
:::::::::
Comparing

:::
the

::::::::::
Performance

::
of
:::::
Julia

::
on

:::::
CPUs

::::::
versus

:::::
GPUs

:::
and

::::::::
Julia-MPI

::::::
versus

:::::::::::
Fortran-MPI:

:
a
::::
case

:::::
study

::::
with

:::::::::::
MPAS-Ocean

:::::::
(Version

:::
7.1)

:

Julia for Geophysical Fluid Dynamics: Performance Comparisons
between CPU, GPU, and Fortran-MPI
Siddhartha Bishnu1,2, Robert R. Strauss1,3, and Mark R. Petersen1

1Computational Physics and Methods Group, Los Alamos National Laboratory, NM, 87545, USA
2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA
3Center for Nonlinear Studies, Los Alamos National Laboratory, NM, 87545, USA

Correspondence: Mark R. Petersen (mpetersen@lanl.gov)

Abstract. Some programming languages are easy to develop at the cost of slow execution, while others are fast at run time but

:::
fast

::
at

:::::::
runtime

:::
but much more difficult to write. Julia is a programming language that aims to be the best of both worlds—a

development and production language at the same time. To test Julia’s utility in scientific high-performance computing (HPC),5

we built an unstructured-mesh shallow water model in Julia and compared it against an established Fortran-MPI ocean model,

MPAS-Ocean, as well as a Python shallow water code. Three versions of the Julia shallow water code were created, for:

single-core CPU; graphics processing unit (GPU); and Message Passing Interface (MPI) CPU clusters. Comparing identical

simulations revealed that our first version of the Julia model was 13 times faster than Python
::::
using

:::::::
NumPy,

:::::
where

::::
both

::::
used

:::
an

:::::::::
unthreaded

:::::::::
single-core

:::::
CPU. Further Julia optimizations, including static typing and removing implicit memory allocations,10

provided an additional 10–20x speed-up of the single-core CPU Julia model. The GPU-accelerated Julia code a speed-up of

230-380x compared to the single-core CPU Julia code
:::
was

::::::
almost

:::::::
identical

::
in
:::::
terms

:::
of

::::::::::
performance

:::
to

:::
the

::::
MPI

::::::::::
parallelized

::::
code

::
on

:::
64

:::::::::
processes,

::
an

::::::::::
unexpected

:::::
result

:::
for

::::
such

:::::::
different

:::::::::::
architectures. Parallelized Julia-MPI performance was identical

to Fortran-MPI MPAS-Ocean for low processor counts, and ranges from 2x faster to 2x slower for higher processor counts.

Our experience is that Julia development is fast and convenient for prototyping, but that Julia requires further investment and15

expertise to be competitive with compiled codes. We provide advice on Julia code optimization for HPC systems.

1 Introduction

A major concern in computer modeling is the trade-off between execution speed and code development time. In general,

programs in scripting languages like Python and Matlab are faster to develop due to their simpler syntax and more relaxed

typing requirements, but are limited by slower execution time. On the other end of the spectrum, we have compiled languages20

like C/C++ and Fortran, which have been extensively used in scientific computing for many decades. Programs in such

languages are blessed with faster execution time, but are cursed with stricter and more cumbersome syntax, leading to slower

development time. The Julia language strikes a balance between these two categories (Perkel, 2019). It is a compiled language

1

with execution speed similar to C/C++ or Fortran, if carefully written with strict syntax (Lin and McIntosh-Smith, 2021;

Gevorkyan et al., 2019). It is also equipped with a more convenient syntax and features, such as dynamic typing, to accelerate25

code development in prototyping. To this day, the majority of scientific computing models are programmed in compiled

languages, which execute fast but can take
::
can

::::
take

:::::
years

::
to

:::::::::::
develop—for

::::::::
example,

:::
the

:::
first

:::::::
version

::
of

::::::::::::
MPAS-Ocean

:::::::
required

::::
three

:::::
years (Ringler et al., 2013). In this paper, we investigate the feasibility of writing Julia codes for computational physics

simulations, since a Julia program can not
:::::
cannot

:
only ensure high performance but also less development time in the initial

stages. We develop a shallow water solver in Julia and compare its performance to an equivalent Fortran code.30

An additional complication in choosing the best language is that layers of libraries have been added to C/C++ and Fortran

to accommodate evolving computer architectures. For the past 25 years, computational physics codes have largely used the

Message Passing Interface (MPI) to communicate between CPUs on separate nodes that do not share memory, and OpenMP

to parallelize within a node using shared-memory threads. With the advent of heterogeneous nodes containing both CPUs and

GPUs, scientific programmers have several new choices: writing kernels directly for GPUs in CUDA (Bleichrodt et al., 2012;35

Zhao et al., 2017; Xu et al., 2015); adding OpenACC pragmas for the GPUs (Jiang et al., 2019); or calling libraries such as

Kokkos (Trott et al., 2022)
:::
and

::::::
YAKL

::::::::::::::::::
Norman et al. (2022) that execute code optimized for specialized architectures on the

back-end, while providing a simpler front-end interface for the domain scientist. All of these require additional expertise, and

add to the length and complexity of the code base. Julia also provides an MPI library for parallelization across nodes in a

cluster, and a CUDA library to parallelize over GPUs within a node. We have written shallow water codes in Julia that adopt40

each of these parallelization strategies.

In recent years, shallow water solvers such as
::::
have

::::
been

:::::::::
developed

:::
in

::::
Julia

:::
by Oceananigans.jl (Ramadhan et al., 2020)

and ShallowWaters.jl (Klöwer et al., 2022)have been developed in Julia. These codes employ structured rectilinear meshes to

discretize their domain, and are
:::::
spatial

:::::::
domain.

:::::::::::::
Oceananigans.jl

::
is
:
equipped with capabilities for running on GPUs to achieve

high performance
:
,
:::
and

:::
can

::::
also

:::::
solve

::
the

:::::::::::::
nonhydrostatic

:::
and

:::::::::
hydrostatic

::::::::::
Boussinesq

::::::::
equations. Here we conduct a comparison45

on unstructured-mesh models, using the Fortran code MPAS-Ocean (Ringler et al., 2013) as a point of reference. MPAS-Ocean

employs unstructured near-hexagonal meshes with variable resolution capability and is parallelized with MPI for running on

supercomputer clusters. We developed a Julia model employing the same spatial discretization of MPAS-Ocean, and
:::::
which

:
is
:
capable of running in serial mode on a single core, or in parallel mode on a supercomputer cluster or a graphics card. We

discuss the subtle details of our implementations, compare the speed-ups attained, and describe the strategies employed to50

enhance performance.

:::
The

::::::::
structure

::
of

:::
this

:::::
paper

::
is

:::::::
arranged

::
as

:::::::
follows.

:::::::
Section

:
2
:::::::
presents

:
a
:::::::::::::
comprehensive

::::::::::
introduction

::
to

:::
the

::::
Julia

::::::::::::
programming

::::::::
language,

:::
the

:::::::
primary

:::::::
subject

::
of

::::
our

::::::::::
experiments

:::
in

::::
this

:::::
paper.

:::::
This

::::::
section

:::::::::
elucidates

::::
how

::::::
Julia’s

:::::::::
innovative

:::::::::
compiler,

:::::::::
employing

::
its

:::::::::::
Just-in-Time

::::
(JIT)

:::::::::::
compilation

::::::::
approach

:::
and

::::::::
dynamic

::::
type

::::::::
inference,

::::::
equips

:::
the

::::::::
language

::::
with

:::
the

:::::::::
capability

::
to

::::
rival

:::
the

:::::::::::
performance

::
of

:::::::::::::
statically-typed

:::::::::
languages

::::
such

::
as

:::::::
Fortran

:::
and

:::::::
C++/C.

:::
We

::::::::
highlight

:::::
some

:::
key

:::::::
features

:::
of

:::::
Julia,55

:::::
which

:::
are

:::
not

::::
only

:::::::::::
fundamental

::
to

:::
our

::::::::
research,

:::
but

::::
also

:::::::
provide

:::::::
valuable

:::::::
insights

:::
for

::::::::::
researchers

::::
new

::
to

:::::
Julia,

:::::
aiding

:::::
their

:::::::::::
understanding

:::
of

:::::
Julia’s

::::::
unique

::::::::
concepts

:::
and

::::::::::::
terminologies.

:::
In

::::::
Section

::
3,
:::
we

::::::::
delineate

:::
the

:::::::
process

::
of

:::::::
creating

:::::
three

:::::::
versions

::
of

:::
the

::::
Julia

:::::::
model:

:::::::::
Julia-CPU,

:::::::::
Julia-GPU

::::
and

:::::::::
Julia-MPI.

::::
We

::::
also

::::::
provide

::::::
details

:::
on

:::
an

:::::::::
equivalent

:::::::::::
Python-CPU

::::
code

::::
and

2

::
the

::::::::::::
Fortran-based

:::::::::::::
MPAS-Ocean,

::::
both

:::
of

:::::
which

:::::
serve

:::
as

:::::::::::
comparative

:::::::::
yardsticks

:::
for

::::::::
assessing

::::::
Julia’s

:::::::::::
performance

::
in
::::

the

::::::
ensuing

:::::::
section.

:::::::::::
Additionally,

:::
we

:::::
offer

::
an

:::::::
explicit

:::::::
account

::
of

:::
the

::::::::
hardware

::::::::::::
configurations

::::
and

::::::::
toolchain

:::::::::::
specifications

:::::
used60

::
in

:::
the

:::::::
process.

::::::
Section

::
4
::::::::
furnishes

:::
the

:::::::
findings

::::
from

::::
our

::::::::::
performance

::::::::::
comparison

:::::
tests,

::::::::
including

:::
an

::::::::::
explanation

::
of

::::
how

:::
we

::::::::
fine-tuned

:::
our

::::::::::
preliminary

::::::
model

::
to

:::::::
generate

:::
the

:::::::
reported

::::::
results.

::::
This

::
is
:::::::::::
accompanied

:::
by

::
an

::::::::
in-depth

::::::::
discussion

::::
and

:::::::
analysis

::
of

:::
our

:::::::::::
experimental

::::::
results.

:::::
This

::::::
section

::::::
serves

::
as

:
a
::::::::::

benchmark
:::
for

:::::::::
contrasting

:::
the

::::::::::
proficiency

::
of

:::::
Julia

:::
and

:::::::
Fortran

::
in

:::::
High

::::::::::
Performance

::::::::::
Computing

:::::
(HPC)

:::::::::::
applications.

::
In

:::::::
Section

::
5,

:::
we

::::
share

:::::::
insights

:::
and

:::::::
provide

::::::::
guidance

::
to

::::
HPC

:::::::::
developers

:::
on

::::
how

::
to

::::::::
effectively

::::::
utilize

:::::
Julia,

:::
with

:::
an

::::::::
emphasis

::
on

:::
the

::::::::
necessary

:::::
steps

::
to

::::
attain

:::::::::::
performance

::
on

:::
par

::::
with

::::
that

::
of

::::::
Fortran

:::
and

:::::::
C++/C.65

::::
This

:
is
::::::::
informed

:::
by

:::
our

::::::::::
experiences

:::
and

:::
the

::::::
lessons

::::::
learned

:::::::::
throughout

::::
this

::::::::::
experiment.

::::::
Finally,

:::::::
Section

:
6
:::::::::
concludes

::
the

::::::
paper,

:::::::::::
encapsulating

:::
our

:::::::
findings

:::
and

:::::::::
providing

::::::::::
instructions

::
on

::::
how

::
to

:::::::
replicate

::::
our

::::::
results.

2
::::
Julia

::
in

::
a
:::::::
Nutshell

::::
Julia

::
is

:
a
::::::::::

high-level,
::::::::::
just-in-time

::::
(JIT)

:::::::::
compiled

:::::::
dynamic

::::::::::::
programming

::::::::
language,

::::::
which

::::
was

::::::::
developed

:::::
with

:::
the

::::::::
intention

::
of

::::::::
marrying

:::
the

:::::
speed

::
of

:::::::::
compiled

::::::::
languages

::::
like

::::::
Fortran

:::
or

::::::
C++/C

::::
and

:::
the

:::::::
usability

:::
of

:::::::::
interpreted

:::::::::
languages

:::
like

:::::::
Python70

::
or

:::::::::
MATLAB.

:::::::::
Conceived

::
in
:::::

2012
:::
by

:::
Dr.

:::::
Viral

:::::
Shah,

:::::
Prof.

::::
Alan

::::::::
Edelman,

::::
Dr.

:::
Jeff

:::::::::
Bezanson,

::::
and

::::::
Stefan

::::::::
Karpinski

::
at
:::::

MIT

::::::::::::::::::
(Bezanson et al., 2017)

:
,
::::
Julia

:::
has

:::::::
rapidly

:::::
grown

::
in

:::::::::
popularity

::::::
thanks

::
to

::
its

:::::::::
innovative

:::::::
features

:::
and

::::::
design.

:

::
As

::
a

::::::::
relatively

::::
new

:::::::
addition

::
to

:::
the

:::::
world

::
of

::::::::::::
programming

:::::::::
languages,

::::
Julia

:::::::
benefits

::::
from

:::
the

::::::
ability

::
to

::::::::::
incorporate

:::
the

::::
best

::::::
aspects

::
of

:::::::::
established

:::::::::
languages

:::::
while

:::::::
avoiding

:::::
their

:::
less

:::::::::
convenient

:::::::::
attributes.

::
It

:::::::
provides

:::
the

:::::
speed

::
of
::

a
::::::::
compiled

::::::::
language

::::::
(owing

::
to

::::::::::
Just-in-Time

::::::::
compiler

::::
and

:::::::
superior

:::::::
memory

:::::::::::
management)

::::
and

:::
the

::::::::
simplicity

:::
of

::
an

:::::::::
interpreted

::::::::
language,

:::::::
making

::
it75

:::::
highly

::::::::
appealing

:::
for

::::::::::
developers.

::::
The

:::::::
language

::::
also

:::::::
includes

::
a
:::::
REPL

::::::::::::::
(Read-Eval-Print

:::::
loop)

:::::::::::
environment

:::
that

::::::::
interprets

:::::
code

::::
lines

::
as

::::
they

:::
are

::::::
written,

:::::::::
enhancing

::::::::::::
programmers’

:::::::::::
convenience.

:::::::::
Specifically

::::::::
designed

:::
for

::::::::
technical

::::
and

::::::::
scientific

:::::
users,

::::
Julia

::
is
::::::::

versatile
:::
and

::::::
boasts

:::
an

::::::::
extensive

::::::
library

::
of

::::::::::::
mathematical

:::::::
functions

::::
and

:::::::::
numerical

::::::::
accuracy.

::
It

::::
also

::::::::
facilitates

::::::::
seamless

:::::::::::::
interoperability

::::
with

:::::
other

::::::::::::
programming

:::::::::
languages,

::::::::
enabling

:::::
direct

::::
calls

::
to

:::::::
Fortran,

::::::
C++/C,

:::::
Java,

::
or

::::::
Python.

:
80

:::::::::
Compatible

::::
with

::
a

::::
range

::
of

::::::::
operating

::::::::
systems,

:::::::
including

:::::::::
Windows,

:::::::
MacOS,

:::
and

:::::
Unix,

::::
Julia

:::
has

:::::
found

::::::::::
widespread

:::::::::
application

::
in

:::::::
domains

::::::::
requiring

:::::::
algebraic

::::
and

::::::::
numerical

::::::::::
computing,

::::
data

::::::
science

:::
and

::::::::
machine

:::::::
learning,

:::::::
artificial

:::::::::::
intelligence,

:::::::::
distributed

:::
and

::::::
parallel

::::::::::
computing,

:::
and

:::::
even

:::
web

::::::::::
application

:::::::::::
development,

:::
due

::
to
:::
its

:::::::::::
math-friendly

::::::
syntax

:::
and

::::::::::
impressive

:::::
speed.

:

::
In

:::
the

::::::::
upcoming

::::::::::
subsections,

:::
we

:::::::::
succinctly

:::::
delve

:::
into

:::::
three

::::::
crucial

:::::
facets

::
of

:::::
Julia:

::::::::::
Just-in-Time

:::::
(JIT)

:::::::::::
compilation,

:::::::
multiple

:::::::
dispatch,

::::
and

::::
type

::::::::
hierarchy.

::::::
These

:::::
salient

::::::::::::
characteristics

:::
are

::::
not

::::
only

:::::::
pertinent

:::
to

:::
our

:::::
study

:::
but

::::
will

:::
also

:::
be

:::::::::::
instrumental

::
in85

:::::::::
elucidating

:::
our

:::::
model

::::
and

::::::::::
interpreting

::
the

:::::::
results.

:::
We

::::
wrap

:::
up

:::
this

::::::
section

::::
with

:
a
:::::::::
discussion

:::
on

::::::::
scenarios

:::::
where

::::
type

::::::::
inference

:::
may

::::
fail,

:::::::::
potentially

:::::::
leading

::
to

:::::
slower

:::::
code

::::::::
execution.

:

2.1
::::::::::

Just-in-Time
::::::::::::
Compilation

3

:::::
Julia’s

::::
high

:::::::::::
performance

:::
can

:::
be

::::::::
attributed

::
to
::::

one
::
of

:::
its

:::
key

::::::::
features:

:::
low

:::::
level

::::::
virtual

:::::::
machine

::::::::
(LLVM)

:::::
based

::::::::
on-the-fly

:::
or

:::::::::
just-in-time

:::::
(JIT)

:::::::::::
compilation,

:::::
which

::
is
::

a
:::::::::::
combination

::
of

::::::
Ahead

:::
Of

:::::
Time

::::::
(AOT)

::::::::::
compilation

::::
and

:::::::::::
interpretation.

:::::
Here

::
is

::
a90

:::::::::
breakdown

::
of

::::
how

::
it

:::::
works:

:

(a)
:::::
When

:
a
:::::::
function

::
is
::::
first

:::
run

::
in

:::::
Julia,

:::
the

:::::::::
interpreter

:::::::
converts

:::
the

::::::::
high-level

::::
code

::::
into

::
an

:::::::::::
intermediate

::::::::::::
representation;

:

(b)
:::
The

::::::::
compiler

::::
then

:::
uses

::::
this

::::::::::
intermediate

::::::::::::
representation

::
to

:::::::
generate

:::::::::
optimized

:::::::
machine

::::
code

:::::::
tailored

::
to

:::
the

::::::
specific

:::::
types

::
in

:::
use;

:

(c)
::::
This

:::::::
machine

::::
code

::
is

::::::::
executed,

:::
and

:::
the

::::::
results

:::
are

::::::::
returned;95

(d)
::::
Most

::::::::::
importantly,

:::
the

:::::::
machine

:::::
code

:::
for

:::
the

::::::
specific

:::::::
function

::::
and

::::
type

::::::::::
combination

::
is

::::::
cached.

