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Abstract. Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only

via physically-based models. The part of the geoscientific community developing data-driven model has instead focused on

predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via

models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches

have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the5

landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However, technological advancements

in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size).

This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area

by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve

this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The10

model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and

densities are aggregated over a squared mapping unit of 1× 1 km and classified/regressed against a nested 30 m lattice. At the

nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately

6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and

density prediction (Pearson r = 0.93) tasks over the entire spatio-temporal domain. This model takes a significant distance from15

the common susceptibility literature, proposing an integrated framework for hazard modelling in a data-driven context.

To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a github repository

accessible from this link.

1 Introduction

The literature on physically-based models for landslides shows various solutions of how to estimate where landslides can20

occur, when they occur, and how they may evolve (e.g., Formetta et al., 2016; Bout et al., 2018). This framework allows one
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to describe the dynamics of a landslide from its initiation, propagation, and entrainment to the runout and deposition (e.g.,

Burton and Bathurst, 1998; Zhang et al., 2013). As a result, metrics such as the velocity, runout height, overall landslide

area, and volume constitute standard outputs of such a modeling approach (see, van den Bout et al., 2021b, a). However,

these models are often constrained to single slopes or catchments because of the spatial data requirements on geotechnical25

parameters. This limitation has stimulated the geoscientific community to develop data-driven models instead (Van Westen

et al., 2006). These are much more versed to be extended over large regions because, rather than requiring specific geotechnical

properties, they can rely on terrain attributes and remotely sensed data acting as geotechnical proxies (Van Westen et al.,

2008; Frattini et al., 2010). However, in doing so, the geoscientific community has almost exclusively focused on assessing

where landslides may occur, as temporal landslide data was hardly available. This notion is commonly referred to as landslide30

susceptibility (Reichenbach et al., 2018; Titti et al., 2021). As for the lesser number of publications focused on estimating when

or how frequently landslides may occur at a given location, the community has produced a number of near-real-time predictive

landslide models for rainfall (Intrieri et al., 2012; Kirschbaum and Stanley, 2018; Ju et al., 2020) and seismic (Tanyaş et al.,

2018; Nowicki Jessee et al., 2018) triggers. With regard to characteristics such as velocity, kinetic energy and runout, albeit

fundamental to describe a potential landslide threat (Fell et al., 2008; Corominas et al., 2014), these are currently impossible35

to be data-driven-modeled because no observed dataset of landslide dynamics exists to support the modelling and predicting

paradigm of an Artificial Intelligence (AI). Guzzetti et al. (1999) proposed to alternatively model landslide areas, which can

be easily extracted from a polygonal inventory. Nevertheless, the first spatially-explicit models able to estimate landslide areas

have been recently proposed by Lombardo et al. (2021); Zapata et al. (2023). In their work, the authors exclusively estimated

the potential landslide size at a given location without informing whether the given location would have been susceptible in the40

first place. This limitation has been further addressed by Bryce et al. (2022) and Aguilera et al. (2022), implementing models

that couple susceptibility and landslide area prediction together. Nevertheless, even in these cases, the absence of the temporal

dimension in their work implies that no current data-driven model is capable of solving the landslide hazard definition (Guzzetti

et al., 1999), jointly estimating where, when (or how frequently) and how large landslides may be in a given spatio-temporal

domain. Apart from spatial modelling, temporal aspects of landslides are also addressed in works of Samia et al. (2020); Ozturk45

et al. (2021).

The present work expands on the data-driven literature summarized above by proposing a space-time deep-learning model

based on an Ensemble Neural Network (ENN) architecture. Neural Networks (NN) are not new to the landslide literature,

although they have found the spotlight so far mostly for automated landslide detection (Catani, 2021; Meena et al., 2022),

monitoring (Neaupane and Achet, 2004; Wang et al., 2005) and for landslide susceptibility assessment (Lee et al., 2004; Catani50

et al., 2005; Gomez and Kavzoglu, 2005; Grelle et al., 2014; Montrasio et al., 2014; Catani et al., 2016; Nocentini et al., 2023).

Here, the main difference is that our ENN is built as an ensemble made of two elements, i.e., a landslide susceptibility classifier

and a landslide density area regression model, both simultaneously defined over the same spatio-temporal domain. Thanks to

the open data repository of Kincey et al. (2021), we tested our space-time ENN complying for the first time with the landslide

hazard definition (as per Guzzetti et al., 1999).55
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The manuscript is organized as follows: Section 2 describes the data we used; Section 4 summarizes how we partitioned the

study area; Section 5 lists the predictors we chose; Section 6 details our space-time ENN architecture; Section 7 reports our

results, which are then discussed in Section 8, and Section 9 concludes our contribution with an overall summary and future

plans.

2 Study area and landslide inventory60

The 2015 Gorkha (Nepal) Earthquake is one of the strongest recent earthquakes in South Asia, and specifically along the

Himalayan sector (e.g., Kargel et al., 2016). The Mw 7.8 mainshock occurred on 25th April 2015, and together with a sequence

of aftershocks, it was responsible for triggering more than 25,000 landslides (Roback et al., 2018). The ground motion did not

only affect the Nepalese terrain right after the earthquake through co-seismic landslides, but its disturbance increased the

landslide susceptibility in the following years, a phenomenon commonly referred to as earthquake legacy (Jones et al., 2021;65

Tanyaş et al., 2021a). The legacy of the Gorkha earthquake has been recently demonstrated by mapping a multi-temporal

inventory, which has been publicly shared by Kincey et al. (2021). The authors mapped landslides across the area shown in

Figure 1 from 2014 to 2018, including the co-seismic phase, as well as all pre-monsoons and post-monsoons seasons, with an

approximate temporal coverage of six months. They used a time series of freely available medium-resolution satellite imagery

(Landsat-8 and Sentinel-2) and aggregated the resulting landslide areas at the level of a 1 km squared lattice. Overall, they70

mapped three pre-seismic and seven post-seismic landslide inventories in addition to the co-seismic one. In this work, we

excluded three pre-seismic inventories and selected the inventories from April 2015 onward because the effect of the ground

motion and its legacy effect is present only after the event. As a result, from the gridded database by Kincey et al. (2021), we

extracted a total of eight landslide inventories.
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Figure 1. Study area defined within the cyan polygon, where Kincey et al. (2021) mapped the multitemporal landslide inventories upon

which we based the analysis in this work. The Beach Ball shows the moment tensor of the energy release from 2015 Gorkha Earthquake.

