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Abstract. Black Carbon containing particles
:::::::
Particles

:::::::::
containing

:::::
Black

:::::::
Carbon (BC) are strong lightabsorbers

:::::::
strongly

::::::
absorb

::::
light, causing substantial radiative heating of the atmosphere. The climate-relevant properties of BC are poorly constrained

in high-elevation
::::::::::
high-altitude

:
mountain regions, where numerous

::::
many

:
complex interactions between BC, radiation, clouds

and snow have important climate implications. This study presents two-year measurements of BC microphysical and optical

properties at the research station of Pic du Midi (PDM)
:::::::
research

::::::
station, a high-altitude observatory located at 2877 m above5

sea level in the French Pyrenees. Among the worldwide existing long-term monitoring sites , PDM has experiences limited

influence of
:
in

:::
the

::::::
world,

::::
PDM

::
is
::::::
subject

::
to

::::::
limited

::::::::
influence

::::
from

:
the planetary boundary layer (PBL), making it an appropriate

:
a
:::::::
suitable site for characterizing free tropospheric

:::
the

:::
BC

::
in

:::
the

:::
free

::::::::::
troposphere

:
(FT)BC.

:
.

The classification of the dominant aerosol type using the
::::::
aerosol

:
spectral optical properties of the aerosols indicates that

BC was the predominant absorption component of aerosols
::
is

:::
the

:::::::::::
predominant

::::::
aerosol

:::::::::
absorption

::::::::::
component

:
at PDM and10

controlled the variation of
::::::
controls

:::
the

::::::::
variation

::
in Single Scattering Albedo (SSA) throughout the two years. Single-particle

soot photometer (SP2) measurements showed
:
of

::::::::
refractive

:::
BC

::::::
(rBC)

::::
show

:
a mean mass concentrations of BC (M

:::::::::::
concentration

::
(MBC

::
rBC) of 35 ng m−3 and a relatively constant BC

::::
rBC core mass-equivalent diameter of around

::::
about

:
180 nm, which are

typical values for remote mountain sites. Combining the MBC
::
rBC with in situ absorption measurements yielded a BC

:
a
::::
rBC

mass absorption coefficient (MACBC
::
rBC) of 9.8

:::
9.2

:
± 2.7

::
3.7

:
m2 g−1 at

:::
λ=880 nm

::
has

:::::
been

:::::::
obtained, which corresponds15

to an absorption enhancement (Eabs) of 2.4
:::
2.2 compared to that of bare BC

:::
rBC

:
particles with equal BC

::::
rBC core size

distribution. A significant reduction of the ratio ∆BC
:
in

:::
the

:::::::
∆MrBC/∆CO

::::
ratio when precipitation occurred along the air

mass transport suggests wet removal of BC
:::
rBC. However we found that the wet removal process did not affect the size of

BC
:::
rBC

::::
size, resulting in unchanged Eabs. We observed a large seasonal contrast in BC

:::
rBC

:
properties with higher MBC

::
rBC

and Eabs in summer than
::
in winter. In winter a strong

::::
high diurnal variability of MBC

::
rBC (Eabs) with higher (lower) values20

in the middle of the day was linked to the injection of BC
:::
rBC

:
originating from the PBL. During summer in contrast, M

:::
On

::
the

::::::::
contrary,

::
in

::::::::
summer,

::
MBC

::
rBC showed no diurnal variation was rather constant despite more frequent PBL-conditions

::::
PBL

::::::::
conditions, implying that MBC

::
rBC fluctuations were

:::
are

:
rather dominated by regional and long-range transport in the FT. A
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body of evidence suggests that biomass burning emissions effectively altered the concentration and optical properties of BC at

PDM, leading to higher Eabsin summer compared to winter
:::::::::
Combining

:::
the

:::::::::::
∆MrBC/∆CO

:::::
ratio

::::
with

::
air

:::::
mass

:::::::
transport

::::::::
analysis,25

::
we

::::::::
observed

:::::::::
additional

::::::
sources

:::::
from

:::::::
biomass

::::::
burning

::
in
:::::::
summer

:::::::
leading

::
to

::
an

:::::::
increase

::
in
:::::
MrBC::::

and
:::
Eabs. The diurnal pattern

of Eabs in summer was opposite to that observed in winter with maximum values of 2.9 observed at noon
::::::
midday. We suggest

that this daily variation results from photochemical processing driving BC
:::
may

:::::
result

:::::
from

:
a
:::::::::::::
photochemical

::::::
process

:::::::
driving

:::
rBC

:
mixing state rather than a change in BC emission source

::::::
sources.

Such direct two-year observations of BC properties provide quantitative constraints for both regional and global climate30

models and have the potential to close the gap between model predicted and observed effects of BC on regional radiation

budget and climate. The results demonstrates the complex influence of BC emission sources, transport pathways, atmospheric

dynamics and chemical reactivity in driving the light absorption of BC.

1 Introduction

Black Carbon (BC) is a light-absorbing carbonaceous aerosol produced by incomplete combustion of fossil fuelsand biomass.35

This includes
:
,
::::::::
including

:
anthropogenic emissions from traffic, residential heating and cooking, power plants, industries, but

also natural emissions such as biomass burning (Bond et al., 2013; Bond and Bergstrom, 2006). Recent scientific assessments

of the 6th IPCC (Intergovernmental Panel on Climate Change) report (Szopa et al., 2021b) estimates that BC is the most

absorbing atmospheric aerosol with a best estimate of effective radiative forcing of around +0.107 W m−2 , thereby increasing

the global mean surface air temperature by 0.063 °C for the period 1750–2019 (Szopa et al., 2021a). The contribution of BC to40

climate change is estimated to have highest uncertainty
::
be

::::::
among

:::
the

::::::
highest

:::::::::::
uncertainties (∼90%) in climate models, limiting

their accuracy (Bellouin et al., 2020). The large uncertainty of BC direct radiative forcing due to BC-radiation interactions can

be attributed, in addition to uncertainties in BC emissions and lifetime, to variations of its optical properties that are neglected

by climate models
::::::::::::::::
(Matsui et al., 2018).

A crucial factor for
:
in
:
estimating the BC radiative effect is the mass absorption cross-section (MACBC), which is defined as45

the light absorption-equivalent cross-section of BC per unit of mass concentration (MBC).
:::
The

:::::::
MACBC :::

can
::
be

:::::::::
calculated

:::::
either

::
by

:::::::
dividing

:::
the

:::::::::
measured

:::::::::
absorption

:::::::::
coefficient

::
of

:::
BC

:::
by

::
its

:::::
mass

::::::::::::
concentration

::
or

:::
by

::::
using

::::::
Mie’s

::::::
Theory

::::
and

:::
the

:::
BC

::::
size

:::::::::
distribution

::::
and

::::::
coating

::::::::
thickness

::
as

:::::
input

::::::::
variables. Observations show that the BC radiative forcing is likely underestimated

by about 10-40
::::::
around

:::
10

::
to

:::
40% in current climate models due to too low simulated MACBC (Bond et al., 2013; Boucher

et al., 2016; Matsui et al., 2018; Myhre and Samset, 2015). In-situ measurements of MACBC ::::
have

:
reported a wide range of50

values, going from 3.8 m2 g−1 to 58 m2 g−1 (Wei et al., 2020). Although such high variability can be attributed, in part, to

the determination method of the MACBC based on MBC and absorption measurement techniques, differences in MACBC values

were found even for the same measurement technique.

Values of MACBC depend on BC microphysical and chemical properties, which are related to their emission sources

(Schwarz et al., 2008) and the effects of aging processes during the transport in the atmosphere (Ko et al., 2020; Laborde55

et al., 2013; Sedlacek et al., 2022). Freshly emitted BC is made of porous, fractal-like aggregates of nanoparticles (Beeler and
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Chakrabarty, 2022; China et al., 2013) that can become coated by condensation and/or coagulation with non-BC components

(such as sulfate, nitrate, and organic components) during atmospheric aging (Fierce et al., 2020). Conversely this coating can

be removed through evaporation and/or chemical processing via the production of more volatile substances (Sedlacek et al.,

2022). Numerous studies have demonstrated that coating of BC with non-absorbing materials is accompanied by an enhance-60

ment of light absorption (Eabs) through the so-called lensing effect (Cappa et al., 2012; Denjean et al., 2020; Healy et al., 2015;

Liu et al., 2015; McMeeking et al., 2014; Peng et al., 2016; Van de Hulst, 1957; Xie et al., 2019; Schwarz et al., 2006; Yus-Díez

et al., 2022). However, most of these measurements were performed in the Planetary Boundary Layer (PBL) and over short

periods
::::
from

::
a

:::
few

:::::
hours

::
to

::
as

::::
long

::
as
::

a
::::::
season.

Both observations and model simulations pointed out an amplification of the warming rate by greenhouse gases and absorb-65

ing aerosols at high-mountain sites compared to PBL areas (Gao et al., 2018; Liu et al., 2009; Pepin et al., 2019; Rangwala,

2013). López-Moreno et al. (2014) found a positive trend between altitude and warming rate
:::
have

::::::
shown

:::
by

:::::::
running

::::::
several

:::::::
regional

::::::
climate

::::::
models

:::
that

:::
the

::::::::::
occurrence

::
of

:::::
winter

:::::
warm

::::::
events in the Spanish Pyrenees , which could lead to the occurrence

of warm events multiplied by two between 2021-2050 and even more until
::::
will

::::::::
gradually

:::::::
increase

::::
until

:
2080.

:::
This

::::::::
includes

::
an

:::::::
increase

::
in

:::
the

:::::::
number

::
of

:::::
warm

::::
days

:::
and

::::::
nights

:::
and

:::
the

:::::::
number

::
of

::::::::
snow/ice

::::::
melting

::::
days

::
at
::::::::
altitudes

:::::
above

::::
2000

::
m
::::::

above70

:::
sea

::::
level

:::::
(asl). This so-called Elevation dependent warming

::::::::
Dependent

::::::::
Warming

:
(EDW) has been reviewed by the Mountain

Research Initiative EDW Working Group, 2015, who listed the possible mechanisms of
::::::
behind this phenomenon (Pepin et al.,

2015). Among the invoked reasons
::::::
reasons

:::::
given, BC is a potential driver of EDW by affecting both absorbing solar radiation in

the troposphere and decreasing the surface albedo when deposited on the cryosphere, thereby accelerating snowmelt (Réveillet

et al., 2022). In addition, BC was
:::
has

::::
been

:
found to have a higher radiative effect when it is located above clouds rather than75

near the surface (Samset and Myhre, 2015; Sanroma et al., 2010). All these findings highlight the importance of studying BC

at high altitude mountain sites, where its effects on climate could be even more significant.

This study presents two-year continuous measurements of BC and aerosol properties at the high-altitude long-term moni-

toring station Pic du Midi (PDM). Located at 2877 m above sea level (asl )
::
asl

:
in the French Pyrenees, PDM has been early

identified as a clean remote station (Marenco et al., 1994). By means of
:::::
Using a backward particle dispersion model, Henne80

et al. (2010) found the influence of local anthropogenic emissions to be very limited at PDM, and classified the station in the

“mostly remote” category. Collaud Coen et al. (2018) defined an “ABL-Topoindex” as a metrics of the atmospheric boundary

layer influence for a mountain site. PDM was
:::
has

::::
been

:
found to have a low ABL-Topoindex, similar to other Alpine high

altitude stations. PDM is thus a suitable site to study both the background lower free troposphere (FT) over long timescales

and injection of air masses from the PBL (Hulin et al., 2019; Tsamalis et al., 2014; Fu et al., 2016; Marusczak et al., 2017).In85

this article the instrumentation and methodology are presented in section 2. Section 3 presents the results of the measurement

campaign including the meteorology and air mass origin, the

::::
This

:::::
paper

::::
aims

::
to

:::::::
provide

::::::::::::
comprehensive

::::::
picture

::
of
:::

the
::::::::

seasonal
:::
and

::::::
diurnal

:::::::::
variability

::
of

::::
rBC

:::::::::
properties

::
at

:::::
PDM,

::::
and

::
to

::::::
explore

:::
the

::::::::
processes

::::::
driving

:::::
these

:::::::::
properties.

::::::::::
Specifically,

::
in

:::
the

::::::::
indicated

::::::::
sections,

::
the

:::::::::
following

::::::::
questions

:::
are

:::::::::
addressed:

1.
::::
What

:::
are

:::
the

:::
air

::::
mass

::::::::
transport

::::::::
pathways

::::::::
impacting

:::::
PDM

::
?90
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2.
::::
What

::
is
::::

the
:::::::
seasonal

:::::::::
variability

::
of

:
aerosol optical properties and black carbon properties. In Section 4, the possible

factors influencing the variability of Eabs are discussed.
:::::::
dominant

:::::::
aerosol

:::::
types

:
?
:::::
What

::
is
:::
the

:::::::
specific

::::::::::
contribution

:::
of

:::
rBC

::
to
:::::::
aerosol

:::::::::
absorption

:
?

3.
::::
How

::
do

:::
the

::::::::::::
microphysical

:::
and

::::::
optical

:::::::::
properties

::
of

::::
rBC

::::
vary

::
on

::
a
:::::::
seasonal

:::
and

:::::
daily

::::
basis

::
?

4.
::::
What

:::
are

:::
the

:::::
roles

::
of

:::
wet

:::::::::
deposition,

::::::
source

::::
and

:::::::
transport

:::::::
pathway

:::
in

::::::
driving

::::
rBC

:::::::::
absorption

:
?95

2 Methods

2.1 Measurement site and observation period

Measurements were performed at the mountain research station Pic du Midi (PDM, 42
::::
42.9° 56’11” N, 0

::
N,

:::
0.1° 08’34” E,

2877 m. above sea level)
:::
asl)

::::::::
mountain

:::::::
research

::::::
station in the French Pyrenees. This station is part of the Pyrenean Platform

for Observation of the Atmosphere (P2OA)1.100

As shown in Fig. 1, the site is located 150 km east of the Atlantic coast. The high isolated summit is shifted about
:::
lies

::::::
around

20 km north of the main Pyrenean crest (
:::::
ridge

::
of

:::
the

::::::::
Pyrenees

:::
(on

::::
the France-Spain border) and thus , closely dominates

::::::
closely

::::::::
overlooks

:
the French plain. Long-term monitoring of extensive

::::::::
numerous

:
meteorological, gas and aerosol parameters

have
:::
has

:
been conducted for mostly two decades, notably through the Global Atmospheric Watch (GAW) program of the

World Meteorological Organization (WMO), as well as the national research infrastructure ACTRIS-France. Results from the105

Hygroscopic properties of Black Carbon (h-BC) campaign performed from February 2019 to January 2021 at PDM (in addition

to the routine measurements) are presented in this paper.

2.2 Instrumentation

2.2.1 Total inlet

All particle-measuring instruments were sampling air drawn
::::::
sampled

:::
air

:::::
taken

:
in parallel from a Whole Air Inlet, which is110

utilized
::::
whole

:::
air

:::::
inlet,

::::::
located

:
2
::
m
::::::
above

:::
the

:::::::
building

::::
roof.