::::
So,

:
if
:::
the

:::::
same

:::::::
function

::
is

:::::
called

::::
with

:::
the

::::
same

:::::
types

::::
later

:::
on,

::::
Julia

:::
can

::::::
bypass

:::
the

::::::::::
compilation

::::
step

:::
and

::::::
directly

:::::::
execute

:::
the

::::::::::::
pre-optimized

:::::::
machine

::::
code.

:

::::
This

:::
JIT

:::::::::::
compilation

::::::
enables

:::::
Julia

::
to
::::::

match
::::

the
:::::::::::
performance

::
of

:::::::::::::
statically-typed

:::::::::
compiled

::::::::
languages

:::::
such

::
as
::::::::

Fortran,

::::::
C++/C,

:::::
while

:::::::::
preserving

::::
the

::::::::
flexibility

::
of

::::::::
dynamic

:::::::::
languages

::::
like

::::::
Python.

:::::::::
However,

::
it

::::
also

:::::::::
introduces

:
a
:::::

delay
:::::::

referred
:::

to100

::
as

:::::::::::::::
‘time-to-first-plot’

::
or

::::::::::
compilation

::::::
latency

:::
on

:::
the

:::::
initial

:::
run

::
of

::
a

:::::::
function.

::::::::::
Subsequent

::::
calls

:::
are

::::::::::
significantly

:::::
faster

::::
due

::
to

:::
the

::::::
cached

:::::::
machine

:::::
code.

2.2
::::::::
Function,

:::::::
Method,

::::
and

::::::::
Multiple

::::::::
Dispatch

::
In

:::::
Julia,

:
a
:::::::
function

::
is
::

a
::::::
named

::::::::
sequence

::
of

:::::::::
statements

::::
that

::::::::
performs

:
a
::::::::::::

computation.
::
A

::::::
method

::
is
::
a
:::::::
specific

:::::::::::::
implementation

::
of

:
a
::::::::
function

:::
for

::::::::
particular

:::::
types

::
of

::::::::::
arguments.

::
A

:::::::
function

:::::::::
definition

:::::
starts

:::
out

::::
with

::
a
:::::
single

:::::::
method.

::::
But

:::::
when

:::::::::
additional105

::::::::
definitions

::::
are

:::::::
provided

::::
with

::::::::
different

:::::::::::
combinations

:::
of

::::::::
argument

:::::
types,

:::
the

:::::::
function

:::::::
accrues

:::::
more

::::::::
methods.

::::
This

:::::::
concept

::
is

::::::::
intimately

::::
tied

::
to

:::::
Julia’s

:::::::
support

:::
for

:::::::
multiple

::::::::
dispatch,

:::::
which

::::::
means

:::
that

:::
the

::::::
version

:::
of

:::
the

:::::::
function

:::
(i.e.

:::
the

:::::::
method)

::::
that

::::
gets

:::::
called

::
is

:::::::::
determined

:::
by

::
the

:::::
types

::
of

:::
all

:::::::::
arguments.

::::
This

:::
can

:::::::
provide

:
a
:::::::
flexible

:::
and

::::::::
powerful

::::
way

::
to

::::::
express

:::::::
program

::::::::
behavior.

:

:::
The

:::::::::
traditional

::::
form

::
of

::::::::
multiple

:::::::
dispatch

::
in

::::
Julia

::
is

:::::::
dynamic

:::
or

::::::
runtime

::::::::
dispatch.

:::::
When

::
a

:::::::
function

::
is

:::::
called,

:::::
Julia

::::::::
examines

::
the

:::::
types

::
of

:::
all

:::::::::
arguments

:::
and

:::::::
chooses

:::
the

:::::
most

::::::
specific

:::::::
method

:::
that

::::
can

:::::
apply

::
to

::::
these

::::::
types.

:::
The

::::::
benefit

:::
of

:::
this

::::::::
approach

::
is110

:::
that

::
it

:::::
allows

:::
for

::::::::::::
polymorphism

::::
and

::::
code

:::
that

::::::
adapts

:::::
based

:::
on

:::
the

::::
types

::
it

:::::::::
encounters

::::::
during

::::::::
execution.

:

::::::::
Although

:::
not

:
a
:::::::
separate

:::::::
dispatch

::::::::::
mechanism,

:::::
static

::
or

:::::::::::
compile-time

::::::::
dispatch

:::::
occurs

:::::
when

::::::
Julia’s

:::::::
compiler

::::::
knows

:::
the

:::::
types

::
of

::
all

:::::::::
arguments

::
to

::
a

:::::::
function

:::
call

::
at
:::::::
compile

:::::
time.

::
In

::::
such

::::::
cases,

:::
the

:::::::
compiler

::::
can

:::::
select

:::
the

:::::::::
appropriate

:::::::
method

::
to

:::
call

:::::
right

:::::
away,

::::::
instead

::
of

::::::::
deferring

:::
the

:::::::
decision

::
to

:::::::
runtime.

::::
This

::
is

::
an

:::::::::::
optimization

:::
that

::::
can

:::::
result

::
in

::::
more

:::::::
efficient

:::::
code,

:::
but

::
it

:::::::
requires

::
the

::::::::
compiler

::
to

::::
have

:::::::
enough

::::::::::
information

:::::
about

:::::
types,

:::::
which

::
is

:::
not

::::::
always

:::::::
possible

::
in

::::::::::::::::
dynamically-typed

::::::::
languages

:::
like

:::::
Julia.

:
115

2.3
::::
Type

:::::::::
Hierarchy

:::
The

::::
type

::::::::
hierarchy

::
in

::::
Julia

::
is

:
a
::::::
system

::::
that

::::::::
organizes

::
all

:::::::
possible

:::::
types

::::
into

:
a
:::::::
tree-like

::::::::
structure,

:::::::
allowing

:::
for

:::
the

::::::::::::
categorization

::
of

::::
types

::::
and

::::::::
subtypes.

4

::
At

:::
the

:::
top

::
of

:::
the

::::
type

::::::::
hierarchy

::::
tree

::
is

:::
the

::::
Any

::::
type,

::::::
which

::
is

:
a
:::::::::
supertype

::
of

::
all

:::::
other

:::::
types.

::::::
When

:
a
:::::::
variable

::
is

::::::
defined

:::
as

::::
Any,

:
it
::::

can
::::
hold

:
a
:::::
value

::
of

::::
any

::::
type.

::::
This

::
is
::::::
useful

::
in

::::::
certain

::::::::
scenarios

:::::
where

:::::::::
maximum

::::::::
flexibility

::
is
::::::::
required,

:::
but

::
it

:::
can

::::
also120

:::::::::
potentially

::::
slow

:::::
down

:::
the

:::::
code.

::::
This

::
is

:::::::
because

:::
the

:::::::
compiler

::::
does

::::
not

::::
know

:::
the

:::::::
specific

::::
type

::
of

:::
the

:::::::
values,

:::
and

::::::
cannot

:::::
make

::
as

:::::
many

:::::::::::
optimizations.

:

:::::::
Abstract

:::::
types

::::
serve

::
a
::::::
similar

::::
role

::
as

:::::::::
interfaces

::
in

::::
other

::::::::::
languages.

::::
They

:::
are

::::::
nodes

::
in

:::
the

::::
tree

:::
that

::::
can

::::
have

::::::::
subtypes

:::
but

:::::
cannot

:::
be

::::::::::
instantiated

::::::::::
themselves.

::
In

:::::
other

::::::
words,

::::
they

::::::
define

:
a
::::
kind

:::
of

:::::::
protocol

::
or

:::
set

:::
of

:::::::::
behaviors,

:::
but

:::
one

::::::
cannot

::::::
create

::::::
objects

::
of

::::
these

::::::
types.

::::
They

:::
are

::::
only

::::
used

:::
for

:::::::::
organizing

:::::
other

:::::
types

:::
into

::
a

::::::::
hierarchy.125

::::::
Finally,

:::::::
concrete

:::::
types

::::
form

:::
the

::::::
leaves

::
of

:::
the

:::
tree

::::
and

::::::::
represent

::::
types

::::
that

:::
can

:::::::
actually

::
be

:::::::::::
instantiated,

:::
but

::::
they

::::::
cannot

::::
have

:::::::
subtypes

::::::::::
themselves.

::::::::
Examples

::
of

::::::::
concrete

::::
types

:::
are

::::
Int,

:::::::
Float64,

::::::
String,

:::::
Array

:::
etc.

:::::
Each

:::::::
concrete

::::
type

::
is

:
a
:::::::
subtype

::
of

::::
one

::
or

::::
more

:::::::
abstract

:::::
types.

:

:::
The

::::
type

::::::::
hierarchy

:::
is

::::::
crucial

::
in

::::
Julia

:::::::
because

::
it
:::::::
enables

:::
the

::::::::
powerful

::::::
feature

::
of
::::::::

multiple
::::::::
dispatch,

:::::::
allowing

::::::::
functions

:::
to

::::::
behave

::::::::
differently

:::::::::
depending

:::
on

:::
the

::::
types

:::
of

::
all

::::
their

::::::::::
arguments.130

2.4
::::
Type

::::::::
Inference

::
In

:::::::
statically

:::::
typed

:::::::::
languages,

:::::
such

::
as

:::::::
Fortran,

::::::
C++/C

::
or

:::::
Java,

:::
the

::::::::::
programmer

:::::
needs

::
to

:::::::
declare

:::
the

::::
type

::
of

:
a
:::::::
variable

:::::
when

::
it

:
is
:::::::
defined.

::::
This

::::::
allows

:::
the

:::::::
compiler

::
to
::::::::
generate

:::::::
efficient

::::
code

:::::::
because

:
it
::::::
knows

::::::
exactly

:::::
what

::::
types

::
it

::
is

::::::
dealing

:::::
with.

::::::::
However,

::::
Julia

::
is

:::::::
designed

::
to

::
be

::::
easy

::
to
:::
use

::::
like

:
a
:::::::::::
dynamically

::::
typed

::::::::
language

:::::
(such

::
as

::::::
Python

::
or

::::::::::
MATLAB),

:::::
where

::
it

::
is

:::
not

::::::::
necessary

::
to

::::::
declare

:::
the

::::
types

:::
of

::::::::
variables.

:::
But

::::::
unlike

::::
most

::::::::::
dynamically

:::::
typed

:::::::::
languages,

:::::
Julia

:::
can

:::
still

:::::::
produce

::::
very

:::::::
efficient

:::::
code,

::::::
thanks135

::
to

::
its

:::
JIT

::::::::::
compilation

::::
and

:::::::::
aggressive

::::
type

::::::::
inference

::::::
system,

::::::
which

::::::
allows

:::
the

:::::::
compiler

::
to

:::::::::
determine

:::
the

::::
type

::
of

::
a

::::::
variable

:::
or

:::::::::
expression

::::::
without

:::
the

:::::::::::
programmer

::::::::
explicitly

:::::::::
mentioning

::
it.
::::

The
::::::::
compiler

:::::
infers

:::
the

::::
type

:::::
based

:::
on

::
the

::::::
values

::::::::
assigned

::
or

:::
the

::::::::
operations

:::::
used

::
on

:::
the

::::::::
variable.

::::::::
However,

::::
type

::::::::
inference

::
in

::::
Julia

::::
can

:::
fail

::
or

:::
be

:::::::::
suboptimal

::
in

::
a
:::
few

::::::::
different

::::::::
scenarios.

:::::
Here

::
are

:::::
some

::
of

:::
the

:::::
most

:::::::
common

:::::
ones:

(a)
::::::::
Functions

::::
with

:::::::::
insufficient

::::::::::
information

:::::
about

::::::::::
arguments:

::
In

:::::
some

:::::
cases,

::
a

:::::::
function

:::::
might

:::
not

::::
have

:::::::
enough

::::::::::
information140

::::
about

:::::
what

:::::::::
arguments

:
it
::::
will

:::::::
receive.

::::
This

:::
can

:::::
make

:
it
::::
hard

:::
for

:::
the

::::::::
compiler

::
to

::::
infer

:::
the

:::::
types.

:

(b)
:::::
Global

:::::::::
variables:

:::::
Using

::::::
global

:::::::
variables

:::
can

::::
lead

::
to
:::::::::::
performance

::::::
issues,

:::::::
because

:::
the

:::::
global

:::::
scope

::::
can

::::::
change,

::::::
which

::
in

:::
turn

:::::::
prevents

:::
the

::::::::
compiler

::::
from

::::::::
inferring

:
a
:::::
stable

:::::
type.

(c)
::::
Type

:::::::::
instability:

::
In

:::::
Julia,

::::
type

::::::::
instability

:::::
refers

::
to
::
a
:::::::
situation

:::::
where

:::
the

::::
type

::
of

::
a
:::::::
variable

::::::
cannot

::
be

:::::::
inferred

::::::::::
consistently

::
by

:::
the

::::::::
compiler

::
at

::::::
compile

:::::
time.

::::
This

::::::
usually

:::::::
happens

:::::
when

:::
the

::::
type

::
of

::
a
:::::::
variable

:::::::
changes

:::::
within

::
a

:::::::
function,

::
or
:::::
when

::
a145

::::::::
function’s

::::::
return

::::
type

:::::::
depends

:::
on

:::
the

:::::
values

::::
(not

:::
the

:::::
types)

::
of
:::
its

:::::::::
arguments.

:

(d)
:::::::::
Containers

::::
with

:::::::
multiple

::::
data

:::::
types:

::
In

:::::
Julia,

::::::::
containers

:::
are

::::
data

::::::::
structures

::::
used

:::
for

::::::
storing

:::::::::
collections

::
of

::::
data.

::::::
These

:::
can

::::::
include

:::::
arrays

:::
(an

:::::::
ordered

::::::::
collection

::
of

::::::::
elements,

:::::::
indexed

::
by

::::::::
integers),

::::::
tuples

:::
(an

::::::
ordered

:::::::::
collection

::
of

::::::::
elements,

::::::
similar

::
to

::
an

:::::
array,

:::
but

::::::::::
immutable),

::::::::::
dictionaries

:::
(an

:::::::::
unordered

::::::::
collection

:::
of

::::::::
key-value

::::::
pairs),

:::
and

::::
sets

:::
(an

::::::::
unordered

:::::::::
collection

5

::
of

::::::
unique

::::::::
elements),

::::::
among

::::::
others.

::
If
:::::::::
containers

:::
are

::::
used

::
to
:::::
store

:::::::
different

:::::
types

::
of

:::::
data,

:::
the

:::::::
compiler

::::
may

:::
not

:::
be

::::
able150

::
to

:::::::
precisely

:::::
infer

::::
their

:::::
types.

::::
Even

:::::
when

::::
type

::::::::
inference

::::
fails

::
or

::
is
::::::::::
suboptimal,

:::
the

:::::
Julia

::::
code

::::::
should

::::
still

:::
run

::::::::
correctly

:::::::::
(assuming

:
it
:::::
does

:::
not

::::
have

:::::
other

::::
types

::
of

:::::::
errors),

:::
but

:
it
::::
may

::::
run

:::::
slower

::::
due

::
to

:::
the

::::::::
additional

::::::::
overhead

::
of

:::::::
runtime

::::
type

::::::::
checking.

:::
To

:::::::
improve

:::::::::::
performance,

::
it

::
is

:::::::
generally

::
a
::::
good

:::::::
practice

::
to

:::
try

::
to

:::::
write

:::::::::
type-stable

::::
code

:::
and

:::::::
provide

:::
the

::::::::
compiler

::::
with

::
as

:::::
much

::::
type

::::::::::
information

::
as

:::::::
possible.

:

2.5
:::::

Struct155

::
In

:::::
Julia,

:
a
:::::
struct

::
is

::
a

::::::::
composite

::::
data

:::::
type,

::::::
similar

::
to

::
a

::::
class

::
in

:::::::::::::
object-oriented

:::::::::
languages.

::::::::
However,

::::::
Julia’s

:::::
struct

:::::
itself

::
is

:::
not

::::::::::::
object-oriented

:::
and

::::
has

::
no

:::::::
methods

:::::::
directly

:::::::
attached

::
to

:::::
them.

::
A

:::::
struct

::
is

::::
used

::
to

::::::::::
encapsulate

:
a
::::
few

::::::
related

:::::
values

:::::::
together

::::
into

:
a
:::::
single

::::::
entity,

:::
and

:::::
those

:::::
values

:::
are

::::::
stored

::
in

:::::
fields.

::::::
Structs

::::
with

::::::
abstract

:::::
types

::
or

:::::::::
containers

::
as

:::::
fields

:::
can

::::
slow

:::::
down

:::::
Julia

::::
code,

:::::
since

::::
they

::::::
prevent

:::
the

::::::::
compiler

::::
from

:::::::::
producing

:::::
highly

:::::::::
optimized,

:::::::::::
type-specific

::::::::
machine

:::::
code.

::
In

:::::
other

::::::
words,

:::
the

::::
lack

::
of

::::::::
concrete

::::
type

::::::::::
information

::
at

:::::::
compile

::::
time

::::::
forces160

::
the

::::::::
compiler

::
to
::::::::

generate
::::
less

:::::::
efficient,

:::::::
generic

::::
code

::::
that

::::
can

:::::::::::
accommodate

::::
any

::::::::
potential

:::::::
subtype,

::::::::
resulting

::
in

:::::::::::
performance

:::::::
penalties

::::
from

::::::::
dynamic

:::::::
dispatch

:::
and

::::::
missed

:::::::::::
optimization

::::::::::::
opportunities.

:::::
While

:::
one

::::::::
approach

:::
to

::::::::
improving

::::
the

::::::::::
performance

:::
of

::::
Julia

::::::
structs

::::
with

:::::::
abstract

:::::
types

::
or

:::::::::
containers

::
is

::
to

::::::
specify

::::::::
concrete

::::
types

:::
for

:::
all

:::::
fields,

:::
this

:::::
could

::::::
reduce

:::
the

:::::::::
flexibility

::
of

:::::
Julia’s

::::::::
powerful

::::
type

:::::::::
abstraction

::::
and

:::::::::
potentially

::::
lead

::
to

::::::::
repetitive

:::::
code.

::
An

:::::::::
alternative

:::::::::
technique

:::::::
involves

:::
the

:::
use

:::
of

:::::::
function

:::::::
barriers,

::::::
where

::::::
abstract

:::::
fields

:::
are

:::::::::
unpacked

:::::
within

::
a
:::::::
function

::::
that

::::
then165

::::
calls

::
an

:::::
inner

:::::::
function,

:::::::::
effectively

:::::::
passing

:::::::
concrete

::::::
types.

::::
This

:::::::
strategy

::::::::
leverages

:::::
Julia’s

::::::
ability

::
to

:::::::
generate

:::::::
efficient

::::::::
machine

::::
code

:::::
based

:::
on

:::
the

:::::::
specific

:::::
types

::
of

::::::::
function

:::::::::
arguments.

