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Re: Minor revisions of manuscript EGUSPHERE-2023-592

Dear Reviewer,

We genuinely appreciate your valuable suggestions and kind words. Your comments were
highly insightful and rigorous, and we greatly appreciate the careful consideration you have given

to our manuscript.

We have diligently worked to address each of your comments, and as a result, the manuscript
has undergone significant quality enhancement. Below, we present a point-by-point response to
your suggestions, outlining the specific changes we made in response to your feedback. Further-
more, we have included a new section in the response letter, highlighting the major revisions car-
ried out in accordance with the all reviewer’s recommendations. Upon securing the editor’s ap-
proval for these responses, our intention is to submit the revised manuscript in accordance with
the guidelines outlined by Geoscientific Model Development.

Once again, we wish to express our gratitude for your thorough review and constructive feed-
back. Should you have any further concerns or suggestions, please do not hesitate to share them
with us; your continued engagement will undoubtedly contribute to the overall excellence and
rigor of our research.

Thank you once more for your time and dedication to this peer review process.

Sincerely,
Arjun Babu Nellikkattil
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1 Recommendation

The presented work has significant potential to become a new standard for climate data analysis,

and I encourage the authors to continue its development.

2 Revision Highlights

1. Anadditional appendix section has been included to provide a discussion and demonstration
of the detection of three-dimensional structures within embedded 3D scalar fields.

2. An additional supplementary section has been added, presenting the sensitivity analysis of
various parameters in the detection and characteristics of Atmospheric Rivers. The primary
objective of this section is to illustrate the stability and reliability of the diverse parameters
employed in SCAFET.

3. An extra supplementary section has been incorporated, offering a comparison of the identi-
tied characteristics of Atmospheric Rivers. Additionally, the computational aspects of SCAFET

are contrasted with those of other detection algorithms.

4. The manuscript has been further refined to enhance grammar and comprehension.

3 Point-by-point Response to General Comments

1. Figure 1: The smoothing scale o is defined as a function of the grid and the length scale of the
feature of interest; however, this function is not defined in the paper. In the sentence beginning
on line 131, the statement ”This is implemented by calculating the value of o along each circle

of latitude,” is particularly uninformative.

To perform Gaussian smoothing that is aware of the grid structure in terms of latitude and lon-
gitude, we begin by computing the appropriate o value for each latitude band. The scale for
smoothing is provided in kilometers as input. This input is then converted into the correspond-
ing o value using the grid information, which is initially provided as input. For each latitude
line, the o value is recalculated and applied to achieve smoothing. Subsequently, a constant o
value is used for smoothing along the lines of longitude. The smoothing process employs the
smoothing function from MetPy, which can be found at this URL (https://unidata.github.io/
MetPy/latest/api/generated /metpy.calc.smooth_gaussian.html).

2. The introduction spends a lot of time and effort making a case for objective detection methods
that do not rely on a human that will work well despite the challenge of “inter- and intra-model
discrepancies” (line 38). Having to adapt the smoothing kernel to the grid spacing of specific

resolution configurations seems to undercut those primary goals.

Indeed, if the smoothing parameter had to be manually tweaked for different grids, it would
undermine the claim. However, the smoothing parameter is provided by the users in kilometers,
which is independent of the grid. The code then internally constructs the smoothing parameter
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(o), taking into account the grid information. This ensures that the method remains consistent
and adaptable to different grids without the need for grid-specific adjustments.

. Koenderink and van Doorn (1992) advocate the use of pair of measures for shape recognition,
“curvedness” and “shape index.” The present work seems to discard “curvedness” but does not
mention why. Furthermore, it does not discuss significant considerations related to the use of

these measures for meteorological applications.

The fundamental principle guiding the development of SCAFET was to create a feature de-
tection and tracking technique that relies on minimal background information from climate
datasets. The utilization of the Shape Index, a parameter bounded and scale independent, was
well-suited to achieve this objective. While the curvedness parameter could offer supplemen-
tary insights into the identified features, instituting a threshold for curvedness, an unbounded
variable, would counter the foundational concept of SCAFET. As evidenced in the manuscript,
this supplementary filtering, which dilutes SCAFET’s core principle, is not essential for feature

identification.