::::
This

::::
inlet

::
is
::::
used

:
for the long-term observations and sucked air 2

m above the building roof. Air
::
in

:::::::::::
mountainous

::::
sites

:::
and

::::::::
designed

::
to

::::::::
maintain

::
an

:::::::::
isokinetic

:::
and

:::::::
laminar

::::
flow.

::::
The

:::::
main

::::
flow

:::
rate

::::
was

::::
fixed

::
at

:::::
about

:::
460

:
l
:::::::
min−1.

:::
The

::::::
splitter

::::
was

::::
fixed

::
at

:::
the

:::
end

::
of

:::
the

::::::::
stainless

::::
tube.

::::
The

::
hat

:::
of

:::
the

:::::
whole

::
air

::::
inlet

::::
and

:::
the

:::::::
stainless

::::
tube

::::
were

::::
both

::::::::::::::
thermo-regulated

::
in

:::::
order

::
to

::::
avoid

:::::
frost

:::
and

::::::::
gradually

:::::::
regulate

:::
the

::::::::::
temperature

::
of

::
the

:::::::
samples

:::
air

::
to

:::
the

:::::::::::
measurement

:::::
room.

:::
The

:::
air was heated to ≈

::::::
around 20°C in order to keep the relative humidity below 20%(Nessler et al., 2003)115

::::::
perform

:::::::
aerosol

:::::
in-situ

::::::::::::
measurements

::
at

:
a
::::::
relative

::::::::
humidity

:::::
lower

::::
than

::
30

:::
%.

:::
The

:::::::::::
instrumental

::::
room

::::::::::
temperature

::::
was

::::::::
regulated

:
at
::::::
around

::::::
20°C.

:::
The

::::::
annual

:::::
cycle

::
of

:::
the

::::
dew

::::
point

::::::::::
temperature

::::::
varied

:::::::
between

:::::
about

::::
-10°

:::
and

:::::
+5°C.

2.2.2 Black carbon measurements

1http://p2oa.aeris-data.fr
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Figure 1. Geographical location of the Pic du Midi Observatory in the French Pyrenees (
:::::
©IGN

:::
and

:
©Google Earth).

MBC and BC
:::
BC

::::
can

::
be

:::::::::
measured

::
by

::::::::
different

:::::::
methods

::::::
which

:::
are

:::::
based

:::
on

::::::::
different

:::
BC

:::::::::
properties.

::::::::::::::::::
Petzold et al. (2013)

::::::
defined

::
a

::::::
specific

::::::::::::
nomenclature

:::
for

:::
BC

:::::::::
according

::
to
::::

the
:::
BC

::::::::::::
quantification

:::::::
method.

:::::::::
Following

:::
the

::::::::::::::
recommendation

:::
of

:::
the120

::::::
authors,

::::
BC

:::::::::
quantified

::
by

::::::::::::
laser-induced

::::::::::::
incandescence

::::
and

:::::::::::::
thermal-optical

:::::::
analysis

::::
will

::
be

::::::::
referred

::
to

::
as

:::::::::
refractive

:::::
black

:::::
carbon

::::::
(rBC)

:::
and

:::::::::
elemental

::::::
carbon

:::::
(EC),

::::::::::
respectively.

:::::
More

::::::
general

:::::::::
discussion

:::
on

:::
BC

:::::::
without

:::::::
focusing

:::
on

::
its

::::::::::::
measurement

::::::::
technique

::::
will

::
be

:::::::
referred

::
to
:::

as
::::
BC.

::::
The

::::
mass

::::::::::::
concentration

::
of

::::
rBC

::::
and

::::
rBC

:
size distribution were measured by a Single

Particle Soot Photometer (SP2, Droplet Measurement Technology, Boulder
:::::::::
Longmont,

:::
CO, USA). Its operating principles

have been described in previous articles (Gao et al., 2007; Moteki and Kondo, 2007; Schwarz et al., 2006). In short, this125

instrument uses a laser-induced incandescence technique which quantifies BC
:::
rBC

:
mass in single particles. A continuous

intracavity laser beam (Nd:YAG; λ=1064 nm) is used to heat BC-containing
::::::::::::
rBC-containing

:
particles to their vaporization

point. The measured incandescence signal of an individual BC-containing
::::::::::::
rBC-containing

:
particle can be converted to a BC

mass, which was calibrated using
:::
rBC

:::::
mass,

:::::
using

::
a
:::::::::
calibration

:::::
curve

::::::::
obtained

::
by

:::::::::
recording

:::
the

::::::::::::
incandescence

:::::
signal

:::::
peak

:::::
height

::
of

:
mobility size-selected fullerene soot particles (Alfa Aesar, lot #FS12S011) and assuming BC mass density of 1.8 g130

cm−3. This calibration was performed twice a year and did not evolve thorough
::::::
change

:::::
during

:
the two-year

::
of

:::
the measurement

campaign.

The SP2 data were processed using a Python code following the method used in the SP2 Toolkit from the Paul Scherer

Institute (Gysel et al., 2009).
:
A
::::::::::
comparison

:::
of

::::
MrBC::::::::

resulting
::::
from

::::
the

:::
SP2

:::::::
Toolkit

::::
with

:::
our

::::::
Python

::::::::::
processing

:
is
:::::::::

presented

::
in

::::
Text

:::
S1

::
in

:::
the

:::::::::::
Supplement. The SP2 used in this study measured BC

::::
rBC cores over a size range between 90 and 580135

nm. The
::::::::
However,

:::
the observed size distributions showed an increase in M

:::
that

::
an

:::::::::
important

::::::
fraction

:::::::
(around

:::::
12%)

::
of

::
MBC

::
rBC

at diameters less
:::::
below

:
than 90 nm (Figure S1

::
is

:::
not

::::::::
measured

:::
by

:::
the

::::
SP2

:::::
(Fig.

::
S2

:
in the Supplement). Because of these

5



small-mode particles below the SP2 detection window, the SP2 M
:::::
range,

:::
the

::::::::::::
quantification

::
of

::
MBC

::
rBC measurements could be

underestimated. To compensate the missing mass the observed BC
:::
rBC

:
size distributions have been fitted

::::
daily

:
using the sum

of three individual lognormal distribution to extrapolate BC
:::
rBC

:
size distribution in the range 10

:
1
:
to 1000 nm. The position of140

the three modes were constrained in the following ranges : Mode 1 : 50 < d
:
Dg < 100 nm and 1.2 < σg < 3; Mode 2 : 150 < d

::
Dg

< 250 nm and 1.3 < σg < 2.9; Mode 3 : 350 < d
::
Dg < 500 nm and 1 < σg < 3.

::
3,

::::
with

:::
Dg :::

and
:::
σg :::

the
::::::::
geometric

:::::
mean

::::::::
diameter

:::
and

:::
the

::::::::
geometric

::::::::
standard

::::::::
deviation,

::::::::::
respectively.

:
Using the fitting procedure, a time-dependent missing mass correction was

applied to the observed MBC
::
rBC to calculate to overall MBC

::
rBC. The

:::::::
average missing mass correction factor applied over the

campaign was 1.2 ± 1.1 (Mean value ± STD).
:::::
More

::::::
details

::
on

:::
the

::::
SP2

::::
data

:::::::::
procedure

:::
can

:::
be

:::::
found

::
in
:::

the
:::::

Text
::
S2

:::
in

:::
the145

::::::::::
Supplement.

:
The extent to which uncertainty in

:::
the

:::::::::
uncertainty

:::
of this fitting procedure contribute

::::::::
contributes

:
to the overall

MBC
::
rBC was quantified by comparing the MBC

::
rBC calculated from the observed BC size distribution and the fit curve over the

SP2 size range. An excellent match was obtained between the measured and fitted size distribution, resulting in differences by

::
of less than 0.2 %. The combined uncertainty on the MBC

::
rBC was estimated to be about 24.5 % by calculating the quadratic

sum of
::
the

:
measurement uncertainties on sampling flow, anisokinetic sampling errors, and missing mass correction factor.150

2.2.3 Aerosol properties

A Scanning Mobility Particle Sizer (SMPS), combining a differential mobility analyzer (DMA, TSI
:::::
model 3071

:
,
:::
TSI

:::::
Inc.,

:::::::::
Shoreview,

::::
USA) and a CPC (TSI

:::::
model

:
3772,

:::
TSI

::::
Inc.,

::::::::::
Shoreview,

::::
USA) allows the determination of aerosols size distribution

between 12.6 nm and 532.6 nm.

Aerosols
::::::
Aerosol

:
scattering coefficients (σsca) at three wavelengths (450 nm, 525 nm, 635 nm) were measured with an155

integrating nephelometer (model Aurora 3000, Ecotech Pty Ltd, Knoxfield, Australia). A calibration with carbon dioxide and

filtered air was performed every three months. The instrument measures σsca in the angular range 10-170°, and the correction

of Müller et al. (2011) was used to account for the angular truncation errors.

Aerosol absorption coefficients (σap) were measured by a seven-wavelength aethalometer (model AE33, Magee Scientific

Company, Berkeley, USA,
:::::::::
measuring

::::::::::
wavelengths

::
:
::::
370,

::::
470,

::::
520,

::::
590,

::::
660,

::::
880,

:::
950). This instrument measures light atten-160

uation through a filter on which aerosol sample is deposited. The aethalometer filter loading effect was corrected online by the

dual-spot manufacturer correction proposed by Drinovec et al. (2015). The multiple scattering artifact was corrected using a C

value of 3.63, as obtained by Tinorua et al. (2023, in preparation)
::::::::
parameter

::::
used

::
to

::::::
correct

:::
the

::::::::
measured

:::::::::
attenuation

::::
was

:::
set

::
to

::::
3.22,

::::::::
according

::
to

:::
the

:::::
value

:::::::
obtained

::
at

::::::
λ=880

:::
nm

::
by

:::::::::::::::::::
Yus-Díez et al. (2021)

:
at
:::
the

:::::::::::
mountainous

:::
site

::
of

::::::::
Montsec

::::::
d’Ares

::::::
located

:::
less

::::
than

::::
200

:::
km

::::
from

:::
the

:::::
PDM. Uncertainty on the corrected σap were

:::
was

:
estimated to be 35 % (Zanatta et al., 2016). The165

detection limit of the aethalometer is
:::::
0.039

::::::
Mm−1

::::::::::::
(corresponding

::
to
:::
an

:::::::::
equivalent

:::::
black

:::::
carbon

:::::
mass

:::::::::::
concentration

:::
of 0.005

µg
::
µg m−3of MBC, which corresponds to 0.0215 Mm−1 in absorption. Values under this low limit were filtered out before the

analysis
:
).
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2.2.4 Gas-phase measurements

Two different instruments , have been deployed to measure carbon monoxide (CO) with a final 1-h time resolution
::::
time170

::::::::
resolution

::
of

::::
one

::::
hour: an IR-absorption analyser (TEI

:::::
model

:
48CTL

:
,
::::
TEI

:::::::
Thermo

:::::::::::
Environment

:::::::::::
Instruments,

::::
New

::::::
Delhi,

::::
India) placed close to the aerosol instrumentation in order to detect pollution plumes produced locally at PDM 2 (hourly CO

concentrations above 200 ppb were filtered out), and a Cavity Ring Down Spectrometer (CRDSPicarro ,
:
model G2401,

:::::::
Picarro,

::::
Santa

::::::
Clara,

:::::
USA), located in an other building, used to measure the background carbon monoxide (CO) concentration and

calculate ∆BC/∆CO ratios
:::
(See

:::::::
Section

::::
2.3).175

A key issue in our study is the distinction between FT and PBL-influenced air masses. Optical properties of BC depends

::::::
depend on its aging and transport pathways in the atmosphere, so that it is crucial to determine whether it has been transported

over the BL
::::
PBL or in the FT. For this purpose, we routinely monitor the diurnal cycle of radon (222Rn) volumic activity (in

mBq m−3) at PDM with a 1500-L high-sensitivity radon monitor manufactured by ANSTO
::::::
(model

::::::
D1500,

:::::::
ANSTO

:::::::::
Australian

::::::
Nuclear

:::::::
Science

:::
and

::::::::::
Technology

::::::::::::
Organisation,

::::::::
Australia)

:
(Whittlestone and Zahorowski, 1998). Radon is an inert radioactive180

gas emitted from ice-free soils with a half-life of 3.8 days, making it the most reliable tracer to discriminate between the FT

and PBL- influenced air masses (Chambers et al., 2013).

2.3 Determination of intensive aerosol and BC properties

The spectral dependence of σap was characterized by the Absorption Ångström Exponent (AAEaer,450-635) as
::::::::
calculated

:::::::
between

:::
450

:::
and

::::
635

:::
nm

::
as

:::::::
follows :185

AAEaer,450−635 =
−log

(
σap,450

σap,635

)
(

log(450)
log(635) )

) −log
(

σap,450

σap,635

)
(
log( 450635 )

)
::::::::::::

(1)

:::
For

:::
this

::::::::::
calculation,

:::::
σap,470::::

and
:::::
σap,660:::::

from
:::
the

::::::::::
aethalometer

:::::
were

:::::::
adjusted

::
at

:::
the

::::::::::
wavelengths

::
of

::::
450

:::
and

::::
635

:::
nm

::::::::
measured

::
by

:::
the

::::::::::::
nephelometer

:::::
using

:::
the

::::
AAE

:::::::::
calculated

:::::
from

:::
the

:::::::::::
aethalometer

:::::::
between

:::::::
370-470

::::
nm

:::
and

:::::::
590-660

::::
nm.

::::::::::::
AAEaer,450-635

:::::::
provides

::::::::::
information

:::::
about

:::
the

::::::::
chemical

:::::::::::
composition

::
of

::::::::::
atmospheric

::::::::
aerosols.

::::
Pure

::::
BC

:::::::
absorbs

:::::::
radiation

::::::
across

:::
the

::::::
whole

::::
solar

::::::::
spectrum

::::
with

:::
the

:::::
same

:::::::::
efficiency;

:::::
thus,

:
it
::

is
::::::::::::

characterized
::
by

::::::::::::
AAEaer,450-635::::::

around
::
1
::::::::::::::::
(Bond et al., 2013).

::::::::::
Conversely190

::::::::::::
light-absorbing

:::::::
organic

:::::::
particles

:::::::
known

::
as

::::::
brown

::::::
carbon

::::::
(BrC),

::
as
:::::

well
::
as

::::
dust

::::::::
particles

::::::::
generally

::::
have

:::
an

::::::::::::
AAEaer,450-635

::::::
greater

::::
than

:
2
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Sun et al., 2007; Bergstrom et al., 2007; Schuster et al., 2016).

:
Here the AAEaer,450-635 was calculated between

the wavelengths of 450 and 635 nm
:
,
:::
for

:::::
which

::::::::
scattering

::::::::::
coefficients

:::
are

::::::::
measured

:::
by

:::
the

:::::::::::
nephelometer. To do so, σap, 635 was

::::ap, 450::::
and

:::::
σap, 635::::::

which
::::
were

:::
not

:::::::
directly

::::::::
measured

::
by

:::
the

:::::::::::
aethalometer,

::::
were

:
first calculated using the

::::::::::
intermediate

:::::::::
calculation

::
of

:::::::::::
AAEaer,370-470:::

and
:
AAEaer,590-660.

