::::::::
curvature

::::::::::::
measurements

::::::::
obtained

::::
from

::::
the eigenvalues of the Hessian of the basic field. The five chosen

:::::
These

:::
five

::::::::
selected shapes (see Figure 2) are an abridged version of the shapes described in previous studies (Koenderink

and van Doorn, 1992). Depending on the
::::::
specific feature of interest, one or more shapes are extracted from the primary field.

Segmentation
:::
The

:::::::::::
segmentation

:::::::
process starts with scale-space selection of the field to remove smaller scales of variability

that are background noise compared to the feature of interest. Next, the
:::::
Lastly,

:::
the

:::::::::
algorithm

::::::::
calculates

::
SI

::
to

:::::::
estimate

:::
the

:
local170

geometric shape is calculated
::
at

::::
each

:::::
point.

2.1.1 Scale-space Selection

Scale-space selection is a very common tool used in image and
:::::
widely

::::
used

::::::::
technique

::
in

::::::
image

:::::::::
processing, signal processing, as

well as
:::
and computer vision (Lindeberg, 2014). In this current work, the

:::
our

::::::
current

:::::
study, scale-space selection is limited to the

application of a gaussian
::::::
involves

::::::::
applying

:
a
::::::::
Gaussian

:
smoothing kernel to suppress variability less than the smooth

::::::
smaller175

:::
than

::::
the

::::::
chosen

:::::::::
smoothing

:
scale (σ) . Scale-space selection is mathematically implemented as a convolution of

:::
(see

:
https:

//unidata.github.io/MetPy/latest/api/generated/metpy.calc.smooth_gaussian.html
:::
for

:::::::::::::
implementation

::
of

::::::::
Gaussian

::::::::::
smoothing).

:::::::::::::
Mathematically,

::::::::::
scale-space

::::::::
selection

::
is

:::::::::
performed

::
by

::::::::::
convolving

:
the primary field (ϕp) with a gaussian functiongiven as,

:::::::
Gaussian

::::::::
function,

::::::::
expressed

:::
as

:::::::
follows:

ϕs(x,y,
::::

. . .) = ϕp(x,y, .. . . .) ∗
1

2πσ
e−(x2+y2)/2σ2−(x2+y2+...)/2σ2

:::::::::::::
(1)180

In the context of the meso-synoptic scale processes explored
:::::::
examined

:
in this study, scale-space selection will filter

:::::
filters

out smaller micro-scale features to isolate features like cyclonic vortexes or atmospheric rivers. However
:::::::
Notably, this function

can be adjusted to the spatial scale of interest and could even theoretically
:::
also be used to filter out synoptic scale

::::::::::::
synoptic-scale

features in isolating micro-meso scale
:::::
micro-

:::
and

::::::::::
meso-scale processes. In climate datasets, the grids are not always uniformly

spaced
::::
grid

:::::::
spacing

::
is

:::
not

::::::
always

::::::::
uniform. To account for that, we adapt the above equation to be “grid-aware”. This is185

implemented by calculating
:::
The

::::
input

:::
for

:::
the

:::::::::
smoothing

:::::
scale

::
is

:::::::
provided

::
in

::::::::::
kilometers,

:::
and

:::::
based

:::
on

:::
this

:::::
input,

:::
we

::::::::
calculate

the value of σ along each
::::
while

::::::::::
considering

:::
the

::::
grid

::::
size.

:::::::
Notably,

:::
the

:::::
value

::
of

::
σ

:::::::
remains

:::::::
constant

:::::
when

::::::::
smoothing

::
is
:::::::
applied

::::
along

:::::
each

::::::::
longitude,

:::
but

::
it
::::::
varies

:::::
along

::::
each circle of latitude. In

:::
For future studies, one could experiment with

:::::::::
researchers

:::
may

:::::::
explore other, more sophisticated

:::::::
advanced

:
scale-space selection methods

::
to

::::::
further

:::::
refine

::::
their

:::::::
analyses.

2.1.2 Local Shape Extraction190

The local geometric shape of the field, ϕs is calculated as a function of the eigenvalues (k1 and k2) of the Hessian of the

magnitude of the field (∥ϕs∥:::
|ϕs|), where the Hessian is given by,

7

https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.smooth_gaussian.html
https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.smooth_gaussian.html
https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.smooth_gaussian.html


H
(
∥|ϕs∥|

)
=


∂2|ϕs|
∂x2

∂2|ϕs|
∂x∂y

∂2|ϕs|
∂y∂x
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0.0
0.5

1.0Y
0.0 0.5 1.0

Ruts
( 0.625 SI < 0.375)

X

0.0
0.5

1.0Y
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Saddle Points
( 0.375 SI < 0.375)

X
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1.0Y
0.0 0.5 1.0

Ridges
(0.375 SI < 0.625)

X

0.0
0.5

1.0Y
0.0 0.5 1.0

Caps/Domes
(0.625 < SI 1)

Figure 2. The abridged version of the
:::::::
Selected shapes used in this study and the values of the shape index associated with each of them.

The X and Y axis are a set of general axis while Z(X,Y ) = sin(2X)+ cos(2Y )
::::::::::::::::::::::::
Z(X,Y ) = sin(2X)+ cos(2Y ). Regions within Z(X,Y )

satisfying conditions for different shapes are isolated to show the geometry associated with them.

From
::
In

:::
the

:::::::
context

::
of

:
simple differential geometry, we know that if k2 ≤ k1 < 0,

::
can

:::::::::
determine

:::::::
whether

::
a
:::::
point

::
is

::
a

::::
local

:::::::::
maximum

::
or

::
a
::::
local

:::::::::
minimum

:::::
based

:::
on

:::
the

::::::::::
eigenvalues

:::
k1 :::

and
:::
k2.

:::::::::::
Specifically,

::
if

::::::::::
k2 ≤ k1 < 0

::::
then

:
the point under195

consideration is a local maximum, whereas if k1 ≥ k2 > 0, the point is a local minimum. The applicability of such a criterion

for feature extraction is limited
:::::::
criterion

::
is

::::::::
primarily

:::::::::
applicable to nodal features like

::::
such

::
as

:
tropical cyclones or monsoon

depressions. To induce continuity in the shape extraction
::::::
expand

:::
our

::::::
ability

::
to

:::::::
identify

:
a
:::::
range

::
of

:::::::
features, we use shape index

(SI) (Koenderink and van Doorn, 1992), a quantitative measure of the local shape of the field defined as,

SI(k1,k2)
::::::

=
2

π
tantan

::

−1

k2 + k2
k2 − k1

k2 + k1
k2 − k1
::::::

 (3)200

Where k1 and k2 are the two eigenvalues, satisfying k1 ≥ k2, for the Hessian matrix.
:
It
::

is
:::::::::
important

::
to

::::::
clarify

:::
that

:::
in

:::
the

::::::
original

:::::
work

:::
by

::::::::::::::::::::::::::::
(Koenderink and van Doorn, 1992)

:
,
:::
the

:::::::
principal

::::::::::
curvatures,

:::
not

:::
the

::::::::::
eigenvalues

::
of

:::
the

:::::
field,

:::
are

:::::::
utilized

::
to

:::::::
calculate

:::
the

:::
SI.

::::::::
However,

:::
the

::::::::
disparity

:::::::
between

:::
SI

::::::::
calculated

:::::
using

::::::::
principal

:::::::::
curvatures

:::
and

:::
SI

::::::
derived

:::::
from

::::::::::
eigenvalues

::
is

::::::::::
exceedingly

:::::::
minimal

::
in

::::::
climate

::::
data

::::::::
analysis.

:
The SI is used to classify

::::::::
categorize the primary field into distinct shapes (see

Figure 2). The values of the SI selected are set depending on the
::::::
choice

::
of

::
SI

::::::
values

::
is

:::::::::
contingent

:::::
upon

:::
the

::::::
specific

:
type of205

feature to be extracted. For instance,
:::::::
example,

:::
we

:::::
select

:
caps and domes are selected to extract

::::
when

:::::::::
extracting features such as

atmospheric depressions or cyclones. Ridges, ,
::::::::
whereas

:::::
ridges,

:
caps, and domes are selected to extract

:::::
chosen

:::::
when

::::::::
targeting

::::::
features

::::
like ARs and fronts.
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Figure 3. Sensitivity of
::
the

:
shape index

::
(SI)

:
to eigenvalues k1 and k2. The X and Y axis

:::
axes

:
represent values of the two eigenvalues used for

calculating
:::
the shape index while the color indicates the value of

::
the shape index.

:::::
Shapes

:::::::::::
corresponding

::
to

::
SI

::::::
regimes

::
are

:::::::
labelled.

::::::
Shapes

::::::::::
corresponding

::
to

::
SI

::::::
regimes

:::
are

:::::::
labelled.

SI is designed to be a bounded value (range -1 to 1) independent of the magnitude of the field (Figure 3). In simple terms, SI

gives a continuous
:::::::
provides

::
a
:::::::::
continuous

::::
and quantitative measurement of

:::
the geometric shape of the field with respect to its210

immediate background field. This might be
::::::
concept

::
is similar to how the trained eye of a climate scientistdetects features from

color /
::
’s

::::::
trained

:::
eye

::::::::
identifies

:::::::
features

:::::
based

::
on

::::::::::
differences

::
in

:::::
color

::
or value contrast, though SI is arguably a more objective

:::
and

::::::
precise

:
measure of geometric shape. These characteristics make it more suitable

::
SI

::::::::::
particularly

:::::::::
well-suited

:
for feature

extraction from datasets with varying mean statescompared
:
,
::
in

:::::::
contrast to traditional physical threshold-based methods. In

addition to the two eigenvalues, the shape extraction provides us with corresponding eigenvectors. The eigenvector for k2 ::
k1215

points perpendicular to the local ridge direction while that of k1 ::
k2:is parallel to it. This allows us to set further constrains

on the local shape extraction if
::::::
impose

::::::
further

::::::::::
constraints,

::::
such

::
as

:::
the

:::::::::
coherence

::
of

::::::::
transport

::
or

::::
flow

::::
with

::::::
respect

::
to

:::
the

:::::
local

::::
ridge

:::::
when

:
ϕs is a vector field, as .

:::::
This

::::::::
capability

::
is

::::
aptly

:
demonstrated in the detection of ARs

::::::
context

::
of

:::
AR

::::::::
detection,

:::
as

::::::::
discussed in subsection 3.1.

2.2 Filtering220

Once the right shapes
:::::
target

:::::::
features

:
are extracted, properties like area, location, mean, minimum, and maximum values of

different properties are calculated for each of the objects. A series of filtering is carried out to remove objects which
:::
that

:
do

not satisfy certain conditions regarding (a) grid properties like area, length, region masks, etc. (b) primary field properties like

magnitude and direction, and (c) constraints from
:::
the secondary field(s). The

:::::::
primary aim of the filtering process is mainly to

remove smallor weakobjects. Since filtering is applied to the extracted objects rather than an entire field, computational cost is225

decreased relative to other methods.
:
,
:::::
weak,

::
or

:::::::::
ephemeral

:::::::
objects.