Since the landslide information was aggregated at a 1 km resolution, it is not possible to disentangle single landslides, one75

from the others. Thus, each 1 km grid reports the whole landslide area mapped by the authors each time without excluding

the footprint of previous failures. For this reason, we had to include a pre-processing step where each temporal replicate was

re-calculated and re-assigned with the difference in landslide area density between two original subsequent inventories. In the

attempt to focus on newly activated landslides, we have then considered only grid cells with an increase in landslide area. The

interpretation here is that an increase with time implies either newly formed landslides or re-activated ones. Conversely, the80

grids where the landslide area diminished with respect to their previous counterpart were assigned with a zero value under the

assumption that no landslide took place, but rather vegetation recovery was responsible for the estimated change. The resulting

temporal inventory at different time periods over the 1 km grid is shown in Figure 2.
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Figure 2. Landslide Area Density (% in a 1 km2 grid) calculated as the difference between two consecutive inventories mapped with different

time ranges provided by Kincey et al. (2021). The colorbar is saturated between 2 and 60 % because there are very few grid cells with such

landslide area density in the data.
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3 Geological context85

Geology largely controls the landslide initiation and flow, and thus, it is commonly used as part of landslide susceptibility

studies (Fan et al., 2019). In the context of this experiment, the majority of the study area (9%) is classified as Siwalik for-

mations, followed by the Himal group and a combination of many river formations such as Seti and Sarung Khola formations

(Dahal, 2012). The Siwalik Formation is mostly a Molasse deposit of the Himalayas, consisting of sandstone, mudstone, shale

and conglomerate. The river formations that predominantly outcrop in the middle Himalayas are a combination of Schist,90

Granite, Gneiss, Phyllite, and Quartzite. The upper Himalayan region consists instead of a combination of Schist, Gneiss,

Migmatites, and Marbles (Upreti, 2001).

This general overview is summarized in the geological map by Dahal (2012). However, this map does not cover a substantial

portion of the upper Himalayas, where the landslide multi-temporal inventory mapped by Kincey et al. (2021) includes many

landslides. Therefore, this map is largely unsuitable for testing a data-driven model aimed at explaining the landslide hazard95

associated with the abovementioned inventory.

A second geological map covers the Nepalese territory, this being made by Dahal (2012). However, it is limited to a very

coarse resolution (1:1,000,000) and only reports information about the formations rather than the associated material. Even

if one would extrapolate the respective rock types from the literature, (Upreti, 2001), such formations only summarize the

complexity of the Himalayan landscape in a few classes, thus making it of limited use in the context of data-driven landslide100

modeling. The Department of Mines and Geology of Nepal is currently collating all the information with the intent of producing

a detailed geological map at a 1:50,000 scale. However, this is a work in progress that still misses most of the study areas

considered in this study.

This majors limitations affected our ability to consider geology in this contribution. Therefore, albeit we are aware of its

relevance in any landslide study, geological information will not be explicitly included as a predictor in the modeling protocol105

presented below.

4 Selection of mapping units

To partition our study area, we use the same mapping unit defined by Kincey et al. (2021). Because the authors aggregated the

landslide information on a 1× 1 km2 square grid, our model targets are defined within the same lattice structure. As for the

definition of the predictor set, unlike current data-driven practices where medium resolution mapping units are assigned with110

the mean and standard deviation of the predictors under consideration (Ardizzone et al., 2002; Schlögel et al., 2018), here we

exploit the NN structure to treat each predictor as an image. In other words, each 1× 1 km2 square grid was not summarized

with its mean and standard deviation values, but rather, we provided the entire spatial distribution of predictors as an image

patch to the CNN model, which is capable of reading image data.

Only feeding a single grid structure to the NN would neglect any spatial dependence coming from neighboring areas (Glenn115

et al., 2006; Vasiliev, 2020). Since landslides are dynamic phenomena, it is essential to inform the model about how the

landslide distribution changes across the neighboring landscape, as well as the characteristics of the neighborhood under con-

sideration. To do so, we extended the spatial vision of our ENN by creating two additional sets of lattices, each encompassing
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sixteen 1 km grids, in a 4× 4 patch. Figure 3 further explains the mapping unit structures, wherein in panel (a), we can ob-

serve that the 1 km red polygonal lattice created by Kincey et al. (2021) contains 32× 32 pixels of the underlying terrain120

characteristics.

The subplot (b) shows how each patch is generated through the green boxes containing 16 inventory grids. Each box will

later be used as the training patches in the ENN, which in turn implies a 128× 128 pixels structure (32 pixels × 4 = 128) as

input data. The model will then output 16 inventory grids, following the same data structure expressed at the 4× 4 patch level.

Notably, if we had used the single patch arrangement shown in Figure 3b, then the landscape characteristics along the edges of125

each patch would have been lost.

Therefore, we also produced a second patch arrangement, identical to the first but shifted by two kilometers to the east and

two kilometers to the south. This operation returned the blue patches shown in Figure 3c. In this way, the total data volume is

also increased, providing multiple terrain and landslide scenarios defined over the different spatial data structures.

Figure 3. Panels showing the various mapping units structures: (a) the covariate and existing inventory grid structure, with 1 × 1 km. grid

with 32 × 32 pixels of terrian image in the background (b) the patching of 4x4 inventory grid with 4 × 4 km. grid and (c) the shifted patch

structure with similar grid structure as (b).

Note that these spatial manipulation procedures are quite common for Convolutional Neural Networks (e.g., Amit and Aoki,130

2017). Here, we have simply adapted them in the context of the gridded structure defined by Kincey et al. (2021).