::::
Then,

:::
by

::::
using

::
a
:::::::::
rearranged

::::
form

::
of

::::::::
equation

::
(1)

::::
and

::::::::
replacing

:::
470

:::
by

:::
450

:::
and

::::
660

::
by

::::
635195

:
,
:::::
σap, 450::::

and
::::::
σap, 635 ::::

were
:::::::
derived

::::
from

::::::
σap, 470:::

and
:::::::
σap, 660.

2e.g. due to snow removal of the touristic platform
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The wavelength dependence of σsca can be characterized by the Scattering Ångström Exponent (SAEaer,450-635) calculated

between 450 and 635 nm, as :

SAEaer,450−635 =
−log

(
σsca,450

σsca,635

)
(

log(450)
log(635) )

) −log
(

σsca,450

σsca,635

)
(
log( 450635 )

)
:::::::::::::

(2)

The aerosols
::::::::::
SAEaer,450-635::::::::

describes
:::
the

::::::
relative

:::::::::::
contribution

::
of

:::
fine

::::
and

:::::
coarse

:::::
mode

:::::::
particles

::::::::::::::::::::::::
(Clarke and Kapustin, 2010)200

:
.
:::::
Small

::::::
values

::
of

:::::::::::
SAEaer,450-635:::::::

indicate
::
a
::::::
higher

::::::::::
contribution

:::
of

::::
large

:::::::
aerosol

:::::::
particles

::::
(e.g.

::::
dust

::::
and

:::
sea

:::::
salt),

:::::
while

:::::
large

:::::
values

::
of

:::::::::::
SAEaer,450-635:::::::

indicate
::::::::
relatively

:::::::
smaller

::::::
aerosol

:::::::
particles

:::::::::::::::::
(Cappa et al., 2016).

::::
The

::::::
aerosol

:
Single Scattering Albedo

(SSAaer
:
,λ) was calculated at the wavelengths of

:
λ
::
=
:
450, 525 and 635 nm using the following equation :

SSAaer,λ =
σsca,λ

σsca,λ +σap,λ
(3)

For that purpose
:::::::
SSAaer, λ::::::::

describes
:::
the

:::::::
relative

:::::::::
importance

::
of

::::::::
scattering

::::
and

:::::::::
absorption

::
to

:::
the

::::
total

::::
light

:::::::::
extinction.

:::::
Thus,

::
it205

:::::::
indicates

:::
the

::::::::
potential

::
of

:::::::
aerosols

::
to

::::
cool

::
or

:::::
warm

:::
the

::::::::::
atmosphere.

:::
To

:::::::
calculate

::::::::
SSAaer,λ, σap was first calculated at the proper

wavelengths λ using the AAE calculated at the closest wavelengths (AAEaer,370-470 to retrieve σap,450, AAEaer,520-590 for the

σap,525, and AAEaer,590-660 for the σap,635). ∆BC

:::
The

::::::
∆MrBC/∆CO emission ratio was calculated to provide information on the combustion sources, as well as on meteorological

conditions
:::
BC

:::
wet

:::::::::
deposition (Baumgardner et al., 2002). First, the background CO concentrations were estimated by taking210

the rolling 5th percentile of the values on a 14-day time window and then calculating a monthly mean (see fig S2
::
S3

:
in the

Supplement) based on the method by
::
of

:
Kanaya et al. (2016). ∆CO was then calculated by subtracting the monthly back-

ground CO concentration to any measured hourly CO value. ∆BC was taken
::::::
∆MrBC::::

was
:::::::::
considered to be equal to MBC

::
rBC,

because we assume that the background BC is zero since the atmospheric lifetime of BC is known to be of a few days , which

is much smaller than CO lifetime (1 or 2 months).
:::::::::::::::
(Park et al., 2005).

:::
By

:::::::
contrast

::::
CO

:::::::
lifetime

::
is

::::::::
estimated

::
at

::::::
several

:::::
days215

::::::::::::::
(Bey et al., 2001).

:

The Mass Absorption cross-section of BC (MAC
::::
rBC

:::::
(MACBC

::
rBC) was determined as :

MACBCrBC
:::

=
σap,880

MBC

σap,880

MrBC
::::::

(4)

MBC
::
rBC under (resp. over)

::::
below

:
the 5th (resp.

:::
and

:::::
above

:::
the

:
95th ) percentile were filtered before MAC

::rBC:calculations to

reduce the influence of outliers in statistical analyses. As shown in Tinorua et al . (2023, in preparation), the presence of dust220

can lead to strong overestimation of σap,880. Therefore periods with dust
::
In

:::::::
addition,

:::
we

:::::::
filtered

:::
out

::::::
periods

:::::
when

::::
dust

:::::
were

sampled at PDM were eliminated before the MAC
::
for

:::
the

:::::::::
calculation

::
of

:::::
MACBC

::
rBC calculations following the method presented

in section 3.2
::::
since

:::::::::::::::::::
Yus-Díez et al. (2021)

:::::::
observed

:::::::::
significant

:::::
biases

::
in

:::
the

::::::::
multiple

::::::::
scattering

:::::::::
correction

::
of

:::
the

:::::::::::
aethalometer

:::::
AE33

:::::
during

:::::
such

:::::
events.
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The light-absorption enhancement factor Eabs can be determined as the MACBC
::
rBC values

::::
value

:
normalized by a reference225

value for pure, uncoated (bare) BC:
::::
rBC:

Eabs =
MACBC

MACbare,BC

MACrBC

MACbare,rBC
::::::::::::

(5)

Three different methods are usually
::::::::
generally used to estimate MACbare,BC

::
rBC: the first one is to remove the coating of BC

with a thermodenuder and measure the corresponding absorption
:::::::::::::::::::::::::::::::
(Cappa et al., 2012; Healy et al., 2015); the second one is to

extrapolate measurements of MACBC
::
rBC as a function of the measured BC mixing ratio

:::
rBC

::::::
mixing

::::
ratio

:::::::::::::::::
(Cappa et al., 2019)230

; and the third one consists in calculating MACbare,BC
::

rBC from the measured BC
:::
rBC

:
size distribution using Mie

:
’s theory and the

mean geometric BC diameter (see fig. S3 in the Supplement)
:::
rBC

:::::::
diameter

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zanatta et al., 2018; Liu et al., 2017, see fig. S4 in the Supplement)

. Here we used this latest
:::
the

::::
latter

:
method by assuming a BC

:::
rBC

:
refractive index of 1,95

:::
1.95

:
- 0.79i at λ=880 nm (Bond

and Bergstrom, 2006).
:::
The

:::::::::
calculation

:::
of

::::::::::
MACbare,rBC:::::

using
:::::
Mie’s

::::::
theory

:::::::
assume

:
a
:::::::::
simplified

::::::::
spherical

:::::::::
assumption

:::
of

::::
rBC

::::::::::
morphology.

::::::::
However

::::
rBC

:::::
may

::::::
exhibit

:::::::
complex

::::::::::::
morphologies

::::::
whose

::::::
optical

::::::::
behavior

::
is
::::::::::

imperfectly
:::::::::

predicted
::
by

::::::
Mie’s235

:::::
theory,

::::::::::
introducing

::
a

:::
bias

::
in
:::
the

::::::::
retrieved

::::::::::
MACbare,rBC::::::::::::::::

(Saleh et al., 2016).
::
It
:::::
might

:::
be

:::::::::
considered

:::
that

:::::
Mie’s

::::::
theory

::
is

:::::::
suitable

::
for

:::::::::
estimating

:::
the

:::::::::
absorption

:::
of

:::::
highly

:::::
aged

::::
rBC,

::::::
which

::::::
exhibit

::
an

::::::::
internally

::::::
mixed

:::::::::
core-shell

::::::::
structure.

::::::::::::::::
China et al. (2015)

::::
used

:::
this

:::::::
method

::
to

::::::::
calculate

:::
the

::::
Eabs ::

of
::::
rBC

::
in

::
a
:::::::::::
high-altitude

:::
site

::
of

:::
the

:::::::
Azores

::::::
Islands

:::::::
because

:::
the

:::::
large

:::::::
majority

::::::
(70%)

::
of

:::::
these

:::::::::
long-range

::::::::::
transported

:::::::
particles

:::::
were

:::::
found

::::::
highly

::::::::::
compacted.

:::::::
Several

::::::
studies

:::::
found

::::
that

:::::
Mie’s

:::::::::
scattering

::::::
model

:::::::
captures

::::
basic

::::::
optical

::::::::
properties

::
of

:::
BC

::
in
:::::::
biomass

:::::::
burning

::::::
plumes

:::::::::::::::::::::::::::::::
(Liu et al., 2017; Denjean et al., 2020)

:
.
:::::::::::::::::
Zanatta et al. (2018)240

::::::::
calculated

:::::::
MACrBC:::

of
::::::
heavily

::::::
coated

:::
rBC

::::::::
particles

::::
from

:::
the

:::::
Arctic

::::::
region

:::::
using

:::::
Mie’s

:::::
theory

:::
and

::::::
found

::::::::
consistent

::::::
results

::::
with

:::::
direct

::::::::::::
measurements.

Time periods with high humidity (95%) or precipitations
::::::::::
precipitation

:
were filtered before analysis to avoid artifacts in the

sampling inlet.
:::::
Under

:::::::::::
precipitation

:::::
some

:::::
water

::::::
droplet

::::
may

::::::
indeed

:::::
enter

::
in

:::
the

:::::::
aerosol

::::
inlet

::::
and

::::::
change

::::
both

:::
the

:::::
inlet

:::
cut

::
off

::::::::
diameter

:::
and

:::
the

:::::::::
measured

::::::
aerosol

::::
size

::::::::::
distribution.

::::
This

:::::
would

::::
bias

:::
all

:::
the

::::::::
measured

::::::
aerosol

::::::::::
properties. We also filtered245

periods where hourly CO concentrations exceeded 200 ppb in order to exclude local pollution events,
::::
e.g.

:::
due

::
to

:::::
snow

:::::::
removal

::
of

:::
the

:::::::
touristic

:::::::
platform.

All aerosol and gas measurements were converted to standard temperature and pressure (273.15 K and 101.325
:::::::
1013.25

hPa).

2.4 Identification of air mass origins250

The Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) (Draxler and Hess, 1997) was used to calculate

air masses backtrajectories. This model uses 3-hourly atmospheric data from the Global Data Assimilation System (GDAS)

of the National Center for Environmental Prediction (NCEP) in a 1°×1° spatial resolution. More information can be found on

https://www.ready.noaa.gov/index.php. One
::
A backtrajectory was run every 24h going 72h back in time at 12h for the two-year

period
:
at

:::::
12:00

:::::
UTC

:::
for

::::
each

::::
day,

:::::
going

:::::
back

::
72

::::::
hours,

:::
for

:::
the

::::
two

:::::
years of the campaign. Every backtrajectory arrived at255

the PDM altitude and coordinates. Precipitation rates along the back trajectories were also computed from the HYSPLIT
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calculations, in order to classify days where
::::
when

:
the air masses arriving at PDM encountered precipitations

::::::::::
precipitation

:
or

not in the past 72h
::
72

:::::
hours.

To discriminate FT and PBL-influenced air masses
::::::::
(hereafter

:::::::
referred

::
as

:::::::
PBL/FT

::::::::::
conditions), we followed the a

:
method-

ology proposed initially by Griffiths et al. (2014)
:
, assuming that the diurnal radon increase, which is often

:::::::
typically

:
observed260

at mountain sites during the daytime, is the result of transport of PBL air by thermal anabatic winds up to the summits.

The method first consists in ranking each day
:::
the

::::
days

:
of the sampling period by decreasing anabatic influence (no details

on the iterative ranking process are given here, but can be found in Griffiths et al. (2014)). Then, a value called “anabatic

radon” can be calculated for each day, which represents (in short) the average deviation of radon volumic activity above

a nocturnal background (see again details
:::::
details

::
in
::::

the
::::::::::
Supplement

::::
and in Griffiths et al. (2014)). Anabatic radon mostly265

decreases with increasing anabatic rank (Fig. S4 of the Supplement), at least up to a
:
A

:
threshold rank (

::::
here 282) corresponding

to the absolute minimum of anabatic radon. After this rank, the radon variations are no more in phase with the diurnal thermal

cycle, and may be due to any other causes than anabatic transport2. For this reason, the threshold rank can be used to separate

anabatically-influenced days from non influenced days . In the present study, when we needed to select hours with strong

influence of
:
,
:::
see

::::
Fig.

:::
S5

:::
and

:::::::::
associated

::::
text

::
in

:::
the

:::::::::::
Supplement)

::::
can

::::
then

:::
be

:::::::::
determined

:::
to

:::::::
separate

::::
days

:::::
with

::
or

:::::::
without270

:::::::
anabatic

:::::::
influence

:::
in

::
the

::::::::
daytime.

::
In

:::
our

:::::
study,

::
it
::::
was

::::::::
necessary

::
to

:::::
select

:::
the

::::::::::
observation

:::::
hours

:::::::
strongly

:::::::::
influenced

:::
by the boundary layer, we chose, among

the 200 first
:
.
:::
To

::
do

::::
this,

:::
we

:::::::
selected

:::
the

::::
first

::::
200

:::::::
anabatic days in the ranking

:
,
:::
and

:::::
from

::::
these

:::::
days,

:::
all the hours when the

radon activity was higher than the daily median value . Conversely, hours without influence of PBL are selected among days

after the rank
::::::
greater

::::
than

:::
the

::::::
median

:::::
value

:::
for

:::
the

::::::
current

:::
day.

:
275

:::
We

:::
also

:::::::
needed

::
an

::::::::
ensemble

::
of

::::::::::
observation

:::::
hours

::::
with

::::::::
minimum

::::::::
influence

::
of

:::
the

:::::
PBL.

::
In

:::
the

:::::
latter

::::
case,

:::
we

:::::::
selected

:::::
hours

::
in

:::
the

::::::::::
non-anabatic

:::::
days

:::
(i.e.

::::::
ranked

::::
after

:
282, when the radon activity was under the daily median value

:
)
::::
with

:::::
radon

:::::::
activity

:::::
below

:::
the

::::::
median

:::::
value

:::
for

:::
the

::::::
current

:::
day.

3 Results

3.1 Meteorology and air mass classification280

::
In

:::
the

::::::::
following,

:::::::
seasons

:::
are

:::::::
defined

::
as

:::::::
follows:

::::::
winter

:::::::::
(December,

::::::::
January,

:::::::::
February),

:::::
spring

:::::::
(March,

:::::
April,

::::::
May),

:::::::
summer

:::::
(June,

::::
July,

::::::::
August),

:::
and

:::::::
autumn

::::::::::
(September,

::::::::
October,

::::::::::
November). The meteorological conditions at PDM during the cam-

paign were characterized by a strong seasonal trend of temperatures, with daily means ranging between -15 and +15°C (Figure

2
:::
Fig.

:::
S6

::
in

:::
the

::::::::::
Supplement). The time series of relative humidity (RH) covered a wide range between 5% and 100% with an

annual mean value of 71.2 %. Lower ambient RH was observed in summer compared to winter with median values of 67%285

and 78%, respectively. Irrespective of the season, the wind direction was dominated by westerly and south-westerly winds and

a median speed of 7 m .s−1.