2.3 Tracking

The extracted properties of
::::::::
properties

::::::::
extracted

:::
for

:
each object include positional information for the center, maximum, and

minimum values. To track
:::
key

:::::::::
positional

::::::
details,

::::
such

:::
as

::
its

::::::::
centroid,

::::
and

:::::::::
endpoints,

::
as

::::
well

::
as
::::

the
::::::::
locations

::
of

:::::::::
maximum

9



:::
and

::::::::
minimum

::::::::
intensity

::
of

:::::
input

::::
field

::::::
within

::::
each

::::::
object.

:::
To

::::::
follow objects through time, one of the pieces of the positional230

information is used
::::
these

::::::::
positional

::::::::
attributes

::
is

::::::
tracked. In the current study, a simple radius is defined and

::::::
present

:::::
study,

:::
we

::::::
employ

:
a
:::::::::::::
straightforward

:::::::
tracking

:::::::
method.

:::
For

::::
each

::::::
object

::
at

::::
time

:::
step

::
n,

:::
we

:::::::
identify the closest object within the given radius

to each object at time n is clustered and identified from time n+1 as
:
to

::
it

::
at

::::
time

:::::
n+1.

::
If
::::
this

::::::::
identified

:::::
object

::
is

:::::
closer

::::
than

::
a

::::::::
predefined

::::::
radius

::
r,

::
we

::::::::
consider

:
it
::
to

:::
be the same object in motion. While this simple tracking method may not translate to

:::
The

:::::
radius

:
r
::
is

::::::
defined

:::
in

::::::::
kilometers

:::::
based

:::
on

:::
the

::::::::
maximum

:::::::::
translation

:::::
speed

:::
of

::
the

::::::
object

:::
and

:::
the

::::::::
temporal

::::::::
frequency

::
of

:::
the

:::::
input235

::::
data.

::
At

::::
this

:::::
stage,

::
it

::
is

:::::::
possible

::
to

::::
filter

:::
out

::::::::::
short-lived

::::::
features

:::
as

::::::
needed.

::::::
While

:::
this

:::::::::::::
uncomplicated

:::::::
tracking

::::::::
approach

::::
may

:::
not

::
be

:::::::
suitable

:::
for micro-scale processes, it could be modified with more

:::
can

:::
be

::::::
adapted

:::
to

:::::::::
incorporate

::::::
greater

:
complexity if

necessary.

3 Application to 2D Features

In this section, we exemplify SCAFET
::::::::
showcase

::::
how

::::::::
SCAFET

::
is

::::::::
employed to detect cyclonic vortices, ARs, and SSTFs from240

various climate datasets. While the highlighted examples demonstrate SCAFET ’s broader capabilities
:::::
These

::::::::
examples

:::::
serve

::
to

:::::::
illustrate

:::
the

::::::::
versatility

:::
of

::::::::
SCAFET as applied to diverse features and grid types,

:::::::
different

:::::
types

::
of

:::::::
features

::::
and

:::::
grids,

::::::
though

all the examples go through
:
in

::::
this

:::::
study

::::::
follow the same general process shown in Figure 1. Each subsection has a table

of parameters detailing the properties of the desired feature. The properties include
::
the

::::::::
feature’s typical spatial scalesof the

feature, shape index (SI)
::::::
regime, minimum length, minimum area, object eccentricity, and minimum duration of the track. The245

::
its

:::::
track.

:::
To

::::::::
determine

:::
the

:
quantitative values for the propertiesare obtained from a consensus of previous studiesreferenced

::::
these

:::::::::
properties,

:::
we

::::
refer

::
to

:
a
:::::::::
consensus

::::::
among

:::::::
previous

::::::
studies,

::::::
which

::
are

:::::
cited within each section. Apart from the

:
A

:::::::
detailed

::::::::::
examination

::
of

:::
the

:::::::::
sensitivity

::
of

:::::
these

:::::::::
parameters

::
in

:::::::
relation

::
to

:::
the

:::::::
detected

::::::::
features,

:::::
using

:::
AR

::::::::
detection

::
as

:::
an

:::::::
example,

::::
can

::
be

:::::
found

::
in
:::::::::::::

Supplementary
:::::::
Section

::
1.

::
In

::::::::
addition

::
to

:::
the results discussed in the sections below, videos for each feature are

also attached in the supplementary section. As the aim
::::::::
following

:::::::
sections,

:::::::::::::
supplementary

:::::
videos

:::
are

::::
also

::::::::
included

::
for

:::::
each

::
of250

::
the

::::::::
features.

:::
The

:::::::
primary

::::::::
objective

:
of this work is to demonstrate the ability of SCAFETto detect various features, the results

for long term climatology for
:::::::::
SCAFET’s

::::::::
capability

::
to

::::::
detect

:
a
::::::
variety

:::
of

:::::::
features.

::::::::::::
Consequently,

:::
we

:::::::
present

::::::
results

:::
for

:::
the

::::::::
long-term

::::::::::
climatology

::
of

:
each of the featurespresented for

:
,
:::::::
enabling

:
a
:
comparison with other published detection algorithms.

3.1 Atmospheric Rivers

According to the American Meteorology Society’s glossary of meteorology, atmospheric rivers (ARs ) are “
::::
ARs

:::
are

::
“long,255

narrow, and transient corridors of strong horizontal water vapor transport that are typically associated with a low-level jet stream

ahead of the cold front of an extratropical cyclone” (Ralph et al., 2018). Much ”
:::::::::::::::::

(Ralph et al., 2018).
::
A

:::::::::
substantial

:::::::
portion of

the precipitation and water vapor transport in midlatitudes occur within AR structures (Guan and Waliser, 2015). They are also

responsible for over
:::::::::
midlatitude

:::::::
regions

::
is

::::::::::
concentrated

::::::
within

::::
ARs

:::::::::::::::::::::
(Guan and Waliser, 2015)

:
.
:::::
These

::::::::::
atmospheric

::::::::::
phenomena

:::
play

::
a
:::::::::
significant

:::
role

::
in

::::::::::
midlatitude

:::::::::
hydrology,

::::::::::
contributing

::
to

:::::
more

::::
than 50% of the extreme precipitation and wind events in260

the midlatitude region (Waliser and Guan, 2017; Nash et al., 2018). Detection and accurate projection of ARs are crucial for
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:::
The

::::::
ability

::
to

::::::::
accurately

::::::
detect,

:::::::
forecast,

:::
and

::::::
project

::::::
future

::::
ARs

:
is
::
of

::::::
utmost

::::::::::
importance

::
for

::::
both

:
extreme weather preparedness

as well as for water resource management in basins across the globe
:::::::::
worldwide.

The ambiguity in the AR detection schemes
::
AR

::::::::::
projections

:::
and

:::
AR

::::::::
detection

:::::
tools

::::::::
(ARDTs) stems from the

::::
lack

::
of

:
a
:::::
clear

quantitative definition of
::::
ARs

::
in strength, length, narrowness, and other

::::
such

:
parameters used in detection. In comparison with265

other criterion, choosing how to fix the
::::::
criteria,

:::
the

::::::
choice

::
of threshold for AR strength changes

:::
has

:
a
:::::::::
significant

:::::
effect

:::
on the

inferences drawn between the detection schemes . Most of the AR detection algorithms empirically derive this threshold from

dataset directly, making it sensitive to spatio-temporal and
:::::::::::::::::::::::::::::::::::::::::::::::
(Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al., 2023).

::::::
Many

::::::
ARDTs

:::::::::
determine

:::
this

::::::::
threshold

::::::::::
empirically

::::
from

:::
the

::::::
dataset

:::::
itself,

::::::
which

::::::
renders

::::
them

::::::::
sensitive

::
to

::::::::::::
spatiotemporal

:::::::::
variations

:::
and

:::::::
changes

::
in

:
mean-state variances

::::::::
conditions

:
(Shields et al., 2018). SCAFET defines ARs as long (length > 2000km)

::::
2000270

::::
km), narrow (eccentricity > 0.85

:::
0.75) regions of strong water vapor transport (SI > 0.375)and

:::::
0.375),

::::
and

:::::::::
significant precipita-

tion (minimum AR precipitation > 1mm/day
::::::::::
1mmday−1) (see Table 1 for complete details). This makes the comparison

:::
The

::::::::
sensitivity

::
of

:::::
these

::::::::::
parameters

::
in

:::
AR

::::::::
detection

::
to

:::
the

::::::::::::
characteristics

:::
of

:::::::
detected

::::
ARs

::
is

::::::::
discussed

::
in
:::::::::::::

Supplementary
:::::::
Section

::
1.

::::
This

:::::::
approach

:::::::
reduces

:::
the

:::::::::
sensitivity of AR characteristics between different mean states less sensitive to arbitrary strength

thresholds
:
,
::::::
making

::
it

:::::
easier

::
to

:::::::
compare

::::
ARs

::::::
across

:::::::
different

:::::
mean

::::
state

:::::::::
conditions.275

To demonstrate how ARs are detected using SCAFET , we used the daily mean
:::::::
illustrate

::::
how

::::::::
SCAFET

::::::::
identifies

:::::
ARs,

::
we

:::::::
utilized

:::::
daily

::::
mean

::::
data

:::::
from

:::
the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Version

5 (ERA5) data (Hersbach et al., 2020)
:
;
::::::::::::::::::
Hersbach et al. (2020)

:
)
:
for the period 2000 to 2019. The magnitude of

::
key

:::::
fields

:::
of

::::::
interest

:::::::
included

:::
the

:
daily mean integrated water vapor transport (IVT) is the basic

::
as

::
the

:::::::
primary

:
field and the daily mean total

precipitation is
:
as

:
the secondary variable. All the datasets used have

::::::::
employed

:::::
share

:
a spatial resolution of 0.25o×

:::

◦×0.25o
:

◦.280

The vector field, IVT is calculated as,

IV Tx=−1

g

300hPa∫
1000hPa

q.Udp (4)

IV Ty =−1

g

300hPa∫
1000hPa

q.Vdp (5)

∥|IV T∥|=
√
IV Tx2 + IV Ty2 (6)

To detect AR-like structures, SCAFET looks for shapes
:::::::
employs

:
a
::::::
search

:::
for

:::::::
specific

::::::
shapes,

:
such as ridges, caps, and285

domes (see Figure 2). Following
::
the

:::::::
process

:::::::
outlined

::
in
:

Figure 1, shape index (SI )
::
SI

:
is calculated after applying a grid

aware smoothing
::::::::
grid-aware

:::::::::
smoothing

:::::::::
technique

:
that suppresses variability smaller than 1000km

::::
1000

:::
km

:
(Figure 4(a)).

Once SI is calculated for ∥IV T∥
::::
|IVT| (Figure 4(b)), regions where SI > 0.375 is

:::::
0.375

:::
are

:
passed on to the next stage for

filtering. To maximally utilize the vector qualities of the primary field, we ensure that the local transport direction (arrows in

Figure 4(a)) and local ridge direction (arrows in Figure 4(b)) do not deviate by more than 45circ
:::
45◦. The local ridge direction290

is defined
::::::::
identified as the eigenvector corresponding to the larger eigenvalue (k1 ::::::

smallest
:::::::::
eigenvalue

:::
(k2). Filtering based on

the grid properties removes
:::::::::
candidates

:::
that

:::
are

:::
too

:
small (length < 2000km

::::
2000

:::
km and area < 1e12km2), and

:::::::::::
2× 106km2),
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::
or

:::
too

:
wide (eccentricity

::
≤

:::::
0.75).