::::::::
However,

::
a
:::::
more

::::::
elegant

::::::::
solution

:::::
could

::
be

::::
the

:::
use

::
of

::::::::::
parametric

::::::
structs.

::::
With

:::::::::
parametric

::::::
structs,

:::
the

::::
type

::
of

:::
the

::::
field

::
is

:::::::::
determined

::
at

:::
the

::::
time

::
of

:::::
struct

:::::::
instance

:::::::
creation

:::::
rather

::::
than

::
at

:::
the

:::::
struct

::::::::
definition.

::::
This

::::::::
approach

::::::
allows

:::
the

::::
Julia

:::::::
compiler

::
to
::::::::
generate

:::::
highly

:::::::::
optimized

:::::::
machine

::::
code

:::::::
tailored

::
to

:::
the

::::::
precise,

::::::::
concrete

:::
type

:::::
used

::
for

:::::
each

:::::::
instance,

::::::::::
significantly

::::::::
reducing

:::
the

::::::::::
performance

::::::::
overhead

::::::::
typically

::::::::
associated

::::
with

::::::::
handling

:::::::
abstract

:::::
types.170

3 Methods

::::
With

::
an

::::::::::
exploration

::
of

:::
the

:::::::
relevant

:::
key

:::::::
features

::
of

::::
Julia

::
in

:::
the

::::::::
preceding

:::::::
section,

:::
we

:::
are

::::
now

::
set

::
to

::::
shift

:::
our

:::::
focus

::
to

:::
the

::::::
details

::
of

:::
the

::::::
shallow

:::::
water

:::::::::
equations

:::
that

:::
we

::::
aim

::
to

:::::
solve,

::::::::
including

::
its

:::::::::
numerical

:::::::::::
discretization

::::
and

:::::::::::::
implementation

:::::
across

:::::::
various

:::::::::::
architectures.175

3.1 Equation Set & TRiSK-Based Spatial Discretization

Our Julia model solves the shallow water equations (Cushman-Roisin and Beckers, 2011) in vector-invariant form. This is

sufficiently close to the governing equations for ocean and atmospheric models to be used as a proxy to test performance with

6

new codes and architectures. The equation set is

ut + qhu⊥ =−g−
:
∇
(
g
:
η−+

:
∇K

)
, (1a)180

ηt +∇ · (hu) = 0, (1b)

where u is the horizontal velocity vector, u⊥ = k×u, h is the layer thickness, η is the surface elevation or sea surface height

(SSH), K = |u|2/2 is the kinetic energy, and g is the acceleration due to gravity. If b represents the topographic height and H

the mean depth, then η = h+b−H . Moreover, if f denotes the Coriolis parameter, and ζ = k ·∇×u the relative vorticity, then

the absolute vorticity, ωa = ζ + f , and the potential vorticity, q = ωa/h. The term qhu⊥ is the thickness flux of the PV in the185

direction perpendicular to the velocity, rotated counterclockwise on the horizontal plane. Ringler et al. (2010) refer to it as the

non-linear Coriolis force since it consists of the quasi-linear Coriolis force fu⊥ and the rotational part ζu⊥ of the non-linear

advection term u·∇u. We spatially discretize the prognostic equations in (1) using a mimetic finite volume method based on the

TRiSK scheme, which was first proposed by (Thuburn et al., 2009), and then generalized by (Ringler et al., 2010). This method

was chosen to horizontally discretize the primitive equations of MPAS-Ocean while invoking the hydrostatic, incompressible,190

and Boussinesq approximations on a staggered C-grid. Since this horizontal discretization guarantees conservation of mass,

potential vorticity, and energy, it makes MPAS-Ocean a suitable candidate to simulate mesoscale eddies.

Our spatial domain is tessellated by two meshes, a regular planar hexagonal primal mesh and a regular triangular dual mesh.

Each corner of the primal mesh cell coincides with a vertex of the dual mesh cell and vice versa. A line segment connecting

two primal mesh cell centers is the perpendicular bisector of a line segment connecting two dual mesh cell centers and vice195

versa. Regarding our prognostic variables, the scalar SSH η is defined at the primal cell centers, and the normal velocity vector

ue is defined at the primal cell edges. The divergence of a two-dimensional vector quantity is defined at the positions of η,

while the two-dimensional gradient of a scalar quantity is defined at the positions of ue and oriented along its direction. The

curl of a vector quantity is defined at the vertices of the primal cells. Finally, the tangential velocity u⊥
e along a primal cell

edge is computed diagnostically using a flux mapping operator from the primal to the dual mesh, which essentially takes a200

weighted average of the normal velocities on the edges of the cells sharing that edge. Interested readers may refer to Thuburn

et al. (2009) and Ringler et al. (2010) for further details on the mesh specifications.

At each edge location xe, two unit vectors ne and te are defined parallel to the line connecting the primal mesh cells, and in

the perpendicular direction rotated counterclockwise on the horizontal plane, such that te = k×ne. The discrete equivalent of

the set of equations (1) is205

(ue)t=−
:
F⊥
e q̂e=: −

[
∇(gηi +Ki)

]
e
, (2a)(

ηh
:i

)
t

=− [∇ ·Fe]i ,. (2b)

where Fe = ĥeue and F⊥
e represent the thickness fluxes per unit length in the ne and te directions respectively. The layer

thickness hi, the SSH ηi, the topographic height bi, and the kinetic energy Ki are defined at the centers xi of the primary

mesh cells, while the velocity ue are defined at the edge points xe. The symbol (̂.)e represents an averaging of a field from its210

7

native location to xe. The discrete momentum equation (2b)
:::
(2a)

:
is obtained by taking the dot product of (1b) with ne, which

modifies the non-linear Coriolis term to

ne · q̂eĥeu
⊥ = q̂eĥene · (k×u) = q̂eĥeu · (ne ×k)

=−q̂eĥeu · te =−q̂eĥeu
⊥
e =−F⊥

e q̂e. (3)

Given the numerical solution at time level tn = n∆t, with ∆t representing the time step and n ∈ Z≥0, the Julia model first215

computes the time derivative or tendency terms of (2) as functions of the discrete spatial and flux-mapping operators of the

TRiSK scheme. Then it advances the numerical solution to time level tn+1 using the forward-backward method

un+1 = un +∆tF (un,hn) , (4)

hn+1 = hn +∆tG
(
un+1,hn

)
, (5)

where F and G represent the discrete tendencies of the normal velocity and the layer thickness in functional form, and the220

subscripts representing the positions of these variables have been dropped for notational simplicity.

The following sections introduce the new codes that were created for this study. Three versions of the Julia code were

written (Strauss, 2023): the base single-core CPU version, an altered version for GPUs with CUDA, and a multi-node CPU

implementation with Julia-MPI. These were compared against existing Fortran-MPI and
:::::::::
single-core Python versions of shallow-water

TRiSK models. All use a standard MPAS unstructured-mesh file format that specifies the geometry and topology of the mesh,225

and includes index variables that relate neighboring cells, edges, and vertices. All models have an inner (fastest-moving) index

for the vertical coordinate and were tested with 100 vertical layers to mimic performance in a realistic ocean model.

3.2 Single-Core CPU Julia Implementation

The serial-mode implementation on a single core involves looping over every cell and edge of the mesh to (a) compute the

tendencies, i.e. the right-hand side terms of the prognostic equations (2),
:
and (b) advance their values to the next time step. The230

tendencies can be functions of the dependent and independent variables as well as spatial derivatives of the dependent variable.

The serial version of our model is the simplest one from the perspective of transforming the numerical algorithms into code.

In order to highlight differences in formulation, we provide a Julia code example for the single tendency term from (2)

for the SSH gradient −g∇η, which is discretized as − [g∇ηi]e. We then add a vertical index k to mimic the performance of

a multi-layer ocean model, but each layer is trivially redundant. In a full ocean model this
::::
SSH

:::::::
gradient

:
term would be the235

pressure gradient, and would involve the computation of pressure as a function of depth and density. For the single-core CPU

version, the Julia function computing
::
to

:::::::
compute

:
the SSH gradient is

cpu.jl

Listing 1. Julia example for serial CPU

1:
::::::::::
function

::::::::::::::::::::::::
velocity_tendencies

::
!(

:::::::::::::
sshGradient

:
,
:::::
ssh

:
,
::::::
...)

2:
::::::::

for
::::::::
iEdge

:::
in

::::
1:

:::::::
nEdges240

8

3:
::::::::::::::::

cell1
::
=

::::::::::::::
cellsOnEdge

::::
[1,

::::::
iEdge

:
]

4:
::::::::::::::::

cell2
::
=

::::::::::::::
cellsOnEdge

::::
[2,

::::::
iEdge

:
]

5:
:::::::::::::

for
:::
k

:::
in

::::
1:

:::::::::::::
nVertLevels

6:
::::::::::::::::::::::::::::

sshGradient
:
[

:
k

:
,
::::::
iEdge

:
]
:::
=

::
-
::::::::::
gravity

::
/
:::::::::
dcEdge

:
[

::::::
iEdge

:
]

7:
::*:::

(
:::
ssh

::
[

:
k

:
,

::::::
cell2

:
]
:::
-

::::
ssh

::
[

:
k

:
,

::::::
cell1

::
])245

8:
:::::::::::::

end

9:
::::::::

end

10:
::::
end

Here cellsOnEdge is an array of index variables describing the mesh that points to the cells neighboring an edge, and

dcEdge represents the distance between the centers of adjacent cells sharing the edge on which the normal velocity tendency250

is computed. In the actual code all the tendency terms are computed within this function, but here we only show the ssh
::::
SSH

gradient as a brief sample.

3.3 SIMD GPU Julia Implementation

GPUs are very powerful tools
::::::::::
exceedingly

:::::::
efficient

:
for SIMD (Same Instruction Multiple Data) computations: they have

:
,

::::::::
leveraging

::::
their

:
thousands of independent threads , which can

:
to
:
execute the same operation at the same time with

:::::::::::::
simultaneously255

::
on different input values. Since we numerically solve

::
As

:::
we

:::
are

::::::
solving

:
the same prognostic equation for (a) the SSH at every

cell center xi, and (b) the normal velocity at every edge xe of the mesh, a GPU is a logical tool to employ
::::::::
naturally

:::::::
emerges

::
as

:
a
::::::::
powerful

::::
asset

:
for our computations. By placing

::::::::
assigning subsets of cells and edges on different threads of the GPU

::
to

::::::
distinct

::::
GPU

:::::::
threads, we can perform

::::::
conduct the tendency computations , and advance

::
and

::::::
update

:
the prognostic variables at

once in parallelrather than
::::::::::
concurrently

::
in

:::::::
parallel.

::::
This

::::::::
approach

:::::
stands

::
in

:::::
stark

:::::::
contrast

::
to looping over every cell and edge,260

which would scale in wall-clock time according to
::
an

::::::::
operation

:::
that

::::::
would

:::::
scale

::::::
linearly

:::::
with the size of the mesh,

:::::::
thereby

::::::::::
significantly

::::::::
impacting

:::
the

:::::::::
wall-clock

::::
time

::
in
:::::
large

::::
scale

::::::::::::
computations.

We wrote CUDA kernels for
::
To

::::::
harness

:::
the

::::::
power

::
of an Nvidia GPU

:
,
::
we

::::::
crafted

::::::
CUDA

::::::
kernels

:
using the CUDA.jl libraryfor

computing
:
,
:::::::::
specifically

:::
for

:::::::::
calculating

:
the tendencies and advancing

:::::::
updating the prognostic variables to the next

:::::::::
subsequent

time step. The code for the
:::
One

::
of

:::
the

::::::::::
remarkable

:::::::
features

::
of

:::::::
working

:::::
with

:::::
GPUs

::::
and

:::::::
CUDA.jl

::
is
:::
the

:::::::
relative

::::
ease

::
of

:::::
code265

::::::::
transition

::::
from

:
a
:
single-core implementation can be converted to CUDA with surprising ease by removing

:
to

:
a
:::::::::::::
multi-threaded

::::
GPU

:::::::
context.

::::::::
Primarily,

::
it

:::::::
involved

::::::::
replacing the for loopover the

:
,
:::::
which

::::::
iterated

::::
over

:
cells and edges, and instead performing

the underlying computation on a single
::::
with

:
a
:::::
more

:::::::::::
GPU-friendly

::::::
design

:::::
where

:::
the

:::::::::::
computation

::
is

::::::
carried

:::
out

::::::::::::
independently

::
for

::::
each

:
cell or edge

:
,
::
as

::::::
shown

:::::
below:

Listing 2. Julia example for GPU with CUDA

1: CUDA.@cuda blocks=cld(nEdges, 1024) threads=1024 maxregs=64270

2: velocity_tendencies_cuda!(sshGradient, ssh, ...)

3:

9

4: function velocity_tendencies_cuda!(sshGradient, ssh, ...)

5: iEdge = (CUDA.blockIdx().x - 1) * CUDA.blockDim().x

6: + CUDA.threadIdx().x275

7: cell1 = cellsOnEdge[1,iEdge]

8: cell2 = cellsOnEdge[2,iEdge]

9: for k in 1:nVertLevels

10: sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]

11: * (ssh[k,cell2] - ssh[k,cell1])280

12: end

13: end

Each
:
In

:::
our

::::::::::::::
implementation,

::::
each

:
cell and edge of the mesh will be designated to a different

:
is

:::::::
assigned

::
to
::
a
::::::
distinct

:
thread

on the GPU. The computation
::::
Thus,

::::::::::::
computations for a single cell or edge will run on a single thread, and a CUDA method

will be used to map the index of the thread to the index
::
are

::::::
carried

:::
out

:::
on

:
a
:::::::

solitary
::::::
thread,

::::
with

::
a
::::::::
dedicated

::::::
CUDA

:::::::
method285

:::::::
enabling

:::
the

:::::::
mapping

:::
of

:::::
thread

::::::
indices

::
to

:::
the

::::::::::::
corresponding

::::::
indices

:
of the cell (i) or edge (e) , at which

:::::
where the prognostic

variable is being updated. To execute this methodover
::::::
ensure

:::
the

::::::::
method’s

::::::::
execution

::::::
across all threads on the GPU, we use

::::::
employ

:
a CUDA macro to call our kerneland designate

::::::
invoke

:::
our

::::::
kernel,

:::::::::
specifying

:
the number of threads to use, which

should be equal to the number of cells or edges in
:::::
within the mesh. Note that the inner computation of pressureGradient

is identical for the
::
It

:
is
:::::::::

important
::
to

:::::::::
underscore

::::
that

:::
the

::::
core

:::::::::::
computation

::
of sshGradient

:::::::
remains

:::::::
identical

::
in

::::
both

:
CPU290

and CUDA kernal codes
::::
kernel

::::::
codes,

::::::::::::
demonstrating

:::
the

::::
ease

::
of

::::::
porting

::::::::::::
computational

:::::
logic

::::
from

:::::
CPU

::
to

::::
GPU

::::::
context.

3.4 CPU/MPI Julia Implementation

Rather than iterating through every
::::::
Instead

::
of

:::::::
cycling

::::::
through

::::
each

:
cell or edge of the mesh, we may parallelize the simulation

with multiple processors by assigning to each processor a portion
::
can

::::::::
optimize

:::
the

:::::::::
simulation

::
by

:::::::::
employing

:::::::
multiple

:::::::::
processors

:::
and

:::::::::::
apportioning

:
a
::::::::

segment of the mesh
::
to

::::
each

::::
one, a process called

::::::
referred

::
to

:::
as domain decomposition. However, the295

computations of some spatial operatorsmay require information
:
to

::::::::
compute

::::::
certain

::::::
spatial

:::::::::
operators,

:::
we

:::::
need

::::
data

:
from

the outermost cells of the adjacent processors. So, we need the neighboring processorsto communicate these
::::::::::
neighboring

:::::::::
processors.

::::
This

::::::::::
necessitates

:::::::::::::
inter-processor

:::::::::::::
communication

::
to

::::::::
exchange

:::::
these

::::::
critical pieces of informationwith each other.

To ensure an efficient
:
.
:::
To

:::::::::
streamline

:::
this

:
communication, we include an extra ring or “halo” of cells around

:::::::
introduce

:::
an

::::::::
additional

::::::
‘halo’

:::::
layer,

:::::::::
consisting

::
of

:::::
rings

:::
of

::::
cells

:::::::::
encircling

:
the boundary of the region assigned to each processor

::::
each300

:::::::::
processor’s

:::::::
assigned

::::::
region, which overlaps with the region assigned to adjacent processors. We do not compute the

:::::::
adjacent

:::::::::
processors’

:::::::
regions.

:::::
Since

:::::::::::
computation

:
is
::::::::

typically
:::::
much

:::::::
cheaper

::::
than

:::::::::::::
communication,

::
it
::
is

:::::::
standard

:::::::
practice

::
to

:::::::
perform

::::
this

::::
‘halo

:::::::::
exchange’

::::
after

::
at

::::
least

:
a
::::
few

::::
time

:::::
steps.

::
As

:::::::::
previously

::::::::::
mentioned,

::
we

:::
are

::::::::
applying

:
a
:::::::
mimetic

:::::
finite

::::::
volume

:::::::
method

:::::
based

::
on

:::
the

::::::
TRiSK

:::::::
scheme

::
in

:::
our

:::::::::::
calculations.

:::::::::::
Consequently,

:::
the

:::::::::::
computation

::
of

::::::
spatial

::::::::
operators

:::::
such

::
as

:::
the

::::::::
gradient,

::::::::::
divergence,

::::
curl,

:::
and

::::
flux

::::::::
mapping

::::::::
operators

:::::
(used305

10

::
for

::::::::::::
diagnostically

:::::::::
computing

:::
the

:::::::::
tangential

:::::::::
velocities)

::::
only

:::::::
requires

:::
the

::::::
values

::
of

:::
the

:::::::::
prognostic

::::::::
variables

::
at

:::
the

:::
cell

:::::::
centers

:::
and

:::::
edges

::
of

::::::::
adjacent

::::
cells.

::::::
Thus,

::
to

:::::::
compute

:::
the

::::::
spatial

::::::::
operators

::::
that

::::::::
constitute

:::
the

:
tendencies of the prognostic variables

in the halo region of a processor. In fact, we cannot perform this operation without information in an additional ringof halo

cells, which is not assigned to the processor under consideration. So, we obtain the updated
::::::
defined

::
at

:::
the

:::::
center

:::
and

::::::
edges

::
of

:
a
:::::::
specific

:::
cell,

:::
we

:::::
need

::
to

:::::::
consider

:::
just

::::
one

:::::
small

:::
ring

::
of
:::::
cells

::::::
around

:::
the

:::
cell

:::
and

:::
the

::::::
values

::
of

:::
the

:::::::::
prognostic

::::::::
variables

::
at

:::
the310

:::::
center

:::
and

:::::
edges

:::
of

::::
each

:::
cell

::::::
within

:::
this

:::::
ring.