2By construction, a value of “anabatic” radon can still be calculated but actually makes no more sense, explaining the random fluctuations after rank 282.
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Figure 2. 72-h
::::::
72-hour Back trajectories of air masses measured at PDM over the measurement period 2019-2020. Geographical boundaries

of the sectors used to classify the air mass back-trajectories are overlaid.

The backward trajectories performed with the HYSPLIT model on 72h-periods
::::::
72-hour

::::
time

:::::::
periods of time were assigned

to six geographical zones, according to the position of their start
::::::
starting

:
point (shown in Figure 3

::::
Fig.

:
2): North-west Eu-

rope, Continental Europe, Med-Africa, Atlantic Spain, North Atlantic and Local (within a circular zone of 100 km radius290

around PDM). Transport
::::
The

:::::::
transport

:
to PDM was generally westerly or southerly

::::
from

:::
the

:::::
west

::
or

:::::
south, from the Atlantic

Oceantowards ,
:
North America or the Iberian Peninsula. It can also be noticed

::::::
should

:::
also

:::
be

::::
noted

:
that 99% of all atmospheric

backward trajectories modelled to PDM reveal long-range transport (>100 km).

The analyses of the diurnal cycle of radon concentrations allowed to determine the FT- and PBL-influenced
::
FT

:::
and

:::::
PBL

conditions prevailing at the site following the methodology presented in Section 2.5
:::
2.4. Details on the statistical results can295

be found in Table S1 in the Supplement. Over the campaign, 1149 hours were clearly identified as FT-influenced conditions,

which represents 56% of the total classified hours. In winter, FT- and PBL-influenced
::
FT

::::
and

::::
PBL conditions occurred roughly

74% and 26% of the analyzed time, respectively, against 48% and 52% for summer, respectively. These results are broadly in

agreement with the previous study by Hulin et al. (2019) at PDM, which quantified around 47 % of the days as PBL-influenced

over a 10 years period. The PBL-influenced coditions occured
::::
PBL

:::::::::
conditions

:::::::
occurred

:
mostly around 15:00 UTC

:::
(see

::::
Fig.300

::
S5

::
in

:::
the

:::::::::::
Supplement), consistent with the dynamics at mountain sites where plain-to-mountain winds and along-valley winds

become the strongest in the afternoon (Whiteman, 2000).

Time series (left) and statistical distributions (median, 25th and 75th percentiles, right) of meteorological parameters measured

at PDM in 2019-2020 with (a) the temperature and Hysplit air mass origin, (b) the relative humidity and (c) the wind direction

and speed. Daily average data are shown.305
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3.2 Aerosol optical properties and classification of aerosol types

Figure 4
:
3 presents daily time series and statistics of aerosol optical properties over the two-year measurement period. The

average SSA ± GSD
:::::::::
(Geometric

::::::::
Standard

:::::::::
Deviation)

:
were 0.94 ± 0.06, 0.94 ± 0.07 and 0.95 ± 0.08 at 450, 525 and 635

nm, respectively (Figure 4a
::::
Fig.

::
3a). These values are in the range of those observed at mountain sites in Southern Europe

(Bukowiecki et al., 2016; Laj et al., 2020; Pandolfi et al., 2014). The mean value ± GSD of σap,880 was 0.27 ± 0.25 Mm−1,310

which falls in the range of 0.14 to 1.23 Mm−1 obtained at Jungfraujoch and Montsec (Bukowiecki et al., 2016; Pandolfi et al.,

2014).
:::
The

::::::
average

::::
σsca::

±
::::
GSD

:::::
were

::::
15.5

::
±

::::
16.1

::::::
Mm−1,

::::
13.4

::
±

::::
13.9

::::::
Mm−1

:::
and

::::
12.2

::
±

::::
12.9

::::::
Mm−1

::
at

::::
450,

:::
525

::::
and

:::
635

::::
nm,

::::::::::
respectively

::::
(Fig.

::::
3e). These weak values

::
of

::::
σabs :::

and
::::
σsca:can be explained by the remote mountain site type, where almost

no absorbing aerosols are locally emitted. There was a clear seasonality of SSA with a minimum around 0.93 during
::::::
aerosol

:::::
optical

:::::::::
properties.

::::
SSA

::
at
:::
the

:::::
three

::::::::::
wavelengths

::::::::
exhibited

:::
the

:::::
lowest

::::::::
monthly

::::
mean

::::::
values

::
in spring-summer and higher values315

around 0.97
::::
(0.94

::
±

::::
0.02

::
at
::
λ

::
=

:::
525

::::
nm)

:::
and

:::
the

::::::
highest

:
in autumn-winter

::::
(0.99

:::
±

::::
0.01

::
at

:
λ
::
=

:::
525

:::::
nm),

::
as

:::::
shown

::
in
::::
Fig.

:::
3a).

Simultaneously, both SAE and σap,880 increased by a factor 2 and 5, respectively, during
:::
the

::::::
highest

:::::::
monthly

:::::
mean

::::
SAE

::::::
values

::::
were

::::::::
observed

::
in

:
spring-summer compared to autumn-winter, thus suggesting a higher influence of absorbing fine particles

::::
(1.23

::
±

::::
0.70

::
)
:::
and

:::::::
reached

:
a
:::::::::
minimum

::
in

:::
the

::::::
winter

:::::
(-0.25

::
±

:::::
0.16)

::::
(Fig.

::::
3b).

::::
This

::::::::::::
anticorrelation

::::::::
suggests

:
a
::::::
higher

:::::::
fraction

::
of

::::::::
absorbing

::::
and

:::
fine

::::::::
particles

::::::
relative

::
to

::::::
purely

::::::::
scattering

::::
and

:::::
coarse

::::::::
particles at PDM during the warmest months (Figures320

4b-d). Figure 4c shows a less pronounced AAE seasonal variation (1.13 ± 0.35) , indicating a rather constant composition

of absorbing aerosol particles
:::::::::::::
spring-summer.

::::::::::
Interestingly

::::::::
different

:::::
trends

::::
can

::
be

::::::::
observed

:::::::
between

:::
the

::::::::
summer

:::
and

::::::
spring

:::::::
seasons.

::::::
During

:::::
spring

:::::
2019

:::
the

::::::::
decrease

::
of

::::
SSA

::
is

:::::::::
correlated

::::
with

:
a
:::::
slight

::::::::::::
enhancement

::
of

::::::
σap,880 ::::

(Fig.
:::
3d)

::::
and

:
a
::::::::
decrease

::
of

:::
σsca::

at
:::
all

:::::::::::
wavelengths.

::
In

:::::::
summer

:::
the

:::::::
increase

::
of

::::::
σap,880::::

lead
::
to

::::::
values

::::::::
multiplied

:::
by

:
a
:::::
factor

:::
of

::::
four,

:::::
while

::::
both

::::
SSA

::::
and

::::
SAE

::::::::
remained

:::::
rather

:::::::
constant.

:::
All

:::::
these

:::::::::
parameters

::::::::
combined

:::::::
indicate

::
a

::::::
similar

::::::::
dominant

::::::
aerosol

::::
type

:::::::
reaching

:::::
PDM

:::
but

::::
with325

:::::::
stronger

::::::::::
contribution

::
in

:::::::
summer.

:::::
This

:
is
::::::
further

:::::::::
confirmed

:::
by

:::
the

:::::::::::
simultaneous

:::::::
increase

::
of

:::::
MrBC::

in
:::::::
summer

::::::
shown

::
in

::::
Fig.

:
5.

This noteworthy annual seasonality of aerosol optical properties has previously been observed at other high mountain sites

in Europe (Andrews et al., 2011; Collaud Coen et al., 2011; Laj et al., 2020; Pandolfi et al., 2018). It has been attributed to

the seasonal variation of the continental boundary layer height, long-range transport events (e.g. Saharan dust outbreaks, coal

burning from eastern Europe)and biomass burning both from forest fires in summer and domestic heating in winter.330

A
:::
The

:::::
higher

::::::::::::
concentration

::
of

:::::
small

:::
and

::::::::
absorbing

:::::::
particles

::
in
:::::::
summer

::
at

:::::
PDM

:::::
could

::
be

::::::::
attributed

::
to

:
a
::::::
higher

::::::::::::
anthropogenic

:::
BC

::::::::
influence

:::::::
favored

::
by

::::::
strong

:::::::
vertical

::::::
mixing

::::
and

::
a

::::::
higher

::::
PBL

::::::
height,

::
a
::::::
higher

:::::::::
occurrence

:::
of

::::::::
wildfires

:::::::
emitting

:::::
large

:::::::
amounts

::
of

:::
BC

:::
and

::::::
Brown

:::::::
Carbon

:::::
(BrC),

:::
or

:
a
:::::
lower

:::::::::::
precipitation

::::
rate.

::
In

:::::
order

::
to

:::::::::
investigate

:::::
these

:::::::
different

::::::::::
hypotheses,

::
a classification of the dominant aerosol type sampled at PDM was per-

formed by using the spectral
:::::::::
dependency

::
of

:
aerosol optical properties. Figure 5

:
4 shows AAE as a function of SAE, overlaid335

with the aerosol classification matrix from Cappa et al. (2016). Aerosol with the highest SSA values (violet points) tend to fall

on the left-hand side of the plot with SAE values below 0, indicative of large particles such as marine sea salt, continental dust

or highly processed/coated particles. The presence of large marine and dust aerosol is in line with backward trajectories show-

ing a dominant origin of air masses coming from the Atlantic Ocean and Iberian Peninsula as far as North Africa (e.g. Figure

12



3
:::
Fig.

::
2). Dust being a strong light absorber, it is expected to lower the mean aerosol SSA. However Figure 5

:::
Fig.

::
4 shows that340

SSA for dust-dominated aerosol (classified as having AAE values above 2) are quite similar as those for remote marine aerosol

(classified
:
as

::::::
having

:
AAE values below 1). Although Europe frequently experiences African dust events (Denjean et al., 2016;

Dumont et al., 2023), our results indicate that these dust events were not absorbing enough to substantially lower the aerosol

SSA at PDM. This is supported by previous estimates of SSA ranging between 0.90 –
:::
and

:
1.00 for dust particles transported in

the Mediterranean region (Mallet et al., 2013; Denjean et al., 2016).345

There was a natural clustering of the most light absorbing aerosols with SSA<0.9 (pink to yellow points) on the middle of

the plot, with sections on the lower side with AAE between 0.5 and 1.5, which Cappa et al. (2016) defined as
:::
the

:::::::
sections

dominated by BC or mixed with BC with large particlesthe sections
:
a
::::
mix

::
of

::::
BC

:::
and

:::::
large

:::::::
particles. The success of aerosol

classification schemes is largely dependent on uncertainties in AAE attribution for each aerosol species. Although AAE = 1 is

often considered for BC such as that in the classification by Cappa et al. (2016), observational and numerical estimates show a350

wide range of BC AAE from 0.6 to 1.3 (Kirchstetter et al., 2004; Liu et al., 2018) due to the variation of BC core size, coating

thickness, composition and morphology (Liu et al., 2018; Zhang et al., 2018). Therefore it is possible that the large range of

AAE values observed for the most light-absorbing aerosol were due to different microphysical and chemical properties of the

sampled BC
:::
BC

:::::::
sampled

::
at

:::::
PDM.

Interestingly almost none of the aerosol were classified as strong BrC and BC/BrC mixture (AAE and SAE values above 1.5),355

revealing a very low contribution of BrC to the aerosol absorption at PDM. An explanation could be the rapid BrC depletion

within the first day after emission, by photobleaching or volatilization that has been observed in several studies (Forrister et al.,

2015; Wong et al., 2019; Zeng et al., 2020). Altogether these results suggest that BC were
:::
was the predominant absorption

component of aerosols at PDM and controlled the variation of SSA throughout the two observation years.
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Figure 3. Time series (left) and statistical distributions (median, 25th and 75th percentiles, right) of aerosols optical properties measured

at PDM in 2019-2020 with (a) Single Scattering Albedo at 450, 525 and 635 nm, (b) Scattering Angström Exponent at 450-635 nm, (c)

Absorption Angström Exponent at 450-635 nm, (d) Absorption coefficient at 880 nm
:
,
::
(e)

::::::::
Scattering

:::::::::
coefficients

::
at

::::
450,

:::
525

:::
and

:::
635

:::
nm.

Daily average data are shown
::
The

::::
dots

:::
and

::::
bars

::
on

:::
the

::::
time

::::
series

:::::::
represent

:::
the

:::::::
median,

::
the

::::
25th

:::
and

:::
75th

:::::::::
percentiles,

::::::::::
respectively,

:::
with

::
a

::::::
monthly

::::::::
frequency.

:::::::::
Histograms

:::
was

:::::::
computed

:::::
using

:
a
:::::
1-day

:::
time

::::::::
frequency.

::::::
Vertical

::::::
dashed

::::
lines

:::::::
represent

::
the

::::::
seasons

:::::::::
boundaries.
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Figure 4. Hourly average Aerosols Absorption Angström Exponent vs. Scattering Angström Exponent calculated at 450-635 nm and colored

as a function of the Single Scattering Albedo at 525 nm. The classification of aerosol type by Cappa et al. (2016) is also shown. The points in

the dashed zone, representing dust events, were filtered before analyses of BC properties to avoid artifacts in the calculation of MACBC::rBC.

3.3 BC
:::
rBC

:
sources and propertiesFigure 6360

:::
rBC

:::::
mass

::::::::::::
concentration

:::::
Figure

::
5 shows the time series of the physical

:::::::::::
microphysical

:
and optical properties of BC

::::
rBC. The mean MBC

::
rBC, shown

in fig
:::
Fig.

:
5a, was 34.8 ± 35.7 (Mean ± STD) ng m−3, which is a typical level for remote mountain sites. For instance, Sun

et al. (2021) observed MBC s around 20 ng.m−3 from 9-years of measurements with a Multi-Angle Absorption Photometers

(MAAP, model 5012, Thermo Scientific) at the Zugspitze-Schneefernerhaus station, Germany (2671 m a.s.l.
::
asl). Motos et al.365

(2020) (Motos et al., 2020) measured M
::::::::
measured

::
MBC

::
rBC s around 9 ng m−3 in summer at the Jungfraujogh

::::::::::
Jungfraujoch,

Switzerland (3580 m a.s.l.). Seasonal variations of MBC (i.e. Fig. 6a) are similar to those of σap,880 (i.e. Fig. 4d)with higher

MBC and σap,880 in winter than in summer. BC
::::
asl).

:::
rBC

:
represented around 7 ± 5 % of the total aerosol number concentration

measured by the SMPS over the campaign. An increase of BC
::::
rBC number fraction by a factor 2.5 was found in summer (9

± 5 %) compared to winter (4 ± 3 %). Simultaneously, σap,880 increased by a factor 4 between winter and summer. Thus, it370
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confirms that BC
::::
rBC contributed to a significant part of the aerosol absorption at PDM.