5 Predictors

The predictor set we chose features a number of terrain attributes, as well as hydrological and seismic factors. These predictors

are selected based on their influence on landslides, which is observed by many existing works as represented in the table 1. Our

assumption is that their combined information is able to explain the distribution of landslide occurrences and area densities135

(the combined targets of our ENN) both in space and time. These predictors are listed in Table 1, graphically shown in Figure

4. Below, we report a brief explanation to justify their choice.
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Table 1. Predictors’ summary

.Type Covariate:Acronym | Unit Reference

Morphometric (30 m SRTM) Slope (Slope | degrees) (Zevenbergen and Thorne, 1987)

Morphometric (30 m SRTM) Elevation (Elevation | meters) –

Morphometric (30 m SRTM) Northness (Northness | unitless) (Steger et al., 2016)

Morphometric (30 m SRTM) Eastness (Eastness | unitless) (Steger et al., 2016)

Morphometric (30 m SRTM) Profile Curvature (PRC | m−1) (Heerdegen and Beran, 1982)

Morphometric (30 m SRTM) Planar Curvature (PLC | m−1) (Heerdegen and Beran, 1982)

Morphometric (30 m SRTM) Topographic Wetness Index (TWI | unitless) (Sörensen et al., 2006)

Precipitation (∼5km CHRIPS) Maximum daily rainfall (Max. Precip.| mm/day) (Funk et al., 2015)

Precipitation (∼5km CHRIPS) 95% CI rainfall in the inventory period (95% CI Pre-

cip. | mm/day)

(Funk et al., 2015)

Seismic shaking (1 km USGS) Maximum Peak Ground Acceleration from main event

and major aftershock (Max PGA | m/s2)

(Worden and Wald, 2016)

Seismic shaking (1 km USGS) St. Dev. Peak Ground Acceleration (1Std. PGA | m/s2) (Worden and Wald, 2016)

Distance to River Distance to River (Dist2Riv | meters) –

Monsoons after Earthquake (count) Monsoons after the Earthquake (Monsoons | year) –

The Slope carries the signal of the gravitational pull acting on potentially unstable materials hanging along the topographic

profile (Taylor, 1948). Elevation, Eastness and Northness are common proxies for a series of processes such as moisture,

vegetation and temperature (Clinton, 2003) and their effect on slope stability (Neaupane and Piantanakulchai, 2006; Whiteley140

et al., 2019; Loche et al., 2022). As for the Planar and Profile Curvatures, these are known to control the convergence and

divergence of overland flows (Ohlmacher, 2007). This hydrological information is also supported by Topographic Wetness

Index and Distance to River (Yesilnacar and Topal, 2005). To these finely represented predictors, we also added a number

of coarser ones, representing the potential triggers behind a landslide genetic process, namely, Rainfall (its Maximum value

(per pixel) and 95% Confidence Interval (CI) (per pixel) within the inventory time-frame, calculated from daily CHIRPS data145

spanning between two subsequent landslide inventories; Funk et al., 2015) and Peak Ground Acceleration (its Maximum value

from between mainshock and aftershock and their respective standard deviation estimated using empirical ground motion

prediction equations, available through the ShakeMap system of the United States Geological Survey (USGS); Worden and

Wald, 2016).

The PGA is empirically estimated from local ground motion recording stations, and it has been shown to correlate to the150

Gorkha coseismic landslide scenario (Dahal et al., 2023). Similar to PGA, Peak Ground Velocity (PGV) could also be used

in this case to model the landslides as they are better predictors in some cases(Maufroy et al., 2015; von Specht et al., 2019).

However, very few stations actively recorded the Gorkha earthquake. This is the reason why the differences in the spatial
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patterns of the PGA and PGV available in the USGS ShakeMap system are negligible (Hough et al., 2016). Therefore, with the

objective of explaining the coseismic landslide scenario over such a large study area, any of the two shakemaps would produce155

similar results.

To these spatially and temporally varying predictors, we also added the monsoons’ count after the Gorkha Earthquake to

inform the model about the combined effect of landscape characteristics, earthquake legacy and meteorological stress.

The code to prepare these datasets using the Google Earth Engine is available at link.

6 Neural networks160

6.1 Model architecture

To contextually estimate landslide susceptibility and area density, we designed an NN with a multi-output design, relying on

the same 1 km gridded data input. In short, the first model component estimates a “pseudo-probability” via a sigmoid function,

whereas the second component regresses the area density information against the same set of predictors used in the previous

step.165

The NN design is shown in the Figure 5. The susceptibility block is modified from the U-Net model (Ronneberger et al.,

2015) with the backbone of Resent18 (He et al., 2015), where the model processes input information through the 18 blocks of

Convolution, Batch Normalization (Ioffe and Szegedy, 2015a), dropout, Rectified Linear Unit (ReLU) and Max pooling (Wu

and Gu, 2015) with a total 23,556,931 number of trainable parameters which are variables that need to be optimized during the

training process. The convolution layer in each block convolved with the 3×3 window, and it was initialized with the Glorot170

uniform initialization function (Glorot and Bengio, 2010). The convolution function was followed by a batch normalization

which works as a regularization function. This prevents the model from overfitting, and it is followed by a dropout layer.

The dropout layer randomly de-activates 30% of the neurones in the convolution layer, such that the model does not overfit.

Following this, the feature space passes through the ReLU activation function, which allows for non-linearity in the model and

finally, a max pooling layer is added to reduce the spatial dimension of the feature space.175

The decoder part consists of the U-Net structure, but unlike the conventional U-Net model, it produces an output scaled down

by a factor of 8. The schematic design of the model is shown in Figure 6. To understand the spatial dependence between the

different inventory grids (1× 1 km2 grid), we have used a 4× 4 aggregation patch as input for the susceptibility block, which

is equivalent to 128× 128 input pixels. After receiving 128× 128 pixels, the convolution operation learns the contribution of

physical properties such as earthquake and rainfall intensities as well as terrain characteristics to produce the susceptibility in180

a 4× 4× 1 batch of 1× 1 km2 grids. We stress here that we specifically chose to use a 32× 32 pixel structure per 1 km grid

to convey all the possible information to the model and provide flexibility to the neural network to learn relevant information.

As a result, the model can extract the relevant information it needs from the distribution of 32× 32 pixels, rather than using

arbitrary summary statistics such as the mean and standard deviation as per tradition in the geoscientific literature (e.g., Guzzetti

et al., 2000; Lombardo and Tanyas, 2020). In other words, the model can learn by itself: (1) scanning 32× 32 pixel images185

corresponding to single 1 km grid cells and (2) matching the image characteristics to the landslide presence/absence labels.
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Figure 4. Predictors used for training the Ensemble Neural Network. The Max Precip. is one example of the maximum daily rain calculated

for each inventory. The same applies to the 95% CI Precip. calculated as the difference between the 97.5 and 2.5 percentiles of the daily

rainfall distribution. Max PGA and 1Std PGA are respectively the maximum and one standard deviation calculated from the Peak Ground

Acceleration maps of the main and after shocks. Dist2Riv is the Euclidean distance from each 30m pixel to the nearest streamline. PLC, PRC

and TWI are acronyms for Planar Curvature, Profile Curvature and Topographic Wetness Index.
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Figure 5. Designed landslide susceptibility and area density prediction model.