:::
To

::::::::
eliminate

:::::::
AR-like

:::::::
objects

::::
with

::::
low

:::::::
strength

:::::::::::
(precipitation

:
< 0.75)candidates. The

:
1

::::::::::
mmday−1)

:::
we

::::::::
constrain

:::
our

::::::
results

:::::
with

:::
the

:
secondary field, total precipitationwithin each objectis used as to filter out

weak (precipitation < 1mm/day) AR-like structures. Precipitation is used to assess the strength of AR as it is the most295

socio-economically relevant . Following other AR detection methods, we have also imposed
:
,
:::::
within

::::
the

::::::
object’s

:::::
area.

::::
The

:::
use

::
of

:::::::::::
precipitation

::
as

:
a
:::::::
strength

::::::::
indicator

::
is

:::::::
relevant

:::::
given

::
its

:::::::::
significant

:::::::::::::
socio-economic

:::::::
impact.

::
In

::::
line

::::
with

::::
other

::::::::
ARDTs,

::
we

:::::::
impose a regional mask to get rid of

::::
filter

:::
out

:
AR-like structures along the equatorial belt. All the previously mentioned

::::
these

:
steps can be applied in parallel along the time axis, making it computationally fast. Each time step will identify

:::
and

::
at

::::
each

::::
time

::::
step AR-like structures similar

::
to those shown in Figure 4(c)

::
are

::::::::
identified. Once all ARs are identified, a simple300

:::::::
detected,

:::
the

:
tracking algorithm is implemented on

::::::
applied

::
to

:
the daily data to filter out ARs that last less than two days.

Tracking can be implemented based on one of the location parameters, i.e., the center, maximum, or minimum points of each

detected object. For ARs, we use the
:::
one

::::
day.

::::::::
Tracking

::
is

::::::::
performed

::::::
based

::
on

:::
the

:
centroid of each detected objectto track it.

Closest
:::::::
identified

::::::
object.

::::
The

::::::
closest

:
objects within a distance of 4000km between two

::::
4000

::::
km

:::::::
between

::::
two

::::::::::
consecutive

time steps are considered the same object progressing in
:::::::
evolving

::::
over time (Figure 4(d)). The annual mean frequency of the305

detected AR objects and their seasonality is
::
are

:
shown in Figure 4(e), (f), and (g). The spatial distribution can be found to be

within the uncertainty induced by other detection algorithms from the Atmospheric River Tracking Method Intercomparison

Project (ARTMIP)catalog (Lora et al., 2020)
::::::::
SCAFET’s

:::::::::::
identification

:::
of

::::
ARs

:
is
:::::::::
consistent

::::
with

::::
other

::::::::
ARDTs,

::::
both

::
in

:::::
terms

::
of

:::::::
detecting

::::::
single

:::::
events

::::
and

::::::::::
determining

::::
their

:::::
mean

:::::::::::
climatology,

::
as

::::::
further

:::::::
detailed

::
in

:::
the

:::::::::::::
Supplementary

::::::
Section

::
2
::::
(see

::::
also

::::::::::::::
Lora et al. (2020)

:
).310

3.2 Tropical and Extratropical Cyclones

Cyclones are defined in the literature as large (
:
In

:::
the

::::::::
scientific

:::::::::
literature,

:::::::
cyclones

:::
are

::::::::
generally

:::::::::
described

::
as

:::::
large

:::::::
weather

::::::
systems

:::::::
ranging

::::
from

:
500–4000 km ) regions of

::
in

::::
size,

:::::::::::
characterized

:::
by strong cyclonic circulationwith ,

:
low pressure at the

centerand extremely
:::
their

::::::
center,

::::
and

:::::::::::
exceptionally high winds around it (Emanuel, 2003; Schultz et al., 2019; Encyclopaedia,

2022). The dynamics and characteristic of cyclones will be slightly different based on the genesis location , translations speed315

etc
::::::::::::
characteristics

::
of

:::::::
cyclones

::::
can

::::
vary

::::::::
depending

:::
on

::::::
factors

::::
such

::
as

::::
their

::::::
genesis

:::::::
location

::::
and

:::::::::
translation

:::::
speeds. For instance,

cyclones formed
:::::::
generated

:
near the equator(tropical cyclones) are in general smaller in area compared to that of the cyclones

:
,

:::::::::
commonly

::::::
referred

::
to
::
as
:::::::
tropical

::::::::
cyclones,

:::
are

:::::::
typically

:::::::
smaller

::
in

:::
size

:::::::::
compared

::
to

::::
those

:
formed in midlatitudes(extratropical

cyclones). Independent of this, they produce extremely high rainfall, and winds along the track and
:
,
::::::
known

::
as

:::::::::::
extratropical

:::::::
cyclones.

::::::::::
Regardless

::
of

::::
their

:::::
origin,

::::::::
cyclones

::::
have

:::
the

:::::::
potential

::
to

:::::::
unleash

::::::
intense

::::::
rainfall,

::::::::
powerful

:::::
winds

:::::
along

::::
their

::::
path,

::::
and320

:::
can

::::
lead

::
to flooding, landslides, and severe damage to infrastructure along the coastlines where it makes

:::::
coastal

::::::::::::
infrastructure

::::
when

::::
they

:::::
make

:
landfall (Knutson et al., 2010; Mendelsohn et al., 2012; Ranson et al., 2014). With the rise in sea level and

enhanced intensity of cyclones
:::::::::
Moreover,

:::
the

::::::
impact

::
of

::::::::
cyclones

::
is

::::::::
becoming

::
a

::::::
subject

::
of

::::::::::
heightened

:::::
public

:::::::
concern

::::
due

::
to

:::::
rising

:::
sea

:::::
levels

:::
and

:::
the

::::::::
potential

:::
for

::::::::
increased

:::::::
cyclone

:::::::
intensity

:
in response to warming,

:::::
global

::::::::
warming.

:::::
Thus,

:::
the identifi-

cation and future projection of cyclones is gaining a lot of attention from
:::
are

:
a
::::::
subject

::
of
::::::::
growing

:::::::
attention

:::
and

::::::::::
importance

:::
for325

the climate community (Woodruff et al., 2013).
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Figure 4. Major steps in the detection
::
and

:::::::
tracking of Atmospheric Rivers. (a) is the smoothed

:::::::
Smoothed

:
primary field , which is the

::
of

vertically integrated water vapor transport (IVT). The smoothing
::::::::
Smoothing removes variability smaller than 1000 km from the IVT. The

arrows in (a) represent the direction of unsmoothed IVT. (b) shows the magnitude
::::::::
Magnitude (shading) of

:::
the shape index (SI) and direction

of the local ridge (arrows)
:::::::
direction calculated from (a)

:::::::
smoothed

::::
IVT. In the next step ridges, caps, and domes are extracted from (b

:
c) and

weak and small
::::::
Labeled AR candidates are filtered out. The AR objects after this filtering is shown in (c)

::
out

:::::
weak,

:::::
small,

:::
and

::::::::
ephemeral

::::::::
candidates. Finally all the objects in (c) are tracked as shown in (d) to obtain tracks as well as other properties like

::::::
Example

::
of

::::::
tracked

:::
AR

:::::::
centroids

:::
and

::::::
marked

::::
time,

::::
inlay

:::::
shows

::::::
object’s

:::
area

:
mean IVT and precipitation

:::
over

::::
time. Objects that does not last more than one day is

removed in this step.
::
(e) AR annual mean frequency for the period 2000 to 2019 is shown in

::::
2019.

:
(e

::
f-g) , the

::
AR

::::::::
Frequency

:
anomaly for

November
:::::
relative

:
to March

::
the

::::::
annual

::::
mean

:::
for (f)

:::::::
November

::
to
:::::
March, and May to September (g) relative

:::
May

:
to the annual mean are

also plotted
::::::::
September.
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No. Property Value Unit

Se
gm

en
ta

tio
n 1 Smooth Scale 2000 km

::
km

:

2 Angle Coherence 45 degrees
::::::
degrees

3 Selected Shape (0.375,1.0] -
Fi

lte
ri

ng

1 Minimum Length 2000 km
::
km

:

2 Minimum Area 2×105
::::
×106 km2

:::
km2

:

3 Eccentricity [0.75, 1.0] -

4 Minimum Precipitation 1 mm/day
:::::::::
mmday−1

5 Latitude Mask (-20, 20) degrees
::::::
degrees

Tr
ac

ki
ng 1 Minimum Duration 24 hours

::::
hours

:

2 Maximum Distance per timestep
:::::::
Timestep 1000

::::
4000 km

::
km

:

Table 1. The table shows
::::::
presents the values of all the different

::
for

::::::
various parameters used in the detection of ARs

::::
using

:::::::
SCAFET. Rows

:::
The

::::
rows for each step−,

:::::::
including

:
segmentation, filtering, and tracking − are grouped together and labeled

::::::
labelled.

Once again, discrepancies between the
:::::
among

:
different detection algorithms can be traced back different

:::::::
attributed

::
to

:::::::
varying

choices of physical thresholds or functions on
::::::::
constraints

::::::
related

:::
to

::::::
factors

::::
such

::
as

:
size, wind speeds, vorticity

:
,
:
or surface

pressure anomaly. Even though most studies converge on the conclusions for
:::::::::
anomalies.

:::::
While

:::::
most

::::::
studies

:::::::
generally

:::::
agree

:::
on

::
the

:
present and future characteristics of cyclones, ironing out the

:::::::
resolving

:
details such as the changes in genesis rate , duration330

are hindered
:::
and

::::::::
durations

::
is

::::::::::
complicated

:
by the uncertainties in the detection methods (Ulbrich et al., 2009; Neu et al., 2013;

Horn et al., 2014; Walsh et al., 2015). In this study, SCAFET identifies cyclones as regions of strong local maxima of cyclonic

circulation (SI > 0.625) with
:::::
0.625)

::::
and

:
maximum wind speeds greater than 10m/s

::::::::
exceeding

:::
10

::::::
ms−1. This definition is

able to identify strong cyclonic vorticities all over the globe including,
::::::
enables

:::
the

::::::::
detection

:::
of

::::::
robust

:::::::
cyclonic

:::::::::
vorticities

:::::::::
worldwide,

::::::::
including but not limited to , tropical and extratropical cyclones. The basic

::::::
primary

:
field used for cyclone detection335

is the absolute value of cyclonic relative vorticity (ζ) defined as,

ζ =∇×U (7)
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 1500 km
:::
km

2 Selected Shape (0.625,1.0] -

Fi
lte

ri
ng

1 Minimum Length 20 km
:::
km

2 Minimum Area 104
:

5 km2
:::
km2

:

3 Eccentricity [0.0,1.0] -

4 Minimum Vorticity 10−6 s−1
:::
s−1

5 Minimum Max. Windspeed 10 ms−1
::::
ms−1

:

Tr
ac

ki
ng

1 Minimum Duration 48 hours
::::
hours

:

2 Maximum Distance per timestep
:::::::
Timestep 500 km

:::
km

3 Net Minimum Displacement 1000 km
:::
km

Table 2. Same as in table Table 1, but for
::::::::
parameters

:::
and

:::::
values

::::::
relevant

::
to

:
detecting tropical and extratropical cyclones

:
.