Bivariate
:::
rBC

::::::::
emission

:::::::
sources

:::::
Figure

::
6
::::::
shows

:::::::
bivariate

:
polar plots obtained by combining hourly wind analysis and MBC

::
rBCs are shown in Figure 7 to

investigate recent geographical origins of BC
:::
with

::::::
1-hour

::::
time

::::::::
resolution

:
in winter and summer. Seasonal differences between375

the origin of highest M
:::
The

::::::::
densities

::
of

::
MBC

::
rBC are thrown into relief, as well as the footprints of air masses backtrajectory

densities plotted in Figure S5 in the Supplement.
:::
data

::::::::
weighted

:::
by

::::
MrBC::::::

values,
::::
and

:::::::::
normalized

:::
by

:::
the

:::::::::
maximum

::::
MrBC:::::

were

::::::
plotted

::
as

::
a

:::::::
function

::
of

:::::
wind

::::::::
direction

:::
and

::::::
speed.

::::
The

::::::
darkest

:::::
areas

::
of
::::

the
::::
wind

:::::::
pattern

:::
are

:::::
those

:::::
where

:::
the

:::::::
highest

:::::
MrBC

:::
was

:::::::::
measured

::::
with

:
a
:::::

high
::::::::::
occurrence,

:::::::
whereas

:::::::
lightest

:::::
zones

::::::
exhibit

::::::
lowest

:::::::::
measured

:::::
MrBC ::::::

and/or
:
a
:::::

little
:::::::::
occurrence

:::
of

::::::::::::
measurements.

::::
Note

::::
that

::::::
locally

:::::::
emitted

::::::::
pollution

::
at

:::
the

:::::::::::
measurement

::::::
station

::::
was

::::::
filtered

::::::
before

:::
the

:::::::
analysis,

:::::::
limiting

:::::
local380

::::
MrBC:::::::::::

contributions
:::::::
emitted

::::
from

:::
the

:::::
PDM

::::::
station

:::
(i.e.

:::::::
section

::::
2.3).

In summer, the highest MBC
::
rBC was linked to winds

:::::
values

:::::
were

::::::
mainly

:::::::::
associated

::::
with

::::::::
moderate

::::
wind

::::::
speeds

::::::
(above

::
5

::
m

::::
s−1)

:::
and

:
from the west and south west, suggesting that regional transport from Atlantic Spain was an important source of BC

(Fig7b
:
a
::::::::
dominant

::::::::
regional

:::::::
transport

:::::
(Fig.

::
6a). By contrast in winter (Fig7a

:
.
::
6b), the highest MBC

::
rBC occurred mainly under

more static
:::::::::
atmospheric

:
conditions (ie. for wind speeds under 10

:::::
below

::
5 m s−1) and BC mostly came from the west and385

north-east highlighting different BC geographical sources. As a reminder, the locally emitted pollution at the measurement

station was filtered before the analysis, limiting local M
::
no

::::::
evident

:::::
wind

::::::::
direction

:::::::::::
dependency.

:::::
These

::::::
results

:::::::
suggest

::::
that

:::::::::
local-scale

::::::::
emissions

:::::
could

:::
be

::
a

:::::
major

::::::::::
contributor

::
to

::
MBC

::
rBC contributions emitted from the PDM station

:
in

::::::
winter

::::::
unlike

::::::
summer. Further discussion on the role of PBL influence on MBC

::
rBC will be discussed in Section 4.2.

The ∆BC
::::::::
addressed

::
in

::::::
Section

:::::
3.4.2.

:
390

:::
The

:::::::
∆MrBC/∆CO emission ratio, presented in Fig. 6b

::
5b, shows a wide range of values from 0 to 10 ng m−3 ppbv−1,

with a mean value of 1.93 ± 2.12 ng m−3 ppbv−1. Summer values
::::
ratios

:
were generally higher than winter emission ra-

tios, which could reflect either lower BC
:::
rBC

:
scavenging during transport or different emission sources of BC

:::
rBC

:
between

seasons. Indeed, ∆BC
::::::
∆MrBC/∆CO emission ratio varies as a function of fuel types, combustion efficiencies and wet de-

position by precipitations
::::::::::
precipitation (Baumgardner et al., 2002; Taylor et al., 2014). This explains the high diversity of395

∆BC
::::::
∆MrBC/∆CO emission ratios obtained in the literature worldwide, going from 0.5 ng m−3 ppbv−1 at the Jungfraujoch,

Switzerland (Liu et al., 2010), to 9 ng m−3 ppbv−1 in a biomass burning plume above Texas region during TexAQS 2006

campaign, USA (Spackman et al., 2010), if only studies using SP2 measurements are considered. Overall ∆BC
::::::
∆MrBC/∆CO

from fossil fuel tends to exhibit lower values to
:::
than

:
those from biomass combustion (Guo et al., 2017; Pan et al., 2011; Zhu

et al., 2019). To our knowledge the only available ∆BC
::::::
∆MrBC/∆CO measurement

:::::::::::
measurements

:
in Europe were performed400

during airborne measurements in the Cabauw industrial region, Netherlands, by McMeeking et al. (2010), who found very low

values around 0.8 ng m−3 ppbv−1.

BC
:::
The

:::::
high

::::
time

:::::::::
variability

::
of

:::::::::::
∆MrBC/∆CO

:::::::
reflects

::::::::
important

::::::::::
differences

:::::::
between

:::
the

::::::::::
scavenging

::::::::
processes

:::::::::
impacting

:::
BC

:::::
and/or

:::
the

:::::::
relative

::::::::::
contribution

:::
of

:::::::
biomass

::::::
burning

::::
and

:::::
fossil

::::
fuel

::::::::
emissions

::
in

:::
the

:::::::::
production

:::
of

:::
BC

::::::::
measured

::
at
::::::
PDM.

16



:::::
These

:::
two

::::::::
different

::::::
factors

:::
will

:::
be

::::::::
addressed

::
in

::::::
Section

::::
3.4.405

:::
rBC

:::::
mass

::::
size

::::::::::
distribution

:::
rBC

:
mass median core size diameter (DBC

::
rBC,core) was quite constant during the campaign with a mean geometric diameter

of 179 ± 28 nm (Fig. 6c
:
5c). An exception occurred in early December 2019, where we detected the presence of large BC

:::
rBC

:
particles with DBC

::
rBC,core around 400 nm. However observations during this period may be the results of measurement410

uncertainties due to too low MBC
::
rBC (less than 10 ng m−3). The DBC

::
rBC,core values obtained at PDM are generally comparable

to DBC
::
rBC,core that has been reported to range

::::::
ranging

:
from 180 to 225 nm for well-aged background BC

:::
rBC (Liu et al., 2010;

McMeeking et al., 2010; Schwarz et al., 2010; Shiraiwa et al., 2008). However, our values are slightly higher than previous

observations at Jungfraujoch by Motos et al. (2020)
::::::::::::::::
Motos et al. (2020) who reported DBC

::
rBC,core ranging from 130 and 150

nm in summer and winter. Instead of fitting the SP2 observations with a multimodal individual lognormal modes (e.g. Section415

2.2.2), Motos et al. (2020) used a single-mode fit diameter approach which may bias the estimated SP2 DBC
::
rBC,core (Tinorua et

al., in preparation).

:::
rBC

::::::::::
absorption

The ambient MACBC
::
rBC was around 9.8

:::
9.2 ± 2.7

::
3.7

:
m2 g−1 at

:::
λ=880 nm (Figure 6d)with systematically higher values420

in summer . This stands in the highest part of the range from 5.3
::::
Fig.

::::
5d).

::::::
Several

:::::::
studies

:::::::::
previously

:::::::
reported

::::::::
MACBC

:::::
values

:::::::
between

:::
8.9

:
to 9.5 m2 g−1 previously reported

:::
13.1

:
for measurements at

:::::
λ=637

:::
nm

::
in

:
European mountain stations by

Pandolfi et al. (2014), Yus-Díez et al. (2022) and Zanatta et al. (2016). However these
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pandolfi et al., 2014; Yus-Díez et al., 2022; Zanatta et al., 2016)

:
.
::
By

:::::
using

::
a

::::
AAE

::
of

:::::
unity,

:::::
these

::::::
values

:::
can

::
be

:::::::::
converted

::
to

:::::::
MACBC :::::::

between
:::
6.4

:::
and

:::
9.5

:::
m2

::::
g−1

::
at

::::::
λ=880

:::
nm.

::::::
These studies

used different measurement techniquesand corrections factors
:
,
:::::::
analysis

::::::
method

::::
and

::::::::
correction

::::::
factors

:::::
from

::::
ours for estimat-425

ing MACBC that causes significant uncertainty
:::::
makes

:::::::
difficult

:::
the

::::::::::
comparison

::
of
::::::::

MACrBC::::::
derived

:::::
from

:::::::
different

:::::::::::
instruments.

:::::::::::::::::
Pandolfi et al. (2014)

:::::::::
performed

:
a
:::::
linear

::::::::
regression

::::::::
between

:::::
σap,637::::::::

measured
::
by

::
a

::::::
MAAP

:::::::::::
(Multi-Angle

:::::::::
Absorption

:::::::::::
Photometer)

:::
and

:::::
daily

::::
MEC::::::

values
:::::
from

::::::
off-line

::::::::::
filter-based

::::::::::::
measurements

:::
by

::
a
::::::::
SUNSET

::::::
OCEC

:::::::::
Analyser.

:::::::::::::::::::
Yus-Díez et al. (2022)

:::
and

:::::::::::::::::
Zanatta et al. (2016)

:::::::
retrieved

:::::::
MACBC ::::

with
::::
these

::::::::::
instruments

:::
by

:::::::::
calculating

:::
the

::::
ratio

:::::::
between

:::
the

::::
two

:::::::::
parameters

::::::
instead

::
of

::
a

:::::
linear

::::::::
regression. Because of the absence of a standard method for quantifying MBC, the absolute uncertainties on the literature430

MACvalues
:::::::
MACBC :::::::

obtained
::
in

:::
the

::::::::
literature

:
are very high ranging from ±30 to 70% , making difficult the comparison of

MAC
:::::::::::::::::
(Zanatta et al., 2016)

:
.

::
In

:::::
terms

::
of

::::::::::
seasonality

:::
we

:::::
found

::::::::::::
systematically

::::::
higher

::::::
values

::
of

::::::::
MACrBC ::

in
:::::::
summer

::::::::
(monthly

:::::
mean

::
±
:::::

STD
::
of

::::
10.3

:::
±

:::
3.3)

:::::::::
compared

::
to

::::::
winter

::::
(8.3

::
±
:::::

3.8).
:::::::
Similar

:::::::
seasonal

:::::::
pattern

:::
was

::::::::
observed

:::
in

::::::
Europe

:::
at

::::
Puy

::
de

::::::
Dôme

:::::::
(central

:::::::
France)

:::
and

::
at

:::::::::::
Jungfraujoch

::::::
(Swiss

:::::
Alps)

::::::::
mountain

::::
sites

::::::::::::::::::::::::::::::::::::::::::::::
(Sun et al., 2021; Motos et al., 2020; Zanatta et al., 2016)

:
.
:::
An

:::::::
opposite

:::::
trend435

:::
was

::::::::
observed

::
at

::::::::
mountain

::::
sites

:::::::
affected

:::
by

::::::
strong

::::::::::
precipitation

::::::
during

::::::::
monsoon

::::
such

:::
as

:::
the

:::::::
Tibetan

::::::
Plateau

::::
and

:::::::::
Himalayas

::::::
regions

:::::
where

:::::
both

:::::::
MACBC:::

and
:::

MBC derived from different instruments (Zanatta et al., 2016).
::::::
exhibit

:::::::::
maximum

:::::
values

:::
in

:::::
winter

::
or

:::::::
autumn

::::::::::::::::::::::::::::::::::
(Zhao et al., 2017; Srivastava et al., 2022).

::::
The

::::
same

::::::::
seasonal

::::::
pattern

::::
with

:::::::
elevated

:::::
values

:::
in

::::::::::::
winter/autumn

::::::::
compared

::
to

::::::::::::
summer/spring

::::
was

:::::::
observed

::
at
::::::
several

:::::
rural

:::
and

:::::
urban

::::
sites

::
in

:::
the

::::
PBL,

::::::
which

:::
was

::::::::
attributed

::
to
::::::
greater

:::::::::
emissions
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::::
from

:::::::::
residential

::::::
heating

::::::::
combined

::
to

:
a
:::::
lower

::::
PBL

::::::
height

::::::::::::::::::::::::::::::::::::::::::::::::
(Zanatta et al., 2016; Kanaya et al., 2016; Yttri et al., 2007).

::::::::
However440

::::::::
maximum

::
of

:::::::
MACBC:::

and
:::::
MBC ::

in
:::
the

::::
PBL

:::::
during

::::
cold

:::::::
periods

:
is
:::
not

::
a

:::::::
recurring

::::::::::
observation

::::
even

:::
for

:
a
:::::
same

:::::::::::
measurement

::::
site.

:::
For

:::::::
instance

::::::::::::::
Sun et al. (2022)

::::::
showed

::
in

:::::::
Beijing

::::::
(China)

::::
that,

::::
due

::
to

:::
the

::::::::
reduction

::
of

:::::
some

::::::::::
predominant

::::
BC

::::::
sources

::
in

::::::
winter

:::::::::
consecutive

::
to
::::::::::::
environmental

::::::::
policies,

:::
the

:::::
annual

:::::
cycle

::
of

::::
MBC::::::::

changed
::::
over

:::
the

::::
years

:::::::
between

:::::
2012

:::
and

:::::
2020.

:

Variations in MACBC
::
rBC may exist for different reasons. We first addressed the question of whether the MACBC

::
rBC depends

on DBC
::
rBC,core in Figure S6

:::
Fig.

:::
S8 in the Supplement. There was no clear correlation between MACBC

::
rBC and DBC

::
rBC,core,445

which indicates that the variation in BC size was not the cause of the MACBC
::
rBC variability. This is because DBC

::
rBC,core only

varied within a relatively narrow range (percentiles
:::
the 25

:

th
:
and 75

:

th
:::::::::
percentiles

:
around 164 and 195 nm) during the campaign.

The observed MACBC
::
rBC values were converted to equivalent Eabs , by dividing them by a reference MAC for pure uncoated BC

(MACbare,BC). While values of MACbare,BC are reported in the literature, estimation of campaign-specific MACbare,BC allows for

more robust determination of Eabs than using values from the literature since MACbare,BC is dependent of the size of uncoated450

BC (Bond and Bergstrom, 2006; Adachi et al., 2007, 2010; Adachi and Buseck, 2013; Cappa et al., 2012). Here MACbare,BC

had an average value of 4.15 m2 g−1 with values ranging from 3.90 to 4.37 m2 g−1 considering the standard deviation of the

mean DBC
::
rBC,core, which is in reasonable agreement with literature assessments (Liu et al., 2020b).
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Figure 5. Time series (left) and statistical distributions (median, 25th and 75th percentiles, right) of BC
:::
rBC properties measured at PDM in

2019-2020. (a) BC
:::
rBC

:
mass concentration, (b) ∆BC

::::::
∆MrBC/∆CO emission ratio, (c) BC

:::
rBC

:
core mass size distribution with geometric

diameter on
::
in green solid line, (d) BC

:::
rBC

:
Mass Absorption Cross-Section and Absorption Enhancement at 880 nm. Daily average data

are shown
:::
The

::::
dots

:::
and

:::
bars

:::
on

:::
the

:::
time

:::::
series

:::::::
represent

:::
the

::::::
median,

:::
the

:::
25th

:::
and

::::
75th

:::::::::
percentiles,

:::::::::
respectively,

::::
with

:
a
:::::::
monthly

::::::::
frequency.