Nonetheless, we acknowledge that curvedness could still be advantageous in further filtering
the identified shapes. Therefore, we have included an additional sentence in the paper to ac-
knowledge this potential usefulness, encouraging new researchers to explore and pursue this
avenue for enhancing feature detection with SCAFET.

. The Hessian of a surface, z(z,y), is a second-order term in the surface’s local Taylor series ex-
pansion;its use here is only applicable if the first-order term (the gradient of z(x,y)) is zero.
Indeed, even the cited reference that the authors rely upon, Koenderink and van Doorn (1992),
contains the strong caution that the interpretation of shape from the Hessian matrix (emphasis
theirs) “is only valid in representations where the magnitude of the gradient of z vanishes.”
This would seem to suggest that a preprocessing step to find critical points (where the gradient

is zero) is necessary, but I did not see such a step mentioned.

Yes. Itis true that approximating the principal curvature as the eigenvalues of the Hessian of the
surface z(z,y) is true only if the point satisfies the condition (9f/9z)? + (3f /0y)* = 0. We have
compared the SI from eigenvalues of Hessian to numerically calculated principal curvatures to
find that,

(a) Inmost of the real world applications, the difference in SI calculated from the eigenvalues
of the Hessian are very close that from principal curvatures (see Figure 1, Figure 2, and
Figure 3). In fact some popular implementations of Koenderink and Doorn 1992 uses the
eigenvalues of the Hessian to calculate shape index (see https://scikit-image.org/docs/st
able/api/skimage.feature.html#skimage.feature.shape_index)

(b) Selecting a threshold of SI>0.375 inherently ensures that the identified regions are situated
in the vicinity of points where the condition (9f/9z)? + (0f/0y)* = 0 holds true.

To explicitly calculate the principal curvatures, we have followed Kurita and Boulanger 1992 to
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first derive the Gaussian curvature (K) and mean curvature (H) as,

H
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Finally the principal curvatures are explicitly derived by solving the quadratic equation,
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Below, a comparison is presented regarding the values of SI obtained using both the eigenvalues

of the Hessian and the principal curvatures from Equation 3. We see that in simple geomet-

ric fields, and climate data such as integrated vapor transport (used for identifying ARs) and

relative vorticity (used for identifying cyclones), the values derived from both methodologies

exhibit a remarkably close correspondence.

(a) Simple 2D Field
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Figure 1: Comparison of the shape index (SI) calculate using the eigenvalues of the Hessian of the
input field and the numerical method. (a) depicts a simple geometric field given by 5sin(.035z) —
2c0s(.10y) used. Shading in (b) shows the SI calculated using the principal curvatures obtained
using Equation 3. The contours in (b) display the SI derived from the eigenvalues of Hessian of
(a). Note that the contours are drawn for the same values. (c) shows the difference between SI
calculated using eigenvalues and principal curvature.

a) Integrated Vapor Transport
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Figure 2: Same as in Figure 1 but for integrated vapor transport. This field is used for the detection

of atmospheric rivers.



a) Relative Vorticity (b) Shape Index
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Figure 3: Same as in Figure 1 but for relative vorticity. This field is used for the detection of cyclones.

5. The discussion of the method’s extension to 3D needs more detail. Given the horizontal-vertical
splitting common to climate data sets, this is a nontrivial task. All of the shape index mathe-
matics are formulated for 2D problems (with only 2 eigenvalues); for the 3D demonstration,
the choice to use k; and k3 and exclude k2 seems significant. What is its physical interpretation?
Perhaps this is justifiably outside the scope of the paper, but I wonder how would the definition
of shape index change to account for all three eigenvalues? What are the analogous “shapes?”

We agree that an in-depth investigation into the physical interpretation of the shape index would
provide significant insights. Unfortunately, given our current knowledge constraints and the
manuscript’s scope, we were unable to undertake this extensive analysis. Nonetheless, in or-
der to illustrate the shape index’s efficacy in identifying 3D structures embedded in a scalar
field, and to maintain consistency with our approach of presenting simple examples, we have
introduced a new appendix section. This section demonstrates the detection of a cylindrical vol-
ume within a three-dimensional scalar field. Notably, this particular problem bears substantial
resemblance to identifying 3D jet cores (see Figure 4).