:::
The

::::::::::
intersection

::
of

:::::
these

:::::
small

::::
rings

::::::
around

:::::
each

::::::::
boundary

:::
cell

::
of

:::
the

::::::::
assigned

:::::
region

::
of

::
a
::::::::
processor

::::::
forms

:::
the

::::::::
innermost

::::
ring

:::
of

::
its

::::
halo

:::::
layer.

::::::
When

:::::
using

:
a
:::
kth

:::::
order

::::::::::::
time-stepping

:::::::
method

::::::::
involving

::
k

:::::::
tendency

::::::::::::
computations

:::::
within

::
a
::::
time

:::::
step,

:::
and

:::::::::
executing

:::
the

::::
halo

::::::::
exchange

::::
after

:::
m

::::
time

:::::
steps,

::::
the

::::::
number

:::
of

::::
rings

:::
in

:::
the

:::
halo

:::::
layer

::
is

:::
set

::
to

:::::::
n= km.

::::
For

:::
the

::
qth

:::::
stage

::
of

:::
the

:::
pth

::::
time

:::::
step,

::::
with

:::::::::
1≤ p≤m

:::
and

:::::::::
1≤ q ≤ k,

:::
we

::::::::
compute

:::
the

:::::::::
tendencies

::
on

:::
the

::::::::
assigned

:::::
region

:::
of

:::
the

:::::::::
processor,

::
as

::::
well

::
as

:::
on

:::::::::::::::
(m− p+1)k− q

::::
rings

:::
of

:::
the

::::
halo

:::::
layer,

::::::
starting

:::::
from

:::
the

:::::::::
innermost315

:::
one.

:::::
This

::::::
process

::
is
::::::::
repeated,

::::::::::::
progressively

:::::::
‘peeling

:::
off’

::::
the

::::::::
outermost

::::
ring

::::
after

:::::
each

::::::::
tendency

:::::::::::
computation,

::::
until

::::
after

:::
m

::::
time

:::::
steps,

:::
we

::::::
update

:::
the values of the prognostic variables in the halo region by

:::::
within

:::
the

::::
mk

:::::
rings

::
of

:::
the

::::
halo

:::::
layer

:::
via

communication with adjacent processors, which contain these halo cells in their interior, and update the prognostic variables

in them.
:
.
::
In

:::
our

::::::
work,

:::
we

:::
are

:::::
using

:
a
::::::::::::::::
forward-backward

::::::
method

::::
with

::::::
k = 1,

::::
and

:::::::::
performing

:::
the

::::
halo

::::::::
exchange

:::::
after

:::::
every

::::
time

::::
step,

:::::::
resulting

::
in
::::::::::
m= p= 1.

:::::
While

:::
we

:::::::::::
acknowledge

::::
this

::::
may

:::
not

::
be

:::
the

:::::
most

:::::::
efficient

::::::
choice,

:::
our

:::::::
primary

:::::::
concern

::::
here320

:
is
::::::::
ensuring

:::::::::
equivalent

::::::::::::
computational

:::
and

:::::::::::::
communicative

::::::::
workload

:::::::
between

:::
the

::::::
Fortran

::::
and

::::
Julia

::::
MPI

:::::::
models.

:::
So,

::
as

:::::
long

::
as

:::
this

:::::
parity

::
is

::::::::::
maintained,

:::
we

:::::::
consider

:::
our

:::::::::::
methodology

::::::::::
satisfactory.

:

A number of crucial modifications are necessary to implement this parallelization scheme
::::::
Finally,

::::::::::::
implementing

:::
this

::::::::::::
parallelization

:::::::
approach

::::::::::
necessitates

::
a
::::
few

:::::::::
significant

:::::::::::
modifications. For instance,

::
we

::::::
adjust the simulation methods are amended so that

each process (rank) only performs computations for the set of
::
or

:::::
rank)

:::::::
performs

::::::::::::
computations

::::
only

:::
for

:::
its

:::::::
assigned

:
cells or325

edgesassigned to it. We use .
:::
We

::::::
utilize the MPI communication channel (comm) to receive the updated values of the prognostic

variables in the halo region of a processorfrom adjacent processors which
:
a
:::::::::
processor’s

::::
halo

::::::
region

::::
from

:::
the

:::::::
adjacent

:::::::::
processors

:::
that

:
advance these variables. Similarly, we send

:::::::::
Conversely,

:::
we

:::::::
transmit

:
the updated values of the prognostic variables along

::::
from the outermost region of the above-mentioned processor to adjacent processors, for which these variables belong

::::::::
processor

:::::
under

:::::::::::
consideration

::
to

:::
the

::::::::::
neighboring

:::::::::
processors,

:::::
where

:::::
these

:::::::
variables

:::::
reside

:
in the halo regions. For the TRiSK-based spatial330

discretization and the forward-backward time-stepping method, the halo region consists of only one layer (one halo ring) of

cells.

Listing 3. Julia example for CPU with MPI

1: # each process executes the following, receiving a different value

2: # on each rank:

3: comm = MPI.COMM_WORLD335

4: rank = MPI.Comm_rank(comm)

5:

6: myCells = cells_for_rank(mesh_file, rank, partition_file)

7: myEdges, myHaloEdges = edges_on_cells(myCells)

11

8:340

9: velocity_tendencies!(myEdges, sshGradient, ssh, ...)

10: update_halo_edges!(sshGradient, myHalodEdges, rank, comm)

11:

12: function velocity_tendencies!(myEdges, sshGradient, ssh, ...)

13: for iEdge in myEdges345

14: cell1 = cellsOnEdge[1,iEdge]

15: cell2 = cellsOnEdge[2,iEdge]

16: for k in 1:nVertLevels

17: sshGradient[k,iEdge] = - gravity / dcEdge[iEdge]

18: * (ssh[k,cell2] - ssh[k,cell1])350

19: end

20: end

21: end

22:

23: function update_halo_edges!(data, edgesInMyHalo, rank, comm)355

24: for neighborRank in find_neighbors(rank, comm)

25: MPI.Irecv!(data[edgesInMyHalo,:], neighborRank, 0, comm)

26: edgesToNeighbor = find_halo_overlap(rank, neighbor, comm)

27: MPI.Isend(data[edgesToNeighbor,:], neighborRank, 0, comm)

28: end360

29: end

Here myCells and myEdges are the lists of cells and edges in the local domain, owned by the rank running this code,

plus its halo.

3.5 CPU/MPI Fortran Implementation

j365

The baseline comparison code for this study is the Model for Prediction Across Scales (MPAS-Ocean) (Ringler et al., 2013;

Petersen et al., 2015), which is written in Fortran with MPI communication commands. It is the ocean component of the

Energy Exascale Earth System Model (E3SM) (Golaz et al., 2019; Petersen et al., 2019), the climate model developed by

the US Department of Energy. In this study, the code is reduced from a full ocean model solving the primitive equations to

simply solving for velocity and thickness (1). Thus the majority of the code is disabled, including the tracer equation, vertical370

advection and diffusion, the equation of state, and all parameterizations. In order to match the Julia simulations, we employ a

12

https://e3sm.org/

forward-backward time-stepping scheme, exchange one-cell-wide halos after each time step, compute 100 layers in the vertical

array dimension, and use the identical Cartesian hexagon-mesh domains (Petersen et al., 2022).

MPAS-Ocean is an excellent comparison case for Julia because it is a well-developed code base that uses Fortran and MPI,

which have been standard for computational physics codes since the late 1990s. The highest resolution simulations in past375

studies used over three million horizontal mesh cells and 80 vertical layers, scale well to tens of thousands of processors

(Ringler et al., 2013) and have been used for detailed climate simulations (Caldwell et al., 2019). MPAS-Ocean includes

OpenMP for within-node memory access, and is currently adding OpenACC for GPU computations, but these were not used

for this comparison to Julia-MPI on a CPU cluster.

3.6
::::::::::

Single-Core CPU Python Implementation380

In addition to
::::
Apart

:::::
from

:
MPAS-Ocean, we compare

::::::
examine

:
the performance of the Julia shallow water code against an

::::::
relative

::
to

::
a
::::::::::
single-core,

:
object-oriented Python code (Bishnu, 2022) . The Python code solves

:::
that

::::::
utilizes

:::::::
NumPy.

:::::
This

::::::
Python

::::
code

::::::::
employs

:::
two

:::::
types

:::
of

:::::
spatial

:::::::::::::
discretizations

::
to

:::::
solve the rotating shallow water system of equationsusing two

types of spatial discretizations: the TRiSK-based mimetic finite volume method used in MPAS-Ocean, and a discontinuous

::::::::::::
Discontinuous Galerkin Spectral Element Method (DGSEM). The code offers a number of standard

::::::::
Moreover,

::
it
::::::::
supports385

::::::
various

:
predictor-corrector and multistep time-stepping methods, including those analyzed

::::::::
previously

:::::::::
scrutinized

:
for ocean

modeling in Shchepetkin and McWilliams (2005).

The Julia shallow water code was first written by translating this Python code into Julia syntax. While the Julia code was

expanded
:::::::::::
subsequently

::::::::
optimized

:
for parallelization and

:::::::
enhanced

:
performance, the Python code was further developed to

serve
::::::::
continued

::
to

::::::
evolve

:
as a platform for conducting a verification

::
to

:::::::
conduct

:
a
:

suite of shallow water test cases for the390

barotropic solver of ocean models. Each of these test cases
:::
test

::::
case

:
in the Python code verifies the implementation of a

:
a
:::::::
specific subset of terms in the prognostic momentum and continuity equations, e.g. the linear pressure

::::
such

::
as

:::
the

::::::
linear

::::
SSH gradient term, the linear constant or variable-coefficient Coriolis and bathymetry terms, and the non-linear advection

terms. Bishnu et al. (2022) and Bishnu (2021) provide detailed discussions on
::::
offer

:::
an

:::::::
in-depth

::::::::::
exploration

::
of

:
these test

casesalong with specifics of ,
:::::::::
discussing

:
the numerical implementation, the time evolution of the numerical error for both395

spatial discretizations and a subset of the time-stepping methods, and
::
the

:
results of convergence studies with refinement in

both space and time, only in space, and only in time. Out of all of these test cases
::::::::
However,

:::
for

:::
the

::::::::
purposes

::
of

:::
the

:::::::
present

::::
study, only the linear coastal Kelvin wave and inertia-gravity wave test cases were implemented in the Julia codefor the current

study.

While not used in this study , a number of libraries exist to accelerate Python for various architectures. These include
:::
this400

::::
study

:::
did

::::
not

:::::::
leverage

:::::
them,

::::::
several

:::::::
libraries

:::::
exist

:::
for

::::::::
enhancing

:::::::
Python

::::::::::
performance

::::::
across

::::::
various

::::::::::::
architectures,

::::::::
including

Numba and PyCuda for GPUs, mpi4py for CPU clusters, and Cython for single-CPU acceleration. Numba(Lam et al., 2015)

is an open-sourced
:
,
::
an

:::::::::::
open-source

:
Anaconda-sponsored

::::::
project,

::::::::::::::::
(Lam et al., 2015)

:::::
serves

::
as

::
a
:
NumPy-aware optimizing

compiler, which
::
JIT

::::::::
compiler.

::
It
:
translates Python functions to fast

:::
into

:::::
swift

:
machine code at runtimeusing the remarkable

industry-standard
:
,
:::::::::
employing

:::
the

:::::
robust

:
LLVM compiler library. PyCUDA (Klöckner et al., 2012), written

::::
which

::
is
:::::::::
structured405

13

in C++ (the base
:
at

:::
its

::::::::::
foundational

:
layer) and Python, provides

::::::::
facilitates

:
access to Nvidia’s CUDA parallel computation API

from Python. Mpi4py (Dalcín et al., 2005, 2008), provides
:::::
within

:::::::
Python.

::::::
Lastly,

:::::::
mpi4py

::::::::::::::::::::::
(Dalcín et al., 2005, 2008)

:::::
offers

Python bindings for the
:::::::::
universally

:::::::::
recognized

:
Message Passing Interface (MPI) standard.

As an alternative, one can ‘cythonize

:::::::
Another

:::::
option

:::::::
involves

:::::::::::
‘cythonizing’ an existing Python code by providing

::::::::::
introducing static type declarations and class410

attributes, that can then be translated
:::::
which

:::
can

:::::::::::
subsequently

:::
be

::::::::
converted

:
to C++/C code and to C-Extensions for Python.

Cython is an optimising static compiler for both the Python programming language and the extended Cython programming

language. It is designed to offer
:::::::::
optimizing

:::::
static

:::::::
compiler

::::::::
designed

::
to

:::::
yield

:
C-like performance with code mostly written

in Python with additional
::::
from

:::::::
Python

::::
code

::::
with

::::::::::::
supplemental C-inspired syntax. The rotating shallow water Python code

Bishnu (2022)
:::::::::::::
(Bishnu, 2022)

:
is currently undergoing cythonization. Cythonized

::::
Once

::::::::::
cythonized,

:::::
these codes can further415

be accelerated on GPUs using Nvidia’s HPC C++ compiler , and the C++ Standard Parallelism (stdpar) for GPUs (Srinath,

2022). However, the extent of additional
::::
effort

::::::::
required

:::
for

::::
such

::::::::
extensive modifications and enhancements required to bring

GPU-accelerated C++ algorithms to the Python ecosystem
:::::
Python

:
may not always be a reasonable investment of time

:::::
justify

::
the

:::::
time

:::::::::
investment. As we will see in later

:::::::
illustrate

::
in

::::::::::
subsequent sections, a serial Julia code, which already achieves

::::::::
—already

:::::::
rivaling the performance of a fast compiled language, does not require extensive modifications to be parallelized on420

GPUs or multiple cores, and is therefore more convenient than python
::
fast

::::::::
compiled

:::::::::::::::::
languages—requires

:::::
fewer

::::::::::::
modifications

::
for

:::::
GPU

::
or

:::::::::
multi-core

:::::::::::::
parallelization.

::::
This

:::::
makes

:::::
Julia

:
a
:::::
more

:::::::::
convenient

::::::
choice

:
for high-performance scientific computing

applications
::::::::
compared

::
to

::::::
Python.

3.7
::::::::
Hardware

::::
and

:::::::::
Compiler

::::::::::::
Specifications

:::::::::
Multi-core

::::
CPU

::::
and

::::
GPU

::::::::::
simulations

:::::
were

::::::::
conducted

:::
on

:::::::::
Perlmutter

::
at

:::
the

::::::::
National

::::::
Energy

::::::::
Research

::::::::
Scientific

::::::::::
Computing425

:::::
Center

:::::::::
(NERSC).

:::
In

::::
June

::
of

:::::
2022

:::::::::
Perlmutter

::::::::
achieved

::::
70.9

::::::
Pflop/s

:::::
using

:::::
1,520

::::::::
compute

::::::
nodes,

:::
and

::::
was

::::::
ranked

:::
7th

:::
in

:::
the

::::::
Top500

::::
list.

:::::::::::::::::::::
Erich Strohmaier (2022)

::::::::
Perlmutter

::
is
::::::

based
::
on

::::
the

::::
HPE

:::::
Cray

::::::
Shasta

::::::::
platform.

::
It
::
is
::

a
::::::::::::
heterogeneous

:::::::
system

::::::::
comprised

::
of

::::
both

:::::::::
CPU-only

:::::
AMD

:::::::
‘Milan’

:::::
nodes

:::
and

::::::::::::::
GPU-accelerated

::::::::
‘Ampere’

::::::
nodes,

::
as

:::::::
detailed

::
in

:::::
Table

::
1.

:::
The

:::::::::
Ampere’s

:::::
Nvidia

:::::
A100

:::::
GPU

::
is

::::::::::
appropriate

:::
for

:::
this

:::::
study

:::::::
because

::
it

::
is

:::::::
designed

:::
for

:::::
HPC

:::::::::
workloads

:::
and

::::::
double

::::::::
precision

:::::::::::
calculations.

:::
The

:::::::::
Julia-MPI

:::
and

:::::::::::
Fortran-MPI

::::
tests

::::
were

::::
both

:::
run

::::
with

:::
up

::
to

::
64

:::::
ranks

:::
per

:::::
node.

:
430

:::
The

:::::::
software

::::::::
toolchain

::
is

::
as

:::::::
follows.

::::
Both

::::::
Fortran

::::
and

::::
Julia

:::
use

:::
the

:::::::
MPICH

::::::::::::
implementation

:::
of

::
the

::::::::
Message

::::::
Passing

::::::::
Interface

:::::
(MPI).

::::
The

:::::::
Fortran

:::::::
compiler

::::
was

::::
gnu

::::::
version

:::::::
11.2.0,

::::
with

:::::::
MPICH

:::
3.4,

::::::
which

::
is

::::::::
packaged

:::
on

:::::::::
Perlmutter

::::
with

:::
the

::::::::
modules

PrgEnv-gnu/8.3.3
:::
and cray-mpich/8.1.24.

:::::::::::::
Multi-threading

::::
was

:::::::
disabled

:::
(no

:::::::::
OpenMP).

:

:::::
When

:::::::
running

:::
on

:
a
::::::

single
:::::
node

:::
(up

:::
to

:::
64

:::::::::
processes),

::::
we

:::::::::::
experimented

:::::
with

::::
both

:::::
block

::::
and

::::::
cyclic

:::::::::::
distributions

::::
(run

::::::::
command srun --distribution=block:block

:::::
versus

:
srun --distribution=cyclic:cyclic.

::::
The

:::::
block435

:::::::::
distribution

::::::
would

:::
be

:::::::
expected

:::
to

::::::
reduce

:::::::::::::
communication

::::
time

:::::::
because

::
it
:::::::
restricts

:::::::::
processes

::
to

::
a

:::::
single

::::::
socket

:::
for

::
1

::
to

:::
32

::::::::
processes.

::::
The

:::::
cyclic

::::::::::
distribution

:::::
could

:::::
speed

:::::::::::
computations

:::::::
because

::::::::
processes

:::
are

:::::::::
distributed

:::::::
equally

:::::
across

:::
the

::::
two

:::::::
sockets.

::
In

:::::::
practice,

:::::
there

:::
was

:::::
little

::::::::
difference

::::::::
between

:::
the

:::
two

:::::::::::
distributions.

::::
The

::::::
figures

:::::
show

:::
the

:::::
block

::::::::::
distribution.

:::
On

::::::::::
multi-node

::::
tests,

:::
we

:::
use

:::
64

::::::::
processes

:::
per

:::::
node.