::::::::
Histograms

::::
was

:::::::
computed

::::
using

::
a

::::
1-day

::::
time

::::::::
frequency,

::
as

:::
well

::
as

:::
the

:::::
colored

:::::::::
background

::
of
:::
the

:::
rBC

::::
core

:::
size

:::::::::
distribution.

::::::
Vertical

::::::
dashed

:::
lines

:::::::
represent

:::
the

::::::
seasons

::::::::
boundaries.
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Figure 6. Bivariate polar plots of hourly mean BC concentration measured by the SP2
:::::

density
::
of

::::
MrBC,

:::::::
weighted

::
by

::::
MrBC:::::

values
:
as a function

of wind direction and speed in a) winter
::::::
summer and b) summer

:::::
winter.

:::
The

:::::
colour

::::
scale

:::::
shows

:::
the

::::
MrBC :::::

density
::::
data

:::::::
weighted

::
by

:::::
MrBC.

:::
The

::::
radial

::::
scale

:::::
shows

:::
the

::::
wind

:::::
speed,

:::::::
increases

::::
from

::
the

:::::
centre

::
of

:::
the

:::
plot

::::::
radially

:::::::
outwards.

::::
Both

::::
plots

:::
use

:::::
hourly

::::
data.

:::
The

:::::::
weighted

:::::::
densities

:::
was

::::::::
normalised

::
by

::::
their

::::::
maxima.

The Eabs values derived from MACBC observations were significantly greater than unity with mean value of 2.4
::
2.2

:
± 0.7

(Figure 6d
:::
0.9

::::
(Fig.

:::
5d). Given the remote mountain location and presumable distance from fresh BC sources, it is expected that455

the BC
::::
rBC

:::::::
sources,

:::
rBC

:
particles reaching PDM would be aged and relatively thickly coated

:::
may

::::
have

:::::::::
undergone

:::::
aging

::::
and

::::
have

::::::
gained

:
a
:::::::::
consistent

:::::::
coating.

:::::::
Previous

::::::
studies

::::::
found

::
an

:::::::::
absorption

:::::::::::
enhancement

:::
of

:::
BC

:::
due

:::
to

::
its

::::::
coating

:::::
with

:::
the

:::::
aging

::::
time

::::::::::::::::::::::::::::::::::::::::::::::::::
(Yus-Díez et al., 2022; Sedlacek et al., 2022; Peng et al., 2016). The most likely reason for the strong Eabs :

at
:::::
PDM

:
is a

lensing effect due to the internal mixing of BC
:::
rBC

:
with other particles that drives MACBC

::
rBC variability, though we cannot

eliminate changes in BC
::::
rBC morphology that can result from coating onto BC

:::
rBC. There was a significant seasonal trend in460

Eabs with higher values observed in summer, indicating that BC
:::
rBC

:
reaching the PDM station has undergone longer aging

processes during this season. These results are consistent with the measurements of Motos et al. (2020) at the Jungfraujoch,

which also indicated a strong seasonality in BC
::::
rBC mixing state with larger coating in summer. Figure 8

:::::
Figure

::
7
:
further shows the diurnal variation of Eabs for every seasons. There was a remarkable

::::::
notable

:
opposite diurnal

profile between seasons in Eabs with midday showing a minimum around 1.7 in winter, and a maximum around 2.9 in summer.465

Spring and autumn showed intermediate patterns with less regular Eabs throughout the day. These

:::::
Taken

:::::::
together,

:::::
these

:
observations suggest that different sources and/or processes drove the seasonal contrast in BC

::::
rBC

properties. The following section aims at investigating potential drivers of Eabs variations, including BC
:::
rBC

:
wet scavenging,

dominant BC
:::
rBC

:
sources and transport pathways.

::::::::
Particular

::::::::
attention

:::
will

::
be

::::
paid

::
to

::::::
winter

:::
and

:::::::
summer

:::::::
because

::::
these

:::::::
seasons

::::
differ

:::::::
greatly,

:::::::
whereas

:::::
spring

::::
and

::::::
autumn

::::::
appear

:::::::::::
intermediate.

:
470

20



Figure 7. Diurnal cycles of Eabs for each season during 2019-2020 period. Winter includes
::::::
Seasons

::
are

::::::
defined

::
as

::::::
follows:

:::::
winter

:
(December,

Januaryand ,
:

February), spring covers
:
(March

:
, Apriland ,

:
May

:
), summer includes

:
(June, Julyand ,

:
August

:
),
:
and months from

::::::
autumn

:
(Septemberto

:
,
:::::::
October, Novemberare grouped together in autumn

:
). Boxes, lines, black dots and whiskers indicate 25th percentile, 75th

percentile, median, mean, 10th percentile and 90th percentile, respectively.

4 Investigation of factors influencing BC properties

3.1 The impact
:::::::::::
Investigation of BC wet scavenging on BC

::::::
factors

::::::::::
influencing

::::
rBC properties

3.1.1
:::
The

:::::::
impact

::
of

:::
wet

::::::::::
scavenging

:::
on

::::
rBC

:::::::::
properties

We first investigated whether Eabs was modulated by a size-dependent BC
:::
rBC

:
wet scavenging process during precipitation

along their transport pathway. This hypothesis is based on the fact that the removal of particles is favored for the largest and475

thickly coated BC
::::
rBC because the activation of aerosols to cloud droplets is predominantly controlled by the particle size

(Moteki et al., 2012; Motos et al., 2019; Ohata et al., 2016; Zhang et al., 2021). The wet removal of BC
:::
rBC

:
was investigated

by performing a cluster analysis using ∆BC
::::::
∆MrBC/∆CO data for which precipitation occurred or not along 72h

:::
72-h

:
back

trajectories computed by the HYSPLIT model. Figure 9a shows significantly lower ∆BC
:::
Wet

::::::::::
scavenging

::
is

:::::::
expected

::
to
:::::

have

:
a
::::::
smaller

::::::
impact

:::
on

::::
fresh

::::
rBC

:::::::
injected

::::
from

:::
the

:::::
PBL

::::
than

::
on

::::
rBC

::::::::::
transported

::
in

:::
the

:::
FT.

:::::::::
Therefore,

::::::
periods

:::
for

:::::
which

:::
the

::::
site480

:::
was

:::::
under

::::
PBL

::::::::
influence

:::::
were

::::::
filtered.

:
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:::::
Figure

:::
8a

:::::
shows

::::::
median

:::::::
∆MrBC/∆CO

::
of

:::
2.1

:::
ng

::::
m−3

::::::
ppbv−1

:
for air masses affected by precipitations

:::::::::::
precipitation,

::::::
against

:::
0.7

::
ng

::::
m−3

:::::::
ppbv−1

::::::
without

:::::::::::
precipitation

:::::
during

:::
the

::::::::
transport

::
of

:::
the

::
air

::::::
masses. The reduction of ∆BC

::::::
∆MrBC/∆CO by ∼ 40 %

:
a
:::::
factor

::
of

:::::
three suggests that a significant removal process of BC

:::
rBC from the precipitation occurred long

::::
along

:
the transport

pathway,
:::::
apart

::::
from

:::::::
vertical

:::::::
transport

:::::
from

:::
the

::::
PBL. This result is confirmed by the dependence of ∆BC

::::::
∆MrBC/∆CO to RH485

in Figure 9b
:::
Fig.

:::
8b, where a sudden decline of ∆BC

::::::
∆MrBC/∆CO appeared for highest RH>80%. Figures 9

:
,
:::::
going

:::::
from

::::::
median

:::::::::::
∆MrBC/∆CO

::::::::
between

:::
2.0

:::
and

:::
2.4

:::
ng

::::
m−3

:::::::
ppbv−1

::
for

:::::::::
RH<80%

::
to

:
a
::::::
median

::::::::::::
∆MrBC/∆CO

::
of

::
∼

:::
0.4

:::
ng

::::
m−3

:::::::
ppbv−1

:::::
above

::::
80%

:::
of

::::
RH.

::::
This

::::
high

::::
rBC

:::::::
removal

:::
by

::::
wet

:::::::::
deposition

:::::
result

::
is

::
in
::::

line
::::
with

:::::::::::::
measurements

:::::::::
performed

::
in

:::::::
regions

::
at

::::::
similar

:::::::
altitudes,

:::::
such

::
as

::::
Puy

::
de

::::::
Dôme,

::::
Mt.

:::::::
Nanling,

::::
and

:::
Mt.

:::::::::
Sonnblick,

::::::
where

:::
wet

:::::::::
deposition

:::::::::
represents

::
30

:::
to

::
70

::
%

:::
of

:::
the

:::
BC

::::::::
removing

::::::::
processes

::
in

:::
the

::::::::::
troposphere

:::::::::::::::
(Yang et al., 2019)

:
.490

::::::
Figures

:
8
:
c-d show in contrast little influence of precipitation and RH on Eabs. Furthermore, the resultant BC after precipitations

exhibited similar core size , as shown in Fig. S7 in the Supplement. Therefore we conclude that BC
::
the

::::
rBC

::::::::::
absorption

:::::::::::
enhancement,

::::
with

:
a
::::::::
constant

::::::
median

::::
Eabs :::::

value
::
of

::::::
around

::
∼

:::
2.1.

:

::
To

:::::
better

::::::::::
understand

:::
the

::::::::
negligible

::::::
impact

:::
of

::::
rBC

:::
wet

::::::::::
scavenging

::
on

::::::::
MACrBC,

:::
we

:::::::::
compared

:::
the

::::::::
measured

::::
rBC

::::
core

::::
size

:::::::::
distribution

::
of

:::
air

::::::
masses

:::::::
affected

::
or

::::
not

::
by

:::::::::::
precipitation

::::::
during

::::
their

:::::::
transport

::::
and

:::::
under

::::
high

:::
RH

:::::::::
conditions

:::
or

:::
not

::::
(Fig.

:::
9).495

:
A
::::::::
two-fold

:::::
lower

:::::
MrBC ::

in
::::::::::
precipitation

:::::::::
conditions

:::::::::
compared

::
to

:::
that

:::::::
without

::::::::::
precipitation

::::::::
provides

::::::::
additional

::::::::
evidence

:::
for

:::
the

::::::::
dominant

:::
role

::
of

::::
wet

:::::::::
scavenging

:::
for

::::
rBC.

::::
The

:::::
same

:::::
result

:::::::
appeared

:::
by

:::::::::
comparing

::::
rBC

::::
core

:::
size

::::::::::
distribution

:::::
under

:::
wet

:::
or

:::
dry

:::::::::
conditions.

:::::::
However

:
wet scavenging did not significantly affect the size of BC-containing particles to drive changes in Eabs::::

alter

::
the

::::::
modal

:::::::
diameter

:::
of

:::
rBC

::::
core

::::
size

::::::::::
distribution.

This result contradicts
:::::::
contrasts with previous studies showing a decrease in BC

::::
rBC size due to wet scavenging (Kondo500

et al., 2016; Moteki et al., 2012; Taylor et al., 2014; Liu et al., 2020a). It could be explained by the size of BC
::::
rBC core

sampled at PDM that was higher than the one described in these studies. Hoyle et al. (2016) evidenced at the Junfraujoch a

threshold diameter of around 90 nm above which a particle activates to a droplet upon cloud formation. The majority of BC

:::
rBC

:
sampled at PDM exhibited DBC

::
rBC,core above this critical diameter. Droplet

:
In

::::::::
addition

::::::
droplet

:
activation of an aerosol

particle occurs when the supersaturation of the surrounding water vapor exceeds a critical value of supersaturation.
::::
Thus,

::
it

::
is505

:::
not

:::::
likely

::
for

::::::
freshly

:::::::
emitted

:::
BC

:::::::
particles

::
to
:::
act

::
as

:::::
cloud

:::::::::::
condensation

::::::
nuclei

:::
due

::
to

::::
their

:::::::::::
hydrophobic

:::::
nature

::::::
unless

:::
the

:::::
water

:::::
vapor

::::::::::::
supersaturation

::
is
::::::
higher

::::
than

:::
2%

:::::::::::::::::::
(Wittbom et al., 2014),

:::
far

:::::::
beyond

:::
the

:::::
actual

:::::::::::::
supersaturation

:::::::::
(0.1–0.6%)

:::
in

:::::::
ambient

:::
air.

:
As the ambient supersaturation varies depending on the environment, it is difficult to conclude whether the insensitivity of

BC
::::
rBC size distribution and Eabs to precipitation occurrence during the 72-h air mass history was solely due to the presence

of large BC particles
:::
rBC

::::::::
particles

:
at
:::
the

::::::::
sampling

:::
site

:
or to a high ambient supersaturation

::
in

:::
the

::::::::::
precipitating

::::::
clouds. Further510

measurements of simultaneous BC
:::
rBC

:
wet removal and effective supersaturation are needed to test these assumptions.

:::
two

::::::::::
assumptions.

:
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Figure 8.
::::::
∆rBC/∆CO:::::::

emission
::::
ratio

:::
and

::::
Eabs ::

vs.
::
a)

:::
and

::
c)
::::::::::
precipitation

::::
along

:::
the

:::
air

::::
mass

::::
back

:::::::
trajectory

::::::::
calculated

::::
with

::::::::
HYSPLIT

:::::
model

:::
and

::
b)

:::
and

:
d)
:::::::
Relative

:::::::
Humidity

:::::::
measured

::
at
:::::
PDM.

:::::
Violin

::::
plots

:::::::
represent

::
the

:::::::::
probability

:::::
density

:::::::
function

::
of

:::
each

::::::::
parameter.

:::::::
Statistics

::
of

:::
the

::::::
boxplots

:::
are

::
the

:::::
same

::
as

:::
Fig.

::
7.

:::
PBL

::::::::
conditions

::::
were

::::::
filtered

:::::
before

:::::::
analysis.

3.2 The contrasted seasonal influence of FT and PBL on BC properties

Figure 10 shows the BC
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Figure 9. ∆BC/∆CO emission ratio and Eabs vs. a) and c) precipitations along the air mass back trajectory calculated with HYSPLIT model

::::
Mass

:::
size

::::::::::
distributions and b) and d) Relative Humidity

::::::::
normalized

::::
mass

::::
size

:::::::::
distributions

::
of

::::
rBC

:::
core

:
measured

::
by

:::
the

:::
SP2

::
as

:
a
:::::::
function

:
of
:::

the
:::::::
presence

::
or

:::
not

:
of
::::::::::

precipitation
::::
along

:::
the

::::
path

::
of

:::::::
airmasses

::::::
arriving

:
at PDM ,

:::
and

::::::
whether

:::
the

::::::
relative

:::::::
humidity

:::
was

:::
over

:::::
85 %

::
or

::
not.

