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Abstract.  

Accounting for the variability of hydrological processes and climate conditions between catchments and within catchments 

remains a challenge in rainfall–runoff modelling. Among the many approaches developed over the past decades, multi-model 10 

approaches provide a way to take into account the uncertainty linked to the choice of model structure and its parameter 

estimates. Semi-distributed approaches make it possible to account explicitly for spatial variability while maintaining a limited 

level of complexity. However, these two approaches have rarely been used together. Such a combination would allow us to 

take advantage of both methods. The aim of this work is to answer the following question: What is the possible contribution 

of a multi-model approach within a variable spatial framework compared to lumped single models for streamflow simulation? 15 

To this end, a set of 121 catchments with limited influence in France was assembled, with precipitation, potential 

evapotranspiration and streamflow data at the hourly time step over the period 1998–2018. The semi-distribution set-up was 

kept simple by considering a single downstream catchment defined by an outlet, and one or more upstream sub-catchments. 

The multi-model approach was implemented with 13 rainfall–runoff model structures, three objective functions and two spatial 

frameworks, for a total of 78 distinct modelling options. A simple average method was used to combine the various simulated 20 

streamflow at the outlet of the catchments and sub-catchments. The most efficient lumped model on a given catchment was 

taken as the benchmark for model evaluation. 

Overall, the semi-distributed multi-model approach yields better performance than the different lumped models considered 

individually. The gain is mainly brought about by the multi-model set-up, with the spatial framework providing a benefit on a 

more occasional basis. These results, based on a large catchment set, evince the benefits of using a multi-model in a variable 25 

spatial framework to simulate streamflow. 
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1 Introduction 30 

1.1 Uncertainty in rainfall–runoff modelling 

A rainfall–runoff model is a numerical tool based on a simplified representation of a real-world system, namely the catchment 

(Moradkhani and Sorooshian, 2008). It usually computes streamflow time series from climatic data, such as rainfall and 

potential evapotranspiration. Many rainfall–runoff models have been developed according to various assumptions in order to 

meet specific needs (e.g. water resources management, flood and low-flow forecasting, hydroelectricity), with choices and 35 

constraints concerning (Perrin, 2000): 

- the temporal resolution, i.e. the way variables and processes are aggregated over time; 

- the spatial resolution, i.e. the way spatial variability is taken into account more or less explicitly in the model; 

- the description of dominant processes. 

Different models will necessarily produce different streamflow simulations. Intuitively, one often expects that working at a 40 

finer spatio-temporal scale should allow for a better description of the processes (Atkinson et al., 2002). However, this 

generally leads to additional complexity, i.e. a larger number of parameters, which requires more information to be estimated 

and often yields more uncertain results (Her and Chaubey, 2015).  

Uncertainty in rainfall–runoff models depends on the assumptions made regarding the choice of the general structure and also 

on the parameter estimates. The variety of model structures and equations results in a large variability of streamflow 45 

simulations (Ajami et al., 2007). The spatial and temporal resolutions also result in different streamflow simulations. Due to 

the complexity of the real system and the lack of information to parameterize the various equations over the whole catchment, 

parameter estimates must be set. Usually, these parameters are determined for each entity of interest by minimizing the error 

induced by the simulation compared to an observation. The choice of the optimization algorithm, the objective function and 

the streamflow transformation is therefore also a source of uncertainty. Since input data are used to drive model structures and 50 

parameters, the uncertainty associated with these data also contributes to the overall model uncertainty (Beven, 1993; Liu and 

Gupta, 2007; Pechlivanidis et al., 2011; McMillan et al., 2012). 

Various approaches aim to improve models by taking into account uncertainties, among which are multi-model approaches 

that are the main topic of our research. 

1.2 Multi-models 55 

The multi-model approach consists in using several models in order to take advantage of the strengths of each one. This concept 

has been gaining momentum in hydrology since the end of the 20th century for simulation (e.g. Shamseldin et al., 1997) and 

forecasting (e.g. Loumagne et al., 1995). In this section, we distinguish between probabilistic and deterministic approaches. 
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A probabilistic multi-model seeks an explicit quantification of the uncertainty associated with simulations or forecasts through 

statistical methods. The ensemble concept has commonly been applied in meteorology for several decades, and subsequently 60 

has been widely used in hydrology to improve prediction (i.e. simulation or forecast). The international Hydrologic Ensemble 

Prediction EXperiment initiative (Schaake et al., 2007) fostered the work on this topic. The ensemble concept has also been 

adapted to rainfall–runoff models in order to reduce modelling bias: Duan et al. (2007) used multiple predictions made by 

several rainfall–runoff models using the same hydroclimatic forcing variables. An ensemble consisting of nine different models 

(from three different structures and parameterizations) was constructed and applied to three catchments in the United States. 65 

The predictions were then combined through a statistical procedure (Bayesian model averaging or BMA), which assigns larger 

weight to a probabilistic likelihood measure. The authors showed that the probabilistic multi-model approach improves flow 

prediction and quantifies model uncertainty compared to using a single rainfall–runoff model. Block et al. (2009) coupled both 

multiple climate and multiple rainfall–runoff models, increasing the pool of streamflow forecast ensemble members and 

accounting for cumulative sources of uncertainty. In their study, 10 scenarios were built for each of the three climatic models 70 

and applied to two rainfall–runoff models, i.e. 60 different forecasts. This super-ensemble was applied to the Iguatu Catchment 

in Brazil and showed better performance than the hydroclimatic or rainfall–runoff model ensembles studied separately. Note 

that the authors tested three different combination methods: pooling, linear regression weighting, and a kernel density 

estimator. They found that the last technique seems to perform better. Velázquez et al. (2011) showed that the combination of 

different climatic scenarios with several models in a forecasting context leads to a reduction in uncertainty, particularly when 75 

the forecast horizon increases. However, such methods generate a large number of scenarios and can therefore become time-

consuming and difficult to analyse. The probabilistic combination of simulations remains a major topic in the scientific 

community (see Bogner et al., 2017). 