Where U is the 6 hourly
:::::::
6-hourly

:
wind speeds at 10 meters from surface obtained from

:::::
above

:::
the

:::::::
surface

::::::::
obtained

:::::::::::
fro1mmdaym

:::
the ERA5 reanalysis

::::::
dataset

:
with a spatial resolution of 0.25◦ × 0.25circ

:::::::::::
0.25◦ × 0.25◦

:
(Hersbach et al., 2020).

The magnitude of wind speed at 10 meters is used
::::::
utilized

:
as the secondary field . Other cyclone related variables like the

::
to340

:::::::
constrain

:::::::::
detection.

:::::::::
Additional

::::::::::::
cyclone-related

::::::::
variables

::::
such

::
as

:
surface pressure anomaly , and potential temperature can also

be used as secondary field to identify/classify
::::
serve

::
as

:::::::::
secondary

:::::
fields

::
for

:::
the

:::::::::::
identification

::::
and

:::::::::::
classification

::
of cyclones.

In contrast with ARs, cyclones are detected using
::
the

::::::::
detection

::
of

::::::::
cyclones

:::::
relies

:::
on a scalar field, and

:::::::::
specifically

:
in this

case
:::
the cyclonic relative vorticity . A

::
|ζ|.

:::::
First,

:::
the

::::
data

:::
is

:::::::::::
pre-processed

:::::
with

:
grid-aware gaussian smoothing is applied

:::::::
Gaussian

:::::::::
smoothing

:
to suppress spatial variability smaller than 750 km (Figure 5(a)). The smoothing scale was chosen so345

that we can
:::::
chosen

:::::::::
smoothing

:::::
scale

::::::
allows

::
us

::
to

:
identify both tropical and extratropical cyclones. Caps and dome shapes (SI

> 0.625) from the smoothed relative vorticity is identified
:::::
0.625)

:::
are

::::
then

::::::::
identified

::::::
within

:::
the

:::::::::
smoothed

::
|ζ|

:::::
field as poten-

tial cyclones (Figure 5(b)). The next step is to filter out objects with
:::::::::::
Subsequently,

::::::
objects

:::::
with

::
an

:
area less than 104km2,

and
::::::
105km2

::::
and

:
a
:
diameter less than 20km. Once the aforementioned spatial characteristics are fulfilled

::
20

:::
km

:::
are

:::::::
filtered

:::
out.

:::::
Once

:::::
these

::::::
spatial

::::::
criteria

:::
are

::::
met, we can further filter out

:::::
refine

:::
our

::::::::
selection

::
by

:::::::::
excluding weak cyclonic vorticities350

(relative vorticity < 10−6s−1), and
::::::::::::
|ζ|< 10−6s−1

:::
and

::::
slow

:
maximum wind speed < 10ms−1) giving us all the strong cyclonic
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systems identified
::
10

::::::
ms−1,

::::::::
resulting

::
in

:::
the

:::::::::::
identification

::
of

::::::
robust

:::::::
cyclonic

:::::::
systems for a given time step (Figure 5(c)). All

the processes described
::::::
Similar

::
to

:::
the

::::
AR

::::::::
example,

::
all

:::
the

:::::::::
described

::::
steps

:
can be parallelized along the time dimensionas

in the AR example. Once all
:
.
:::::
Once potential cyclones are identified, they are tracked like

::::
using

::
a
:::::::::::
methodology

::::::
similar

:::
to

::
the

:
AR tracking algorithm. However,

:
in

::::
this

::::
case,

:
the radius for search is limited to 1000km as

::::
1000

:::
km

:::::
since we are using355

6 hourly dataand translations
::::::
6-hourly

:::::
data,

::::
and

:::
the

:::::::::
translation

:
speeds of cyclones are much lower than 150km/h

::::::
notably

:::::
slower

::::
than

::::
150

:::::::
kmh−1. A minimum duration of 48 hours and a minimum total displacement of 500km

:::
500

:::
km

:
is applied

to isolate propagating
:::::::::
distinguish

::::::
moving

:
cyclonic circulations from stationary ones. An example of a tracked cyclone, com-

monly known as cyclone Dorian
:::::::
“Dorian”

:
(Avila et al., 2020) is compared with the observed track from IBTrACS dataset

(Knapp et al., 2010, 2018)
:::::::::::::::::::::
(Knapp et al., 2010, 2018)

::::::
dataset

:
(Figure 5(d)). In comparison to the observed track, SCAFET’s360

track is much longer as we use a more relaxed condition on ζ and winds speedthresholds. Another reason for the longer

track is that
:::
due

::
to

:::
the

:::::
more

:::::::
relaxed

:::::::::
conditions

::::::
applied

:::
to

:::::::
cyclonic

::::::::
vorticity

:::
and

:::::
wind

::::::
speed.

:::::::::::
Additionally, SCAFET does

not distinguish
::::::::::
differentiate between tropical and extratropical cyclonesand would end up following the vorticity while it

transitions from tropical to midlatitude storms. The ,
::::::

which
:::
can

::::::
result

::
in

:::::::
tracking

:::
the

::::::
object

:::::::::
throughout

:::
its

::::::::
transition

:::::
from

:
a
:::::::
tropical

::::::
cyclone

:::
to

:
a
::::::::::
midlatitude

::::::
storm.

::::::
Despite

::::
this

:::::::::
difference,

:::
the

:
long-term averages for cyclone frequency and its sea-365

sonal variability
:::::::::
calculated

::::
using

::::::::
SCAFET

:
are comparable with other studies (e.g., Ullrich and Zarzycki, 2017). Unlike other

::::
What

::::
sets

::::::::
SCAFET

:::::
apart

::::
from

:::::
other

:::::::::::
conventional

:
cyclone detection algorithms , SCAFET does not identify cyclones as a

point object
:
is

::
its

::::::::
approach

::
to

::::::::::
identifying

:::::::
cyclones

:::
not

::
as
:::::

point
::::::
objects, but as a surface encompassing

::::::::::::
encompassing

:::::::
surfaces

::::::
around the point of maximum ζ. This will help us study the nuanced properties of cyclones like the

:::
|ζ|.

::::
This

:::::::
enables

:
a
:::::
more

::::::::::::
comprehensive

:::::::
analysis

:::
of

::::::
cyclone

::::::::::
properties,

::::::::
including

:
maximum and minimum values of wind speed ,

:::
and

:
precipitation370

within the whole
::::
entire

:
cyclone structure.
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Figure 5. Major steps in the detection
::
and

:::::::
tracking

:
of cyclones. (a) Smoothed primary field , which in this case is the absolute value of

cyclonic relative vorticity (ζ
::
|ζ|). The smoothing removes variability smaller than 750 kms from ζ

::
|ζ|. (b) Magnitude of SI calculated from

(a). In
::
for the next step, caps, and domes are extracted from (b) and weak and small cyclone candidates are filtered out

::::::
primary

:::
field. Cyclonic

vorticities after this filtering are shown in (c)
::::::
Filtered

::::::
cyclonic

::::::
objects with the background color representing the unsmoothed values of ζ.

Finally, all the objects in (c) are tracked as shown in (d) to obtain tracks as well as other properties like wind speeds and vorticity. Track

obtained for cyclone "
:
“Dorian"

:
” from SCAFET is compared with that of the track from

::
the

:
IBTrACS dataset.

:
(d
:
e) . Objects that do not last

more than 48 hours are removed in this step. The annual
:::::
Annual mean frequency

::
of cyclone occurrence for the period 2000 to 2020 is shown

in
::::
2020. (e

::
f-g) , the anomalous

:::::::::
Anomalous cyclone frequencies

:::::
relative

::
to

::
the

::::::
annual

::::
mean for JJA (f) ,

:::
JJA and DJF (g) relative to the annual

mean are also plotted
:::
DJF.

3.3 Sea Surface Temperature Fronts

SST fronts are the confluence regions of
:::::
regions

::::::
where

:
different water masses

::::
come

::::::::
together. They are often manifested

as having
:::::::
typically

:::::::::::
characterized

:::
by

:
strong horizontal gradients in temperature, salinity, density, and other characteristics
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::::::::
properties

:
(Bowman, 1978; Legeckis, 1978; Fedorov, 1986; Yoder et al., 1994). Frontal

::::::
Unlike

:::
the

:::::
larger

:::::
meso

::
to

::::::::
synoptic375

::::
scale

:::::::
features

::::::::
discussed

::
in

:::
this

:::::
study,

::::::
frontal

:
structures are often observed in much smaller spatio-temporal scalesthan the other

features described in this study
::::::::::::
spatiotemporal

::::::
scales. Accurate identification of SSTFs are important as

:
is
::::::::
essential

:::::::
because

these features are often
::::::::
frequently

:
associated with strong upwelling , and high

:::
and

::::
high

:::::
levels

::
of

:
biogeochemical productivity

(Clayton et al., 2014, 2021; Nagai and Clayton, 2017). Identification of SSTFs also demonstrates
:::::::::::
Additionally,

:::
the

::::::::
detection

::
of

::::::
SSTFs

:::::
serves

::
as

:::
an

:::::::
example

::
of how SCAFET can be used to detect

::::::
applied

::
to
:::::::
identify

:
features in curvilinear grids.380

Most previous frontal detection algorithms use edge detection algorithms
:::::
Many

::::
prior

:::::
SSTF

::::::::
detection

:::::::::
algorithms

:::
rely

:::
on

::::
edge

:::::::
detection

:::::::::
techniques

:
and the gradient of sea surface temperature and/or height and to identify fronts (Canny, 1986; Castelao et al., 2006)

. We use
::
to

::::::
identify

:::::
these

::::::::
structures

:::::::::::::::::::::::::::::
(Canny, 1986; Castelao et al., 2006)

:
.
::
In

:::
our

::::::::
approach,

:::
we

::::::
utilize the magnitude of

::
the

:
daily

mean SST horizontal gradient as the primary field for the detection of
::::::::
detecting SST fronts. The SSTs were

::::
SST

::::
data

:
is
:

ob-

tained from a fully coupled, ultra-high-resolution (≊ 10km
:::::::
≊ 10 km) CESM v1.2.2 simulation of present day mean climate385

(Small et al., 2014; Chu et al., 2020)
:::::::::
present-day

:::::
mean

::::::
climate

::::::::::::::::::::::::::::::::::::::::::::::::::
(Small et al., 2014; Chu et al., 2020; Nellikkattil et al., 2023). The

data is fed into
::::::::
processed

:::
by SCAFET in the tripolar POP grid. To demonstrate

:::::::
illustrate

:
the detection process, the analysis is

confined to
::::::
focuses

:::
on the Kuroshio frontal and extension domain

:::::
region

:
for the last 10 years of the simulation.