Violin plots represent
:::
The

::::::::::
normalization

:::
was

::::
done

::::
with the probability density function of each parameter

:::
total

:::
rBC

:::::::
measured

::::
mass. Statistics

of
::::::
Vertical

:::
lines

:::::
show the boxplots are

:::::::
geometric

:::::
mean

:::
rBC

::::
core

::::::
diameter

::::::
colored

::
by

:
the same as Fig

:::::
criteria

:::::::
described

::
in
:::
the

:::::
legend. 7.
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3.1.1
:::
The

::::::::::
contrasted

:::::::
seasonal

:::::::::
influence

::
of

:::
FT

::::
and

::::
PBL

:::
on

::::
rBC

:::::::::
properties515

:::::
Figure

:::
10

:::::
shows

::::
the

::::
rBC properties classified by FT- and PBL-conditions

::
FT

::::
and

::::
PBL

:::::::::
conditions

:
(methodology in Section

2.5) and by seasons. Air
::
As

::::::::
explained

::
in
:::::::

Section
::::
3.3,

::::::::::
∆MrBC/∆CO::::

ratio
:::::::
depends

:::
on

:::
the

::::::::
condition

:::
of

::::::::::
combustion

::::
(fuel

:::::
type,

::::::::
efficiency)

::::
and

::::
wet

::::::::
deposition

:::
by

:::::::::::
precipitation

::::::::::::::::::::::::::::::::::::::
(Baumgardner et al., 2002; Taylor et al., 2014).

:::
We

::::::::
observed

::
in
:::::::

Section
:::::
3.4.1

:
a
::::
large

::::::::
decrease

::
of

::::::::::
∆MrBC/∆CO:::::

when
:::::::::::
precipitation

:::::::
occurred

::::::
during

:::
the

::::::::
transport

::
of

:::
the

:::
air

::::::
masses.

:::
In

::::
order

:::
to

:::::::::
investigate

:::
the

:::::::
influence

:::
of

:::
rBC

:::::::
sources

::
on

::::
rBC

:::::::::
properties,

:::::::::::
precipitation

:::::
events

::::
(air masses for which precipitation occurred along 72-h back520

trajectoriescomputed by the HYSPLIT model where removed for this analysis
:
)
::::
were

::::::::
removed

::
in

:::
this

:::::::
section.

In winter 75 % of the MBC
::
rBC values were found under 105 ng m−3 under PBL-influence, whereas under

:
in

::::
PBL

::::::::::
conditions,

:::::::
whereas

::
in FT conditions they were under 45 ng m−3 (Figure 10a

::::
Fig.

:::
10a). Furthermore the diurnal cycle of MBC

::
rBC in winter

PBL -influenced conditions showed
::::::::
conditions

:::::::
showed

::
an enhancement in the daytime (Figure S8

:::
Fig.

:::
S9 in Supplement). This

trend is consistent with intrusions of pollutants transported from PBL sources through convective mixing. During the night,525

the nocturnal depressed PBL in the valleys and the plain trapped the surface pollution below the mountain summits, and the

subsiding cleaner air in the FT may have diluted the BC quantity at PDM
:::
lead

::
to

:
a
::::::::
decrease

::
of

::::
rBC

:::::::::::
concentration

::
at
:::::
PDM

:::
by

::::::
dilution. The higher ∆BC

:::::
∆MrBC/∆CO in PBL-conditions than FT-conditions

::::
PBL

:::::::::
conditions

::::
than

::
FT

:::::::::
conditions

:
may indicate

additional sources from biomass combustion (Fig 10c
::::
from

:::
the

:::::
valley

::::
(Fig.

::::
10c), which could be attributed to either residential

wood heating or stubble-burning that is still a common practice in the Pyrenees (González-Olabarria et al., 2015). Figure530

10b shows that
:::
10b

:::::
shows

::::
that

::::
PBL

:::::::::
conditions

:::::
were

::::::::
associated

:::::
with

:::::
lower Eabs was modulated by the atmospheric dynamic

in winter with lower values in PBL-influenced conditions than FT-influenced
::abs ::::::

values
::::
than

:::
FT

:
conditions. Thereforethe

significant decrease of Eabs observed at noon in winter(Figure 8a) might be the result of BC particles directly uplifted from

the PBL, which have undergone shorter aging processes and less coating than BC transported into the FT,
::::
Eabs::::

was
:::::::
strongly

::::::::
modulated

:::
by

::::::::::
atmospheric

::::::::
dynamics

::
in
::::::
winter.535

During summer vertical transport from the PBL occurred about half of the days analyzed in this study. Surprisingly these

::
the

:
thermally driven PBL injection did not significantly impact MBC(Figure 10d

:::
rBC :::::::

measured
::
at
:::::
PDM

::::::
(Figure

::::
10d). This contrasts

with our winter observations and most previous surface measurements at mountain sites, where the daytime PBL development

had
::
has

:
been shown to enhance aerosol mass concentration (Herrmann et al., 2015; Venzac et al., 2009). ∆BC

:::
The

:::::::
summer

::::
MrBC::::::

values
::
at

:::::
PDM

:::
are

:::::
twice

::
as
:::::

high
::
as

:::::
those

::::::::
observed

::
in

::::::
winter,

::::::
which

::::::::
indicates

:
a
:::::::
massive

:::::::::
additional

:::::::
regional

::::::::
transport540

::
of

::::
rBC

::
in

:::
the

:::
FT

:::
and

::
a
:::::
lower

::::::::::
contribution

::
of
::::

rBC
:::::

from
::::
PBL

::::::::
injection.

:::::::
∆MrBC/∆CO in BL- and FT-conditions

:::
PBL

::::
and

:::
FT

::::::::
conditions

:
were close to each other, with values around 2.8 ± 1.6 ng m−3 .ppbv−1 (Mean ± STD) and 3.3 ± 1.7 ng .m−3

ppbv−1, respectively (Figure 10f), suggesting
:::
Fig.

::::
10f).

::::
This

:::::
result

::::::::
indicates that the FT has

::::::::
exhibited a significant background

load in BC
::
of

::::
rBC at the continental scale, which limits

:::
thus

:::::::
limiting the relative influence of PBL injection on MBC

::
rBC during

summer. The resulting Eabs was remarkably similar for PBL vs. FT air mass categories (Figure 10e). This is an evidence545

that the background FTmay be greatly influenced by biomass burning
:::
Fig.

:::::
10e).

:::
The

::::
high

::::
rBC

:::::::
loading

:::::::::
transported

::
in
:::

the
::::

FT,

::::::
coupled

:::::
with

:::
the

::::::
higher

:::::::::::
∆MrBC/∆CO

::::::::
observed

::
in

:::
the

:::::::::::
summertime

:::::
(Fig.

:::
10d

::::
and

:::
e),

:::::
could

::
be

::::
due

::
to

::
a

:::::
strong

::::::::
influence

:::
of

:::::::
biomass

::::::
burning

:::::::::
emissions

::
on

::::
the

::::::::::
background

:::
FT in Europe. For example (Petetin et al., 2018) have shown

:::
The

:::::::
majority

:::
of
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Figure 10. (a) BC
:::
rBC

:
mass concentrations, (b) MACBC ::

Eabs:and (c) ∆BC
::::
∆rBC/∆CO emission ratio as a function of the predominant

influence at PDM in winter. The same for summer are given in d), e) and f). Red boxplots represents Boundary Layer
::::
PBL conditions and

green boxes are Free Tropospheric
::
FT

:
conditions. Precipitation events were filtered before analyses.

:::::::::
trajectories

:::::::
reaching

:::::
PDM

:::
in

:::::::
summer

::::
have

:::::::
crossed

:::
the

::::::
Iberian

:::::::::
Peninsula

::::
and,

:::::::::
previously,

::::::
North

:::::
Africa

::::
and

:::::
North

::::::::
America

::::
(Fig.

::
S7

:::
in

:::
the

:::::::::::
Supplement).

::
In

:::::
these

::::::
regions

:::::
large

:::
fire

:::::
events

:::::::::
frequently

:::::
occur,

::::::
which

::::
may

::::::
explain

:::
the

::::
high

:::::::::::::
concentrations

::
of550

:::::::
strongly

::::::::
absorbing

::::
rBC

::::::::
observed

::
at

:::::
PDM

::::::
during

:::::::
summer.

::::
This

::::::::::
hypothesis

::
is

::::::::
supported

:::
by

:::::::::::::::::
Petetin et al. (2018)

:::
who

:::::::
showed

that biomass burning aerosol accounts for about 43 - 81% of the CO concentration in lower FT in summer using in situ
:::::
in-situ

airborne observations of CO from the IAGOS
::::::::
(In-service

:::::::
Aircraft

:::
for

::
a
::::::
Global

:::::::::
Observing

:::::::
System)

:
program. The ubiquitous

presence of dilute biomass burning in the FT and its significant contribution to aerosol mass loading was also established using

airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission (Bourgeois555

et al., 2021; Schill et al., 2020). These findings are consistent with the higher ∆BC/∆CO observed in the summertime at PDM,

indicating potential additional sources from biomass burning. Given that the majority of trajectories reaching PDM in summer

traveled over the Iberian Peninsula (Fig. S5 in the Supplement), and prior to this, as far as North Africa and the North America

where large fire events frequently occur, it is a possible explanation for stable concentrations of highly absorbing BC observed

at PDM during summer. Additional measurements of the aerosol chemical composition and a precise source apportionment
::
in560

::::::::
particular

::
of

:
a
:::::
tracer

::
of

:::::::
biomass

:::::::
burning

::
in

:::
the

::::::::::
atmosphere

::::
such

::
as

:::::::::::
levoglucosan

:
should be performed

:
at

:::::
PDM

:
to confirm this.
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A question remains about the cause of the diurnal variation of Eabs in summer (Figure 8c
:::
Fig.

::
7c). As shown in Figure

S9
:::
Fig.

:::
11, the Eabs increase was not temporally correlated with the wind direction change from West-South-West to South,

as evidenced by the 2-h delay between the two events. Furthermore, while the Eabs increase occurs when ∆BC
::::::
∆MrBC/∆CO

decreases, the Eabs drop in the afternoon was not accompanied by an increase in ∆BC
::::::
∆MrBC/∆CO. Then increase of Eabs in565

the morning was most likely due to further aging and becoming heavily coated BC
::
the

::::::::::
appearance

::
of

::::::
heavily

::::::
coated

::::
rBC rather

than a change in BC
:::
rBC

:
emission source. Several studies highlighted the major role of photochemical processing

::::::::
processes

and extensive secondary aerosol generation to promote the light absorption enhancement of BC (Knox et al., 2009; Krasowsky

et al., 2016; Liu et al., 2019; Wang et al., 2017; Xu et al., 2018; Yus-Díez et al., 2022). At PDM the enhanced Eabs at noon

was accompanied by a strong elevation of particle number concentration in the diameter range 10-30 nm and a shift of the570

aerosol accumulation mode towards larger sizes, thus revealing both new particle formation and condensation onto preexisting

:::::
which

::::
may

::
be

::::
due

::
to

:::
the

:::::::::::
condensation

::
of

:::::::
gaseous

::::::
species

:::
on

::::::
aerosol

:
particles (Figure S10 in the Supplement). This evidence

imply the potential role of photochemical processing on BC in regulating the diurnal dynamics of Eabs:::::::::::::
Simultaneously,

:
a
::::::
strong

:::::::
elevation

::
of

:::::::
particle

:::::::
number

:::::::::::
concentration

::
in

:::
the

::::::::
diameter

:::::
range

:::::
10-30

:::
nm

:::
can

:::
be

::::::::
observed,

::::::::
revealing

::::
new

::::::
particle

:::::::::
formation

::::
most

:::::
likely

::::::::
produced

:::
by

::::::::::::
photochemical

::::::::
reactions

::
at

::::
this

::::
time

::
of

:::
the

::::
day.

::
It
::
is

::::
thus

:::::::
possible

::::
that

::::
rBC

:::::::
particles

:::::::
became

:::::
more575

:::::
coated

:::
via

::::::::::::
condensation

::
of

::::::
species

:::::::::
produced

::
by

:::::::::::::
photochemical

::::::::
reactions

::
at

:::::
noon.

::::::::
However,

::
it
::::::
cannot

:::
be

:::::
ruled

:::
out

::::
that

:::
the

:::::::
evolution

:::
of

::::::
aerosol

::::
size

:::::::::
distribution

::
is

:
a
:::::
poor

:::::::
indicator

::
of

:::
the

::::
rBC

::::::
mixing

::::
state.

4
::::::::
Summary

::::
and

:::::::::::
implications

:::
for

:::::::
climate

::::::
models

Continuous two-year measurements of BC
:::::::
refractive

::::
BC

:::::
(rBC)

:
properties and additional aerosol characteristics have been

performed at the high-altitude mountain site Pic du Midi in the French Pyrenees. The classification of the dominant aerosol580

type using the spectral aerosol optical properties indicates that BC
:::
rBC

:
is the predominant absorption component of aerosols at

PDM and controls the variation of SSA throughout the two years. The lower SSA in summer (
::
∼0.93) than winter (

:
in

::::::
winter

::
(∼0.97) is correlated with a higher BC number fraction. AAE values around 1.13 ± 0.35 indicates a negligible

:::
rBC

:::::::
number

:::::::
fraction,

:::::::
whereas

:::
the influence of BrC to the aerosol absorption properties. SSA for dust-dominated aerosol were quite similar

as those for remote marine aerosol, indicating that dust particles were not absorbing enough to substantially lower the aerosol585

SSA at PDM.

MAC strongly regulates BC radiative forcing, heating effect and interactions with snow. It is
:::
and

::::
dust

:::
was

:::::
found

:::::::::
negligible.

:

:::
One

::::
key

::::::::
parameter

::
to
::::::::
constrain

::::
BC

:::::::::
absorption

:::
and

:::::::::
associated

:::::::
radiative

:::::::
forcing

::
in

::::::
climate

::::::
models

::
is
:::
the

:::::::::
refractive

::::
index

:::
of

:::
BC,

::::
and

::
in

::::::::
particular

:::
the

::::::::
resulting

::::::::
MACBC.

::
It

::::
was not clear if BC at high-altitude mountain sites should have a thicker or

thinner coating than in urban or plain sites or even should be coated at all. On the one hand, the longer BC lifetime and the low590

temperature in the FT
:::
free

::::::::::
troposphere

::::
(FT)

:
favor thicker coating due to enhanced condensation of low-volatility compounds

in colder environment. On the other hand, the low concentrations of particles and gaseous precursors in the FT may limit the

coating processes. Our two-year long observations show that the overall net effect is a strong absorption enhancement with a

mean Eabs value of 2.4
:::
2.2 ± 0.7.
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Figure 11.
:::::
Hourly

:::::::
variation

::
of
:::
(a)

:::
Eabs:::

and
:::
(b)

::::::::::
∆MrBC/∆CO

:::::
values

::
in

:::::::
summer.

::::
Dots

:::::::
represent

::::
mean

:::::
values

:::
and

:::::::
whiskers

:::
are

:::
one

:::::::
standard

:::::::
deviation.

::::
Dots

:::
are

:::::
colored

::
as
::
a
::::::
function

::
of

:::
the

::::
wind

:::::::
direction.

A significant reduction of ∆BC
:::
0.9.

:
595

:::
The

:::::
value

::
of

:::
7.5

:::
m2

:::
g−1

::
at
::
λ
::
=

:::
550

:::
nm

::
of

::::::::::::::::::::::::
Bond and Bergstrom (2006)

:
is

:::
the

::::
most

::::::::
common

:::::::
MACBC ::::

used
::
in

::::::
climate

:::::::
models.