14

::::
CPU

:::::
Nodes

::::
GPU

:::::
nodes

:::::::
overview

::
2x

:::::
AMD

:::::
EPYC

::::
7763

::::::
(Milan)

::::
CPUs

: :::::
Single

::::
AMD

::::::
EPYC

::::
7763

:::::
(Milan)

::::
CPU

:

::
64

::::
cores

:::
per

::::
CPU

::
64

::::
cores

:::
per

::::
CPU

:::::
AVX2

::::::::
instruction

::
set

: ::::
Four

::::::
NVIDIA

:::::
A100

:::::::
(Ampere)

:::::
GPUs

:

:::::::
memory

:::
512

:::
GB

::
of

:::::
DDR4

::::::
memory

::::
total

:::
256

:::
GB

::
of

:::::
DDR4

::::::
DRAM

::::::::::::
communication

::::
204.8

::::
GB/s

:::::::
memory

::::::::
bandwidth

:::
per

::::
CPU

::::
204.8

::::
GB/s

::::
CPU

:::::::
memory

::::::::
bandwidth

::
40

:::
GB

::
of

::::
HBM

:::
per

::::
GPU

::::
with:

:

:::::
1555.2

::::
GB/s

::::
GPU

:::::::
memory

::::::::
bandwidth

::
12

:::
3rd

:::
gen

::::::
NVLink

::::
links

:::::::
between

::::
pairs

::
of

::::
GPUs

:

::
25

:::::::::::
GB/s/direction

:::
for

:::
each

::::
link

::::
PCIe

:::
4.0

::::::::
NIC-CPU

::::::::
connection

: ::::
PCIe

:::
4.0

::::::::
NIC-CPU

::::::::
connection

:

::::
PCIe

:::
4.0

:::::::::
GPU-CPU

::::::::
connection

::
1x

::::
HPE

:::::::
Slingshot

::
11

::::
NIC

:
4
::::
HPE

:::::::
Slingshot

::
11

:::::
NICs

::::::::::
performance

:::
39.2

::::::
GFlops

:::
per

:::
core

: :::
19.5

::::
GPU

::::::
TFlops

:::::
(FP32)

:

:::
2.51

::::::
TFlops

:::
per

:::::
socket

::
9.7

:::::
GPU

:::::
TFlops

::::::
(FP64)

:
4
::::::
NUMA

:::::::
domains

::
per

:::::
socket

:::::::
(NPS=4)

: ::::
155.9

::::
GPU

::::::
TFlops

:::::
(TF32,

::::::
tensor)

::::
311.9

::::
GPU

::::::
TFlops

:::::
(FP16,

::::::
tensor)

:::
19.5

::::
GPU

::::::
TFlops

:::::
(FP64,

::::::
tensor)

:::::
power

:::::
280W

::::::
thermal

:::::
design

:::::
power

:::::
300W

::::::
thermal

:::::
design

:::::
power

Table 1.
:::::::
Technical

:::::::::::
specifications

::
for

:::::::
NERSC

::::::::
Perlmutter

::::
CPU

:::
and

::::
GPU

:::::
nodes.

::::::::::::
(NERSC, 2023)

:::
The

::::
Julia

:::::::
version

:
is
:::::
1.8.3

::::
with

::::::
MPICH

:::::
4.0.2.

::::
The

::::::::
necessary

::::
julia

:::::::
packages

:::
are

:::::
listed

::
in

::::::::::::::::
Manifest.toml

:::
and

:::::::::::::::
Project.toml

:
.440

:::::
These

::::::::
packages

:::
can

::
be

::::::::
installed

::
by

::::::::
executing

:::
the

:::::::::
following

::::
lines

::
in

:::
the

::::
julia

:::::::
console

:::::::
(opened

::
by

:::::::
running

:::
the

::::
julia

::::::
binary

::::
with

::
no

:::::::::
arguments)

:::
in

::
the

::::
root

::::::::
directory

::
of

:::
the

::::::
MPAS

:
_

:::::
Ocean

:
_
::::
Julia

::::::::::
respository:

:
]
::::::::::
activate

::
.

:::::::::::::
instantiate

:::::::::::
Subsequently,

:::::
when

:::::::
running

::::
julia

::::
with

:::
the

:::
flag

:
--project=.

:
in

:::
the

::::
root

::::::::
directory

::
of

:::
the

::::::
MPAS

:
_
:::::
Ocean

:
_
::::
Julia

:::::::::
repository,445

::
all

:::
the

::::::::
necessary

::::::::
packages

:::
for

:::
the

::::::::::
environment

::::
will

::
be

::::::
loaded

::
in

::::
their

::::::::::
appropriate

::::::::
versions.

4 Results
:::
and

:::::::::
Discussion

:::
We

::::
now

::::::
present

:::
the

::::::
results

:::
of

:::
the

::::::::::
verification

:::
and

:::::::::::
performance

::::
tests

:::
for

::::
our

::::
Julia

::::::
model.

::::
The

::::::::::
verification

::::
tests

::::::::::
encompass

::::::::::
convergence

::::
plots

:::
for

:::
the

::::::
spatial

:::::::
operators

::::
and

:::
the

::::::::
numerical

:::::::
solution.

:::::::::::
Performance

::::
tests,

:::
on

:::
the

::::
other

:::::
hand,

:::::
reveal

:::
the

::::::::
speed-up

::::::
attained

:::
by

:::::::
initially

:::::::::::
transforming

:::
the

:::::::::
benchmark

:::::::::::
Python-CPU

::::
code

::::
into

:::::::::
Julia-CPU

:::::
code,

:::::::::
performing

:::::::::
additional

:::::::::::
optimization450

15

::
on

:::
the

:::::::::
Julia-CPU

:::::
code,

:::
and

:::::::::
ultimately

::::::::::
transitioning

::
to

:::
the

:::::::::
Julia-GPU

:::::
code.

:::
We

:::::::
evaluate

:::
and

::::::::
compare

:::
the

::::::::::
performance

:::::::
metrics

::
of

:::
the

::::::::
Julia-GPU

:::::
code,

:::
the

:::::::::
Julia-MPI

::::
code,

::::
and

::
the

:::::::
Fortran

:::::::::::
MPAS-Ocean

:::::
code

:::
run

::
on

:
a
::::::
single

::::
node.

::::::
Lastly,

:::
we

:::::::
provide

::::::
scaling

::::
plots

:::::::::
comparing

:::
the

:::::::::
Julia-MPI

:::::
code

::::
with

:::::::
Fortran

::::::::::::
MPAS-Ocean,

:::::::::
examining

:::
the

::::::::
variation

:::
of

:::
the

:::::::::
wall-clock

:::::
times

:::::
with

:::
the

::::::::
processor

:::::
count

::
for

::::
two

::::::::
scenarios:

::::::
strong

::::::
scaling

:::::::::::
(maintaining

::
the

::::::
overall

::::::::
problem

:::
size

::::::::
constant)

:::
and

:::::
weak

::::::
scaling

::::::::::
(preserving

:
a
:::::::
constant

:::::::
problem

::::
size

:::
per

:::::::::
processor).

:
455

:::
For

:::::::::
Julia-GPU

:::
and

:::::::::
Julia-MPI

:::::::::::
computations,

:::
we

::::::::::
sequentially

:::::::
measure

:::::::::
wall-clock

:::::
times

:::
for

:::
six

:::::::
samples,

::::
each

::::::::::
comprising

:::
ten

::::
time

:::::
steps.

::::::::
Although

:::
not

:
a
::::::::
pragmatic

:::::::::
approach,

::
we

:::::::
execute

:::
the

::::
halo

::::::::
exchange

::
for

:::::::::
Julia-MPI

:::
(as

::::::
detailed

::
in
:::::::
Section

:::
3.4)

::::
and

:::
the

::::
GPU

::
to

::::
CPU

:::::::
transfer

:::
for

:::::::::
Julia-GPU

::::
after

:::::
every

::::
time

::::
step.

:::
For

:::
ten

::::
time

:::::
steps,

::::
this

::::
leads

::
to

:::
ten

:::::::::
alternating

:::::::::::
computations

::::
and

:::
ten

::::
MPI

::::::::
exchanges

::
or

:::::
GPU

::
to

::::
CPU

::::
data

:::::::
transfers

:::
per

:::::::
sample.

:::::
Given

:::
the

::::::::::
compilation

::::::
latency

:::::::::
attributable

::
to

::::::
Julia’s

:::::::::
just-in-time

:::::
(JIT)

::::::::::
compilation

:::
and

:::::::
caching

::
of

::::::::
machine

::::
code

:::
(for

::::::::::
subsequent

::::
use)

::::::
during

:::
the

:::::
initial

:::::::
function

::::
call

:::
(as

:::::::::
elaborated

::
in

::::::
Section

:::::
2.1),460

::
the

::::::::::
wall-clock

::::
time

:::
for

:::
the

::::
first

::::::
sample

::
is

::::::::::
significantly

::::::
larger,

::
as

::::::::::
anticipated.

::::::::::::
Consequently,

:::
we

::::::::
disregard

:::
the

::::
first

::::::
sample

:::
as

::
an

::::::
outlier,

::::::::
utilizing

::::
only

:::
the

:::::::::
succeeding

::::
five

:::::::
samples

::
to
::::::::

compute
:::
the

:::::::
average

:::::::::
wall-clock

:::::
time.

::
It

::
is

:::::
worth

:::::::::
reiterating

:::
that

:::
in

:
a
:::::::
realistic

:::::
ocean

::::::
model,

:::
an

:::::::::
adequately

:::::
large

::::
halo

::::
layer

::
is
::::::::
designed

::
to

::::::
reduce

:::
the

:::::::::
frequency

::
of

::::
halo

:::::::::
exchanges

::::
and

::::::::
minimize

::::::::::::
communication

:::::::::
overhead.

::::::::
Similarly,

:::::
when

::::::
running

:::
an

:::::
ocean

:::::
model

:::
on

:
a
:::::
GPU,

:::
the

::::
GPU

::
to

:::::
CPU

:::
data

::::::::
transfers

:::
are

:::::::
required

::::
only

::::
when

:::::::
solution

:::::::
outputs

:::
are

::::::
written

::
to

::::
disk

::::
files.465

4.1 Model Verification

Each
::::
Both

:
serial and parallel implementation

::::::::::::::
implementations of the shallow water modeldescribed in the previous sectionwas

:
,
::
as

::::::::
discussed

:::
in

:::
the

::::::::
preceding

:::::::
section,

:::::
were

:
verified for accuracy with

::::::
through

:
convergence tests against exact solutions.

We obtained the expected
::::
were

::::
able

::
to

:::::::
achieve

:::
the

:::::::::
anticipated

:
second-order convergence of the various TRiSK-based spatial

operators on a uniform planar hexagonal MPAS-Ocean mesh. The operators included the gradient, the divergence, the
:::::
These470

:::::::
operators

::::::::
included

:::::::
gradient,

::::::::::
divergence,

:
curl, and the flux-mapping operator used to interpolate the tangential velocities from

the normal velocities (Figure ??). The formulation of these operators is
::::
These

::::::::
operators

:::
are

:::::::::
formulated

:::
as shown in Figure 3 of

Ringler et al. (2010). Once the operator tests were complete, the linearized shallow water equations were verified against exact

solutions for the coastal Kelvin wave and inertia-gravity wave cases, as described in Bishnu et al. (2022) and Bishnu (2021).

With refinement in both space and time, we observe the expected first-order convergence of the numerical solution (Figure ??),475

spatially discretized with the second-order TRiSK scheme, and advanced with the first-order forward-backward time-stepping

method (Bishnu, 2021).

4.2 Acceleration of Julia with GPU Hardware
::::::
Typing

:::::::::::::
Optimizations

The

:::
The

::::
first

:::::::::::
comparisons

::::
were

:::::
made

:::::::
between

:::
the

:
Julia serial CPU version of the shallow water model was compared against480

the Julia CUDA library GPU version and the reference Python CPU code(Table 2 and Figure ??). Tests
:
,
::
as

:::::::
outlined

:::
in

:::::
Tables

::
2
::::
and

::
3.

::::
The

:::::
initial

:::::
serial

:::::::::::
development

::::
and

::::::
testing

:
were conducted on the Darwin cluster at Los Alamos National

Laboratory, using a single node equipped with
::
an Intel Cascade Lake CPUs (Gold 6248 with a clock rate of 2.5 GHz and

16

27.5M Cache) and the Nvidia Quadro RTX 8000 “Turing” GPU architecture (4608 CUDA cores, 16.3 TFLOPS peak single

precision performance, 48 GB GPU memory, and GPU memory bandwidth of 672 GB/s). All performance tests described in485

this and the following sections used the coastal Kelvin wave test case
:::::::
platform

::::::::
equipped

::::
with

:::
an

::::
Intel

:::::
Xeon

:::::::::
processor.

::::
The

::::::::::
performance

::::
tests

:::::::
detailed

::
in

:::
this

::::::
section

::::
and

:::::::::
subsequent

::::
ones

::::::
involve

:::::::::
advancing

:::
the

:::::
linear

:::::::
shallow

::::
water

:::::::::
equations on a planar

hexagon mesh with the linear shallow water equations and
::::::::
hexagonal

:::::
mesh

::::
with 100 vertical layers. Samples are averaged over

ten trials
:::::
These

::::::::
equations

:::::::::
incorporate

:::
the

::::::
coastal

::::::
Kelvin

::::::
wave’s

::::
exact

:::::::
solution

::
to

::::::
specify

:::
the

:::::
initial

::::
and

::::::::
boundary

::::::::
conditions. All

codes use double-precision (8 byte) real numbers, and performance tests do not include the time for initialization, input/output,490

or generating plots.

In our first version of the Julia

::
In

::
its

:::::::
primary

::::
state,

:::
the

:
single-core CPU code, we did not take any special steps for code optimization, and it was already 13

times faster than Python .
::::
Julia

::::
code,

::::
even

:::::::
without

:::::::
specific

::::::::::::
optimizations,

:::::::::::
outperformed

::::::
Python

::
by

::
a
:::::
factor

::
of

:::
13.

:::::::
Despite

::::
both

Julia and Python both have dynamic typing, but Julia has the ability to go much faster since it also supports concrete typing.495

Julia is compiled, but hides it cleverly by compiling on the fly based on what datatypes are provided at run time. It supports a

hierarchical abstract typing system, allowing for semi-specified types, such as “Any”, which all types extend and is the default

if no type is specified (thus acting like python), or “AbstractArray”, which can be occupied at run time with any Array-like

data.
:::::
being

::::::::::
dynamically

::::::
typed,

::::
Julia

:::::
gains

:
a
:::::::
notable

::::::::::::
computational

::::
edge

:::::::
through

::
its

::::::
ability

::
to

:::::
infer

::::
types

::
at
::::::::
runtime,

:::::::
perform

:::
JIT

::::::::::::
(Just-In-Time)

::::::::::
compilation,

:::::
cache

::::
and

::::::
directly

::::::::::
manipulate

:::::::
machine

::::
code

:::::::
(Section

:::::
2.1).500

After the initial Julia development
::::::::
Following

:::
the

:::::
initial

:::::::::::
development

:::::
phase

::
in

::::
Julia, further effort was put into optimization,

which led to a 10–20 times speed-up for the CPU-serial code. The changes included optimizing
:::::
These

:::::::::::
enhancements

::::::::
involved

::::::::::
optimization

:
for memory management by tracking down and reducing

:::::::::
identifying

:::
and

:::::::::
curtailing unnecessary allocations that

contributed significantly to the run time, as well as making all types and subtypes concrete rather than abstract, to minimize

on-the-fly compilation. These improvements are explained in more detail in section
::::::::::
substantially

::::::::
increased

:::::::
runtime,

:::::
along

::::
with505

:::::::
replacing

::::
the

::::::
generic

:::::
‘Any’

::::
type

:::::
with

:::::::
concrete

:::::
types

::
in

:::::::
function

::::::::::
definitions,

:::
and

:::::::::
specifying

:::
the

:::::
types

:::
of

::::::::::
components

::::::
within

::::::
structs.

:::::::
Detailed

:::::::::::
explanations

::
of

::::
some

:::
of

::::
these

::::::::::::
improvements

:::
can

:::
be

:::::
found

::
in

:::::::
Section 5.

We found the CUDA GPU implementation to be significantly faster than the single-core implementation. Because the

memory transfer between the
:
In
:::::

order
:::

to
:::::::::
effectively

:::::::
compare

:
CPU and GPU takes many orders of magnitude longer than

the actual on-GPU computations, we split them out in Table 2 and Figure ??. The memory transfers require between 0.015s510

and 0.68s and scale with the array size, while the GPU computations alone are , at 0.00027s for the 512x512 resolution

case, and do not scale with resolution. This shows the power of GPUs, where computations alone can run over 40,000 times

faster on the GPU than the CPU, but this speed-up is substantially diminished by the memory transfer time. Still, codes

that are designed with a small memory footprint and limited memory transfer can greatly benefit from GPU computations.

Strategically reducing array precision to 4-byte or even 2-byte reals for certain variables allows higher-resolution domains to515

fit on GPUs (Ye et al., 2022; Klöwer et al., 2022). In addition, single-precision floating point numbers (CUDA Float32 data

type) calculations may execute significantly faster than Float64 (Julia Development Team). We did not leverage Float32

in this work, but it shows that GPU simulations could run even faster than the results shown here.

17

Summing the GPU memory transfer and compute for the 10 timestep performance test, the GPUs were 229 to 386 times

faster than the single CPU (Table 3). This compares to published studies of ocean models that show a speed-up from CPU to520

GPU ranging from 5–50 (Bleichrodt et al., 2012; Zhao et al., 2017; Xu et al., 2014), and a speed-up of up to 1556x for a GPU

/CUDA Based Parallel Weather and Research Forecast Model (WRF) (Mielikainen et al., 2012). Note that our speed-up factor

could be increased substantially by transferring data from the GPU to CPU less frequently. For a low-resolution ocean model

with 30-minute time steps, the speed-ups in Table 3 correspond to collecting data every 10 time-steps, which is 5 hours of

model time. One could instead collect data for analysis every 100 time-steps (∼
:::::
times,

:::
one

:::::
must

:::
first

::::::
decide

:::::
which

:::::::::::
architectures525

:::
can

::::::
provide

::
a
:::
fair

:::::::::::
comparison.

:::
We

:::::
chose

:::
to

::::::
conduct

:::::
tests

::
on

::::::::::
Perlmutter,

::::
with

::::::::::
single-node

:::::
CPU

::::::::::
performance

:::::
using

:::
64

:::::
cores

::::::::
compared

::
to

:::
the

:::::::::
associated

::::::::::
single-node

:::::
GPU

::::::::::
performance

:::
on

:::
the

:::::
same

::::::::
machine.

::::
The

::::::
results

:::::::
depicted

::
in

::::::
Figure

:::
??