A deterministic multi-model seeks to define a single best streamflow time series, which often consists in a combination of the 

simulations of individual models. Shamseldin et al. (1997) tested three methods in order to combine model outputs: a simple 80 

average, a weighted average and a non-linear neural network procedure. Their study was conducted on a sample of 11 

catchments mainly located in Southeast Asia using five different lumped models operating at the daily time step and showed 

that multi-models perform better than models applied individually. Similar conclusions were reached in the Distributed Model 

Intercomparison Project (DMIP) (Smith et al., 2004) conducted by Georgakakos et al. (2004) in simulation or by Ajami et al. 

(2006) for forecasting. In both articles, six to 10 rainfall–runoff models were applied at the hourly time step over a few 85 

catchments in the United States. These studies showed that a model that performs poorly individually can contribute positively 

to the multi-model set-up. Winter and Nychka (2010) specify that the composition of the multi-model is important. Indeed, 

using 19 global climate models, the authors have shown that simple – or weighted – average combinations are more efficient 

if the individual models used produce very different results. Studies combining rainfall–runoff models by machine learning 

techniques led to the same conclusions (see, e.g. Zounemat-Kermani et al., 2021 for a review). 90 
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All of the aforementioned multi-model approaches only focus on the structural aspect of rainfall–runoff models. Some authors 

have also combined streamflow generated from different parameterizations of the same rainfall–runoff model. Oudin et al. 

(2006) proposed combining two outputs obtained with a single model (GR4J) from two calibrations, one adapted to high flows 

and the other to low flows, by weighting each of the simulations on the basis of a seasonal index (filling rate of the production 

reservoir). Such a method makes it possible to provide good efficiency in both low and high flows, whereas usually an a priori 95 

modelling choice must be made to focus on a specific streamflow range. More recently, Wan et al. (2021) used a multi-model 

approach based on four rainfall–runoff models calibrated with four objective functions on a large set of 383 Chinese 

catchments. The authors showed that methods based on weighted averaging outperform the ensemble members, except in low-

flow simulation. They also highlighted the benefit of using several structures with different objective functions. The size of 

the ensemble was also studied and it was found that using more than nine ensemble members does not further improve 100 

performance. Note that different results for optimal size can be found in the literature (Arsenault et al., 2015; Kumar et al., 

2015). 

The aforementioned studies were carried out within a fixed spatial framework (e.g. lumped, semi-distributed, distributed), i.e. 

considering that the model structures implemented are relevant over the whole modelling domain. Implicitly, the underlying 

assumption is that a fixed rainfall–runoff model is able to capture the main hydrological processes affecting streamflow on a 105 

catchment (and its sub-catchments). However, this may not be true. Introducing a variable spatial modelling framework into 

the multi-model approach could help to overcome this issue. 

1.3 Scope of the paper 

This study intends to test whether streamflow simulation can be improved through a multi-model approach. More precisely, 

we aim here to deal with the uncertainty stemming from (i) the spatial dimension (e.g. catchment division, aggregation of 110 

hydroclimatic forcing, boundary conditions), (ii) the general structure of the model (e.g. formulation of water storages, 

filling/draining equations) and (iii) the parameter estimation (e.g. calibration algorithm, objective function, calibration period). 

However, we decided here not to focus on quantifying these uncertainties. Therefore, referring to the literature review 

(Section 1.2), we chose a deterministic averaging approach. Ultimately, our aim is to answer the following question:  

What is the possible contribution of a multi-model approach within a variable spatial framework compared to lumped single 115 

models for streamflow simulation? 

This study follows on from the work of Squalli (2020), who carried out exploratory multi-model tests on lumped and semi-

distributed configurations at a daily time step. The remainder of the paper is organized as follows: first, the catchment set, the 

hydroclimatic data, the spatial framework and the rainfall–runoff models used for this work are presented. The multi-model 

methodology and the calibration/evaluation procedure are described. Then we present, analyse and discuss the results. Last, 120 

we summarize the main conclusions of this work and discuss its perspectives.  
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2 Material and methods 

2.1 Catchments and hydroclimatic data 

This study was conducted at an hourly time step using precipitation, potential evapotranspiration and streamflow time series 

over the period 1998–2018 (Delaigue et al., 2020). Precipitation (P) was extracted from the radar-based COMEPHORE re-125 

analysis produced by Météo-France (Tabary et al., 2012), which provides information at a 1-km² resolution and which has 

already been extensively used in hydrological studies (Artigue et al., 2012; van Esse et al., 2013; Bourgin et al., 2014; 

Lobligeois et al., 2014; Saadi et al., 2021).  

Potential evapotranspiration (E0) is calculated with the formula proposed by Oudin et al. (2005). This equation was chosen for 

its simplicity, as the only input required is daily air temperature (from the SAFRAN re-analysis of Météo-France, see Vidal et 130 

al., 2010) and extra-terrestrial radiation (which depends only on the Julian day and the latitude). Once calculated, the daily 

potential evapotranspiration was disaggregated to the hourly time step using a simple parabola (Lobligeois, 2014). These steps 

for converting daily temperature data into hourly potential evapotranspiration are directly possible in the airGR software 

(Coron et al., 2017, 2021; developed using the R programming language; R Core Team, 2020), which was used for this work. 

We did not use any gap-filling method since all climatic data were complete during the study period. 135 

Streamflow time series (Q) were extracted from the national streamflow archive Hydroportail (Dufeu et al., 2022), which 

makes available the data produced by hydrometric services in regional environmental agencies in charge of measuring flows 

in France as well as by other data producers (e.g. hydropower companies, dam managers, etc.). Before being archived, flow 

data undergo quality control procedures applied by data producers, with corrections when necessary. Quality codes are also 

available, although this information is not uniformly provided for all stations. These data are freely available on the 140 

Hydroportail website and are widely used in France for hydraulic and hydrological studies. 