Figure 6. Susceptibility part of the model designed with U-Net like structure.
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The area density block also relies on a 1 km grid structure. However, we did not introduce the 4×4×1 neighborhood because

the landslide presence/absence data presents some spatial pattern beyond the extent of a 1 km grid. Conversely, the landslide

area data does not present obvious spatial clusters of small or large densities.

Furthermore, it is also evident that landslides are discrete phenomena in space. This means that a large area density can be190

estimated at a 1 km grid, but its neighbor may not have suffered from slope failures (area density = 0). Conveying this “salt

and pepper” spatial structure to the U-Net (via a 4× 4 neighboring window) tasked with regressing continuous data would

negatively affect the model (unreported tests).

To address this issue, we reshaped the input data to a 16×32×32×13 shape, where 16 inventory grids, each associated with

13 predictors of 32× 32 pixel size, are present. The area density block is made of six dense sub-blocks, encompassing fully195

connected, batch normalisation (Ioffe and Szegedy, 2015a) and dropout layers (Srivastava et al., 2014a). Before passing the

data to the dense block, we added one Convolution block consisting of Convolution, Batch Normalization (Ioffe and Szegedy,

2015a) as well as Rectified Linear Unit and Max pooling (Wu and Gu, 2015) layers to extract the features from the input

patches. Once both the area density and the susceptibility are estimated, the area density needs to be reshaped to match the

data structure of the susceptibility component. To then generate landslide hazard estimates, as per the definition proposed by200

Guzzetti et al. (1999), we added a step where the pseudo-probability of landslide occurrence is multiplied by the landslide area

density.

Notably, the developed model is spatio-temporal because it is built to explain the variability of the landslide hazard in space

and time. However, the convolution layers used in this modelling approach are of a 2D nature. Therefore, the spatial structure

in the data is handled via the 2D CNN, whereas the connection between subsequent spatial layers is not explicitly built-in. The205

landslide hazard definition includes the concept of return periods to treat the temporal component, where for a given triggering

situation of a given return period, the landslide hazard is estimated. The concept of return time could theoretically included as

part of the architecture presented here. However, the length of the multi-temporal inventory is relatively short. Thus, our model

should not be considered suitable for long-term prediction, but rather, its validity is confined to the spatio-temporal domain

under consideration or very close to it, both in space and time (Wang et al., 2023). In other words, it should not be considered210

for generating long-term predictions under climate change scenarios.

6.2 Experimental setup

Binary classifiers are quite standard in machine/deep learning. Thus, for the susceptibility component, we opted for a focal

Traversky loss function (FTLc, see equation below for clarity), as Abraham and Khan (2018) have shown this measure to be

particularly suited for imbalanced binary datasets such as ours. The major reason to choose this loss function is the dominant215

absence of landslides in the dataset, complemented by much fewer cases (≈ 10%) where slope failures occurred. This might

bias the model result and lead to a wrongly trained model if the loss function is not suitably implemented to handle this

imbalance. The definition of Focal Traversky Loss can be denoted as:
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FTLc =
∑
c

(1−TIc)
1
γ ,

T Ic =

∑N
i=1 picgic + ϵ∑N

i=1 picgic +α
∑N

i=1 picgic +β
∑N

i=1 picgic̄ + ϵ
,

(1)

where, γ is focal parameter, pic is the probability that the pixel i is of the Landslide class c and pic̄ is the probability that the220

pixel i is of the non-landslide class c̄. The same holds for gic and gic̄. α, and β are the hyperparameters which can penalize false

positives and false negatives and ϵ value was set to 1−7. Furthermore, c represents the landslide presence class in the landslide

classification problem; this could be represented by any positive integer in the case of multiclass classification problems. As

for FTLc, it represents the Focal Traversky Loss for binary classification, and TIc is the Traversky Index.

To train the susceptibility component of the model, we trained a standard U-Net equipped with an early stopping functionality225

for a total of 500 epochs. The stopping criterion was set to detect overfit that may last for over ten epochs. The overall data was

then randomly split into training and testing sets to monitor the U-Net learning process.

As for the area density component, we opted for a loss function expressed in terms of mean absolute error (MAE, see

equation below for clarity), following the recommendations in Qi et al. (2020). MAE is denoted as:

MAE=

∑n
i=1 |yi − ŷi|

n
(2)230

where, yi is the observed area density and the ŷi is predicted area density in the i− th

pixel, and n is the total number of samples in one batch.

To train the area density component, the imbalance in zeros and ones hindered the optimisation process because the mean

absolute error function did not perform well when most of the landslide densities were zeroes. This led to exploding gradients,

returning all zero as the output. To solve this issue, we gradually increased the complexity of the task by subsampling the235

data and transforming the distribution of area density. The process is commonly known as curriculum learning (Wang et al.,

2021), which lets the model learn a simple task at the start, and the process continues by gradually increasing the complexity

of the subsequent tasks, each one linked to the previous one. To do so, we first removed all data points which contained zeros

among the area density 1 km grids. We then log-transformed the target variable to convert the exponential-like distribution to

a gaussian like distribution. Once the data was expressed according to a near-normal distribution, we trained the model for 200240

epochs, including an early stopping criterion. The estimated parameters were set to initialize the subsequent steps. Specifically,

with the initialisation parameters available, we removed the logarithmic transformation and trained the model directly in the

original landslide area density scale. This step was further run over 200 epochs, and the resulting parameters were fine-tuned

to match the overall landslide area density distribution. In other words, we re-introduced the 1 km grids with zero density at

this stage. Ultimately, the data was then randomly divided into 70% for calibration and 30% for validation.245

The models were trained in a machine with 160 GB Random Access Memory, a 32-core AMD Ryzen Threadripper PRO

virtual CPU, and an NVIDIA RTX A4000 GPU. The computational resource used in this case made use of a shared infras-

tructure, with the entire training process taking 30-40% load on the node and taking 35-40 hours, depending on the available
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GPU memory. For the backpropagation, we used the Adam optimiser (Kingma and Ba, 2014), with an initial learning rate of