Frontal structures ,
:::
The

:::::::::
extraction

::
of

::::::
frontal

::::::::
structures

:::::
using

:::
the

:::::::
selected

::::::
shapes

:::
of ridges, caps, and domes are extracted

very similarly
:
is
:::::::

similar
:
as in the detection of ARs. A

::::
Prior

::
to

:::::::::
extraction,

::
a
:
spatial smoothing of approximately 30km is390

appliedbefore extracting the frontal structures
::
30

:::
km

:
is
:::::::
applied. From the extracted SSTF candidates, objects with a mean SST

gradient lower than 10−4K/m is removed. So are circular
::::::::::
10−4Km−1

::
are

::::::::
removed.

:::::::
Circular

:
(eccentricity < 0.5

:::
0.5) and small

(area < 1000km2) objects . Unlike
:::::::::
1000 km2)

::::::
objects

:::
are

::::
also

::::::
filtered

::::
out.

:
It
::
is
:::::
worth

::::::
noting

::::
that,

::
in

:::::::
contrast

::
to

:
AR detection,

SSTFs
:::::
frontal

:::::::::
structures are not trackedas ocean fronts are stationary rather than transported into other regions. The detected

frontal frequency shows familiar
::::::
exhibits

:::::::
general patterns and seasonality as

::::::::
consistent

::::
with

:::::::
findings in previous studies (Xi395

et al., 2022).
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 30 km
::
km

2 Selected Shape (0.375, 1.0] -

Fi
lte

ri
ng

1 Minimum Length 500 km
::
km

2 Minimum Area 103
:::
103

:
km2

:::
km2

3 Eccentricity (0.5,1.0] -

4 Minimum SST Gradient 10−4 Km−1
:::::
Km−1

Table 3. Same as in table
::::
Table 1 but for

::::::::
parameters

:::
and

:::::
values

::::::
relevant

::
to detecting Sea Surface Temperature Fronts (SSTFs).

Figure 6. Major steps in the detection of sea surface temperature fronts (SSTFs). (a) Magnitude of shape index (SI )
::
as calculated from

the smoothed primary field , which is
::
of the horizontal gradient of sea surface temperature (∇SST). The smoothing

::::::::
Smoothing

:
removes

variability smaller than 15 km from ∇SST. In the next step, ridges, caps, and domes are extracted from (b) and weak and small
::::::
Filtered

SSTF candidates are filtered out. SSTFs after this filtering are shown
:::::
objects,

:
in

:::
units

::
of
::::::
Kelvin

:::
per

:::::::
kilometer

:
(b

::::::
Kkm−1)with the

:
,
:::::
where

background color representing the
::::::::
represents unsmoothed values of ∇SST. The annual

::
(c)

::::::
Annual

:
mean frequency

:
of

:
SSTF occurrence for

::::
across

::
a
::::::
10-year

:::::
period

::
in the 10 years of the present climate simulationis shown in .

:
(c

::
d-e) , the anomalous

:::::::::
Anomalous frontal frequencies

:::::
relative

::
to

:::
the

:::::
annual

::::
mean

:
for JJA (d) ,

:::
JJA and DJF (e) relative to the annual mean are also plotted

:::
DJF.
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4 Application to 3D Features

In this section , we show how to extend
:::
This

:::::::
section

::::::::
introduces

:::
the

::::::::
extension

:::
of SCAFET to detect features from

::::::
within three-

dimensional (3D) primary fields. The
::::::
process

:::
of scale-space selection is carried out by applying gaussian smoothing along

:::::::
involves

:::::::
applying

::::::::
Gaussian

:::::::::
smoothing

::::::::::::
independently

:::::
along

::::
each

::
of

:
the three dimensionsseparately. Also.

:::::::
Notably, a 3D basic400

field would yield
::::
field

:::::
yields

:
three eigenvalues (k1 ≥ k2 ≥ k3) rather than two. Here,

:::::
instead

::
of

:::
the

:::::
usual

::::
two.

::
In

::::
this

:::::::
context,

::
the

:
SI can be calculated by combining the eigenvalues in three different ways . The

::
by

:::::::::
combining

:::::
these

::::::::::
eigenvalues.

:::
For

:::
the

::::::::
extraction

:::
of

::
jet

:::::::
streams,

:::
the

:
SI calculated using k1 and k2 is used for the extraction of jet streams

:::
(the

::::
two

::::::
largest

::::::::::
eigenvalues)

::
is

::::
used

:
as it provides a more conservative estimate for the jet domain (see Supplementary Figure S1).

::::::
jet-like

:::::::
structure

::::
(see

::::::::
Appendix subsection A3

:::
and

::::::::::::
Supplementary

::::::
Figure

::::
S7).

:::
The

:::::::
decision

::
to

:::::::
exclude

:::
the

:::::::
smallest

:::::::::
eigenvalue,

:::::::
denoted405

::
as

:::
k3,

::
is

:::::
based

:::
on

::::::::
empirical

::::::::::::
observations.

::::::::
Empirical

::::::::
evidence

::::::::
suggests

:::
that

:::::
when

:::::::
dealing

::::
with

:::::::
regions

:::::::::
exhibiting

:::::::
positive

::::::
maxima

:::::::
(convex

:::::::::
curvature),

::::
both

::::::::::
SI(k1,k2) :::

and
:::::::::
SI(k1,k3):::::::::

effectively
::::::
capture

:::
the

::::::
shape.

::::::::::
Meanwhile,

:::::::::
SI(k2,k3):::

has
:
a
::::::
trivial

:::::::::
application

:::::
(refer

::
to Figure A4

::
).

:::::::::
Conversely,

:::
for

:::::::
concave

::::::
shapes,

::::
both

:::::::::
SI(k1,k3)::::

and
:::::::::
SI(k2,k3)::::::::

represent
::
the

::::::
shape,

:::::
while

:::
the

::::::::
conditions

:::
for

:::::::::
SI(k1,k2):::::::

become
::::::::
redundant

:::::
given

::::
that

::::
they

:::
are

:::::::
satisfied

::
by

:::::::::
SI(k1,k3)::::

and
:::::::::
SI(k2,k3).:

4.1 Jet Streams410

Independent of the dynamics
::
Jet

:::::::
streams,

:::::::::
regardless

:::
of

:::
the

:::::::::
underlying

:::::::::
dynamics,

:::
are

:::::::
narrow, jet streams are manifested as

narrow
:::::::::::::
high-wind-speed

:
regions in the upper atmosphere with relatively high

::::
faster

:
wind speeds compared to its

::::
their

:
sur-

roundings (Koch et al., 2006). Apart from the obvious direct
:::::
These

::
jet

:::::::
streams

:::::
have

:
a
:::::::::
significant

:
impact on aviation , the

location and characteristics of jet streams
:::
and

:
strongly influence surface weather conditions. For instance

:::::::
example, a persis-

tent jet
::::::
stream in boreal summer can lead to

:::::
result

::
in

:
extreme heat and flooding events

:
, while a meandering jet in the winter415

induces extreme
:::::
stream

::
in

::::::
winter

::::
leads

::
to
::::::
severe cold spells in the midlatitudes (Petoukhov et al., 2013; Coumou et al., 2014;

Kretschmer et al., 2016). Further
::::::::::
Additionally, the northward movement of jet streams in response

::
due

:
to greenhouse warming

leads
::::::::
contributes

:
to the poleward propagation of tropical cyclones (Studholme et al., 2021). Thus accurate and robust detection

of jet streams are fundamental in the prediction and projection of mean
::::::::
accurately

::::::::
detecting

::::
and

::::::::::::
characterizing

::
jet

:::::::
streams

::
is

:::::
crucial

:::
for

:::::::::
predicting

:::
and

:::::::::
projecting

::::
both

::::::::::
climatology and extreme weather systems. Similar to420

:::::
Much

::::
like the detection of other weather phenomenon

:::::::::
phenomena

:
discussed in this study, most previous studies use

:::::::
previous

:::::::
research

::::::::
typically

:::::::
employs

:
a physical threshold in identifying jet locations. Moreover, most of these studies except

Limbach et al. and Kern et al. identifies
:
to

:::::::
identify

:::
jet

:::::::
streams.

::::::::::::
Furthermore,

::::
with

:::
the

::::::::::
exceptions

::
of

:::::::::::::::::::
Limbach et al. (2012)

:::
and

:::::::::::::::
Kern et al. (2018),

:::::
most

::::::
studies

:::::::
identify jet streams as either a one-

:::
one or two-dimensional features. Here we intend to

demonstrate the capability of SCAFET to detect jet streams as a three-dimensional structure. Since the scope of this section425

is limited to the validation of the detection method, we have only shown jet
:::::::
However,

::
it
::
is

::::::::
important

::
to
::::::::::

emphasize
:::
that

::::
this

:::::::
section’s

:::::
focus

::
is

::::::::
primarily

:::
on

:::::::::
illustrating

::::
the

::::::
method

:::
for

::::::::
detecting

:::
jet

:::::::
streams

:::::
rather

:::::
than

::::::::
validation

:::
of

:::
any

:::::::
analysis

:::::
with

::::::::
published

:::::
work.

:::::
There

::
is

::::::::
currently

::::::
limited

:::::::
analysis

::::::::
available

::
for

:::::::::
comparing

:::::
with

:
a
:::
3D

::::::::::
perspective

::
of

::
jet

:::::::
streams,

:::::::::::
highlighting

::
the

:::::
need

:::
for

::::
such

::
an

:::::::::
approach.

:::
As

:
a
::::::
result,

:::
we

::::::
present

::::::::
examples

::
of

:::
jet

::::::
stream detection in three selected time steps. A video
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showing the results for a longer
::::
more

:::::::::::::
comprehensive

:::::::
analysis

:::
and

:::::::::
discussion

::::::::
regarding

:::
of

:::
the

::::::::
long-term

::::::::::::
characteristics

::
of

:::
jet430

::::::
streams

::::
will

::
be

::
a

::::
topic

:::
for

:::::
future

::::::::
research.

:::
For

:::::
those

:::::::::
interested,

:
a
:::::
video

::::::::::
showcasing

:::
the

:::::
results

::::
over

:::
an

:::::::
extended

:
period can be

seen
:::::
found in the supplementary section.

The primary field used in the extraction of jet streams is the six-hourly
:::::::
6-hourly, three-dimensional wind speeds obtained

from ERA5 reanalysis data
::
set,

:
with a spatial resolution of 1◦

::
1◦

:
with 37 vertical levels Hersbach et al. (2020)

::::::::::::::::::
(Hersbach et al., 2020)

. The magnitude of wind speed is calculated as:
:
,435

W =
√
U2 +V 2 (8)

Where, U and V
:::::
where

::
U

:::
and

::
V

:
are the zonal and meridional wind velocities.

Comparable to
::::
The

:::::::
detection

:::::::
process

:::
for

::
jet

:::::::
streams

::::::
begins

::::::::
similarly

::
to

:::
the detection of 2D features, the detection process

starts by applying a gaussian smoothing to remove wavelengths less than 6000km
:
.
::::::::
Gaussian

:::::::::
smoothing

::
is

::::
used

::
to

:::::::
remove

::::::::
variability

::::
less

::::
than

:::::
3000

:::
km in the horizontal dimensions. No smoothing is applied along the vertical dimension. Next, SI440

is calculated using the two largest eigenvaluesk2 ,
:::
k1 and k3. Regions corresponding to

::
k2.