Here, we focus on simulating streamflow at the main catchment outlet, addressing the issue from a large-sample hydrology 

(LSH) perspective (Andréassian et al., 2006; Gupta et al., 2014), in which many catchments are used. For this study, 121 

catchments spread over mainland France with limited human influences were selected (Figure 1). The first criterion used to 

select catchments is based on streamflow availability. Here, a threshold of 10% maximum gaps per year over the whole period 145 

was considered (1999-2018). However, this criterion may be slightly too restrictive (e.g. removal of a station installed in 2000 

and presenting continuous data since then). In order to overcome this problem, we decided to allow this threshold to be 

exceeded for a maximum of 3 years over the whole period considered. It is therefore a compromise between having a large 

number of catchments for the study and having a long enough period for model calibration and evaluation. The catchment 

selection also considered the level of human influence. In France, the vast majority of catchments have human influences (e.g. 150 

dams, dikes, irrigation or urbanization). Here, streamflow with limited human influences corresponds to gauged stations where 

the streamflow records have a hydrological behaviour considered close enough to a natural streamflow (e.g. low water 
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withdrawals, influences far enough upstream to be sufficiently diluted downstream) not to strongly limit model efficiency. 

This was based on numerical indicators on the influence of dams and local expertise. 

Although snow-dominant or glacial regimes were rejected (due to lack of data or anthropogenic influence), the various 155 

catchments selected offer a wide hydroclimatic variability (Table 1). 

 

Figure 1: Boundaries (in red) and outlets (black dots) of the 121 catchments selected for this study. 

Table 1: Minimum, median and maximum values of some characteristics of the 121 catchments (P stands for mean annual 

precipitation, E0 for mean annual potential evapotranspiration, Q for mean annual flow). 160 

Main characteristics of the catchment areas Min. Med. Max. 

Catchment area [km²] 15 880 110,188 

Mean annual precipitation [mm y-1] 661 960 1,699 

Mean annual potential evapotranspiration [mm y-1] 551 682 829 

Mean annual flow [mm y-1] 89 336 1,046 

Humidity index (P/E0) [-] 1.0 1.4 2.9 

Runoff coefficient (Q/P) [-] 0.1 0.4 0.7 
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2.2 Principle of catchment spatial discretization 

In this work, two spatial frameworks are used: lumped and semi-distributed. A lumped model considers the catchment as a 

single entity while the semi-distribution seeks to divide this catchment into several sub-catchments in order to partly take into 

account the spatial variability of hydroclimatic forcing and physical characteristics within the catchment. 

Generally, the division of a catchment is defined on the basis of expertise and requires good knowledge of its characteristics 165 

(hydrological response units based on geology or land use). From a large-sample hydrology perspective, an automatic 

definition of semi-distribution was needed. To this end, we simplified the problem by looking at a first-order distribution, i.e. 

a single downstream catchment defined by an outlet and one or more upstream sub-catchments. The underlying assumption is 

therefore that a second-order distribution (i.e. further dividing the upstream sub-catchments into a few smaller sub-catchments) 

will have a more limited impact on model behaviour than the first, when considering the main downstream outlet. This 170 

assumption is based on the work of Lobligeois et al. (2014) which showed that a multitude of sub-basins of approximately 

4 km² provide limited gain compared to a few sub-catchments of 64 km². Under these hypotheses, we developed an automatic 

procedure to select semi-distributed configurations nested in each other, which we termed “Matryoshka doll”. This approach 

consists in creating different simple and distinct combinations of upstream–downstream gauged catchments starting from the 

main downstream station and progressively moving upstream.  175 

Specifically, the Matryoshka doll selection approach (Figure 2) was implemented as follows: 

1) Select a downstream station defining a catchment with one or more gauged internal points. 

2) Restrict the upstream sub-catchment partitioning to a first-order split, i.e. going back only to the nearest upstream 

station(s) without going back to the stations further upstream, and respecting a size criterion to avoid sensitivity issues 

which may result from a too-small or too-large downstream catchment (in this study, we limited the area of the 180 

upstream sub-catchments to a value between 10% and 70% of the area of the total catchment). This step creates a 

combination of stations defining a single downstream catchment (which receives the upstream contributions). 

3) If the upstream catchments have one or more internal gauged points, repeat step 1 and consider them as a downstream 

catchment.  

The Matryoshka doll approach allows us to create distinct configurations (i.e. there cannot be two different semi-distributed 185 

configurations for the same downstream catchment) and therefore avoids over-sampling issues. 
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Figure 2: Illustration of the Matryoshka dolls approach to the Vézère River at Larche. The steps of the method are in column, the 

discretization levels in row. From this initial catchment (top left), three semi-distributed configurations were obtained (number of 

rows). For each semi-distributed configuration, the boundary of the catchment considered is in red, the first-order upstream 190 
catchments are filled in dark grey while the downstream catchment is in light grey. 

The semi-distributed approach consists in performing lumped modelling on each sub-catchment by linking them through a 

routing scheme. For this study, a time lag between the upstream and downstream outlet was applied, as done by Lobligeois et 

al. (2014). In order to reduce the computation time, the authors propose to calculate a lumped parameter C0 corresponding to 

the average flow velocity over the downstream catchment. Since the hydraulic lengths di (i.e. the distance between the 195 

downstream outlet and each upstream sub-catchment) are known, the transit time Ti can be calculated as follows: 

𝑇𝑖 =
di

𝐶0

 (1)  
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2.3 Models 

In the context of this study, a model is defined as a configuration composed of a model structure and an associated set of 

parameters (i.e. which may vary according to the objective function selected for calibration). These models will be applied 200 

independently in a lumped or a semi-distributed modelling framework.  

For this study, the airGRplus software (Coron et al., 2022), based on the works of Perrin (2000) and Mathevet (2005), was 

used. It includes various rainfall–runoff models structures running at the daily time step. airGRplus is an add-on to airGR 

(Coron et al., 2017, 2021). An adaptation of the work made by Perrin and Mathevet was carried out to use these structures at 

the hourly time step (mostly ensuring consistency of parameter ranges when changing simulation time steps and changing 205 

fixed time-dependent parameters). Finally, a set of 13 structures available in airGRplus, already widely tested in France and 

adapted at the hourly time step were selected (Table 2). They are simplified versions of original rainfall–runoff models taken 

from the literature (except GR5H, which corresponds to the original version). To avoid confusion with the original models, a 

four-letter abbreviation was used here. Since the various catchments used for this study are not prone to snowmelt issues, no 

snow module was implemented. 210 

Table 2: List of rainfall–runoff models available in the airGRplus software at the hourly time step and used for this work. 