1e−3, exponentially decreasing every 1000 steps of training. Because simultaneously training a model with two outputs based250

on a large and complex dataset would be extremely difficult to achieve, we opted to train the two elements separately in the

beginning and combine their weights at the end of the learning process to generate a single model. This is then further trained

for a few more steps to optimize the area density component for the non-landslide grids. This approach is commonly known as

ensemble modelling in the data-driven modelling context. The model is trained with a batch size of 16, and the training dataset

is randomly divided into a 30% validation set to check the model convergence at each epoch. The training process also featured255

an early stopping functionality where the model training would stop if the validation loss started to diverge. Simply put, the

model weights were selected at the minimum validation loss to avoid overfitting. The number of convolution blocks, batch

size, and initial learning rate were optimised through a hyperparameter tuning process, whilst other parameters were selected

from the pre-existing models. For the convolution blocks, all the integer numbers of blocks were tested between 6 and 64, and

we found that 18 was the best-suited number of blocks. For the batch size, four different batch sizes were tested (8, 16, 32, 64),260

and the fastest convergence was obtained through a batch size of 16. Moreover, learning rates from 1 to 1e−4 were tested by

decreasing the learning rate by a factor of 10 each time, and we found the initial learning rate of 1e−3 to be the most stable.

6.3 Performance metrics

We used the following performance metrics for susceptibility and the area density components.

6.3.1 Susceptibility component265

To evaluate the model’s performance during the training process and the inference, we used two common metrics, namely

the F1 score (Meena et al., 2022; Nava et al., 2022) and the Intersection over Union (IOU) score (e.g., Huang et al., 2019;

Ghorbanzadeh et al., 2020). We did not use binary accuracy because it is heavily influenced by data imbalance (Yeon et al.,

2010; Li et al., 2022) and can produce high accuracy, even for poor classifications. The F1 score (3) is calculated as:

F1 =
2× precision × recall

precision + recall
,

precision =
TP

TP +FP
, recall =

TP

TP +FN
,

(3)270

where, TP denotes the True Positive, FP denotes the False Positive, TN denotes True Negative and FN denotes the False

Negative in the confusion matrix.

As for the IOU, this is another common metric for binary classifiers, computed as:

IOU =
TP

TP +FN +FP
, (4)

where, TP denotes the True Positive, FP denotes the False Positive, TN denotes True Negative and FN denotes the False275

Negative in the confusion matrix.
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We chose to use the IOU because it is a metric specifically dedicated to highlighting the accuracy in predicting the number of

susceptible pixels and their location in a raster image (Monaco et al., 2020). Furthermore, to visualize how the model performs

at different probability thresholds and what the performance capacity of the model is we also evaluated the Receiver Operating

Characteristic (ROC, Fawcett, 2006) curve. This is generated at varying probability thresholds by computing pairs of True280

Positive and False Positive Rates. Moreover, we calculated the Area Under the ROC Curve (AUC) to evaluate the model’s

performance and to observe if the model overfits (Brenning, 2008; Brock et al., 2020).

6.3.2 Area density component

To evaluate the training process for the landslide area density, we opted to use the MAE (see Eq. 5) to monitor how the algorithm

converges to its best solution, minimising such parameter. During the inference process, we also considered the Pearson’s R285

coefficient Pearson (1895), defined as:

R=

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)
2∑

(yi − ȳ)
2
, (5)

where,R =correlation coefficient, xi = values of the x-variable in a sample, x̄ = mean of the values of the x -variable, yi =

values of the y -variable in a sample, ȳ = mean of the values of the y -variable.

This parameter essentially provides the degree of correlation between two datasets, i.e., the observed and predicted landslide290

density per 1 km grid. A perfect model should have Pearson’s R-value of 1, whereas two totally uncorrelated vectors would

return a Pearson’s R-value of 0.

7 Results

This section reports the model performance, initially from a purely numerical perspective. Later, we will translate this infor-

mation back into maps and evaluate their temporal characteristics.295

Figure 7 offers an overview of the performance our ENN returned for its two components. The left panel reports an AUC

of 0.93, associated with an F1 Score of 0.96 and IOU of 0.95. This predictive performance complies with the classification

performance of outstanding data-driven models (Hosmer and Lemeshow, 2000). In the context of NNs, this is quite common

because such architectures as much as other machine/deep learning tools and advanced statistical methods have proven to be

able to reliably classify a landscape into landslide prone/unstable slopes (e.g., Lombardo et al., 2019; Steger et al., 2021).300

Traditionally, the only missing element is that the vast majority of efforts so far have been spent solely in the context of

pure spatial predictions, whereas the temporal dimension has been explored in a relatively smaller number of multivariate

applications (Samia et al., 2017; Fang et al., 2023). Conversely, the performance of the area density component are far beyond

the few analogous examples in the literature. So far, no spatially nor temporally explicit model exists for landslide area density.

However, four recent articles have explored the capacity of predicting landslide areas (Lombardo et al., 2021; Aguilera et al.,305

2022; Bryce et al., 2022; Zapata et al., 2023). They all returned suitable predictive performance, but still far from the match
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seen in the second panel of Figure 7, between observed and predicted landslide density. There, an outstanding alignment along

the 45 degree line is clearly visible, together with a Pearson’s R coefficient of 0.93 and a MAE of 0.26%. It is important to stress

that such metrics are calculated including the 1 km grids with zero landslide densities, i.e., the validation set in the study area

as a whole. We also computed the same metrics exclusively at grid cells with a positive density, these resulting in a Pearson’s310

R coefficient of 0.92 and a MAE of 0.24%.

At a closer look, we can note a few exceptions, with some observations being strongly underestimated and very few cases

being overestimated. This might be because we used MAE as the loss function. The MAE is a metric tailored towards the mean

of a distribution, and therefore smaller values in the batch may be misrepresented without increasing the MAE. Moreover,

the model is optimized by minimization the MAE. Thus, it places more emphasis on suitably estimating large landslides and315

potentially underestimation the smaller ones. This problem could also have been influenced by the log-transformation step

introduced at the beginning of the training process. This inevitably converted smaller values to very small ones, thus limiting

their influence on the loss function even more. We are sharing this issue with the reader to provide the best description of

a new modeling protocol. However, we should also mention that we consider such misrepresentation a minor problem. In

fact, geoscience and risk science in general, refer to the worst-case scenarios as the prediction target. Here this is expressed320

by very large landslides, which appear to be correctly represented in most cases. Another worst-case scenario may be the

combination of large numbers of medium-sized landslides and their potential coalescing evolution. However, the bulk of the

landslide density distribution is very well represented. This leaves most of the errors confined to the left tail (or very small) of

the landslide density distribution. These correspond to the phenomena from which one would expect the least potential threat

or capacity to create damage, assuming a uniform vulnerability distribution.325

These two plots offer a graphical overview of our ENN performance but they do not convey their signal in space and time.

