
Reviewer 1, Second Revision of Manuscript, “Julia for Geophysical Fluid Dynamics:
Performance Comparisons between CPU, GPU, and Fortran-MPI”

This is a revised submission. The authors have addressed most of my comments. I especially welcome the
new “Julia in a Nutshell” section, which is overall very well done. I recommend acceptance after minor
revisions.

Minor Comments:

1. Line 74: Julia’s “superior memory management”: I don’t understand what the authors mean here. Julia
is a garbage collected language which trades off programmer control for ease of memory management.
Garbage collection can have undesirable effects in parallel applications (see for example this Julia
issue https://github.com/JuliaLang/julia/issues/49316). It is not strictly superior to other memory
management mechanisms.

Response: We have removed “superior memory management” from this description.

2. Line 80: “Julia has found widespread application . . . ”: I think this statement is too strong. Julia
definitely does not have “widespread” application in web development, and my impression is that it is
only gaining grounds in the other fields mentioned.

Response: Agreed. We changed “found widespread application” to “recently been gaining ground”.

3. Line 126: Strictly speaking Array is not a concrete type since it is parametric (this can be easily
checked in Julia by evaluating isconcretetype(Array) which returns false). Additionally, here and in
other places Julia types are written in plain text, but other times they are displayed as code. Please
unify the style throughout the manuscript.

Response: We have added specific text on how to make an Array concrete, which is by defining it
with concrete-typed elements and specifying the Array’s size. We have changed code within the text
to code font.

4. There is a typo in equation (1a) (there should be only one gradient operator).

Response: Thank you for pointing it out. We have removed the additional gradient operator.

5. I have a couple of suggestions for Table 1. Please mention that the TDP values are per CPU and per
GPU. The A100 GPU comes in two variants with TDP of 300 W or 400 W. I believe that Perlmutter
has the 400 W version. To be consistent with the GPU specification, please say that the CPU flops
are for double precision.

Response: Thank you for the suggestions. We have added these, and confirmed with NERSC that
the TDP is 400W.

6. Lines 510-514: “Based on technical specification . . . ”: The comparison of flops values implies that
the authors think that their code is compute bound. Based on the low number of operations I would
expect the code to be bandwidth limited and the bandwidth ratio to be a more appropriate speedup
bound, at least for large problem sizes. Can the authors comment on this?

Response: We added text to that paragraph to describe the timing of computation and communication
separately. Based on Figure 5, the full-node Julia-MPI (64 cores) is 80% computation, so we do not
believe the application is bandwidth limited on the 512x512 by 100 layer domain.

7. Line 618 “Julia-GPU scaled very similarly to Julia-MPI”: Maybe “performed” would be better here
than “scaled” ?

Response: Agreed. The text has been updated.

8. Line 622: “(. . . ) and sample results rarely, GPUs can offer significant speed-ups”: This might be true
in theory, but I don’t see how the presented results support that conclusion. Looking at Figure 2, even

1



in the “Computation Only” plot the CPU is faster than the GPU, even though the GPU is theoretically
much more powerful.

Response: Thank you for pointing this out. We have revised this paragraph to align with the results
in the GPU/CPU comparison of the paper.

2