Original name 
Number  

of free parameters 
References 

Name used 

in this study 

Topmodel 7 Beven and Kirkby (1979) TOPM 

IHACRES 6 Jakeman et al. (1990) IHAC 

HBV 9 Bergström and Forsman (1973) HBV0 

Mohyse 8 Turcotte et al. (2010) MOHY 

Mordor 6 Garçon (1999) MORD 

Simhyd 8 Vaze et al. (2011) SIMH 

SMAR 9 O’Connell et al. (1970) SMA0 

TANK 10 Sugawara (1979) TAN0 

Gardenia 8 Thiéry (1982) GARD 

PDM 8 Moore and Clarke (1981) PDM0 

CREC 8 Cormary and Guilbot (1974) CRE0 

NAM 10 Nielsen and Hansen (1973) NAM0 

GR5H 5 Ficchì et al. (2019) GR5H 
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The objective function used for parameter calibration is the Kling–Gupta efficiency (KGE) (Gupta et al., 2009), defined by: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)² (2)  

with r the correlation, α the ratio between standard deviations, and β the ratio between the means (i.e. the bias) of the observed 

and simulated streamflow. 

Thirel et al. (2023) showed that streamflow transformations are adapted to a specific modelling objective (e.g. low flows, 215 

floods). However, they highlighted that it is difficult to represent a wide range of streamflow with a single transformation. 

According to this study, we selected three transformations, two of which target high flows (Q+0.5) and low flows (Q-0.5) 

respectively, and one which is intermediate (Q+0.1). 

The algorithm used for model calibration comes from Michel (1991). It combines a global and a local optimization approach. 

First, a gross screening of the parameters space is performed using either a rough predefined grid or a list of parameter sets. 220 

Then a steepest descent local search algorithm is performed, starting from the result of the screening procedure. Such 

calibration (over 10 years of hourly data) is about 0.5 to 6 min long (depending mainly of the catchment considered and the 

number of free parameters) and gives a single parameter set. In a semi-distributed context, the calibration is carried out 

sequentially, i.e. on each sub-catchment from upstream to downstream. Note that the calibration takes slightly more time in 

the downstream catchment due to the additional free parameter of the routing function. 225 

Overall, 13 structures and three objective functions were used, resulting in 39 models. Applied over two different spatial 

frameworks, a total of 78 distinct modelling options were available for this study. 

2.4 Multi-model methodology 

The multi-model approach consists in running various rainfall–runoff models. More specifically, here, we are interested in a 

deterministic combination of the different streamflow simulations. Let us recall that for our study, a model corresponds to the 230 

association of a structure and an objective function. By definition, a model is imperfect. Indeed, the different structures have 

been designed to meet different objectives (e.g. water resources management, forecasting, and climate change) in different 

geographical or geological contexts (e.g. high mountains, karstic zone, and alluvial plain). The objective functions (e.g. 

optimization algorithm, objective function, streamflow transformations), selected to optimize the parameters, are also choices 

that will eventually impact the simulation. The hypothesis made here is that the multi-model approach makes it possible to 235 

take advantage of the strengths of each model. 

In the lumped framework, we consider every model on each catchment. In the semi-distributed framework, we consider every 

model on each sub-catchment. As the calibration is sequential, the various models are first applied to each upstream sub-

catchment, and then their simulated streamflow is propagated to the downstream catchment to be modelled. However, 

transferring every upstream possibility to the downstream catchment is excessively time consuming. Therefore, the simulated 240 
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streamflow on each upstream sub-catchment was first set with an a priori choice, whatever the model used, and then transferred 

to the downstream catchment (this choice is discussed in Section 4.4). 

The multi-model framework enables these different streamflow simulations to be combined on each catchment and sub-

catchment in order to create multiple additional simulations. At the downstream outlet, we will consider mixed combinations, 

using streamflow simulations from lumped and semi-distributed modelling (Figure 3). To this end, deterministic averaging 245 

methods were used. Here, we will focus on a simple average combination (SAC), i.e. giving an equal weight to all models 

combined, and defined by: 

𝑄𝑆𝐴𝐶 =
∑ 𝑄𝑖

𝑛
𝑖=1

𝑛
 (3)  

with QSAC the streamflow from a simple average combination, and Qi the simulated streamflow with a model i selected among 

the n models. 

Note that a weighted average combination (WAC) was also tested but did not significantly change the mean results and was 250 

therefore not used further (discussed in Section 4.3). 

The number of possible combinations on a given outlet from the total number of available streamflow simulations increases 

exponentially and can be computed by: 

𝑛𝑐 = ∑ (
𝑛𝑠𝑖𝑚

𝑖
)

𝑛𝑠𝑖𝑚

𝑖=2

 (4)  

with 𝑖 the number of streamflow simulations to choose from the total number of available streamflow simulations 𝑛𝑠𝑖𝑚. 

As an indication, there are approximately 1,000 combinations for a streamflow ensemble simulated by 10 models but there are 255 

over 1,000,000 solutions for 20 models in a lumped framework. Although a single combination is quick to perform (between 

0.1 and 0.2 s), the number of combinations quickly becomes a limiting factor in terms of computation time. For this study, 

combinations will be set to a maximum of four different streamflow time-series among the total number of models available, 

i.e. approximately 1,500,000 different combinations (discussed in Section 4.2): 

𝑛𝑐 = ∑ (
78

𝑖
)

4

𝑖=2

≈ 1,500,000 (5)  

 260 

The objective of these combinations is to create a large set of simulations from which the best multi-model will be selected. 

We aim here to obtain simulations that are able to perform well over a wide range of streamflow and that can be applied to a 

large number of French catchments. Therefore, the best models (and multi-models) correspond to those which will achieve the 

highest performance on each catchment on average during the evaluation periods.  
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2.5 Testing methodology 265 

A split-sample test (Klemeš, 1986), commonly used in hydrology, was implemented. This practice consists in separating a 

streamflow time series into two distinct periods, the first for calibration and the second for evaluation, and then exchanging 

these two periods. The two periods chosen are 1999–2008 and 2009–2018. An initialization period of at least 2 years was used 

before each test period to avoid errors attributable to the wrong estimation of initial conditions within the rainfall–runoff model. 