To offer a geographic and temporal overview of the same information, we opted to translate the match between observed and

predicted values into maps, both for the susceptibility and area density components. Figure 8 shows confusion maps (Titti

et al., 2022; Prakash et al., 2021), where the distribution of TP, TN, FP, FN is geographically presented for the coseismic

susceptibility as well as the following seven post-seismic scenarios. Across the whole sequence of maps, what stands out the330

most is that the TP and TN largely dominate the landscape, with few local exceptions. Notably, aside from the geographic

translation of the confusion matrix, we reported the actual counts in logarithmic scale through the nested subpanels. There, the

dominant number of TP and TN is confirmed once more and a better insight is provided on the model misses (FP and FN).

Figure 9 highlights the mismatch between observed and predicted landslide area densities. Most of the residuals are confined

between -1 and +1 percent, with a negligible number of exceptions reaching an overestimation of -45% and an underestimation335

of +15%. Aside from these outliers, the most interesting element that stands out among these maps is the fact that the residuals

do not exhibit any spatial pattern. They actually appear to be distributed randomly both in space and time.

Having stressed the predictive performance reached by our ENN, in Figure 10, we finally offer a direct overview of the two

outcomes (susceptibility and area density) as well as their product (hazard). Figure 10 reports the co-seismic case only and the

post-monsoon estimates. We opted for this for reasons of practicality and visibility in a quite crowded subpaneled figure. To340

accommodate for the potential curiosity of the readers, we recall here that code and data are open and accessible at this link.

16

https://github.com/ashokdahal/LandslideHazard


Figure 7. Summary of model’s performance for the two components: landslide susceptibility in the left panel and Area Density in the right

panel in the validation data.

Reading these maps should be intuitive, but below we stress the assumptions behind the hazard one, being the first time

such a map has ever been shown. The first column reports the probabilities of landslide occurrence per 1 km grid. The second

column shows the predicted landslide area density for the same 1 km lattice. The product of the two delivers an important

element, where only coinciding high susceptibility and high density grids stand out. The rationale behind this is that large345

probability values of landslide occurrence will be inevitably canceled out whenever multiplied by low area density values. The

same is valid in the opposite case. Large expected densities will be canceled out if multiplied by very low susceptibility values.

Thus, the hazard maps really do inform of the level of threat one may incur at certain 1 km grids and certain times, because

a high hazard value implies that the mapping unit under consideration is not only expected to be unstable but the resulting

instability is expected to lead to a large failure, too.350

The implications of the estimated patterns and considerations in terms of hazard will be further explored in Section 8. To

support such discussions and highlight the link between susceptibility, hazard and their temporal evolution, we opted to plot

their signal via two-dimensional density plots, these being shown in Figure 11.

We can observe an interesting element, attributable to a concept known as earthquake legacy in the geoscientific literature.

In fact, high landslide area density values associated with high susceptibility are quite represented on the coseismic panel and355

the first post-seismic one. However, as time passes, the density and proneness of the landscape appears to be estimated with

lower landslide susceptibilities and densities.
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Figure 8. Confusion Maps offering a cartographic predictive of the performance for the susceptibility component. the TP, FP, FN and TN are

represented in the log scale.
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Figure 9. Maps displaying the pre- and post- monsoon residuals for the area density (expressed as percentages). The residuals are computed

as observed landslide density minus the corresponding predicted values.
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Figure 10. Predicted landslide susceptibility, area density and hazard over time for Post Monsoon seasons only, because those period had

most of the landslide.
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Figure 11. Contour plot of Area Density versus Susceptibility in different time periods showing how the area density and susceptibility are

related to each other. Where, lighter color represents the lower desnity of the values and darker color represents the higher density of the

values. Furthermore, it shows how in different period after the earthquake the area density and susceptibility are distributed over space and

how the range of susceptibility and area density changes.
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8 Discussion

In this section, we discuss the model’s performance, applicability, limitations and necessary future developments in two sub-

sections containing the supporting and opposing arguments.360

8.1 Supporting arguments

The model results and the observations show that the deep learning-based methods perform well in predicting landslide suscep-

tibility and area density through a joint modelling approach. Such models can obviously provide much more information than

modelling only susceptibility (Lombardo et al., 2021). Only using the susceptibility information is blind to landslide character-

istics, such as how many landslides may manifest or how large they may become once they start moving downhill (Di Napoli365

et al., 2023). Thus, the combined information of which slope may be considered unstable and the expectation on the landslide

can become an important source of information not only for hazard assessment but even for risk reduction and management

practitioners, once combined with the elements at risk.

Our ENN has shown the capacity to assess the two core elements, and interesting considerations can be made about its

outcome. Figure 8 shows that each inventory mostly produced True Positives and Negatives across the whole study site. More370

importantly, the number of false negatives was almost negligible. As for the False Positives, their number is reasonable and

highlights locations where landslides have not manifested yet but may still occur in the future. As for the area component,

Figure 9 shows that the patterns of the residuals appear quite random both in space and time, thus fulfilling the ideal ho-

moscedasticity requirements of a data-driven model. We can also stress that most of the residuals away from a few percentage

points are confined towards negative values. This implies that our model overestimates the landslide area in a few isolated375

cases. However, similarly to the point raised for the FP in Figure 8, this outcome is to be expected. A negative residual indi-

cates a location where the observed landslide area is lower than the predicted one. As most of the study site is characterized by

grid cells where landslides did not occur, a negative residual points out at locations that may not have exhibited landslides in

the first place but whose geomorphological characteristics still indicate a likely release of a relatively larger unstable mass in

the future.380

Ultimately, Figure 10 shows the constructive and destructive interference between the susceptibility and area density signals.