::::
The

:::::::
vertical

:::::::::
dimension

:::
for

:::
the

::::::::::::::
three-dimensional

:::::
wind

:::::
speed

::
is

::::
given

::
in

:::::::
pressure

::::::::::
coordinates.

:::
To

:::::::
calculate

:::
the

:::::::
gradient

::
as

::::::
change

::
in

:::::
wind

:::::
speeds

:::
per

:::::::::
kilometer,

:
a
::::::::::
rudimentary

:::::::::
conversion

:::::
from

:::::::
pressure

::
to

:::::
height

::::::::::
coordinates

::
is

::::
used

:::::
(refer

::
to

::::::::::::::::::::::::::::::
Wallace and Hobbs (1977, pg. 60-61),

::::
and https:

//unidata.github.io/MetPy/latest/api/generated/metpy.calc.pressure_to_height_std.html
::
for

::::::
further

:::::::
details).

::::::
Similar

::
to

:::
the

::::::::
detection

::
of

:::::
ARs,

::::::
regions

:::::::::::
characterized

:::
by

:::
the

:::::::
selected

::::::
shapes

::
of

:
ridges, caps, and domes (SI > 0.375

::::
0.375)445

are isolated for filtering. Filtering removes objects with
::
is

::::
then

::::::
applied

::
to

:::::::
remove

::::::
objects

::::
with

::
a volume less than 1000km3,

:::::::
106km3,

:
a
:
horizontal length less than 5000km, and

::::
5000

:::
km,

::::
and

:
a maximum wind speed within each object less than 50m/s

::
50

:::::
ms−1. In the current version of SCAFET, the tracking algorithm is not applied on

::
to jet detection (see Figure 7).

:::
The

:::::::
detailed

::
list

:::
of

:::::::::
parameters

::::
used

::
in

:::
the

::::::::
detection

::
of

:::
jet

::::::
streams

::
is

:::::
given

::
in Table 4

:
.

5 Conclusions450

In this study,
:
we introduced a new framework and algorithm

:::::
novel

:::::::::::
computational

::::::::::::
mathematical

:::::::::
framework

:::
and

:::
an

::::::::::
open-source

::::::
Python package for extracting and tracking meso-synoptic scale features from large climate datasets, called Scalable Fea-

ture Extraction and Tracking (SCAFET). As the
::::
The

::::::
purpose

:::
of

::::::::
SCAFET

::
is

::
to

:::::
tackle

:::
the

:::::::::
challenges

:::::
posed

:::
by

:::
the

:::::::::
increasing

volume and diversity of observational and model climate data grow, an alternative method to physical threshold-dependent

feature detection is necessary to compare features within and
::::::
climate

::::
data

:::
by

::::::::
providing

:::
an

::::::::
alternative

:::
to

::::::::
traditional

::::::::
physical455

:::::::::::::
threshold-based

::::::
feature

::::::::
detection

::::::::
methods.

:::
It

::::::
enables

::::
the

::::::::::
comparison

:::
of

:::::::
features

:
between observational and model data

sets
::::
with

:::::::
different

:::::
mean

::::
states

:::
by

:::::::::
attempting

::
to

::::::
remove

:::
the

::::
need

:::
for

::::::::
posterior

::::::::::
data-specific

::::::::::
assumptions. Furthermore,

::::::::
SCAFET

::::::::
introduces

:
a novel shape-based approach for feature extractionwill give us further insights into detection method discrepancies

in projections and aid
:
to

::::::
feature

::::::::::
extraction,

:::::
which

:::::
helps

:::::::
uncover

::::::::::::
discrepancies

::
in

::::::
climate

::::::::::
projections

::::
due

::
to

:::::::::
differences

:::
in

:::::::
detection

:::::::
methods

::::
and

::::
aims

::
to

::::
help the community in building scientific consensus. To demonstrate the ability of SCAFET

:::::::::
SCAFET’s460
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Three dimensional winds Extracted Jet streams

(a) (b)

(c)

(e) (f)

(d)

Figure 7. 3D jet streams extracted using SCAFET. (a), (c), (e) shows the magnitude
::::::::
Magnitude

::
of

:
3D wind speed for 2022-08-25 00

::
(a)

::::::::
2022-08-28

:::
12:00,

::
(c) 2022-08-28 06

::
18:00, and 2022-08-31 18:

::
(e)

::::::::
2022-08-29

:
00respectively. The

:::
:00.

::::::::
Extracted 3D jet streams extracted

for the corresponding time period is show
::::::
periods

::
are

:::::
shown

:
in (b), (d), and (e

:
f) respectively.

:::
The

:::::
reader

:
is
:::::::::
encouraged

::
to

::::
view

::
the

:::
full

:::::
video

:
of
:::::

these
:::::::
snapshots

::
in

:::
the

:::::::::::
supplementary

:::::::::
information.
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No. Property Value Unit

Se
gm

en
ta

tio
n

1 Smooth Scale 6000 km
:::
km

2 Selected Shape (0.375,1.0] -

Fi
lte

ri
ng

1 Minimum Length 5000 km
:::
km

2 Minimum Height 5 km
:::
km

3 Minimum Volume 500
:::
106 km3

::::
km3

4 Minimum Area 105 km2 5 Minimum Max. Wind speed 50 m/s
::::
ms−1

Table 4. Same as in
::::
Table

:
1 but for Jet Streams

::::::::
parameters

:::
and

:::::
values

::::::
relevant

:::
for

:::::::
detecting

::
jet

::::::
streams.

:::::::::
capabilities

::::
and

::
its

::::::::
potential in advancing these goals, we illustrated 2D detection of

::::::::
showcased

:::
its

::::::
ability

::
to

:::::
detect

:::::::
various

:::::::
features,

::::::::
including

::::::::::::::
two-dimensional

:::::::
features

:::::
such

::
as

:
atmospheric rivers (ARs), tropical and extratropical cyclones, sea sur-

face temperature fronts, and 3D detection of
:
as

::::
well

:::
as

:::
the

::::::::
detection

::
of

:::::::::::::::
three-dimensional

:
jet streams. Each application was

intended to give characteristic examples
:::::
serves

::
as

:::
an

:::::::::
illustrative

:::::::
example from which users can customize SCAFET for their

own research purposes
::::::
specific

:::::::
research

:::::
needs.465

Apart from the obvious benefits like a more generalized framework and parallelized implementation , SCAFET, more

importantly, provides
:::::::
SCAFET

:::::
offers

::::::
several

:::::::::
significant

::::::::::
advantages,

::::::::
including

:
a
:::::
more

:::::::::::::
comprehensive

:::::::::
framework

:::
and

:::::::
parallel

:::::::::
computing

:::::::::::::
implementation

:::
for

:::::::::
efficiency.

::::::::
However,

::
its

:::::
most

::::::::::
noteworthy

::::::::::
contribution

::::
lies

::
in

:::::::
offering a novel perspective on

how we could
:::
can

::::::::
relatively

:
define various features in climate datasets covering large periods of time, in which the mean

climatevaries significantly. Instead of extracting features from physical thresholds
::::::
within

::::::
climate

:::::::
datasets

:::
that

:::::
span

::::::::
extensive470

::::::
periods

:::::::
marked

::
by

:::::::::
significant

::::::::
changes

::
in

:::::
mean

:::::::
climate.

::::::
Rather

::::
than

:::::::
relying

::
on

:::::::::::::::::
empirically-derived, we can identify them

based on their local shape in the field and refine the analysis by optionally applying a minimum threshold on the extracted

objects. This approach provides a view of
::::::::::
data-specific

:::::::
physical

:::::::::
thresholds

:::
for

::::::
feature

:::::::::
extraction,

::::::::
SCAFET

::::::::
identifies

:::::::
features

::::
using

:::::::::::
shape-based

:::::::
absolute

:::::::::
thresholds

::::
and

:
the

:::::
locally

:::::::::
estimated

:::::
shape

::::::
within

:::
the

:::::
field.

::::
This

::::::::::::
methodology

:::::
offers

::
a

::::::
unique

::::::::
viewpoint,

::::::::
enabling

:::
us

::
to

:::::::
observe

:::
the

:
continuous changes in feature properties that account for mean state changes. Since475

results of
::::
while

::::::::::
accounting

:::
for

:::::
shifts

::
in

:::
the

:::::
mean

::::::
climate

:::::
state.

::::
This

::::::::
approach

::
is

:::::::::
particularly

::::::::
valuable

::
as

:
meso-synoptic scale

studies are
::::::
highly sensitive to thresholds in a varying mean state, conclusions inherently depend on the feature extraction

method. Such varying conclusions are noticed while studying
::::::::::
dynamically

::::::::
changing

:::::
mean

:::::::
climate

:::::
state.

::::::::::::
Consequently, the

:::::::::
conclusions

::::::
drawn

:::::
from

::::
such

::::::
studies

::::
can

::::
vary

:::::::::::
significantly,

::
as

::::::::::::
demonstrated

::
in

:::::::
research

:::::::::
examining

:::
the

:
response of ARs to

greenhouse warming Zhao (2020); O’Brien et al. (2022). Thusphysical threshold-independent algorithms such as SCAFET480

may be crucial in furthering
:::::::::::::::::::::::::::::::::::::::::::::::
(Zhao, 2020; O’Brien et al., 2022; Nellikkattil et al., 2023).

:::::
Thus,

:::::::::
algorithms

:::
like

::::::::
SCAFET

::::::
which
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::
are

:::
not

:::::::::
influenced

:::
by

::::::::::
data-specific

:::::::::
conditions

::
of

:::::::
various

::::::
climate

::::::
models

::::
play

::
a
::::::
crucial

:::
role

::
in
:::::::::
advancing

:
scientific understand-

ing and
:::::::::
facilitating

:
climate model development.

Undertaking a more fundamental level research into differential geometry and mathematical derivation
::
In

::::::::::
conclusion,

::::::
delving

::::::
deeper

::::
into

:::
the

:::::::::
principles

:::
of

:::::::::
differential

:::::::::
geometry

::
to

::::::::
elucidate

:::
the

::::::::
physical

:::::::::::
interpretation

:
of the relationship be-485

tween SI and local geometric shape could transform the way we identify extreme events
:::
has

:::
the

:::::::
potential

:::
to

:::::::::::
revolutionize

:::
our

:::::::
approach

::
to
:::::::

feature
::::::::
extraction

:
from large datasets. Due to its design, SCAFET does not require a priori climate information

to identify features. This property can be utilized to develop simple web-based solutions for identifying and warning public

against presence of extreme weather systems
:::
This

::::::
avenue

::
of

:::::::
research

:::
has

:::
the

:::::::
promise

::
of

:::::::::::
significantly

::::::::
enhancing

:::
the

::::::::::
algorithm’s

::::::::
robustness

::::
and

:::::::::
reliability.

:::
It’s

:::::
worth

::::::
noting

::::
that,

::
at

:::::::
present,

::::::::
SCAFET

::::
may

::::
not

::::::
surpass

:::
the

::::::::::::
computational

:::::::::
efficiency

::
of

:::::
other490

:::::::::::::
well-established

::::::
feature

:::::::::
extraction

:::::::
methods

:::::::::
discussed

:::::
above

::::
(see

:::::::::::::
Supplementary

:::::::
Section

::::
2.2).