For this study, results will be analysed only for evaluation (i.e. over the two untrained periods). Model performance was 270 

evaluated on two levels: 

- with a general criterion – model performance was evaluated with a composite criterion focusing on a wide range of 

streamflow defined as follows: 

𝐾𝐺𝐸𝑐𝑜𝑚𝑝 =
𝐾𝐺𝐸(𝑄+0.5) + 𝐾𝐺𝐸(𝑄+0.1) + 𝐾𝐺𝐸(𝑄−0.5)

3
 (6)  

 

- with event-based criteria – model performance was evaluated with several criteria characterizing flood and low flows. 275 

In a context of high flows (5,447 events selected), the timing of the peak (i.e. the date at which the flood peak was 

reached), the flood peak (i.e. the maximum streamflow value observed during the flood) and the flood flow (i.e. mean 

streamflow during the event) were analysed. In a context of low flows (1,332 events selected) the annual low-flow 

duration (i.e. number of low-flow days) and severity (i.e. largest cumulative streamflow deficit) were studied. Table 

3 provides typical ranges values of flood and low-flow characteristics over the catchments set. Please refer to 280 

Appendix A for more details on the event selection method. 

Table 3: Minimum, median and maximum values of flood and low-flow characteristics over the 121 catchments. 

Flood characteristics  Min. Med. Max. 

Number of events [-] 18.00 50.00 50.00 

Mean flood duration [h] 2.22 6.18 143.04 

Mean flood peak [mm h-1] 0.05 0.35 1.71 

Mean flood flow [mm h-1] 0.03 0.15 0.85 

Low-flow characteristics Min. Med. Max. 

Number of events [-] 3.00 11.00 19.00 

Mean annual low-flow duration [d] 17.67 51.82 127.25 

Mean annual low-flow severity [mm d-1] 0.02 1.81 13.97 
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In a multi-model framework, the best (i.e. giving the best performance over the evaluation periods) model or combination of 

models for each catchment can be determined. Therefore, this model or combination of models will differ from one catchment 285 

to another. The benchmark used for this work was determined to be the best lumped single model for each catchment. The 

choice of a lumped one-size-fits-all model (i.e. the same model whatever the catchment) was also considered but will not be 

developed further. 

3 Results 

Results are presented from lumped (L) single models (SM), i.e. run individually, to more complex semi-distributed (SD) multi-290 

models (MM) (see Figure 3). The mixed (M) multi-model allows for a variable spatial framework combining both lumped and 

semi-distributed approaches. The aim of this part is to present the results obtained with each modelling framework and their 

intercomparison. 

 

Figure 3: Summary of the different approaches tested. Q is the target streamflow at the main catchment outlet; black dots show 295 
gauging stations used. The different colours represent different model structures. The variations of the same colour indicate different 

parameterizations. Red links represent the combination of streamflow. 

3.1 Lumped single models (LSM) 

In this part, each model was run individually in a lumped mode (see Figure 3). Parameters of the 13 structures were calibrated 

successively with the three objective functions, resulting in 39 lumped models. 300 

Figure 4 shows the distribution of the performance of lumped single models over the 121 downstream outlets and over the 

evaluation periods. As a reminder, the KGEcomp used for the evaluation is a composite criterion which takes into account 

different transformations in order to provide an overall picture of model performance for a wide range of streamflow 
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(Equation 6). Overall, lumped single models give median KGEcomp values between 0.70 and 0.88. This upper value is reached 

with the GR5H structure calibrated with a generalist objective function (KGE applied to Q+0.1) and will be used in the 305 

manuscript as a way of comparison as a one-size-fits-all model. Since efficiency criteria values depend on the variety of errors 

found in the evaluation period (see e.g. Berthet et al., 2010), this may impact the significance of performance differences 

between models and ultimately their comparison. Therefore we tried to quantify the sampling uncertainty in KGE scores. The 

bootstrap-jackknife methodology proposed by Clark et al. (2021) was applied over our sample of 121 catchments for the 39 

lumped models. It showed a median sampling uncertainty in KGE scores of 0.02. The objective function applied during the 310 

calibration phase seems to have a variable impact on performance depending on the structure. For example, GR5H shows a 

similar performance regardless of the transformation applied, whereas TAN0 shows a large variation. The strong decrease in 

the 25% quantile of the latter is linked to the great difficulty for this structure to represent the low-flow component of KGEcomp 

when it is calibrated with more weight on high flows (KGE applied to Q+0.5). The reverse is also true since a structure optimized 

with more weight on low flows (KGE applied to Q-0.5) will have more difficulties to represent the high-flow component of 315 

KGEcomp (e.g. NAM0 or GARD). Although the differences remain limited, the highest KGEcomp scores are achieved with a 

more generalist objective function (KGE applied to Q+0.1). These results confirm the conclusions reached by Thirel et al. 

(2023).  

 

 320 

Figure 4: Distribution of the performance (KGEcomp score) of the 39 lumped single models over the 121 catchments and over the 

evaluation periods. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The dashed red line represents the optimal 

KGE value. Each colour represents a structure and each geometric pattern represents the power transformation applied to the 

streamflow during the calibration. 
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The left part of Figure 5 highlights the results obtained with the benchmark, i.e. by selecting the best lumped single model on 325 

each catchment. The benchmark have a median KGEcomp of 0.91 (0.03 higher than the one-size-fits-all model) with low 

variation (between 0.88 and 0.93 for the 25% and 75% quantiles). The right part of Figure 5 indicates the number of catchments 

where each lumped single model is defined as the best. As expected, the models with high performance over the whole sample 

are selected more often than the others. However, two thirds of the lumped single models have been selected at least once as 

the best on a catchment. Similar results can be found in Perrin et al. (2001) or Knoben et al. (2020).  330 

 

 

Figure 5: Distribution of the performance (KGEcomp score) of the best lumped single models (i.e. the benchmark) over the 121 

catchments (left part) and model occurrence within this selection (right part). The boxplots represent the 10%, 25%, 50%, 75% and 

90% quantiles. The dashed red line represents the optimal KGE value while the purple line refers to the median performance of the 335 
one-size-fits-all model (i.e. GR5H calibrated with a generalist objective function Q+0.1 over the whole catchments set). 