:::::::
indicate

::::::
similar

::::::::
wall-clock

::::::
times,

::::
with

:::::::::
Julia-GPU

:::::
times

:::::
being 2days), and that would result in a

::
–3

:::::
times

::::::
slower

::::
than

::::::::
Julia-MPI

::::::
times.

::::::::::
Fortran-MPI

::::::
speeds

::::
were

::::::::::
comparable

::
to

:::::::::
Julia-GPU

:::
for

:::::
larger

::::::::
problem

:::::
sizes,

:::
but

:::::
faster

::
for

:::::::
smaller

::::::::
domains.

:::
The

:::::::::
similarity

::
of

::
the

::::::::
full-node

::::
CPU

::::
and GPU speed-up of 2290 to 3860, because the compute time is negligible compared to the memory transfer.530

On the other hand, if model communication is required frequently for surface data forcing or coupling with atmospheric and

sea ice components, the speed-up is drastically reduced. For example, if memory must be transferred between the CPU and

GPU every time step, the speed-ups range from 23—39. The point is that GPU performance is wholly dependant on the GPU

communication frequency.
::::::
timings

:
is
::::::
rather

::::::::
surprising,

:::::
given

:::
the

:::::::::::
architectural

:::::::::
differences.

::::
The

:::::
listed

::::::::::
performance

:::
for

:::
the

:::::
A100

:
is
:::
9.7

:::::::
TFlops

::
for

::::::
64-bit

:::::
floats,

:::::
while

:::
the

:::::
AMD

::::::
EPYC

::::
7763

:::::::
delivers

::::
39.2

::::::
TFlops

:::
per

:::::
core,

:::::::
resulting

::
in

:
a
:::::
total

::
of

:::
2.5

::::::
TFlops

:::
for535

::
64

:::::
cores.

::::::
Based

::
on

:::::
these

:::::::::::
manufacturer

::::::::::::
specifications,

:::
we

:::::
would

::::::
expect

:::
the

:::::
A100

::
to

:::::::
perform

:::::
faster.

data type) calculations may execute significantly faster than Float64 (Julia Development Team). We did not leverage

Float32 in this work, but it shows that GPU simulations could run even faster than the results shown here.

128x128 256x256 512x512

Python, CPU 3.08E+03 1.31E+04 4.96E+04

Julia, CPU-serial (unoptimized) 2.25E+02 8.64E+02 3.86E+03

Julia, CPU-serial (optimized) 1.12E+01 7.43E+01 3.33E+02

Julia, GPU, total 4.90E−02 2.03E−01 8.64E−01 transfer to GPU 2.98E−02 1.16E−01 4.58E−01 compute on GPU 2.51E−04 2.67E−04 2.67E−04 transfer back to CPU 1.53E−02 9.54E−02 6.84E−01
Table 2. Wall clock duration (seconds) of performing ten timesteps with 100 layers on an Intel Cascade Lake CPUor an NVidia Turing GPU.

The same kernel was executed with the same data but different block sizes and the average execution time over 1000 runs

was recorded. Fewer threads per block results in faster execution times on the GPUs.540

GPU threads are grouped into threadblocks (or just “blocks”) for efficiency. While calling the kernel function, we must

specify the number of blocks and number of threads per block (the “block size”), as shown in listing 2. Within the kernel, we

obtain the index of the block and thread, multiply the block index by the block size, and add the thread index to compute a

global index. There is a maximum possible block size, but we can choose any smaller value to execute the kernel with. The

block size does have an effect on how quickly the kernel runs, so we benchmarked the evaluation time of the same kernel545

18

128x128 256x256 512x512

Python, CPU 274 177 149

Julia, CPU-serial (unoptimized) 20 12 12

Julia, CPU-serial (optimized) 1 1 1

Julia, GPU 229 366 386
Table 3. Speed-up (bold) or slow-down (non-bold) factor

::::::
Increase

::
in

:::
run

:::
time

:
compared to the optimized CPU-serial Julia version at the

same resolution. GPU speed-ups are based on transferring arrays between GPU and CPU every ten time steps.

run with different block sizes, as shown in Figure ??. Smaller block sizes run faster on the GPUs by 15%. This is interesting

to note, but GPU compute time is so small compared to the memory transfer time that thread tuning has little impact on the

overall simulation time.

4.3 Julia-MPI versus Fortran-MPI

Julia and Fortran codes were compared on multi-node CPU clusters, where both used MPI for communication between550

processors. Comparisons were made with domains of 128, 256, and 512-squared grid cells solving the shallow water equations.

All timing tests were conducted for 10 time steps and repeated 12 times on each processor count, spanning 2 to 2048

processors by powers of two. The vertical dimension included 100 layers to mimic ocean model arrays and provide sufficient

computational work on each processor. Separate timers report on computational work versus MPI communication within the

time-stepping routine. The i/o, initialization, and finalization time is excluded.555

Simulations were conducted on Cori-Haswell at the National Energy Research Scientific Computing Center (NERSC).

Cori-Haswell consists of 2, 388 nodes in 14 cabinets, using Intel Xeon Processor E5-2698 v3 with a clock rate of 2.3 GHz.

Each processor has 32 physical threads per node and two hyper-threads per core, with
::
We

:::::::::
compared

:::
the

:::::
Julia

:::
and

:::::::
Fortran

::::::
models

::::
with

::::
both

::::::
strong

:::
and

:::::
weak

:::::::
scaling.

::
In

::::::
strong

::::::
scaling,

:::
the

:::::
same

:::::::
problem

::::
size

::::
(the

::::
mesh

::::
size

::::
and

::::::
number

:::
of

::::::::
timesteps

::
to

::::::::
simulate)

::
is

:::
run

:::::
with

::
a

::::::
varying

:::::::
degree

::
of

:::::::::::::
parallelization.

::
In

:::::
weak

:::::::
scaling,

::::
the

:::::::
problem

::::
size

:::::
scales

:::::
with

:::
the

::::::
degree

:::
of560

::::::::::::
parallelization,

::::
such

::::
that

::
the

::::::::
problem

:::
size

:::::::
allotted

::
to

::::
each

::::::
process

::
is
::::::::
constant.

::
In

::::
both,

:::
the

::::::::
duration

::
of

::::
time

:
it
:::::
takes

::
to

::::::::
complete

::
the

:::::::::
simulation

::
is
:::
the

:::::::::
dependent

:::::::
variable

:::
and

:::
the

:::::::
number

::
of

:::::::::
processors

::::
used

:::
for

::
the

:::::::::
simulation

::
is
:::
the

::::::::::
independent

::::::::
variable.

::::
This

:
is
::::::::::
additionally

::::::::
separated

::::
out

:::
into

:::::
three

::::::::
columns:

::
the

:::::
total

::::
time

::
to

:::::::
simulate

:::
the

::::::::
problem,

:::
the

::::
time

::::
spent

:::
on

:::
just

:::
the

:::::::::::
computation

:::
(the

:::::::::::
mathematical

::::::::::::::
implementation

::
of

:::
the

:::::::
equation

::::
set),

::::
and

:::
the

::::
time

::::
spent

:::
on

:::
just

:::::::::::::
communicating

:::
the

:::::::::
necessary

::::
data

:::::::
between

::::::::
processes.

:
565

:::
The

::::::
strong

::::::
scaling

:::
for

::::::::
hexagonal

:::::::
meshes

::
of

::::::::
128x128,

::::::::
256x256,

:::
and

::::::::
512x512

::::
cells

::
is

::::::
shown

::
in

:::::
Figure

:::
??.

:::
In

:::::
strong

:::::::
scaling,

::
we

::::::
expect

::
a
::::::::::
downwards

::::
trend

:::
of

::::::::::
computation

::::
time

:::::
with

:::
the

:::::::
number

::
of

:::::::::
processors,

:::::
often

::::::
giving

::::
way

::
to

::
a

:::::
flatter

::::::::
behavior

::
at

::::
high

::::::
enough

::::::::
processor

::::::
counts

::::::
where

:::::::::::::
communication

::::
time

::::::::::
dominates.

:::
We

::::::
indeed

:::::::
observe

:::
this

:::::
trend

::::
with

:::::
both

:::
the

::::
Julia

::::
and

::::::
Fortran

::::::::::::::
implementations.

:::
In

:::
the

::::
total

::::
time

::::::::
column,

:::
we

:::
see

::::
Julia

::::
and

::::::
Fortran

::::::
match

::::
very

:::::::
closely

::
at

:::::
lower

::::::::
processor

:::::::
counts,

:::::
taking

::::::
almost

:::::::
identical

::::
time

::
to

::::
run.

::
In

:::
the

::::::
middle

:::::
range

::
of

::::::::
processor

::::::
counts

::::::::
(16-128),

::::::
Fortran

:::::
takes

::::
more

::::
time

::::
than

:::::
Julia.

:::::
Then570

19

:
at
::::
high

:::::::::
processor

::::::
counts,

::::
Julia

:::::
tends

::
to

::::::
become

::::::
slower

::::
than

:::::::
Fortran,

::
no

::::::
longer

::::::
scaling

::
as

::::
well.

::
In

:::
the

:::::::::::::::
computation-only

:::::::
column,

::
we

:::
see

::::
that

::::
Julia

::
is
:::::::
actually

:::::
faster

::::
than

:::::::
Fortran

:::::
across

:::
the

::::::
board.

:::
But

::::
due

::
to

:::
the

::::::::
necessary

:::::::::::::
communication

:::::
time

::::::
(which

::
is

:::
the

::::::::
dominant

:::::
effect

::
at

:::::
higher

:::::::
process

:::::
counts

::::::
where

:::::::::
insufficient

:::::
work

::
is

:::::
being

::::
done

:::
by

::::
each

:::::::::
processor)

:::
the

::::
Julia

:::::::::::::
implementation

::
is

:::
not

::
as

:::::::
efficient

::
at

::::
high

::::::::
processor

::::::
counts

::
as

:::
the

:::::::::::::
communication

::::
time

:::::
does

:::
not

:::::::
decrease

::::
with

::::::
greater

::::::::::::
parallelization

::::
like

::
it

::::
does

::
for

:::::::
Fortran

:::::
(right

:::::::
column.)

:
575

:::
The

:::::
weak

::::::
scaling

::::
with

:::
64, 128GB of memory per node. The interconnect is a Cray Aries with Dragonfly topology and > 45

TB/s global peak bisection bandwidth. The Julia-MPI and Fortran-MPI tests were both run with up to 32 ranks per node,
::::
and

:::
256

::::
cells

:::
per

:::::::
process

::
is

:::::
shown

:::
in

:::::
Figure

:::
??.

::::
The

:::::
rows

::::
here

:::
do

:::
not

::::::::
represent

::::::
distinct

:::::
mesh

:::::::::
resolutions

::::
like

::
in

::::::
Figure

:::
??.

:::::
Mesh

:::
size

::::::
instead

:::::
varies

:::::
with

::
the

:::::::
number

::
of

:::::::::
processors

:::::::::
(resolution

:::::::
changes

:::::
along

:::
the

:::::::
x-axis).

::
In

::::
weak

:::::::
scaling,

:::
we

::::::
expect

::
an

:::::::
initially

::::::::
increasing

:::::
trend

::
of

:::::::::::
computation

::::
time

::::::::
increasing

:::::
with

:::
the

::::::
number

::
of

:::::::::
processors

::::
due

::
to

:::
the

::::
more

:::::::::::::
communication

::::::::
required

::::
with580

::::
more

::::::::::
processors,

:::::
giving

::::
way

::
to

::
a

:::
flat

:::::::
behavior

::
as

:::
the

:::::::::::::
communication

:::::
time

::::::
reaches

::
its

:::::::::
maximum

::::
and

::::::::::
computation

::
is

::::::::
constant.

::::::
Indeed,

:::
we

:::::::
observe

:
a
::::
very

:::
flat

::::::::
behavior

::
in

:::
the

:::::::::::
computation

::::
only

:::::::
column.

::::
Julia

:::::
again

::
is

:::::
better

::::::
across

:::
the

:::::
board,

:::::
while

:::::::
Fortran

:
is
::::::
slower

::
in
:::

the
:::::::

middle
:::::
range

::
of

:::::::
process

::::::
counts.

::
In

::::::::::::::
communication,

:::
we

:::
see

::::
Julia

::::
and

::::::
Fortran

::::::::
increase

::
as

::::::::
expected,

::::::::
although

::::::
Fortran

:::::::::::::
communication

::::
time

::::::
levels

:::
out

::::::
sooner

:::::
while

::::
Julia

:::
is

::::::
slower

::
at

:::::::::::::
communication

::::
with

::::::
higher

:::::::
process

::::::
counts,

::::
like

:::
we

:::::::
observed

::
in

::::::
strong

::::::
scaling.585

The scaling plots in Figure ?? show that the
::
As

:::::::
another

::::
way

::
of

:::::::::
measuring

:::::::
scaling

:::
we

::::
keep

:::
the

::::::::::::
computational

:::::::::
resources

:::::::
constant,

:::::
using

::::
one

::::
node

::::
(64

:::::::::
processes)

::
to

:::::::
compare

:::::::::
simulation

:::::
time

::
of

:::::::
various

::::
mesh

:::::
sizes

::::::
(shown

:::
in

::::::
Figure

:::
??.)

:::::
Here

::
it

::
is

:::::::::
appropriate

::
to

::::
also

:::::::
compare

:::
the

:::::
GPU

:::::::::::::
implementation

::::
with

::::
Julia

:::::
since

:::
this

:::::::::
represents

::
a

::::::::
fixed-size

::::::::::::
computational

::::::::
resource.

:::
We

::::::
observe

:::
an

::::::::
increasing

:::::
trend

::
for

:::
the

:
Julia-MPI,

:::::::::::
Fortran-MPI

:::
and

:::::::::
Julia-GPU

::::::::::::::
implementations,

::::::
which

::
we

::::::
expect

:::
for

::
an

:::::::::
increasing

:::::::
problem

:::
size

:::::
with

:::::::
constant

::::::::::::
computational

::::::
power.

::
In

:::
the

::::::
middle

::::
plot

:::::
while

::::::::
Julia-MPI

:
and Fortran-MPI models have identical590

performance at two cores; Julia-MPI is faster by up to a factor of two for mid-range core counts; and Fortran-MPI is 2x faster

than Julia-MPI at higher ranges,
::::::
closely

::::::
match,

::
the

:::::::::
Julia-GPU

:::::
takes

::::
more

:::::
time

:
at
:::::
lower

:::::
mesh

::::
sizes

::::::
before

::::::
coming

::
to
::::::
match

:::
the

::::
MPI

::::::
models.

::
It
:::::
costs

:::::
some

::::
time

::
to

::::::
launch

:
a
:::::
GPU

::::::
kernel.

::::
The

::::
GPU

:::::
does

:::
not

::::
have

::
to

::::::::::::
communicate

::::
data

:::::::
between

::::::
threads

::::
like

::::
MPI,

::::::
instead

:::::
using

::::::
shared

::::::::
memory;

:::
but

:::
the

::::
data

::::::::
produced

::
by

:::
the

:::::::::::
computation

::::
must

:::
be

::::::
moved

::::
back

::
to

:::::
main

:::::::
memory

::
at

:::::
some

::::
point

::
to

:::::
make

:::
use

::
of

:::
the

::::::
results

::
(to

:::::
write

::::
them

::
to

::::
disk

::
or

::::::
further

::::::
process

::::::
them),

::
so

:::
we

::::
time

:::
this

:::::::
memory

:::::::::
movement

:::
and

::::::::
compare595

:
it
::
to

::::
MPI

:::::
time.

::
It

:
is
:::::::::
important

::
to

::::
note,

::::::::
however,

:::
that

:
depending on the resolution.

:::::::::
application

:::
this

::::::::
memory

::::::::
movement

:::::
could

:::
be

::::
done

::::
very

::::::::::
infrequently

:::::
unlike

::::
MPI

:::::::::::::
communication

::::::
which

::::
must

::
be

:::::
done

::::
every

::::
few

::::
time

::::
steps

::
to

::::::::
exchange

:::
the

::::::::::
information

::
in

:::
the

:::
halo

::::::
layers.

::
If

::::
only

:::
the

::::
final

::::
state

::
of

:::
the

:::::
model

::
is

::::::::
important

:::
and

:::::::::::
intermediate

::::
steps

:::::
don’t

::::
need

::
to

::
be

::::::::
recorded

:::
this

:::::::::::::
communication

::::
time

::::
could

:::
be

::::::::
foregone,

::::::
making

:::
the

:::::
GPU

:::::
more

:::::::
efficient

::
for

:::::
such

:
a
:::
use

:::::
case.

:
It
::
is
:::::::
notable

:::
that

:::::
such

:
a
::::::::::::
mass-parallel

:::::::::::::
shared-memory

:::::
based

::::::::::
architecture

::
as

::
a
:::::
GPU

::
is

::
so

::::::
similar

::
to
:::::::::::::::::::

communication-based600

::::::::::::::::
CPU-parallelization

::::
over

:
a
::::
full

:::::
node,

::
as

::::::
shown

::
in

:::::
Figure

:::
??.

::::::
Based

::
on

:::
the

::::::::
technical

::::::::::::
specifications

::
in

:::::
Table

::
1,

:::
the

::::
GPU

::::::
would

::
be

::::::::
expected

::
to

:::
run

::::::
nearly

::::
four

:::::
times

:::::
faster

::::
than

:
a
:::::
CPU

:::::
node.

:::
The

:::::
GPU

:::
has

::
a
:::::::
reported

:::::::::::
performance

::
of

:::
9.7

::::::
TFlops

:::
for

::::::
64-bit

::::::
floating

:::::
point

:::::::::
operations,

:::::
while

:::
the

:::::
CPU

::
is

::::
2.51

:::
per

:::::::::
CPU-core

::::
(39.2

:::::::
GFlops

:::
per

:::::
core,

::::
with

::
64

::::::
cores).

::
It
::
is

:::
not

:::::
clear

::::
why

:::
the

::::
GPU

::::
runs

::
at

:::
the

::::
same

:::::
speed

:::
as

:::
the

::::
CPU

:::::
node.

20

For both languages , computation scales well with
::::::::::
computation

::::
time

:::::
scales

:::::
well,

:::::::::
decreasing

::
at

::::
close

::
to
::::::
perfect

:::::::
scaling

::::
with605

::
the

:
processor count, while communication does not, and communication

::::
time

::::
does

:::
not

::::
and

::
so

:
progressively requires a much

larger fraction of time at higher processor counts (Figure
:
??). Once computations are optimized, communication, which is

fixed by the interconnect speed, will remain a bottleneck regardless of the language (see, e.g. Koldunov et al. (2019)). At the

lowest resolution of 128x128, there is insufficient work beginning at 512 processors (which corresponds to 32 grid-cells per

processor), and timing is dominated by communication, resulting in poor scaling above 512 processors. Communication times610

in Julia are much more variable than in Fortran across samples and processor counts, as shown in the right column of Figure

??. When measuring computation time without communication (Figure ??, right column), Julia-MPI scales nearly perfectly,

while Fortran-MPI computational time drops off from perfect scaling at 8 and 16 cores. This produces the Julia times that are

2x faster for the total times for mid-range processor counts of 16 and higher. Overall, Julia performance on CPU clusters is

competitive with Fortran. Once the high-level codes have been optimized, the “winner” between Julia and Fortran will likely615

depend on the details of the MPI libraries and hardware.