::::::::
However,

::::::::
ongoing

:::::
efforts

:::
to

:::::::
optimize

::::
and

:::::::::
streamline

:::
the

::::::::
algorithm

:::
for

::::::::
improved

:::::::::::::
computational

::::::::
efficiency

::::::::
continue.

::::
One

:::::::
notable

:::::::
strength

::
of

::::::::::
SCAFET’s

:::::
design

::
is
:::
its

:::::::::::
independence

:::::
from

:::::::::::::
dataset-specific

::::::::
posterior

::::::::::
information

:::::
when

:::::::::
identifying

:::::::
features.

:::::::::
Moreover,

:::
the

:::::::::::
shape-based

::::::::
thresholds

::::
used

:::
for

::::::::
detecting

::::::
specific

:::::::
features

::::::
remain

::::::::
consistent

::::::
across

::::::
various

:::::
grids,

:::::::
datasets,

:::
and

::::::::::::
climatologies.

:::::::
Between

:::::
these

:::::::
strengths

::::
and

:::
the

:::
full

::::::::::::
parallelization

::
of

:::
the

:::::::
feature

::::::::
detection

:::::::
method,

::::
there

:::
are

:::::::
exciting

::::::::::
possibilities

:::
for

::::::
further

::::::::::::
development.495

::::
This

:::
may

:::::::::
eventually

::::::
enable

:::
the

::::::::
algorithm

::
to

::
be

::::
used

::
in

::::::::::
operational

:::::
feature

:::::::::::
identification

::::
and

:::::::::::
early-warning

:::::::
systems

:::
for

:::::::
extreme

::::::
weather

::::::
events.
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Appendix A: Shape Based Feature Extraction on Simple Datasets

The aim of this section is to demonstrate
::::
This

::::::
section

:::::::::::
demonstrates

:
how shape-based matrices can be used to extract features

from simple
:::::
feature

:::::::::
extraction

:::
can

::
be

:::::::::
performed

:::
on

:::::
scalar

:::::
fields

:::::::::
represented

:::
by

::::::
simple,

::::::::
idealized mathematical functions. This525

section is indented
:
It

::
is

:::::::
intended

:
to provide readers with more insights into the basic principle

::::::::
principles

:
behind shape-based

feature extraction and how it differs from other published
::::::::::
conventional methods. We have also tried to demonstrate

::::::::
showcase

some properties of shape-based feature extraction methods like its insensitivity to mean state changes and linear
:::::
linear

:::::
mean

::::
state trends.

A1 Application to 1D datasets530

In this section, we are constructing
::::
draw

:
an analogy between application

:::
the

:::
use

:
of SCAFET on a

:::::::::::::
two-dimensional

::
(2D

:
)

dataset and shape-based feature extraction from a one-dimensional dataset. The purpose of this discussion
:::
(1D)

:::::::
dataset.

::::
Our

:::::::
intention

:
is not to advocate for a

:::::::
promote

:::
the

::::
use

::
of

:
shape-based extraction of features from 1D datasets but to help the

readers understand
::::
rather

:::
to

::::::
provide

:::::::
readers

::::
with

:
a
:::::::::::
fundamental

::::::::::::
understanding

::
of

:::
this

:::::::::
approach,

:::::
along

::::
with

:
its strengths and

weaknesses
:::::::::
limitations.535

Conventionally, for
:::
For any differentiable curve C, the curvature is measured as the instantaneous rate of change of direction

of a along the curve. Simply put, the curvature is measured as the rate of change of the unit tangent to the curve at any given

point. An osculating circle can be used to intuitively represent the curvature of a surface or a curve (see Figure A1). At any

point P, the curvature, k is the reciprocal of the radius (R) of the circle. The sign of k determines if the curve has a concave

or a convex curvature. More information and mathematical proof for these concepts can be found in any standard differential540

geometry textbooks
:::::::
textbook.

Following the derivation of Shape Index (SI) for 2D datasets, we could normalize the curvature for a function f to give

:::::::
calculate

:::
the

::::
local

:::::
shape

:::
of

:
a
:::::::
function

::
f

:::::
using the shape parameteras, ,

:::::::
defined

::
as

25



Figure A1. A schematic
::::::::
Schematic representation of measuring curvature

:::::::::
measurement

:
of a curve C at point P. At P,

:
the curvature is the

reciprocal of the radius R of the osculating circle. In differential geometry, an osculating circle is defined as the circle passing through the

point P and a pair of additional points infinitesimally close to P.

K =
2

π
tantan

::

−1(f ′′) (A1)

Values of K closer to 1 can be
::
are

:
identified as regions of local minima while K closer to -1 are regions of local maxima545

(black curve in Figure A2). Depending on the severity of the extreme event
:::::::::
magnitude

::
of

:::
the

::::::::
function, one could choose a

value for K to get
:::::
adjust

:::
the

:::::
value

::
of

:::
K

::
to

:::::
obtain

:
regions of local maxima (red caps in Figure A2) and local minima (green

caps in Figure A2). The curvature of the function is insensitive to linear trends and mean state changes.
::::
This

::
is
:::::::
evident as the

application of the same
:::::::
identical

:
shape thresholds identifies identical regions

:::
the

:::::
same

::::::
regions

::
of

:::
the

::::::
curves

:
as local maxima

and minimain a simple trigonometric ,
:::::::

whether
:::

on
:::
the

::::
base

:
curve (blue curve in Figure A2) and

::
or

:::
on the same curve with550

an added linear trend (orange curve in Figure A2). The values of K
::
K

:
for both curves are represented by the black line in

Figure A2. Thus, it
::
the

:::::
shape

:::::::::
parameter can be used to identify extreme events from datasets without being affected by the

:::
the

::::
local

::::::
minima

::::
and

:::::::
maxima

::::
from

::
a

:::
1D

::::::
dataset

::::::
despite background state changes.

A2 Application of SCAFET to simple Geostrophic Motion

In this sectionwe demonstrate the application of
:
,
:::
we

:::::
apply

:
SCAFET to a simple

::::
basic geostrophic rotational motion. The555

goal of this discussion is to see how
:::::::
illustrate

::::
how

:::
the

:
shape-based extraction of 2D features differ from other conventional

methodsused
::::::
differs

::::
from

:::::::::::
conventional

:::::::
methods. The calculation of SI involves the computation of the two eigenvalues, k1 and

k2 of the hessian of
::::::
Hessian

::::::
matrix

:::
for any gridded dataset. As discussed in the previous section, the measurement of curvature

,
::::::::
curvature

:::::::::::
measurement

::::::::
provided

:::
by k1 and k2 can be visualized as the reciprocal of the radius of two osculating circles

orthogonally intersecting
:::
that

:::::::
intersect

:::::::::::
orthogonally at a point in

::
on the surface. Large negative eigenvalues represent

::::::
signify560

surfaces with strong convex curvature
:
, while positive values are identified as

:::::::::
correspond

::
to troughs or cups.
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Figure A2. Shape
:::::::::
Comparison

::
of

:::::
shape

:
extraction for

::::::
between

:
a simple one-dimensional curves

::::
curve,

:
given by f = sin2x+3cos5x

and f +0.5x= sin2x+3cos5x+0.5x. The first one is a simple trigonometric
::::::::::::::::
f = sin2x+3cos5x

:::::
(blue

:
curvewhile

:
)
::::

and

:::::::::::::::::::::::::::
f +0.5x= sin2x+3cos5x+0.5x

::::::
(orange;

:
the second

:::
blue

:
curve includes

:::
with a linear trendas is evident from their functional forms).

The magnitudes
:::
Left

:::::
Y-axis

:::::
shows

::::::::
magnitude

:
of both the functionsare shown in the left Y axis while the , right Y axis

::::
Y-axis

:
indicates the

values of the shape parameter (K). Note that
::::
value

::
of
:
K is

::
the

:
same for both the functions. The green and red highlighting on the curves

indicates the
::::
shows

:
regions where K > 0.99 and K <−.99. The red highlighted are tagged as extreme ,

:::::::::::
corresponding

::
to

::::::
regions

::
of

::::
local

maxima events and those highlighted with green are be characterized as extreme minimaevents
:
,
:::::::::
respectively.

To demonstrate the characteristics and strengths
:::::::::
advantages of feature detection based on Shape Index (SI)

:::
SI, let’s consider

a simple rotation
::::::::
rotational wind field (see Figure A3(a) vectors) given by

:
,

ug =−Ωy (A2)

vg =Ωx (A3)565

Where Ω is a constant
::::::::::::::
(Ω= 105rad s−1)

:
and x,y represents the grid. In the current example the value of Ω is set as 105rad/s.

The geopotential height (h) of the field (see Figure A3(a) shading) is used as our primary field to identify features using shape

index (SI). h is estimated
:
in

:::::::::
calculating

:::
SI,

:::::::::
computed as,

h=
Ωf

2g
(x2 + y2) (A4)

:::::
where

:
f and g are the Coriolis parameter and the gravitational constant

:::::::::
acceleration

::::
due

:::
to

::::::
gravity,

:
respectively. SI is570

calculated from the eigenvalues of the hessian
:::::::
Hessian of h using the formula,
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SI(k1,k2)
::::::

=
2

π
arctantan−1

:::::

[
k2 + k1
k2 − k1

]
(A5)

Where the eigen values
:::::::::
eigenvalues

:
k1 and k2 are given by,

k12 =
fζg
2g

±

√(
f

2g

)2

−
(
f

g

)2
∂vg
∂x

∂ug
∂y

+
∂ug
∂x

∂vg
∂y

(A6)

Where ζg is the geostrophic vorticity. Which gives SI as,575

SI(k1,k2)
::::::

=
2

π
tantan

::

−1

 ζg

−2

√(
ζg
2

)2

− ∂vg

∂x
∂ug

∂y +
∂ug

∂x
∂vg

∂y

 (A7)

A detailed derivation of the above equation can be found in Appendix B. Appendix B Plugging in the values for the rotational

motion, we get

ζg =∇2h=Ωf/g (A8)

∂ug
∂x

=
∂vg
∂y

= 0 (A9)580

∂vg
∂x

∂ug
∂y

=Ω2 (A10)

Therefore,

SI =
2

π
tantan

::

−1

[
Ω2

−
√
Ω2 −Ω2

]
=−1 (A11)

Thus, SCAFET classifies the whole domain with the anticlockwise rotational motion as a trough with SI≊-1 regardless of

the absolute value of the field or Ω. A traditional method that uses thresholding directly on
::
In

:::::::
contrast,

:::::::::
traditional

:::::::
methods

::::
that585

:::
rely

:::
on

::::::::::
thresholding

:
the geopotential height would identify regions depending on the value of the threshold on h. However,

the value of the threshold must
::::
based

:::
on

:::
the

::::::
chosen

::::::::
threshold

::
of

::
h,

::::::
which

:::::
would

:::::
need

::
to be adjusted depending on the mean

(time) and background (space) state. Another widely used practice is to define
:::::::
common

::::::::
approach

::
is
:::
to

:::::::
establish

:
a threshold

on the smallest eigenvalue. The intention of such methods is ,
::::::
aiming

:
to identify extreme features based on the strength of the

curvature
::::::::
curvature

:::::::
strength rather than the actual value of the field. TempestExtremes

:::::
field’s

::::::
actual

:::::
value.