3.2 Semi-distributed single models (SDSM) 

Remember that the semi-distribution with a single model (see Figure 3) is done sequentially, i.e. from upstream to downstream. 

Thus, each upstream sub-catchment is first modelled in a lumped mode with a single structure/objective function pair. Then, 

the streamflow simulated upstream is propagated and the same model is calibrated and applied to the downstream catchment. 340 

This procedure is repeated for all 39 (13 structures and three objective functions) available models. 

Figure 6 shows the difference between KGEcomp values obtained with lumped single models and semi-distributed single 

models. The semi-distributed approach seems to have a positive overall impact on the performance, although some 

deterioration can also be observed. Overall, the differences are limited (median of 0.02). However, the semi-distributed 

approach seems to have a variable impact on performance depending on the structure. For example, CRE0 shows a similar 345 
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performance regardless of the spatial framework applied, whereas the performance of GARD improved with a spatial division. 

Although there is no clear trend in the impact of the semi-distribution in relation to the transformation applied during 

calibration, it seems that models calibrated on Q+0.1 (i.e. giving “equal” weight on all flow ranges) show lower differences. 

The lumped models with the highest performance seem to benefit less (if any) from semi-distribution. On the other hand, 

lumped models with lower performance seem to benefit from the spatial discretization. 350 

 

Figure 6: Comparison of the performance (KGEcomp score) between lumped and semi-distributed single models over the 121 

catchments and over the evaluation periods. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. Each colour 

represents a structure and each geometric pattern represents the power transformation applied to the streamflow during the 

calibration. The black line indicates an equal performance between the lumped and semi-distributed approaches: the upper part 355 
indicates an increase of performance with the semi-distributed approach (and the lower part a decrease). 

Nevertheless, Figure 7 highlights that overall, if the focus is set on the best model on each catchment, the difference between 

semi-distributed and lumped single model (benchmark) remains small (no deviation for the quartiles and only 0.005 for the 

median). Once again, two thirds of the semi-distributed single models have been selected at least once as the best on a 

catchment. 360 
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Figure 7: Distribution of the performance (KGEcomp score) of the best semi-distributed single models over the 121 catchments (left 

part) and model occurrence within this selection (right part). The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. 

The dashed red line represents the optimal KGE value while the purple line refers to the median performance of the one-size-fits-365 
all model (i.e. GR5H calibrated with a generalist objective function Q+0.1 over the whole catchments set). The benchmark is the 

choice of the best lumped single model on each catchment and is represented by a grey box. 

3.3 Lumped multi-models (LMM) 

Here, each model was run in a lumped mode and model outputs were combined (see Figure 3). The multi-model approach 

used in this work is a deterministic combination with simple average (SAC) and will be limited to a combination of a maximum 370 

of four models among the available lumped models, i.e. approximately 92,000 different combinations.  

The left part of Figure 8 shows the comparison between performance obtained with the benchmark and when the best lumped 

multi-model is selected on each catchment. The combination of lumped models enables an increase of 0.03 in the median 

KGEcomp value. Remember that the sampling uncertainty on the score is 0.02 on our sample, so these improvements can be 

considered significant. While this gain may seem small at first glance, it is quite substantial since the performance obtained 375 

with the benchmark was already very high (median of 0.91), which makes improvements increasingly difficult. The right part 

of Figure 8 shows the number of times each model is selected within the best performing multi-model approach. As expected, 

it highlights the benefits of a wide choice of models (similar results were found by Winter and Nychka, 2010). Indeed, even if 

some of the models had never been used for the benchmark simulation (in a lumped single model framework), the multi-model 

approach shows that each of them can become a contributing factor to improve streamflow simulation in at least one catchment. 380 

Moreover, the models that are most often selected in the model combinations are not always the best models on their own. For 

example, TOPM, calibrated to favour high flows (Q+0.5), was only used in the benchmark on 1.5% of the catchments but it is 
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selected in the multi-model approach on 24% of the catchments. However, the converse does not seem to be true since a model 

with good individual performance always seems to be a key element of the multi-model (e.g. GR5H, PDM0, MORD).  

 385 

 

Figure 8: Distribution of the performance (KGEcomp score) of the best lumped multi-models over the 121 catchments (left part) and 

model occurrence within this selection (right part). The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The dashed 

red line represents the optimal KGE value while the purple line refers to the median performance of the one-size-fits-all model (i.e. 

GR5H calibrated with a generalist objective function Q+0.1 over the whole catchments set). The benchmark is the choice of the best 390 
lumped single model on each catchment and is represented by a grey box. 

3.4 Semi-distributed multi-models (SDMM) 

For this study, the semi-distributed multi-model approach (see Figure 3) of the target catchment is performed in two steps. 

First, the best multi-model (i.e. the combination of two to four models among the 39 available giving the highest performance 

over the evaluation periods) on each upstream sub-catchment is identified. In the second step, the simulated mean upstream 395 

streamflow is propagated downstream and the different models are applied, and then combined (by 2, 3 or 4) on the downstream 

catchment. Thus, approximately 92,000 different possible combinations of simulated streamflow are obtained at the outlet of 

the total catchment. 

Figure 9 shows very similar results to the LMM (Section 3.3). Indeed, we find again an improvement in the median of 0.03 

compared to the benchmark and all the models are used on at least one downstream catchment. Moreover, the distribution of 400 

the model count on the downstream catchment seems to be more homogeneous between the different members. 
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Figure 9: Distribution of the performance (KGEcomp score) of the best semi-distributed multi-models over the 121 catchments (left 

part) and model counts on the downstream catchment within this selection (right part). The boxplots represent the 10%, 25%, 50%, 405 
75% and 90% quantiles. The dashed red line represents the optimal KGE value while the purple line refers to the median 

performance of the one-size-fits-all model (i.e. GR5H calibrated with a generalist objective function Q+0.1 over the whole catchments 

set). The benchmark is the choice of the best lumped single model on each catchment and is represented by a grey box. 