All prior studies involving the Shape Index (SI) have been developed for two-dimensional fields.
We have extended its applicability to three-dimensional data by calculating the SI using all
three possible combinations of eigenvalues. The decision to omit the smallest eigenvalue, de-
noted as k3, is rooted in empirical observations. As discussed, SI can be computed as SI(k1, k2),
SI(ky,ks), and S1(kz, k3), with the condition k; > ko > ks.

Empirical evidence indicates that for a convex curvature (regions exhibiting positive maxima),
both SI(ki,k2) and SI(ki,ks) effectively capture the shape, while SI(k2, k3) holds true in a
trivial manner (refer to Figure 4). Conversely, a concave shape is accurately represented by
both SI(k1, ks) and SI(ks, k3), whereas SI(ki, k2) is trivially applicable.

Hence, the decision regarding identifying a local maximum ultimately comes down to choosing
between SI(ky,k2) and SI(ki, k3) or utilizing both. Our analysis (see Supplementary Figure 4
and Figure 4) demonstrates that an SI based on S1(k;, k2) enforces a stricter criterion, selecting
a narrower region in proximity to the local maxima, while SI(ki, k3) encompasses a slightly

broader area. Similarly, for concave regions, SI based on SI(kz, k3) can be chosen.

In essence, one can conclude that constructing the S using the two largest eigenvalues yields the



most strict identification of a convex structure, while employing the two smallest eigenvalues

yields the most rigorous detection of a concave structure.

These discussions and Figure 4 are now included in the new appendix and the relevant section

in the manuscript.

Simple 3D Field Slk1,k2) > 0.375 (16%) S(k1,k3) > 0.375 (19%) Sl (k2,k3) > 0.375 61%

Figure 4: The figures depict the various approaches for extracting a 3D cylinder from a scalar field.
In (a), a simple scalar field is represented by sin(3X) + cos(4Y') * cos(Z). Subsequently, in (b), the
function is displayed following the application of the condition SI(k1, k2) > 0.375, while in (c), the
function is presented with the condition SI(ki, k3) > 0.375 imposed. Finally, in (d), the selected
regions within the field that fulfill the condition S1(ks, k3) > 0.375 are shown. The values enclosed
in parentheses within the figure titles indicate the percentage of data that satisfies the respective
applied condition.

6. The notation in equation (2) is confusing. It is customary for the numerator to contain the
maximum order of each derivative; here, in all four terms the superscript 2 is missing. In the
mixed terms, the symbol 0 is missing between the x and y. The same comment applies to the

indices.
Sorry about the typo. The mistakes has been rectified.
7. 1 prefer to see the functional dependence of newly introduced methods defined explicitly; for

example in Equation (3), SI(k1,k2) is more informative than simply SI, and ¢ (X, y) should
match ¢, (z,y, ...) in equation (1).

That is a good convention. The equations will be modified accordingly.

8. What do the dots (. ..) represent in equation (1), and in Figure 1’s definition of ¢, in the expo-
nent?
The dots represent different dimensions of the data. The data could be one, two or n dimen-

sional.

9. The EGU audience is interdisciplinary, and some may not be as familiar with the properties of
the Hessian matrix and its eigenvectors. Adding their illustration to the dictionary of shapes in
Figure 2 would be very helpful.

It had been attempted before. But it made the figure extra confusing. The eigenvectors are

shown in the AR detection in figure 4.



10.

11.

12.

It’s not clear how distinct and/or subjective the boundaries between different SI regions are;
for example, how different is a “Rut” with SI = -0.374 from a “Saddle Point” with SI=-0.375?
What about other boundaries, e.g., Ridges and Saddles, Ridges and Caps/Domes? How does
this affect the various features that are sought — how easily could a “cap” be misclassified as a
“ridge,” and how significant might that be to the results of a study?

Sensitivity test to shape index and other parameters are now included in the new appendix
section. This addition aims to provide a more comprehensive understanding on how slight

variations the smoothing scale (¢), SI and other variables affect the detected AR properties.