:::::::::::::::
TempestExtremes590

:::::::::::::::::::::::
(Ullrich and Zarzycki, 2017), a feature extraction framework previously discussed , follow

::::::::
discussed

::
in

:::
the

::::
main

::::
text,

:::::::
follows

this method to identify
:::::
detect Atmospheric Rivers from gridded datasets. In the current example, this

::::::::
approach would corre-

spond to thresholding
:::::
setting

::
a
::::::::
threshold on fΩ/g. In other words, TempestExtremes would only detect the

::::::
identify

::
a
:
trough

if the value of Ω is greater than the predetermined threshold. Contrastingly, SCAFETwould identify the trough
:::::::
exceeds

:::
the
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Figure A3. Comparing different
::::::::
Comparison

:::::::
between

:::
two

:
feature extraction techniques on synthetic

::
an

:::::::
idealized

:::::::
example

::
of

:
rotational

wind field. (a) The geopotential height (h) (shading) of the rotational wind field (arrows). h is defined as Ωf(x2 + y2)/2g, where

f = 10( − 4)1/s
::::::::::
f = 10−4s−1, g = 9.805m/s

::::::::::::
g = 9.805ms−1 and Ω= 105rad/s

:::::::::::::
Ω= 105rad s−1. (b) The magnitude

::::::::
Magnitude

:
of the

smallest eigen value. From the equation
::::::::
eigenvalue, the smallest eigen value can be derived

::::
from

::
the

:::::::
equation as fΩ/g = 1.0199

:
,
::::::::
illustrating

:
a
::::::
uniform

::::
field

::
as

::::::
expected. (c) Shows the value

::::
Value of the shape index (SI ). From the equations and the plot, we can see that the value of

::::
where

:
SI =−1 throughout the domain,

::
as

:::::::
expected.

::::::::::::
pre-determined

:::::::::
threshold.

::::::::
SCAFET,

::
on

:::
the

:::::
other

:::::
hand,

::::::::
identifies

:::
the

:::::
trough

::::::
region as a trough regardless of the actual

::::::
specific595

value of the field or Ω. Hence, we see that
::::
This

::::::::
illustrates

::::
how

:
feature extraction using SI and other published methods can

give us
::::
yield

:
different results depending on the input dataas they are looking at different ,

::
as

::::
they

:::::
focus

:::
on

::::::
distinct

:
properties

of the field.

A3
::::::::::
Application

:::
of

::::::::
SCAFET

::
to

:::
3D

::::::
Fields

::::
This

::::::
section

::::
aims

::
to

::::::::::
demonstrate

:::
the

::::::::
detection

::
of

::
a

:::::::::
cylindrical

::::::
volume

::::::
within

:
a
:::::::::::::::
three-dimensional

:::::
scalar

:::::
field.

::
To

::::::::
illustrate

:::
the600

::::::::::
effectiveness

::
of

:::
the

::
SI

::
in
::::::::::
identifying

:::
3D

::::::::
structures

::::::::
embedded

::::::
within

:::::
scalar

:::::
fields,

:::
we

::::
offer

::
a

::::::::::::
straightforward

::::::::
example

::
of

::::
how

::
SI

:::
can

::
be

::::
used

::
to
::::::
isolate

::
a

:::::::
cylinder

::::::::
embedded

::
in

::
a
:::::
scalar

::::
field

::::::
defined

:::
by

::::::::::::::::::::::::::
f = sin(3X)+ cos(4Y )cos(Z).

::
It
::
is

:::::
worth

::::::::::
mentioning

:::
that

:::
this

:::::::
specific

:::::::
problem

:::::
bears

:::::::::
significant

:::::::::
similarities

::
to

:::
the

::::
task

::
of

:::::::::
identifying

:::
3D

:::
jet

:::::
cores.

::
As

::::::::
explained

::
in
:
section 4,

::
a

:::::::::::::::
three-dimensional

:::
field

::::::::
provides

::
us

::::
with

::::
three

::::::::::
eigenvalues

::::::::
satisfying

:::
the

::::::::
condition

::::::::::::
k1 ≥ k2 ≥ k3.

:::
The

:::
SI

:::
can

:::
be

::::::::
computed

:::::
using

::::::::::
SI(k1,k2),::::::::::

SI(k1,k3),::
or

::::::::::
SI(k2,k3).::::::

Setting
::

a
::::::::
threshold

::
of

:::
SI

::
>

:::::
0.375

:::::::::
effectively

:::::::
isolates605

::
the

::::::::
cylinder

::::
when

:::::
using

:::::
either

::::::::::
SI(k1,k2) ::

or
:::::::::
SI(k1,k3)::::

(see Figure A4
:::::
(b-d)).

:::::::
Between

:::::
these

::::
two

:::::::
options,

:::::::::
SI(k1,k2),::::::

which

::::::
utilizes

:::
the

:::
two

::::::
largest

::::::::::
eigenvalues,

:::::::
imposes

:
a
:::::
more

::::::::::
conservative

:::::::
criterion

:::
for

:::::::::
identifying

:::
the

::::::::
embedded

::::::::
cylinder.

:::
The

:::::::::
percentage

::
of

:::
data

::::::::
identified

:::
as

::
the

:::::::
cylinder

::
is
::::::::
provided

::
in

:::
the

:::
title

::
of

::::
each

::::
plot

::
in Figure A4.

:::::::
Notably,

:::::::::
employing

:::::::::
SI(k2,k3)::

is
:::
not

:::::::
suitable

::
as

:
it
::::
fails

::
to

::::::
isolate

:::
the

::::::
desired

:::::::
cylinder

:::::
shape

::::::::::
effectively.

:::
The

::::::
choice

::
of

:::::
using

:::::::::
SI(k1,k2)::

is
::::::::::
specifically

::::::
tailored

:::
for

:::::::::
extracting

::::::
convex

::::::
shapes

::
or

::::
local

::::::::
maxima.

:::::::::::
Interestingly,

::
to
:::::::

identify
:::::::
concave

::::::
shapes

:::
or

::::
local

:::::::
minima,

::::
one

::::::
should

::::::
utilize

:::
the

::
SI

:::::::
derived610

::::
from

:::
the

:::
two

:::::::
smallest

:::::::::::
eigenvalues,

::::::
namely,

::::::::::
SI(k2,k3).:
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:::::
While

:::
the

::::::
simple

:::::::
example

:::::::::
presented

::::
here

::::
may

:::
not

:::::::
provide

:
a
:::::::::::::
comprehensive

:::::::::
illustration

::
of
::::

3D
::::::
feature

::::::::
detection,

:::
we

:::::
hope

:::
that

::
it

:::::::::
encourages

::::::
further

:::::::::::
fundamental

:::::::
research

::::
into

:::
3D

::::::
feature

:::::::::
extraction

::
to

::::::
expand

:::
the

::::::::::
capabilities

::
of

:::::::
analysis

::::
and

:::::::
increase

::::::::
precision.

  

Simple 3D Field SI(k1,k2)>0.375 (16%) SI(k1,k3)>0.375 (19%) SI(k2,k3)>0.375 (61%)

(a) (b) (c) (d)

Figure A4.
::::::
Various

:::::::::
approaches

::::
for

::::::::
extraction

:::
of

::
a
:::

3D
:::::::

cylinder
:::::

from
::

a
::::::

scalar
:::::

field.
::::::::

(a)Simple
::::::

scalar
::::
field

::::::::::
represented

:::
by

::::::::::::::::::::::
sin(3X)+ cos(4Y ) ∗ cos(Z)

:
is
::::::

shown.
:::::

(b-d)
:::
The

::::::::
extracted

:::::::
cylinders

::
by

:::::::
applying

:::
the

:::::::::
conditions

::
(b)

::::::::::::::::
SI(k1,k2)> 0.375,

:::::
while

::
in

:::
(c)

::::::::::::::
SI(k1,k3)> 0.375

:::
and

:::
(d)

:::::::::::::::
SI(k2,k3)> 0.375

::
are

::::::
shown.

:::
The

:::::
values

::::::
enclosed

::
in

:::::::::
parentheses

:::::
within

::
the

:::::
figure

::::
titles

::::::
indicate

:::
the

::::::::
percentage

:
of
::::

data
:::
that

::::::
satisfies

:::
the

::::::::
respective

::::::::
conditions

:::::
applied

::
in

::::
each

::::
case.

Appendix B: Derivation of Shape Index for Geostrophic Motion615

The complete derivation of the SI for geostrophic wind fields are
:
is

:
shown in this section. The result from the derivation is used

in the previous section. Appendix A.
:

Let h be the geopotential height at a certain level. The hessian
::::::
Hessian

:
of h is given by .

H(h) =

 ∂2h
∂x2

∂2h
∂x∂y

∂2h
∂y∂x

∂2h
∂y2

 (B1)

The eigen values
:::::::::
eigenvalues

:
of the symmetric matrix H is calculated by solving the quadratic equation.620 (

∂2h

∂x2
−λ

)(
∂2h

∂y2
−λ

)
−
(
∂2h

∂x∂y

)2

= 0 (B2)

Which
:::::
which can be expanded as;

λ2 −λ

(
∂2h

∂x2
+
∂2h

∂y2

)
+
∂2h

∂x2
.
∂2h

∂y2
−
(
∂2h

∂x∂y

)2

= 0 (B3)
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λ2 −λ∇2h+
∂2h

∂x2
.
∂2h

∂y2
−
(
∂2h

∂x∂y

)2

= 0 (B4)

NOTE: The geostrophic vorticity (ζg) is defined as625

ζg =
g

f
∇2h (B5)

The geostrophic velocities are defined as

ug =− g

f

∂h

∂y
=−∂ψ

∂y
(B6)

vg =
g

f

∂h

∂x
=
∂ψ

∂x
(B7)

Where ψ is the geostrophic stream function. This implies.630

∂2h

∂x2
=
f

g

∂2ψ

∂x2
=
f

g

∂vg
∂x

(B8)

∂2h

∂y2
=
f

g

∂2ψ

∂y2
=−f

g

∂ug
∂y

(B9)

Adding the abovementioned relationships to equation (3)

λ2 − λf

g
ζg −

f2

g2
∂vg
∂x

∂ug
∂y

+
f2

g2
∂ug
∂x

∂vg
∂y

(B10)

Solving for λ we get635

λ12 =
fζg
2g

±

√(
f

2g

)2

−
(
f

g

)2
∂vg
∂x

∂ug
∂y

+
∂ug
∂x

∂vg
∂y

(B11)

λ12 =
f

g

ζg
2
±

√(
ζg
2

)2

− ∂vg
∂x

∂ug
∂y

+
∂ug
∂x

∂vg
∂y

 (B12)

Thus the shape index for h

SI =
2

π
arctantan

::

 ζg

−2

√(
ζg
2

)2

− ∂vg

∂x
∂ug

∂y +
∂ug

∂x
∂vg

∂y

 (B13)
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