3.5 Mixed multi-models (MMM) 

Here, the mixed multi-model approach represents a combination of all the approaches tested above. This method allows for 410 

each catchment a combination of models for a variable spatial framework (see Figure 3). In this context, the 39 models applied 

to a lumped and a semi-distributed framework are used, resulting in 78 modelling options, each giving a different streamflow 

at the outlet (Figure 10). These simulations can then be combined (by 2, 3 or 4) downstream in order to define the best mixed 

multi-model on each catchment among more than 1,500,000 possibilities. 
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 415 

Figure 10: Hydrograph of November–December 2003 of the Dore River at Saint-Gervais-sous-Meymont (K287191001). The grey 

shading shows the interval between the 10% and 90% quantiles generated by the 78 modelling options. The red line highlights the 

best MMM combination. The dashed black line refers to the observed streamflow. 

The left part of Figure 11 shows the performance obtained with the best mixed multi-model approach. The combination of 

lumped and semi-distributed models outperforms the benchmark. The right part of Figure 11 highlights the benefits gained 420 

from the wide choice of models and a variable spatial framework. Indeed, almost every lumped and semi-distributed models 

is used in order to improve the representation of streamflow with a multi-model approach in at least one catchment. 

 

Figure 11: Distribution of the performance (KGEcomp score) of the best mixed multi-models over the 121 catchments (left part) and 

model counts within this selection (right part). The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The dashed 425 
red line represents the optimal KGE value while the purple line refers to the median performance of the one-size-fits-all model (i.e. 

GR5H calibrated with a generalist objective function Q+0.1 over the whole catchments set). The benchmark is the choice of the best 

lumped single model on each catchment and is represented by a grey box. 
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3.6 Modelling framework comparison 

Figure 12 compares the performance obtained when the best (multi-)model is selected on each catchment depending on the 430 

modelling approach used. The best LSM and SDSM distributions are almost identical and the same results are obtained with 

LMM and SDMM. This shows a limited gain of the semi-distribution approach compared to a lumped framework. However, 

the LMM and SDMM outperformed the LSM and SDSM. Therefore, the significant increase in performance (greater than 0.02 

on the KGEcomp value) is mainly due to the multi-model aspect. Finally, the highest performance is obtained with the MMM 

but it remained close to the performance achieved by the LMM and SDMM. 435 

 

 

Figure 12: Distribution of the performance (KGEcomp score) of the best (multi-)models over the 121 catchments according to their 

modelling framework (LSM: lumped single model; SDSM: semi-distributed single model; LMM: lumped multi-model; SDMM: 

semi-distributed multi-model; MMM: mixed multi-model). The dashed red line represents the optimal KGE value while the purple 440 
line refers to the median performance of the one-size-fits-all model (i.e. GR5H calibrated with a generalist objective function Q+0.1 

over the whole catchments set). The benchmark is the choice of the best lumped single model on each catchment and is represented 

by a grey box. 

Figure 13 shows the best performing modelling framework for each catchment. Multi-model approaches are considered to be 

better than single models for the vast majority of catchments. In general, the MMM approach seems to be the most suitable 445 

for the majority of the catchments. However, if we accept to deviate by 0.005 (epsilon value arbitrarily set) from the optimal 

value, we notice that the lumped multi-model approach is sufficient on a large part (about 60%) of the catchments. There are 

no clear regional trends on which catchments require a more complex modelling framework. 
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 450 

Figure 13: Maps of the best modelling framework on each catchment (top) and the simplest modelling framework among the best 

frameworks (bottom). The epsilon value corresponds to the performance deviation allowed from the best performance. If the drop 

between the evaluation performances is lower than or equal to epsilon, then the simplest modelling framework is selected. 
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Figure 14 shows the evaluation of the different modelling frameworks at the event scale. As a reminder, only the best (multi) 

model on each catchment is analysed for each approach tested. Typical ranges values of flood and low-flow characteristics 455 

over the catchments set are provided Table 3.  

The flood peak is late by about 1 h for the single-model approaches, whereas with a multi-model framework, it comes 1 h too 

early. The most extreme values correspond to large catchments with slow responses and a strong base flow impact. In addition, 

multi-model approaches seem to have a lower variability for this criterion. The peak flow is slightly underestimated with a 

median of -0.05 mm.h-1, like the flood flow, which shows a median deficit of 0.02 mm.h-1. 460 

There does not seem to be a clear trend in the contribution of a complex mixed multi-model compared to a lumped single 

model (benchmark). 

 

Figure 14: Comparison of various criteria between simulated and observed flood (A1, A2 and A3) or low-flow (B1 and B2) events, 

according to the modelling approach used. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The benchmark is 465 
the choice of the best lumped single model on each catchment and is represented by a grey box. The black line indicates the 

equivalence between the observed and simulated criteria. A positive value indicates an overestimation of the criterion by the 

simulation compared to observed streamflow. 
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4 Discussion 

Here, the first objective is to discuss the results and answer the initial question: What is the possible contribution of a multi-470 

model approach within a variable spatial framework for the simulation of streamflow over a large set of catchments? The 

second objective is to discuss the methodological choices by analysing them independently to determine to what extent they 

impact the results. 

4.1 What is the possible contribution of a multi-model approach within a variable spatial framework? 

First, our results confirmed the findings previously reported in the literature. Indeed, the multi-model approach outperformed 475 

the single models on a large sample of catchments (Shamseldin et al., 1997; Georgakakos et al., 2004; Ajami et al., 2006; 

Winter and Nychka, 2010; Velázquez et al., 2011; Fenicia et al., 2011; Santos, 2018; Wan et al., 2021). Moreover, there is no 

clear benefit (on average) of using a semi-distributed framework because it degrades the streamflow simulation in some 

catchments and improves it in others (Khakbaz et al., 2012; Lobligeois et al., 2014; de Lavenne et al., 2016). 

The originality of our study is to combine these two approaches while providing a variable spatial framework. The mixed 480 

multi-model thus seems to benefit from the strengths of both methods. Most of the improvements compared to our benchmark 

come from the multi-model approach. On the other hand, although for a large part of the sample the differences are negligible, 

the variable spatial framework seems to generate an increase in the mean KGE values of up to 0.03 compared to a lumped 

multi-model approach (Figure 15). It should be noted that a similar difference is observed for the single models. By design, 

the MMM does not deteriorate the performance when compared to what can be initially obtained with the LMM and SDMM 485 

approaches. 