A validation study comparing SCAFET to existing methods (such as TECA, which the authors
mention) would be helpful — given the same criteria, do they detect the same tropical cyclones?
If there are differences, what are the characteristics of the storms that appear in one but not the
other. Similarly, given the emphasis of the work on large data sets produced by high resolution
models, how does the computational performance of the proposed method compare with pre-
vious methods? Does the method achieve faster processing times? Both variety of studies were
performed in [1], which should also be cited here.

A comprehensive examination of the similarities and differences in the detected characteristics
between SCAFET and other methods extends beyond the scope of this study, as the method is
developed for the detection of multiple features, not just one. However, we have added an ad-
ditional supplementary section that presents a comparison of the identified atmospheric river
(AR) attributes using SCAFET and alternative detection methods. Specifically we have com-
pared the memory usage, computational demands, and processing time between SCAFET with
alternative methods like Guan and Waliser 2015 and Ullrich et al. 2021.

We anticipate that the thorough comparison, along with case studies such as those carried out
within the ARTMIP framework (https://www.cgd.ucar.edu/projects/artmip) by the broader
community, will provide further valuable insights. Furthermore, we have referenced a new
study in which SCAFET is employed for identifying changes in ARs in response to increased

greenhouse gas concentrations.

The paragraph beginning on Line 35 suggests that defining thresholds for particular features is
challenging and can vary between and even within individual models. The implied suggestion
is that the presented method, SCAFET, would solve this problem; however, the remainder of
the work relies on the same expert analysis (for example, Table 1) that the paper claims to avoid
elsewhere. Similarly, Table 2 presents a set of well-defined criteria for tropical cyclones that
contradicts the Line 35 paragraph.

We acknowledge the apparent contradiction between the content on line 35 and the subsequent
portions of the text. We want to clarify that this discrepancy arises primarily due to a lack of
specificity rather than a blatant error. The pivotal aspect in the feature detection process entails
the initial identification of potential candidates or the segmentation of the input field. Parame-
ters such as minimum intensity, length, area, and the like, assume a comparatively minor role
in shaping the overall characteristics of the feature. For example, designating cyclones as pos-
sessing a "cap or dome" shape is the fundamental step, while the other parameters function as
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13.

filters that help isolate bigger or stronger cyclones. Consequently, these parameters in the tables
need not be exceedingly precise or reliant on the specific dataset or grid employed. Importantly,

they need not be reevaluated when applied to climate change studies.

This is also evident when you consider the different Atmospheric River detection algorithms
discussed in Shields et al. 2018. Most detection algorithms in the catalog share a similar filtering
process, diverging primarily in their approaches to the initial segmentation of the input field.
The critical factor influencing the global distribution of ARs or their responses to global warming

primarily hinges on this initial step Lora, Shields, and Rutz 2020; O’Brien et al. 2022.

Therefore, while SCAFET does utilize broad parameters for filtering the features identified in
the initial step, the true crux of the matter lies in that initial stage. This general filtering approach
is evident in various feature extraction methods. In response to your feedback and that of the
other reviewer, we have revised the manuscript to articulate more specific claims and steer clear

of sweeping statements.

Consider re-drawing Figure 7 with a white background for hard-copy readers.

The figure has been redrawn. The modification in the main manuscript will be implemented

once it receives approval from the editor.

4 Point-by-point Response to Specific Comments

1.

Figure 1: “Hessian” should be capitalized.

The suggestion has been accepted and implemented all throughout the manuscript and supple-

mentary section.

2. There are numerous grammatical and typesetting errors. An incomplete list includes:

(a) The inverse tangent function in equation (3) should not be italicized; so should sin and cos

in the Figure 2 caption.
(b) Period missing after equation (3).
(c) The symbols n and n + 1 in Section 2.3 should be italicized.
(d) “circ” in Lines 202 and 236 should be °.
(e) km in lines 203, 204 should not be italicized
(f) Please use either tan~! or arctan, not both.
All of the suggestions you provided have been successfully incorporated. The manuscript has

been subjected to additional refinement to rectify any lingering grammatical errors. Your metic-

ulous review and commitment to detail are greatly valued and appreciated.
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