This leads to isolating landslide hazardous locations, which appear to be mostly located along the highest portions of the Hi-

malayan range under consideration. There, a greater hazard is to be reasonably expected, for the higher relief is associated with

higher gravitational potential and thus with a greater conversion into kinetic energy as the given landslide triggers, propagates,

and finally halts.385

An interesting by-product of our ENN can also be seen in Figure 11. There, the high hazard levels estimated for the first two

landslide inventories are shown to decay with time. Moreover, we can also observe that the susceptibility and area density are

not necessarily correlated, meaning that the probability of landslide occurrence is not directly correlated to its size. This was

also visible in the raw data shared by Kincey et al. (2021). Such a decay supports the notion of earthquake legacy effects on

landslide genetic processes (Ozturk, 2022), something still under debate in the geoscientific literature (Tanyaş et al., 2021b).390
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Our output could bring additional information on this topic, supporting the scientific debate on landslide recovery (the time

required for a given landscape to go back to pre-earthquake susceptibility conditions) by observing the predicted susceptibility

change over time. Overall, multi-temporal landslide inventories and various associated parameters (e.g., number, size, area or

volume of landslides) have already been used to explore landslide recovery in post-seismic periods (eg., Tanyas et al., 2021).

However, this has usually been done at a very generic and broad scale, leaving the slope scale usually out of the analytical395

process. Therefore, we see an added value in our model as it provides a comprehensive evaluation of landslide occurrences and

their size. It is worth noting that examining the landslide recovery is beyond the scope of this research. Yet, something worth

sharing with the readers is that the decay we observe appears to have slowed down in 2017 and 2018, with a slight increase in

the number of landslides, susceptibility, area density, and hazard. During those years, though, Kincey et al. (2021) could not

regularly map landslides as they previously did. Thus, both pre-monsoon seasons in 2017 and 2018 were mapped on a longer400

time window than the authors did in previous years, slightly inducing a temporal bias in the model.

Another element worth noting is that landslides across any given landscape are rare events. Thus, the number of presences

will always be much smaller than the absences. This creates imbalanced data sets, which are often not ideally modeled in the

deep learning context (see, Johnson and Khoshgoftaar, 2019). In turn, imbalanced data sets limit the use of traditional metrics

such as accuracy and the use of loss functions such as Binary Cross Entropy, because the latter will produce high number of405

false negatives. We addressed this problem by adopting a Focal Taversky loss for the susceptibility component (Abraham and

Khan, 2018). As for the area density component, we also faced some technical issues. Overall, around 85% of the 1 km grids

cells had a zero density value assigned to them (no landslides). In addition to this issue, the area density distribution is quite

positively skewed, and regression tasks in deep learning have been mostly tested in the context of Gaussian or near-Gaussian

distributions. To solve this problem, we had to split the modeling routine into a series of intermediate operations. First, we410

removed all zeros and used logarithmic transformation to shape the data according to a normal distribution. From this, we

trained the first stage of our area density component. Once the model converged to its best solution in the log-density domain,

we interrupted the training procedure, removed the log transformation and further trained our model. This approach bypassed

the need to implement even more complex NN architectures able to handle heavy-tailed distributions typical of extreme value

theory (Weng et al., 2018).415

An important factor to consider in a deep learning-based modelling approach is also the model overfitting and its general-

ization. Usually, large models can easily overfit and to avoid this, we have employed three major approaches. First, we used

model regularization by adding batch normalization and dropout layers, according to standard deep learning practices (Sri-

vastava et al., 2014b; Ioffe and Szegedy, 2015b). Secondly, we included an early stopping to halt the training process when

divergence is observed in 30% random validation data. Up to this point, generalization has not been checked yet. This is420

actually achieved by further testing over 50% of the unseen data from which all the reported metrics are computed.

8.2 Opposing arguments

A major limitation we would like to recall relates to geological data availability. As discussed in the section 3, no detailed

geological map covers the area where (Kincey et al., 2021) mapped landslides, nor does the only available alternative provide
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enough geological classes to be meaningful in a data-driven context. In fact, the few available geological classes in Dahal (2012)425

present analogous proportions of landslide presence/absences and density data. This is mainly because the few geological units

necessarily cover very large extents due to the coarse mapping resolution. In turn, this makes the available geology maps

noninformative for the presented landslide modeling protocol. However, it is important to mention that a geological, or even

better, a lithotechnical map constitute a precious layer of information for any engineering geological applications as they

control landslide initiation and size. This is the reason why we consider our space-time ENN as it is currently valid only for the430

area we tested it for. And we would recommend re-adapting it in case of new targets. For instance, another source of potentially

relevant information could be the distance to active faults, which may be responsible for fracturing, fissuring and rock strength

degradation in general. This being said, our model still produced outstanding performance (Hosmer and Lemeshow, 2000)

within the context of the Nepalese landscape under consideration, although its validity elsewhere still needs to be verified.

Another limiting factor we faced was the selected multi-temporal landslide inventory. First, a sequence of three years after435

the earthquake may not be enough to display the potential of space-time landslide hazard models fully. Secondly, due to the

resolution of satellite imagery used for mapping, some small landslides could have been omitted. To address the first issue,

we have limited our predictor covariates to the temporal extent for which the mapping was carried out. This largely limits

our model predictions to the time when ground truth data is available and verifiable. This model can capture the spatial and

temporal variations in the landslide occurrence and size and, therefore, can be used to understand the landslide hazard for440

different return periods. However, we have not calculated the landslide hazard for different return periods specifically because

we did not have a sufficiently long landslide occurrence sequence. This could be further improved in subsequent studies as this

work mainly focuses on introducing our model as a novel methodological tool. The second limitation related to the potential

omission of smaller landslides is much more difficult to address mainly because, as universal functional approximators, the

deep learning models can only learn based on ground truth data. Therefore, this limitation cannot be removed. However, we445

recall that our model looks into a 1×1 km grid for the area density and presence and absence of the landslides. Therefore, the

presence/absence of a landslide is not affected if a smaller landslide occurs together with larger and visible landslides, and it

becomes a problem only when a small landslide occurs without a visible landslide within a 1×1 km grid. In other words, the

mapping units of the susceptibility component should be assigned with a presence value, even if in a 1 km2 grid, a few small

landslides may be missed. As for the area density, the effect on landslide area density may be more pronounced. However,450

as the landslide one may miss is small to very small in size, the effect may still be expressed within the uncertainty range

of our model, potentially leading to minor omissions. This being said, outside the scope of this manuscript where this ENN

architecture is introduced, we recommend future users to select an even more complete and long-term multitemporal inventory.