5 Optimization Tips for Julia Developers

Julia serves the dual purpose of a prototyping language as well as
:::
and a production language. Not only can we construct

quick-to-write but slow-performing code (although still significantly
:
It
::::::
allows

:::
for

:::
the

:::::::
creation

::
of

::::
code

:::
that

::
is
:::::
quick

::
to

:::::
write

:::
but

:::::
slower

::
in
::::::::::::

performance,
:::::::
although

::
it
::
is

::::
still

::::::::::
considerably

:
faster than other development

::::::::
interpreted

:
languages, as we saw with620

comparison to python) to demonstrate an idea, we can also spend
::::::::
evidenced

::
by

::::
our

::::::::::
comparison

::::
with

:::::::
Python,

::
for

::::::::::
conceptual

::::::::::::
demonstration.

:::::::::::
Additionally,

::::
with

:
a bit more time to carefully construct an optimized code to achieve performance on par

with Fortran. Julia’s ability to act as a prototyping language can be attributed to one of its key features: dynamic typing.

Just like Python, variables may be initialized without defining their types. However, Juliais also endowed with a static typing

feature, even though it is optional. If the variable types are statically defined in a concrete fashion, performance is greatly625

improved. Julia activates its dynamic typing feature with an “Any” type which could be any type at run time. So, Julia must

compile parts of the code on the fly (Julia Development Team, 2016). A method involving an “Any” type is compiled at run

time for whatever type is actually provided during execution (called just-in-time compiling). The implication is that without

static typing, performance will greatly suffer from compilation at run time. Additionally, with concrete types
::::::::
investment

::::
and

::::::::
thoughtful

:::::::::::
construction,

::
it
::
is
:::::::
possible

:::
to

:::::::
develop

:::::
highly

:::::::::
optimized

::::
code

::::
that

::::::::
achieves

::::::::::
performance

::::::::::
comparable

:::
to

::::::::
compiled630

::::::::
languages

:::
like

:::::::
Fortran.

:

::
In

::::
Julia, the Julia compiler may optimize the code much further than if it is compiled for an unknown type

:
it

::
is

:::
the

:::::
types

::
of

::::::
objects,

:::
not

:::::
their

::::::
values,

:::
that

::::
the

:::::::
compiler

::::::::
leverages

:::
to

::::::::
construct

:::::::
efficient

:::::::
machine

:::::
code.

:::
This

::::::
means,

:::::::
barring

:
a
::::

few
:::::::
specific

:::::::
scenarios

:::
(as

:::::::
outlined

::
in
:::::::
Section

::::
2.4),

::::
Julia

::::
can

::::
carry

:::
out

::::::::
extensive

::::
type

::::::::
inference

:::
and

::::::::
generate

:::::
highly

:::::::::
optimized

::::
code

:::::::
without

:::::::
requiring

:::::::
explicit

::::
type

::::::::::
declarations

:::
for

::::::::
variables.635

When first creating the MPAS shallow water core in Julia, we did not specify the array types, and let Julia assign them the

“Any” type:
:::::::::::
Nevertheless,

::::
there

:::
are

::::::::
situations

:::::
where

::::
type

::::::::::
declarations

:::
can

:::::::::::
significantly

:::::::
enhance

:::::::::::
performance.

:
A
::::::
prime

:::::::
example

21

:
is
::
a
:::::
struct

:::::::::
containing

:::::
fields

::::
with

:::::::
abstract

:::::
types

::
or

:::::::::
containers.

::
A
:::::
more

:::::::
efficient

::::::::
approach

::
in

::::
such

::::::
cases,

::::::::
however,

:::::
would

:::
be

::
to

::::::::
transform

::::
these

::::::
structs

::::
into

:::::::::
parametric

::::
ones,

::
a

::::::
process

:::::::
detailed

::
in

::::::
Section

::::
2.5.

:::
Let

::
us

::::::::
consider

::
an

:::::::
example

::
in

:::
the

::::::
context

:::
of

:::
our

::::::::
Julia-CPU

::::
and

:::::::::
Julia-GPU

:::::
codes.

:
640

::
In

:::
the

:::
first

::::::::::::
(unoptimized)

:::::::
iteration

::
of

:::
the

:::::
CPU

::::
code,

:::
we

:::::::
omitted

::::::
specific

:::::
array

::::
type

:::::::::::
declarations,

:::::::
allowing

::::
Julia

::
to

::::::
assign

:::
the

::::::
default

:::::
‘Any’

::::
type:

:

struct MPAS_Ocean

layerThickness

normalVelocity645

...

end

However, by concretely defining
:::
By

::::::::::
subsequently

:::::::::
modifying

:
these variables to be floating point arrays , we gain a substantial

performance boost :

::::::::
explicitly

::::
typed

:::
as

:::::
arrays

::
of

::::::::::::
floating-point

:::::::
numbers,

:::
we

:::::::::
witnessed

:
a
:::::::::
substantial

:::::
boost

::
in

:::::::::::
performance:

:
650

struct MPAS_Ocean

layerThickness::Array{Float64}

normalVelocity::Array{Float64}

::::::::
...

end655

When parallelizing for the graphics card,

::
In

:::
the

::::::
process

::
of

::::::::::
parallelizing

::::
our

::::
code

::
for

:::::
GPU

:::::::::
execution,

::
we

:::::::::
employed a different array typeis used that is suited for GPUs.

We tried defining ,
:
CUDA.CuArray

:
,
:::::::::
specifically

::::::::
designed

:::
for

:::::
GPU

:::::::::
workloads.

::::
Our

:::
first

::::::::
approach

::::
was

::
to

:::::
create

:
an abstract

array type that encompasses both the
:::::
could

:::::::::
encapsulate

::::
both

:
CPU and GPU data types, so that

:
.
:::
This

:::::::
allowed CUDA.CuArrays

and regular Arrays could
::
to be used interchangeably, allowing

::::::
enabling

:
the model to be run on

::::::
operate

:::
on

:::::
either

:
the GPU660

or CPU at will. We also used an abstract type specification on the contents of these arrays F <: Float, meaning any type

extending
:
as

::::::::
required.

:::::::::::
Additionally,

:::
we

::::::::
imposed

:
a
:::::::::
parametric

:::::::::
constraint

::
on

::::
the

::::
array

::::::::
contents

:
(F <: AbstractFloat

:
),

::::::::
signifying

::::
that

:::
any

:::::::
subtype

::
of the abstract floating point type can be used

::::
could

:::
be

::::::
passed at runtime.

struct MPAS_Ocean{F <: AbstractFloat}

layerThickness::AbstractArray{F}665

normalVelocity::AbstractArray{F}

end

This approach seems like it should be performant, since the types are defined before run time. However,
:::::
While

:::
this

:::::::
strategy

:::
may

::::::
appear

:::::::
efficient

:::::::
because

:::::
types

::
are

::::::::
declared

:::::
before

:::::::
runtime,

:::
the

:::
use

::
of

:
abstract types, like an Anytype, slow down execution

since at run time they may actually be a different type that extends
:::
akin

:::
to

:::
the

:::::
‘Any’

:::::
type,

:::
can

:::::::
actually

::::::
hinder

:::::::::
execution670

22

:::::
speed.

:::
At

:::::::
runtime,

:::::
these

:::::
types

:::::
could

::
be

::::::::
different

:::::::
subtypes

:::
of the abstract type (

:::
like

:
CUDA.CuArray or Array), meaning

the compiler is doing just-in-time compiling. Similarly, specifying an inexact
:
.
::::
This

::::::
means

:::
that

::::
the

::::::
specific

::::::::
methods

::
to

:::
be

::::
used

::
for

:::::
these

:::::
types

::::::
cannot

::
be

:::::::::
determined

::
at
::::::::::::
compile-time,

::::::
leading

::
to
::::::::
dynamic

:::::::
dispatch

:::
and

:::::::::
negatively

::::::::
affecting

:::::::::::
performance.

::::::::::
Furthermore,

::::::::::
specifying

:
a
:::::
broad

:
element type (F <: AbstractFloat) rather than a concrete type (Float64) is very

inefficient.675

Instead, two separate structures should be defined concretely when running on GPUs versus CPUs:
:
F
::
<:

:::::::::::::
AbstractFloat)

::::::
instead

::
of

:
a
:::::::
concrete

::::
one

::::::::
(Float64)

:::
may

::::
lead

::
to

:::::::::
additional

::::::::::
performance

:::::
issues

:::::::
because

:::
the

::::::::
compiler

:::::
cannot

::::::::
optimize

:::::::::
operations

::
for

::
a
::::::
specific

:::::
type.

:::::::
Instead,

:
it
:::::
must

::::::
prepare

:::
for

:::
all

:::::::
possible

:::::
types

:::
that

:::
fall

:::::
under

::::::::::::
AbstractFloat,

::::::
which

:::
can

::::::::
introduce

:::::::::
additional

::::::::
overhead.

::
An

:::::::::
alternative

::::::
would

::
be

::
to
::::::

define
:::
two

:::::::
distinct

::::::::
structures

::::
with

::::::::
concrete

::::
types

:::::::::
depending

:::
on

:::::::
whether

:::
we

:::
are

:::::::
targeting

::::::
GPUs680

::
or

:::::
CPUs:

:

struct MPAS_Ocean_CUDA

layerThickness::CUDA.CuArray{Float64,2}

normalVelocity::CUDA.CuArray{Float64,2}

end685

struct MPAS_Ocean

layerThickness::Array{Float64,2}

normalVelocity::Array{Float64,2}

end690

Now
::
In

:::
this

::::::::::::
modification,

::::
both the array types are concrete,

:::
and

:
element types are concrete (Float64), and the number of

dimensions is specified (Float64,). This code no longer has the advantageous feature of being able to switch between

running on the Float64,2
:
),
::::::::
resulting

::
in

::
a
:::::::::::
considerable

:::::::::::
performance

::::::
boost.

::::::::
However,

::::
this

::::
code

:::::
loses

:::
the

:::::::::
versatility

:::
of

::::::::::
dynamically

::::::::
switching

::::::::
between CPU and GPU on the fly. However, the execution speed is massively improved. We found

that making this change from abstract to concrete array types sped up computation
::::::::
execution,

:::
and

::::
also

::::::::::
necessitates

:::::::::
additional695

::::
lines

::
of

:::::
code.

:
A
:::::::
superior

:::::::
solution

:::::::
involves

:::
the

:::
use

::
of

:::::::::
parametric

::::::
structs,

::::::
where

::::::
abstract

:::::
types

:::
are

:::::::
included

::
in

:::
the

::::
type

:::::::
argument

:::
of

::
the

::::::
struct.

::::
This

::::::::
empowers

:::
the

::::::::
compiler

::
to

::::
infer

:::
the

::::
type

:::
of

:::::
fields

::
at

:::::::
compile

::::
time

:::
and

::::::::
optimize

:::
the

::::
code

::::::::::
accordingly

:::
for

:::
the

::::::::::
appropriate

::::
array

:::::
type:

:::::::
struct

:::::::::::::
MPAS_Ocean

::
{

:
A

::
<:

::::::::::::::::
AbstractArray

:::
{<:

::::::::::::::::
AbstractFloat

:
,
:::::
2}}700

::::::::::::::::::::::
layerThickness

::
::

:
A

::::::::::::::::::::::
normalVelocity

::
::

:
A

::::
end

:::
We

:::::::::
discovered

:::
that

:::::
either

::
of

:::::
these

:::::::::::
modifications

:::::::
resulted

::
in

::
a
::::::::::
computation

:::::::
speedup

:
by a factor of 34x.

23

The key in optimizing
:
A

::::::
pivotal

:::::::
strategy

::
in

:::::::::
enhancing

:::
the

:::::::::::
performance

::
of Julia code, we found, was reducing allocations.705

Memory allocation significantly slows down execution. And it is not always obvious what seemingly innocent actions may

allocate memory . For example, simply reading
::::::::::
discovered,

:::
lies

::
in

:::::::::
minimizing

:::::::
memory

::::::::::
allocations.

::::::::
Excessive

:::::::
memory

::::::::
allocation

:::
can

:::::::::
drastically

::::::
impede

:::::
code

:::::::::
execution,

:::
and

::
it

::
is

:::::
often

:::
not

::::::
readily

::::::::
apparent

::::
when

:::::::::
seemingly

::::::
trivial

:::::::::
operations

:::
are

::::::
culprits

:::
of

::::::::::
unnecessary

:::::::
memory

:::::::::
allocation.

::
To

::::::::
illustrate,

::::::::
consider

:::
the

::
act

:::
of

::::::::
extracting

:
a pair of values from an arraywith two columns:

:
a
::::::::::
two-column

:::::
array:

:
710

cell1Index, cell2Index = cellsOnEdge[:,iEdge]

can allocate significant memory
::::::::::
Surprisingly,

::::
this

::::::::
operation

:::
can

::::
lead

::
to

::::::::::
considerable

:::::::
memory

:::::::::
allocation. In one

::::::::
particular test,

this one line(executed repeatedly
:::::
single

::::::::::::
line—recurrent

:
throughout the simulation) allocated

:::::
—was

:::::
found

::
to

:::::::
allocate

::
as

:::::
much

::
as 408 KiB. This is because the line is really creating

:::
due

::
to

:::
the

:::::::
creation

:::
of a tuple, not directly reading

:::::
rather

::::
than

::
a

:::::
direct

::::::::
extraction

::
of

:
each column into the two

::::::::
respective

:
scalar variables. If we separate this into two lines to enforce only using715

scalars and not allocating tuples or arrays:

::
By

:::::::
dividing

:::
the

::::::::
operation

::::
into

::::
two

::::::
distinct

:::::
lines,

::::
thus

::::::::
bypassing

:::::
tuple

::
or

::::
array

::::::::
creation:

cell1Index = cellsOnEdge[1,iEdge]

cell2Index = cellsOnEdge[2,iEdge]

then this cuts allocations to zero—making this line almost instantaneous, and dropping the
::
we

::::::::::
successfully

::::::
reduce

::::::::
memory720

:::::::::
allocations

::
to

::::
zero.

::::
This

::::::::::
modification

::::::
causes

:::
the

::::::::
operation

::
to

::
be

::::::
nearly

:::::::::::
instantaneous,

::::::::
reducing

:::
the

::::
total time spent on the whole

tendency calculation
::::
entire

::::::::
tendency

:::::::::
calculation

:::
by

::::
50%,

:
from 198 µs to 99 µs. That means this line alone was responsible for

about 50% of the computation time, when it could be rewritten to take no time at all.

There are likely many inconspicuous lines like this lurking in one
:::
One’s Julia code , slowing it down substantially

:::
can

:::::::::
potentially

::::::
harbor

:::::
many

::::
such

::::::
covert

::::::::::
operations,

::::::::::
contributing

:::::::::::
significantly

:::
to

::::::
slower

:::::::::::
performance. Additionally, even one725

overlooked field which is not concretely typed may significantly slow execution . Luckily, Julia is equipped with a tool to

quickly locate such memory-hoarding lines. This tool is called @code_warntype. Prefixing a function call with it will print

out a color-coded list breaking each line down to individual memory operations:

:
a
:::::
single

:::::
struct

::::
with

:::::::
abstract

::::
types

:::
or

::::::::
containers

::
as

:::::
fields

::::
can

::::::
notably

::::::
hamper

:::::::::
execution

:::::
speed.

::::::::::
Fortunately,

::::
Julia

::::::::
provides

:::
the

@code_warntype
:::
tool

:::
for

:::::::
quickly

:::::::::
identifying

::::
such

:::::::::::::::
memory-intensive

:::::
lines:

:
730

@code_warntype calculate_normal_velocity_tendency!(mpas)

It helpfully highlights inexact
:::::::::
color-codes

:::::::::::
non-concrete

:
types and memory allocations with red, pointing a user right

::
in

::::
red,

::::::
thereby

::::::::
directing

::::
users

::::::::
precisely to the lines and fields that need to be optimized. This feature alone makes Juliavery powerful

::::::
require

:::::::::::
optimization.

::::
This

:::::::
singular

::::::
feature

:::::::
elevates

:::::
Julia’s

::::::
utility for high-performance applications, significantly speeding up

development time
::::::::::
substantially

::::::::::
accelerating

:::
the

:::::::::::
development

::::
time

::::::
needed to optimize a model’s performance.735

Another very helpful tool when optimizing Julia code
:::::::
valuable

::::
tool

::
in

::
the

:::::
Julia

::::::::::
optimization

::::::
arsenal

:
is --track-allocations,

a command line option that can be added
::::::::
appended to any Julia executionas follows:

24

:
:

$ julia --track-allocations=user ./anyJuliascript.jl

A new file is created
::::
This

::::::::
generates

:
a
::::
new

:::
file at ./anyJuliascript.jl.XXX.mem (where XXX is some unique number

::::::::
represents740

:
a
::::::
unique

::::::::
identifier). This file contains

::::::
presents

:
each line of the script,

:
prefixed by the number

::::::
amount

:
of memory allocations

created
::::::::
generated by that line, giving a

::::::::
providing

:
a
::::::::::::
comprehensive

:
line-by-line breakdown

:::::::
overview of where allocations occur.

6 Conclusions

As new programming languages and libraries become available, it is important for model developers to learn new techniques

and evaluate them against their current methods. This is particularly true as computing architectures continue to evolve, and745

long-standing languages such as C++ and Fortran require additional libraries to remain competitive on new supercomputers.

In this work, we created three implementations of a shallow water model in Julia in order to compare ease of development

and performance to standard Fortran and Python implementations. The three Julia codes were designed for single-CPU,

GPU-enhanced single CPU
::::
GPU, and parallelized multi-core CPU architectures. Julia-MPI speeds were identical to Fortran-MPI

at low core counts, 2x faster for mid-range, and 2x slower at higher core counts. Julia-MPI exhibited better scaling than750

Fortran-MPI for computation-only times, and more variability for communication times.