:::
The

::::::::::::::
recommendation

::::
was

::::
based

:::
on

:
a
::::::::::
compilation

::
of

:::::::::::
experimental

::::::
results

:::
for

::::::
freshly

::::::::
generated

:::
BC

::
at

:::
and

::::
near

::::::
sources

::::::::
obtained

:::::
earlier

::::
than

:::
the

:::::::::::
early-2000s.

::::::::::
Nevertheless

::::
this

:::::
value

::
is

::::::
largely

:::::
under

:::
the

:::::::
MACrBC::::::

found
::
in

:::
this

:::::
study

::::
(9.2

:::
m2

::::
g−1

::
at

:
λ
::

=
::::
550

:::
nm,

::::::
which

:::
can

::
be

:::::::::
converted

::
to

::::
14.7

:::
m2

::::
g−1

::
at

::
λ

:
=
::::

550
:::
nm

::::::::
assuming

::::::::
AAE=1).

::::
The

::::::
review

:::
by

::::::::::::
Moteki (2023)

:::
has

::::
also

:::::
come

::
to

:
a
::::::
similar

::::::::::
conclusion.

::::
The

::::::
reasons

:::::::
behind

:::
this

::::
bias

::::::
should

::
be

::::::
better

::::::::::
understood,

::
in

:::
the

::::
light

:::
of

::::::::::
observations

:::::
such

::
as

:::::
those600

:::::::
provided

::
in

:::
the

::::::
present

::::::
study.

::::
This

::::
study

::::
has

::::::
notably

::::::
shown

:::
the

::::
high

:::::::::
variability

::
of

::::
rBC

::::::::
properties

:::::::::
measured

::
in

:
a
::::::
remote

::::
site,

::::::
where

::::
they

::::
have

:::::::::
undergone

:::::::::
long-range

:::::::
transport

::::
and

:::::
aging.

::::::
Certain

::::::
causes

::
of

:::
the

:::::
large

::::::::
variability

:::
in

:::::::
MACrBC::::

have
::::
been

:::::::::
eliminated

::::
and

::::::::::
highlighted:

–
:::
Wet

:::::::::
deposition

::
is

:::::::
regarded

::
as

:::
the

::::
main

::::
sink

::
of

::::
BC,

::::::::::
constraining

:::
its

::::::
lifetime

:::
and

::::
size

::::::::::
distribution,

:::
and

::::
thus

:::
its

::::::::::
atmospheric

:::::::::::
concentration

:::
and

::::::
optical

:::::::::
properties.

::::
Our

:::::
direct

:::::::
∆MrBC/∆CO when precipitation occurred along the air mass transport605
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suggests wet removal of BC. However the wet removal process has been found not to affect the size of BC-containing

particles, resulting in unchanged Eabs. This contrasts with previous observations showing a preferential removal of

BCwith large sizes (Kondo et al., 2016; Moteki et al., 2012; Taylor et al., 2014; Liu et al., 2020a). The difference
::::::::::::
measurements

::::
show

:::
the

::::::::
important

::::
role

::
of

:::
wet

:::::::::
deposition

::
as

:
a
::::
sink

::
of

::::
rBC

::::
with

::::::
around

::
67

::
%

::::::::
removed

::
in

:::
the

:::::::::
atmosphere

:::
by

:::::::::::
precipitation.

::::::::
However,

:::
we

:::::
found

:
a
:::::::::
negligible

::::::
impact

::
of

::::
rBC

:::
wet

:::::::
removal

:::::::
process

::
on

:::::
both

:::
rBC

::::
size

::::::::::
distribution

:::
and

:::::
Eabs. ::::

This
:::::
result610

may be due to either larger BC particles sampled at
:::
the

::::::::::
combination

:::
of

::::
large

::::
rBC

::::::::
particles

:::::::
reaching

:
PDM (DBC

::
rBC,core

around 180 nm) or different meteorological conditions such as ambient
:::
and

::::
high

::::::
critical

:
supersaturation in precipitating

clouds.
:::
The

::::
BC

:::
wet

:::::::
removal

:::::::
process

::::
was

:::::
found

::
to

:::
be

:::
one

::
of

:::
the

:::::
most

:::::::::::::
misrepresented

::::::
process

::
in
:::

the
::::::::::::

representation
:::

of

:::
BC

::
in

::::::
models

:::::::::::::::::::::::::::::
(Textor et al., 2006; Yu et al., 2019),

:::::::
leading

::
to

:::::::::::
overestimated

:::
BC

:::::::::::
tropospheric

::::::::::::
concentrations

:::
and

:::::::
lifetime

:::
and

::
in

::::
fine,

:
a
::::::
higher

::::::::
simulated

:::::::
radiative

::::::
forcing

:::::::::::::::::::::::::::::::::::
(Samset et al., 2014; Schwarz et al., 2013).

::::::::::
Substantial

::::::::::
controversial

::::
and615

:::::::::
ambiguous

:::::
issues

::
in

:::
the

::::
wet

:::::::::
scavenging

::::::::
processes

::
of

::::
BC

:::
are

:::::::
apparent

::
in

::::::
current

::::::
studies

::::::::::::::::
(Yang et al., 2019).

::::
Our

::::::
results

::::::
suggest

::::
that

:
a
::::
bulk

::::
wet

:::::::::
deposition

::::::::::::::
parameterization

::::::
(which

:::::
does

:::
not

:::::::
account

:::
for

:::::::
particle

::::
size

::::::::
dependent

:::::::::::
scavenging)

::::
could

::::::::::
realistically

::::::::
represent

:::
the

:::::
actual

:::
BC

::::
wet

:::::::::
scavenging

::
at
::::
this

:::
site.

:

In addition, a large seasonal contrast in BC properties has been discovered, with higher MBC and E

–
:::
rBC

::::
core

::::
was

::::::
found

::
to

::::
have

::
a
:::::
mean

:::::::
DrBC,core:::

of
:::
179

::::
nm

::
±

:::
28

::::
nm,

:::::
being

:::::::::
reasonably

:::::::::::
independent

::
of

:::
the

::::::
season

::::
and620

:::
day.

::::::
There

::::
was

::
no

:::::
clear

::::::::::
relationship

::::::::
between

:::::::
MACrBC::::

and
::::::::
DrBC,core,

:::::
which

::::::::
indicates

::::
that

:::
the

::::::::
variation

::
in
:::::

rBC
::::
core

:::
size

::::
was

:::
not

:::::::::
responsible

:::
for

:::
the

:::::::
MACrBC:::::::::

variability.
:::::::
Similar

::::::::::
observations

::
of

::::
rBC

::::
core

::::
size

:::::::::
distribution

::
in

:::
the

::::::::::
atmosphere

:::::::
provided

:::::::::::
observational

::::::::
evidence

::
of

:::
the

:::::
stable

:::::::::
distribution

::::
with

::
a

::::
mode

::::::::
centered

::
of

::::::
around

:::
200

:::
nm

::::::::::::
approximately

:::
one

::::
day

::::
after

:::::::
emission

:::::::::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2010; Schwarz et al., 2010; Shiraiwa et al., 2008)

:
.
::::
This

::::::::::::
self-similarity

:::::
could

::::::
greatly

::::::::
simplify

::
the

::::::::::::
representation

:::
of

:::::::
MACBC::

in
::::::

model
::::::::::
simulations

:::::
since

:
a
::::::::::

description
::
of

::::
BC

::::::
mixing

:::::
state

:::::::
becomes

:::
the

:::::::::::
determinant625

:::::
factor

::
of

:::::
model

:::::::::::
performance

:::::
when

:::::::::
estimating

:::
BC

::::::
optical

::::::::
properties

::::
and

:::::::
radiative

:::::::
forcing.

–
:::::::
Different

::::
time

::::::
scales

::
of

::
air

::::::::::
movements

:::
and

::::::::::
atmospheric

::::::::
processes

:::::
affect

:::::
MACabsin summer than winter

::
rBC :::::::::

throughout
::
the

:::::
year.

:::::::
MACrBC::::::

values
::::
were

:::::
found

::::::
higher

::
in

:::::::
summer

:::::::::
(geometric

:::::
mean

:::
of

::::
10.3

:::
m2

:::::
g−1),

:::::
when

:::
the

::::::::
influence

::
of

::::::::::::
regional-scale

::::::
motions

:::::::::
dominates

::::
the

::::
rBC

::::
load,

::::
than

:::
in

::::::
winter

:::::::::
(geometric

:::::
mean

::
of

::::
8.3

:::
m2

:::::
g−1),

:::::
when

:::
the

::::::::
influence

::
of

::::::::::
local-scale

::::::
motions

:::::::::
outweighs

:::
the

::::
rBC

:::::
load.

:::::
There

:::
are

::::
three

:::::::
possible

:::::::::::
explanations

:::
for

::::
this.

::
(i)

::::
The

::::::
plumes

::::::::
traveling

::
in

:::
the

:::
FT

::::
tend630

::
to

::::
have

:
a
::::::
longer

::::::
lifetime

::::::::
providing

::::::::
sufficient

::::
time

:::
for

::::
rBC

:::::
aging

:::::
during

::::::::
transport. In winter

:::
this

::::::
results

::
in a strong diurnal

variability of MBC
::
rBC (Eabs) with higher (lower) values in the middle of the day was linked to the injection of BC

::::
rBC

originating from the PBL into a clean free troposphere. Many rural regions in the Pyrenees rely on wood burning for home

heating during this season that may provide a significant source of BC at PDM. By contrast, during summer, the diurnal

variation of MBC was rather constant despite more frequent PBL-conditions, implying that M
:::::::
planetary

::::::::
boundary

:::::
layer635

::::::
(PBL).

::::::::
However

:::
the

:::::
aging

::::::::
timescale

:::
can

:::
not

:::
be

:::
the

::::
only

::::::::::
explanatory

:::::
factor

::::
since

::::::::
thermally

::::::
driven

::::
PBL

::::::::
injection

:::
did

:::
not

::::::::::
significantly

::::::
impact

::
MBCfluctuations were rather dominated by regional and long-range transport in the FT. Evidence suggests that biomass burning emissions from fires effectively altered the concentration and optical properties of BC at PDM, leading to higher Eabs in summer compared to winter . The diurnal cycle of

::
rBC

:::
and

:
Eabs was opposite to that in winter with maximum values of ∼ 2.9 observed at noon. We suggest that this daily
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variation results from photochemical processing driving BC mixing state rather than a change in BC emission source.

Additional measurements of the chemical composition in both the gas- and particle-phases are required to confirm this.640

All these results on BC properties and notably their consequences on aerosol absorption are essential to better understand

the role of BC in the climate system. In the light of the results obtained in the present study, BC absorption might not be

correctly represented in many climate models. In particular, wet removal is an important process for climate modeling

by moderating BC number and mass concentrations, lifetime and vertical distributions. Results here show that this wet

removal of BC should be independent of the BC size and its mixing state, implying that the hydrophilic
::abs ::

in
::::::
summer

::::
and645

:::::
higher

::::::
values

::::
have

::::
been

::::::::
observed

::
in

:::::::
summer

::::
than

::
in
::::::
winter

:::
for

::::::
similar

:::
FT

:::::::::
conditions.

:::
(ii)

::::
The

::::::
source

::
of

::::
rBC

::::::::
emission

:::
was

:::::::
different

::::::::
between

::
the

::::::
winter

:::
and

:::::::
summer

:::::::
seasons.

::::::::::
Combining

::::::
∆MrBC/hydrophobic separation that could be done in

some models may not be appropriate.Besides, our results also tend to show that it would be difficult for a climate model

to correctly represent the MACBC and its variations without properly taking into account the diversity of sources and the

different processes leading to its aging during transport
::::
∆CO

:::::
with

::
air

:::::
mass

::::::::
transport

:::::::
analysis,

:::
we

::::::::
observed

:::::::::
additional650

::::::
sources

:::::
from

:::::::
biomass

:::::::
burning

::
in

:::::::::::
summertime

::::::
leading

:::
to

:::::
higher

:::::
MrBC::::

and
::::
Eabs.::::

(iii)
::::::::
Different

:::::
aging

:::::::::
processes

:::::
occur

:::::::
between

:::::::
seasons,

::::
such

:::
as

::::::::::::
photochemical

:::::::
activity

:::
that

:::::
could

:::::::
explain

:::
the

::::::::
observed

:::::::::::
amplification

:::
of

::::
light

:::::::::
absorption

:::
by

:::
rBC

::::::
around

:::::
noon.

:

:::
The

:::::::::
complexity

::::
and

:::::::
diversity

::
of

:::
BC

::::::
mixing

:::::
states

::
in

:::
the

:::
real

::::::::::
atmosphere

::::::
cannot

::
be

::::::::::
represented

::
in

::::::
climate

:::::::
models,

:::
and

::::::::
therefore

::::
these

::::::
models

::::::::
generally

:::
use

:::::::::
simplified

::::::::
schemes.

::
A

::::
fixed

::::::::
e-folding

::::::::
timescale

::::
(1–3

:::::
days)

::
is

:::::::::
commonly

::::
used

::
as

:::
the

::::::::
turn-over

::::
time655

::
for

:::::::::
converting

:::::
fresh

:::
BC

:::::::
particles

::::
into

::::
aged

::::
ones

::::::::::::::::
(Myhre et al., 2013)

:
.
::
In

::::::::
addition,

::::::::::
atmospheric

::::::
models

:::::::::
necessarily

:::::::::::
approximate

::
the

::::
full

:::::::::
complexity

::::
and

::::::::
diversity

::
of

:::
BC

:::::::::::
composition,

::::::
which

:::
can

::::
lead

::
to
::::::::::

mismatches
:::::

with
::::::::
observed

:::
Eabs:::::::::::::::::

(Fierce et al., 2020)

:
.
:::
The

::::::::
findings

::::::::
presented

:::::
here

::::::
suggest

::::
that

::::::::
different

::::::::
dynamic

::::::::
processes

:::::::::
governing

::::
rBC

:::::
light

:::::::::
absorption

:::::
occur

::::::
during

::::
the

:::
day

:::
and

::::::
night,

:::
and

::::::::
between

:::::::
summer

:::
and

::::::
winter.

::
A
:::::::::::::::

parameterization
::
of

:::
BC

:::::
aging

::::::::
explicitly

::::::
based

::
on

:::::::
aerosol

::::::::::::
microphysical

::::::::
processes,

::
in
::::::

which
:::
the

:::::::::
conversion

::::
rate

::
is

:::::::::
considered

::
to
:::::

vary
:::::::::
depending

::
on

:::
the

::::::::::::
environmental

:::::::::
conditions

:::::
(e.g.,

:::::::::::
temperature,660

::::::::::::
photochemical

:::::::::
activity,...)

:::
and

:::::
some

:::
key

::::::
species

:::::
(e.g.,

:::::::
aerosol,

::::::
coating

::::::::::::
precursors,. . . )

::::
may

:::
be

:::::::
required

::
to

:::::::::
adequately

::::::::
represent

::
the

::::
true

:::::::::
variability

::
of

:::::::
MACBC.
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