From the pure methodological perspective, even though the model produced outstanding results, there is still much room

for improvement. As mentioned before, we addressed the heavy-tailed density distribution by using a log-transformation and455

L1 losses to measure the model convergence. In other words, we used a negative log-likelihood of a normal distribution to

build our model, which in turn inherently assumes a normal distribution of the error. However, due to the fact that the area

density follows an extreme value distribution in its right tail, instead of a model built on a log-transformation and then re-

trained on the original density scale, a more straightforward procedure would directly use the original data distribution and
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make use of performance metrics or losses that are suitable for the considered data. However, due to a lack of mature research460

on existing methods for using extreme value theory with deep learning, we could not use such an approach. For the further

research, for instance, one of the possible approaches could be the integration of extreme value distributions (Davison and

Huser, 2015) within our regression model. A similar procedure has been recently proposed to model wildfires (Richards et al.,

2022; Cisneros et al., 2023).

Moreover, our model relies on a gridded partition of the geographic space under consideration. This lattice has two main465

elements that call for further improvements. The first is related to the size of the lattice itself. A 1 km grid cell is quite far

from the spatial partition required to support landslide-risk-reduction actions. Thus, the current model output can offer a far

richer information compared to the sole occurrence probabilities. However, to be actually useful for territorial management

practices, the scale at which we trained should be probably downscaled at a finer resolution. The second element where our

ENN can be further improved in terms of spatial structure has to do with the geomorphological significance of a lattice when470

used to model landslides. Such geomorphological processes in fact, do not follow a regular gridded structure. In other words,

when geoscientific go to the field, they do not see grids, whether they are few centimeter or the 1 km scale of our model.

What a geomorphologist sees is a landscape partitioned into slopes. Slopes are also the same unit geotechnical solutions aim

to address. Thus, an improvement to our ENN could involve moving away from a gridded spatial partition and towards more

geomorphological-oriented mapping units such as slope units (Alvioli et al., 2016; Tanyaş et al., 2022b), sub-catchments or475

catchments (Shou and Lin, 2020; Wang et al., 2022). Moreover, the modelling approaches could also be further improved by

the addition of landslide trigger classification (see. Rana et al., 2021) which could inform the model about which parameter

(either PGA or rainfall) is responsible for causing landslides in this particular predictive context.

It is important to stress here that the structure of a Convolutional Neural Network mostly requires gridded input data. Thus,

the extension towards irregular polygonal partitions such as the ones mentioned above would also require an adaptation of our480

ENN towards graph-based architectures (Scarselli et al., 2008).

Aside from the technical improvements we already envision, a key problem we could not address is the lack of detailed

spatio-temporal information on roadworks. Landscapes, where roads are built, may relapse through pronounced mass wasting

(Tanyaş et al., 2022a). Nepal is known for building small roads without accounting for the required engineering solutions

to maintain slope stability (McAdoo et al., 2018). For instance, Rosser et al. (2021) highlights that the elevated landslide485

susceptibility captured in post-seismic periods of the Gorkha earthquake could be partly associated with road construction

projects. Thus, landslides trigger on steep slopes due to human interference, which we could not include in our model. During

the very first phase of our model design, we actually tried to map those roads using freely available satellite images such as

Sentinel 2 and PlanetScope. However, because the spatial resolution of those satellites is relatively coarse and the typical “self-

made” roads are quite small (2-3 meters in width), we could not automatize the road-mapping procedure to match our ENN490

spatio-temporal requirements. Therefore, rather than conveying wrong information to the model, we opted not to introduce

road-network data to begin with. This is certainly a point to be improved in the future, not only for the Nepalese landscape but

for any mountainous terrain where anthropogenic influence may bias the spatio-temporal distribution of landslides. Another

parameter which could be added to inform our model about anthropogenic disturbances could be informal human modifications,
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which have an influence on landslide trigger (Ozturk et al., 2022). Particularly, in this case, mountainous regions of Nepal do495

not have significant urban influences, and we opted not to include them. However, we recommend readers to include such

features whenever necessary depending on the study sites.

We stress that the vast majority of Neural Networks are tailored towards solving prediction tasks, and our ENN essentially

offered the same outstanding performances reported in many other deep learning applications. However, this architecture makes

it very difficult to understand the causality behind the examined physical process. As our goal is to move towards a unified500

spatio-temporal hazard model, causality may not be a fundamental requirement at this stage. However, we envision future

efforts to be directed towards more interpretable and causal machine/deep learning.

Ultimately, more can be done to clarify how our ENN should and should not be used, at least in its present form. For instance,

with the current or even higher temporal frequency, our output could be used as part of parametric insurances (Horton, 2018) or

large-scale risk reduction planning (Prabhakar et al., 2009). However, it is surely unsuitable for infrastructure planning (Dhital,505

2000) for the 1 km2 resolution is far too coarse to be useful for detailed scale design.

9 Conclusions

We present a data-driven model capable of estimating where and when landslides may occur, as well as the expected landslide

area density per mapping unit, a proxy for intensity. We achieved such a modeling task thanks to an Ensemble Neural Network

architecture, a structure that has not yet found its expression within the geoscientific literature, making this model the first of510

its kind. The implications of such a model can be groundbreaking because no data-driven model has provided an analogous

level of information so far. The predictive ability of the model we propose still needs to be explored, isolating certain types

of landslides, tectonic, climatic and geomorphological settings. If similar performance is confirmed, then this can even open

up a completely different toolbox for decision-makers to work with. So far, territorial management institutions rely almost

exclusively on susceptibility maps in the case of large regions and for long-term planning. The dependency on the concept of515

landslide susceptibility is also valid for regional and global organizations providing near-real-time or early warning alerts for

seismically or climatically triggered landslides. The model we propose can potentially link these two elements and provide a

piece of even richer information, exploiting its predictive power away from the six-month time resolution we tested here and

more towards near-real-time or daily responses for various scale applications.

We conclude by stressing once more that we share data and codes in a GitHub repository accessible at this link to promote520

reproducibility and repeatability of the analyses presented in this work.

Code and data availability. The data and code for the research can be accessed via https://github.com/ashokdahal/LandslideHazard
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