The most surprising result of this study was the speed of computations on the GPUs—a speed-up of 40,000 to over 100,

000 times compared to the CPU. Of course, this comes with the caveat that memory transfer between CPU and GPU can take

thousands of times longer than the computation, up to 0.5s at our highest resolution. So the key is to transfer memory to and

from the GPU as little as possible, which is a well-known practice755

::::::::
Julia-GPU

::::::
scaled

:::::
very

::::::::
similarly

::
to

:::::::::
Julia-MPI,

:::::::
despite

:::::
these

::::::::::::::
implementations

:::::
being

::::::
based

:::
on

:::
not

::::
only

::::::
vastly

::::::::
different

::::::::::
architectures

:::
but

:::::::
entirely

::::::::
different

::::::::::::
parallelization

:::::::::
paradigms

:::::::
(shared

:::::::
memory

::::::
versus

:::::::::::::::
communication).

::::::::
However,

::::
this

:::::
result

:::::::
assumes

:::
the

::::
data

::::
from

:::
the

:::::
GPU

::
is

::::::::::::
communicated

:::::
back

::
to

::::
main

:::::
CPU

:::::::
memory

:::::
every

::::
time

:::::
step.

:::
For

:::::
many

::::::::::
applications

::::
this

::
is

:::
not

::::::::
necessary. If one can fit the full resolution of a computational physics domain within the memory of a single graphics card

and sample results rarely, GPUs offer
::
can

:::::
offer

:::::::::
significant speed-ups. For climate models, a single low-resolution component760

may well fit into GPU memory if the developers are careful with their memory footprint. The difficulty is that including ocean,

atmosphere, land, and sea ice components requires the use of multiple nodes, and inter-node communication will keep the

model slow, regardless of the GPU speed. Higher-resolution domains will need many nodes for each component and present

the same problem.

The shallow water equations are simple enough for rapid development and verification, yet contain the salient features of any765

ocean model: intensive computation of the tendency terms, a time-stepping routine, and for the parallel version, interleaved halo

communication of the partition boundary. Indeed, this layout, and the lessons learned here, apply to almost all computational

physics codes.

This work specifically tests unstructured horizontal meshes, as opposed to structured quadrilateral grids. Unstructured

meshes refer to a neighbor’s index using additional pointer arrays, so require an extra memory access for horizontal stencils.770

25

In structured grids, the physical neighbors are also neighbors in array space (i+1, j+1, etc), which leads to more contiguous

memory access patterns that are easier for compilers to optimize. Our results show that unstructured meshes do not present any

significant challenge in either Fortran or Julia. The use of a structured vertical index in the innermost position and testing with

100 layers provides sufficient contiguous memory access for cache locality.

In the end, we were impressed by our experience with Julia. It did fulfill the promise of fast and convenient prototyping, with775

the ability to eventually run at high speeds on multiple high performance architectures—after some effort and lessons learned

by the developers. The Julia libraries for MPI and CUDA were powerful and convenient. E3SM does not have plans to develop

model components with Julia, but this study provides a useful comparison to our C++ and Fortran codes as we move towards

heterogeneous, exascale computers.

GitHub:780

Zenodo:

Zenodo:

Zenodo:

Code and data availability. Three code repositories were used for the performance comparisons in this study. These are publicly available

on both GitHub and Zenodo:785

1. Julia Shallow Water code for serial CPU, CUDA-GPU, and MPI-parallelized CPU

::::::
GitHub: https://github.com/robertstrauss/MPAS_Ocean_Julia (license: GNU General Public License v3.0)

::::::
Zenodo: https://doi.org/10.5281/zenodo.7493064 (license: Creative Commons Attribution 4.0 International)

2. Python Rotating Shallow Water Verification Suite

::::::
GitHub: https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git. (license: LANL/UCAR*)790

This study used the specific code version https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_

Suite/tree/v1.0.1 (license: LANL/UCAR, https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE.)

::::::
Zenodo: https://doi.org/10.5281/zenodo.7421135 (license: BSD 3-Clause “New” or “Revised”)

3. Fortran-MPI MPAS Shallow Water code with Coastal Kelvin wave initial condition (Petersen et al., 2022)

::::::
GitHub: https://github.com/MPAS-Dev/MPAS-Model. (license: LANL/UCAR, https://github.com/MPAS-Dev/MPAS-Model/795

blob/master/LICENSE.) This study used the specific code version https://github.com/mark-petersen/MPAS-Model/

releases/tag/SW_julia_comparison_V1.0.

::::::
Zenodo: https://doi.org/10.5281/zenodo.7439133 (license: Creative Commons Attribution 4.0 International)

The planar hexagonal MPAS-Ocean meshes used in this study for the numerical simulations and convergence tests of the coastal Kelvin

wave and the inertia-gravity wave can be obtained from the Zenodo release of the Python Rotating Shallow Water Verification Suite Meshes800

at https://doi.org/10.5281/zenodo.7421135.

In order to reproduce the figures in this paper, follow the instructions below:

26

https://github.com/robertstrauss/MPAS_Ocean_Julia
https://doi.org/10.5281/zenodo.7493064
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://doi.org/10.5281/zenodo.7421135
https://github.com/MPAS-Dev/MPAS-Model
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://doi.org/10.5281/zenodo.7439133
https://doi.org/10.5281/zenodo.7421135

■ Download the code for this project from (1) above. Acquire the necessary mesh files from https://doi.org/10.5281/zenodo.7421135,

extract the zip file, and copy the:

• ‘MPAS_Ocean_Shallow_Water_Meshes/MPAS_Ocean_Shallow_Water_Meshes_Julia_Paper/InertiaGravityWaveMesh/’805

directory into the MPAS_Ocean_Julia repository at path ‘MPAS_Ocean_Julia/’;

• ‘MPAS_Ocean_Shallow_Water_Meshes/MPAS_Ocean_Shallow_Water_Meshes_Julia_Paper/CoastalKelvinWaveMesh

/ConvergenceStudyMeshes/’ directory into the MPAS_Ocean_Julia repository at path ‘MPAS_Ocean_Julia/

MPAS_O_Shallow_Water/ConvergenceStudyMeshes/’.

■ Reproduce the figures in this paper as follows:810

• Figure ??: Run the Jupyter notebooks ‘/Operator_testing.ipynb’ to generate the data for the convergence tests of the spatial

operators, and ‘/operator_convergence_plotting.ipynb’ to create plots from this data at ‘/output/operator_convergence/<operator>

/Periodic/<figure>.pdf’. Run the notebook ‘./InertiaGravityWaveConvergenceTest.ipynb’ to generate the numerical solution and

convergence plot of the inertia-gravity wave test case at ‘./output/simulation_convergence/inertiagravitywave/Periodic/CPU/’.

• Figures ??, ??, ??, and ??: On a cluster with at least 128 nodes and 64 processes per node, use the script ‘./run_scaling_16x_to_512x.sh’815

to run the performance scaling tests on each mesh resolution starting from 16x16 all the way up to 512x512. The results will

be saved in ‘./output/kelvinwave/resolution<mesh size>/procs<maximum number of processors>/steps10/nvlevels100/’. Run the

notebook ‘/GPU_performance.ipynb’ on a node with an NVIDIA graphics card to initiate the performance tests on the GPU. Run

the notebook ‘./scalingplots.ipynb’ or the Julia script ‘./scalingplots.jl’ to generate the plots in the paper at ‘/plots/<type>/<figure>

.pdf’.820

• Tables 2 and 3: Run ‘./serial_julia_performance.jl’ with Julia to generate the timing data of the optimized Julia-CPU code.

Download the unoptimized version of the code from https://github.com/robertstrauss/MPAS_Ocean_Julia/tree/unoptimized or

MPAS_Ocean_Julia-unopt.zip from https://doi.org/10.5281/zenodo.7493064. Run the Julia script ‘./serial_julia_performance.jl’

in the directory of the unoptimized code. The results will be saved in text files at ‘./output/serialCPU_timing/coastal_kelvinwave/

unoptimized/steps_10/resolution_<mesh size>/’ in the unoptimized directory and ‘./output/serialCPU_timing/coastal_kelvinwave/825

steps_10/resolution_<mesh size>/’ in the main/optimized directory.

Author contributions. Code development, testing, and timing were conducted by all authors. SB led the test case design and verification.

RRS led the data analysis and Julia optimization. The manuscript was written cooperatively by all authors. MRP conceptualized the project

and conducted funding acquisition.

Competing interests. The authors declare no competing interests.830

Acknowledgements. RRS gratefully acknowledges the support of the U.S. Department of Energy (DOE) through the Los Alamos National

Laboratory (LANL) LDRD Program and the Center for Nonlinear Studies for this work. SB was supported by Scientific Discovery through

Advanced Computing (SciDAC) projects LEAP (Launching an Exascale ACME Prototype) and CANGA (Coupling Approaches for Next

27

Generation Architectures) under the DOE Office of Science, Office of Biological and Environmental Research (BER).
:::
RRS

::::::::
gratefully

::::::::::
acknowledges

:::
the

::::::
support

::
of

::
the

::::
U.S.

:::::::::
Department

::
of

::::::
Energy

:::::
(DOE)

::::::
through

:::
the

:::
Los

::::::
Alamos

:::::::
National

::::::::
Laboratory

:::::::
(LANL)

:::::
LDRD

:::::::
Program835

:::
and

::
the

::::::
Center

::
for

::::::::
Nonlinear

::::::
Studies

::
for

:::
this

:::::
work. MRP was supported by the Energy Exascale Earth System Model (E3SM) project, also

funded by the DOE BER.

This research used computational resources provided by: the Darwin testbed at LANL, which is funded by the Computational Systems

and Software Environments subprogram of LANL’s Advanced Simulation and Computing program (NNSA/DOE); the LANL Institutional

Computing Program, which is supported by the DOE National Nuclear Security Administration under Contract No. 89233218CNA000001;840

and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science

of the DOE under Contract No. DE-AC02-05CH11231.
:

:::
The

::::::
authors

:::::
extend

::::
their

:::::::
gratitude

::
to

::
the

:::::::::
anonymous

::::::::
reviewers,

:::::
whose

:::::::
valuable

::::::
insights

:::
and

:::::::::
constructive

:::::::
feedback

::::
were

::::::::::
instrumental

::
in

:::::::
elevating

::
the

::::::
quality

:::
and

:::::
clarity

:
of
:::
this

:::::
paper.

::::::::::
Additionally,

:::
the

:::::
authors

::::::::
recognize

::
the

::::::::
beneficial

:::::::::
interactions

:::
with

:::
the

:::::
CliMA

::::
team

::
at

::::
MIT

:::
and

::::::
Caltech,

:::::::
alongside

:::
the

:::::
E3SM

::::
team

:::::
spread

:::::
across

::::::
multiple

:::::::
national

:::::::::
laboratories

:::::
within

::
the

::::::
United

:::::
States.

::::
Their

::::::::
significant

::::
input

:::
has

:::::::
enriched845

::
the

::::::
manner

::
in

:::::
which

::
the

:::::
paper

:::
has

::::
been

::::::::
articulated.

28

References

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM review, 59, 65–98, 2017.

Bishnu, S.: Time-Stepping Methods for Partial Differential Equations and Ocean Models, Ph.D. thesis, Florida State University,

https://doi.org/10.5281/zenodo.7439539, 2021.850

Bishnu, S.: Rotating Shallow Water Verification Suite, https://doi.org/0.5281/zenodo.7421135, 2022.

Bishnu, S., Petersen, M., Quaife, B., and Schoonover, J.: Verification Suite of Test Cases for the Barotropic Solver of Ocean Models,

https://doi.org/10.22541/essoar.167100170.03833124/v1, 2022.

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean model using a GPU, OCEAN MODEL, 41, 16–21,

https://doi.org/10.1016/j.ocemod.2011.10.001, 2012.855

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., et al.: The DOE E3SM Coupled Model Version 1: Description

and Results at High Resolution, J ADV MODEL EARTH SY, 11, 4095–4146, https://doi.org/10.1029/2019MS001870, 2019.

Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects, Academic press, 2011.

Dalcín, L., Paz, R., and Storti, M.: MPI for Python, J PARALLEL DISTR COM, 65, 1108–1115, 2005.

Dalcín, L., Paz, R., Storti, M., and D’Elía, J.: MPI for Python: Performance improvements and MPI-2 extensions, J PARALLEL DISTR860

COM, 68, 655–662, 2008.

Erich Strohmaier: Top 500 the list, https://www.top500.org/lists/top500/2022/06, visited on 2023-06-15, 2022.

Gevorkyan, M. N., Demidova, A. V., Korolkova, A. V., and Kulyabov, D. S.: Statistically significant performance testing of Julia scientific

programming language, J PHYS CONF SER, 1205, 012 017, https://doi.org/10.1088/1742-6596/1205/1/012017, 2019.

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., et al.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation865

at Standard Resolution, J ADV MODEL EARTH SY, 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang, L.: Porting LASG/ IAP Climate System Ocean Model

to Gpus Using OpenAcc, IEEE ACCESS, 7, 154 490–154 501, https://doi.org/10.1109/ACCESS.2019.2932443, 2019.

Julia Development Team: Introduction to CUDA, https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU,

2022, visited on 2022-12-13.870

Julia Development Team: Eval of Julia code, https://docs.julialang.org/en/v1/devdocs/eval/#, 2016, visited on 2022-12-13, 2016.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A.: PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU

Run-Time Code Generation, PARALLEL COMPUT, 38, 157–174, https://doi.org/10.1016/j.parco.2011.09.001, 2012.

Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., and Palmer, T. N.: Fluid Simulations Accelerated With 16 Bits: Approaching 4x Speedup

on A64FX by Squeezing ShallowWaters.jl Into Float16, J ADV MODEL EARTH SY, 14, https://doi.org/10.1029/2021MS002684, 2022.875

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some

optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), GEOSCI MODEL DEV, 12, 3991–4012,

https://doi.org/10.5194/gmd-12-3991-2019, 2019.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A llvm-based python jit compiler, in: Proceedings of the Second Workshop on the LLVM

Compiler Infrastructure in HPC, pp. 1–6, 2015.880

Lin, W.-C. and McIntosh-Smith, S.: Comparing Julia to Performance Portable Parallel Programming Models for HPC, in: 2021 International

Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), pp. 94–105, IEEE,

St. Louis, MO, USA, https://doi.org/10.1109/PMBS54543.2021.00016, 2021.

29

https://doi.org/10.5281/zenodo.7439539
https://doi.org/0.5281/zenodo.7421135
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.1016/j.ocemod.2011.10.001
https://doi.org/10.1029/2019MS001870
https://www.top500.org/lists/top500/2022/06
https://doi.org/10.1088/1742-6596/1205/1/012017
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1109/ACCESS.2019.2932443
https://cuda.juliagpu.org/stable/tutorials/introduction/#A-simple-example-on-the-CPU
https://docs.julialang.org/en/v1/devdocs/eval/#
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1029/2021MS002684
https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.1109/PMBS54543.2021.00016

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: Improved GPU/CUDA Based Parallel Weather and

Research Forecast (WRF) Single Moment 5-Class (WSM5) Cloud Microphysics, IEEE J SEL TOP APPL, 5, 1256–1265,885

https://doi.org/10.1109/JSTARS.2012.2188780, 2012.

NERSC: Perlmutter architecture specification, https://docs.nersc.gov/systems/perlmutter/architecture/, 2023, visited on 2023-06-15, 2023.

Norman, M., Lyngaas, I., Bagusetty, A., and Berrill, M.: Portable C++ Code that can Look and Feel Like Fortran Code with Yet Another

Kernel Launcher (YAKL), International Journal of Parallel Programming, https://doi.org/10.1007/s10766-022-00739-0, 2022.

Perkel, J. M.: Julia: come for the syntax, stay for the speed, NATURE, 572, 141–142, https://doi.org/10.1038/d41586-019-02310-3, 2019.890

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., and Maltrud, M. E.: Evaluation of the Arbitrary Lagrangian–Eulerian Vertical

Coordinate Method in the MPAS-Ocean Model, OCEAN MODEL, 86, 93–113, https://doi.org/10.1016/j.ocemod.2014.12.004, 2015.

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud, M. E., Price,

S. F., Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wolfram, P. J., and Woodring, J. L.: An

Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE-II Forcing, J ADV MODEL EARTH SY, 11,895

1438–1458, https://doi.org/10.1029/2018MS001373, 2019.

Petersen, M. R., Bishnu, S., and Strauss, R. R.: MPAS-Ocean Shallow Water Performance Test Case,

https://doi.org/10.5281/zenodo.7439134, 2022.

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R., and

Marshall, J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs, J. OPEN SOURCE SOFTW., 5, 2018,900

https://doi.org/10.21105/joss.02018, 2020.

Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A unified approach to energy conservation and potential vorticity dynamics

for arbitrarily-structured C-grids, J COMPUT PHYS, 229, 3065–3090, 2010.

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution approach to global ocean

modeling, OCEAN MODEL, 69, 211–232, 2013.905

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface,

topography-following-coordinate oceanic model, OCEAN MODEL, 9, 347–404, 2005.

Srinath, A.: Accelerating Python on GPUs with nvc++ and Cython, https://developer.nvidia.com/blog/

accelerating-python-on-gpus-with-nvc-and-cython/, 2020, visited on 2022-12-13, 2022.

Strauss, R. R.: Julia Layered Shallow Water Model on Various Hardwares, https://doi.org/10.5281/zenodo.7493064, 2023.910

Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.: Numerical representation of geostrophic modes on arbitrarily structured

C-grids, J COMPUT PHYS, 228, 8321–8335, 2009.

Trott, C. R., Lebrun-Grandié, D., et al.: Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE T PARALL DISTR, 33,

805–817, https://doi.org/10.1109/TPDS.2021.3097283, 2022.

Xu, S., Huang, X., Zhang, Y., Hu, Y., and Yang, G.: A customized GPU acceleration of the princeton ocean model,915

in: 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and Processors, pp. 192–193,

https://doi.org/10.1109/ASAP.2014.6868661, 2014.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, GEOSCI

MODEL DEV, 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015.

Ye, Y., Song, Z., Zhou, S., Liu, Y., Shu, Q., Wang, B., Liu, W., Qiao, F., and Wang, L.: swNEMO_v4.0: an ocean model based on NEMO4 for920

the new-generation Sunway supercomputer, GEOSCI MODEL DEV, 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, 2022.

30

https://doi.org/10.1109/JSTARS.2012.2188780
https://docs.nersc.gov/systems/perlmutter/architecture/
https://doi.org/10.1007/s10766-022-00739-0
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1016/j.ocemod.2014.12.004
https://doi.org/10.1029/2018MS001373
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.21105/joss.02018
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://doi.org/10.5281/zenodo.7493064
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/ASAP.2014.6868661
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.5194/gmd-15-5739-2022

Zhao, X.-d., Liang, S.-x., Sun, Z.-c., Zhao, X.-z., Sun, J.-w., and Liu, Z.-b.: A GPU accelerated finite volume coastal ocean model, J

HYDRODYN, Ser. B, 29, 679–690, https://doi.org/10.1016/S1001-6058(16)60780-1, 2017.

31

https://doi.org/10.1016/S1001-6058(16)60780-1