  

Figure 15: Ranked performance difference curve obtained for the evaluation periods between the best lumped and mixed multi-

model on each catchment. The black line indicates the equivalence between the two modelling frameworks. The higher the value, 

the greater the benefit of a variable spatial framework. 490 
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Generally, this study has shown that a large number of models enables a better performance regardless of the streamflow range 

over a large sample of catchments. However, this methodology can be computationally expensive (due to the exponential 

number of combinations). 

Winter and Nychka (2010) showed that in a multi-model framework, a key point is not only the number of models, but also 

their differences. However, it is difficult to quantify explicitly this difference a priori. Various configurations of small pools 495 

of four models (i.e. structure/objective function pairs) were tested before selecting only the best of them (called “simplified 

MMM”; see Table 4 for more details). A mixed multi-model test was performed over this sample in order to reduce the 

complexity brought about by a large number of models. 

As a reminder, the procedure is the following: 

- In a semi-distributed framework, each of the four lumped models was applied and then combined on each upstream 500 

sub-catchment of the sample. Then, the best combination (i.e. giving the highest KGE value over the evaluation 

periods) at each upstream outlet was propagated through the downstream catchment where the subsample of models 

was also used.  

- In a lumped framework, the modelling of each total catchment was performed with the different members of the 

simplified MMM.  505 

- Downstream simulations (four from the lumped approach and four from the semi-distributed approach) were then 

combined (resulting in 162 combinations) and the best multi-model at the outlet was selected. 

Figure 16 shows that with the simplified MMM, the multi-model in a variable framework gives better KGE values than the 

benchmark (which uses each lumped model independently and then selects the best one on each catchment). However, the 

performance obtained with the MMM approach is not reached, which again shows the added value of a wide choice of models. 510 

 

Figure 16: Distribution of the best simplified mixed multi-model, defined with a subset of four models, over the entire sample of 

catchments and over the evaluation periods. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The benchmark 

is the choice of the best lumped single model on each catchment and is represented by a grey box. The dashed red line represents 

the optimal KGE value. 515 
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Table 4: Composition of the simplified MMM. 

Structure Parametrization 

GR5H KGE (Q
+0.5

) 

SMA0 KGE (Q
+0.5

) 

GARD KGE (Q
+0.5

) 

NAM0 KGE (Q
+0.1

) 

4.2 What is the optimal number of models to combine in a multi-model framework? 

The optimal number of models to combine in a multi-model framework varies between past studies. For example, Wan et al. 

(2021) found that a limited improvement is achieved when more than nine models are combined; Arsenault et al. (2015) 

concluded that seven models were sufficient; and Kumar et al. (2015) highlighted a combination of five members. This optimal 520 

number therefore seems to vary with the catchment sample but also according to the number of models used and their qualities. 

Figure 17 shows the results obtained by the best lumped (multi-)model on each catchment according to the number of members 

combined. The largest improvement comes from a simple combination of two models and the performance gain becomes 

limited from a combination of four different models (at least in our study). 

 525 

Figure 17: Distribution of the performance obtained with the best lumped multi-models on each catchment according to the number 

of models combined. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The benchmark is the choice of the best 

lumped single model on each catchment and is represented by a grey box. The dashed red line represents the optimal KGE value. 

4.3 Is a weighted average combination always better than a simple average approach? 

The weighted average combination (WAC) consists of assigning a weight that can be different for each model (Equation 4), 530 

as opposed to the simple average combination (SAC), which considers each model in an identical manner (Equation 3). 

𝑄𝑊𝐴𝐶 =
∑ 𝛼𝑖. 𝑄𝑖

𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

 (7)  

with QWAC the streamflow from a weighted average combination, Qi the simulated streamflow with a model i selected among 

the n models and αi its attributed weight (between 0 and 1).  
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The complexity of the weighted average procedure lies in the estimation of the weights. Here, the weights have been optimized 

according to the capacity of the combination to represent the observed streamflow by maximizing the KGE on the 535 

transformations chosen during the calibration of the models. Thus, we obtain a set of weights for each calibration criterion 

used by testing all possible values in steps of 0.1 between 0 and 1. The average of these different weight sets for the three 

objective functions will then be taken as the final weighting.  

This method becomes very expensive in terms of calculation time when the number of models increases. Thus, to answer this 

question, a sub-sample of 13 models (corresponding to the 13 structures calculated on the square root of streamflow in a 540 

lumped framework) was selected, and the tests were limited to a combination of three models (representing 364 distinct 

combinations in total). 

Figure 18 shows the comparison of the SAC and WAC methods. Each point represents the mean KGE obtained over the 

evaluation periods by each combination of models over the whole sample of catchments and over all the transformations 

evaluated. It highlights that the WAC and SAC methods provide similar mean results when dealing with a wide range of 545 

streamflow.  

 

Figure 18: Comparison of the performance obtained over the evaluation periods by each multi-model on the whole catchment sample 

according to the combination method used. The boxplots represent the 10%, 25%, 50%, 75% and 90% quantiles. The dashed red 

line represents the optimal KGE value. The black line indicates the equivalence between the two combination methods. 550 

Another limit of the WAC procedure lies in the variability of the coefficients according to the calibration period. Moreover, 

this instability seems to increase with the number of models used in the combinations. 
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4.4 Is the a priori choice to use the best upstream multi-model always justified? 

As a reminder, semi-distribution consists in dividing a catchment into several sub-catchments which can then be modelled 

individually with their own climate forcing and parameters, and then linked together by a propagation function. Generally, the 555 

number of possible streamflow on a catchment is set as: 

𝑛 = 𝑛𝑠𝑖𝑚 + 𝑛𝑐(𝑛𝑠𝑖𝑚) (8)  

with 𝑛𝑠𝑖𝑚 the number of simulations available and 𝑛𝑐 the number of combinations from 𝑛𝑠𝑖𝑚. 

However, the number of simulations in a semi-distributed framework depends on the number of models available on this 

catchment and increases rapidly with the streamflow simulations injected from upstream catchments. 

𝑛𝑠𝑖𝑚 = 𝑛𝑚𝑜𝑑 × ∏ 𝑛𝑢𝑝𝑖

𝑥

𝑖=1

 

𝑛𝑠𝑖𝑚 = 𝑛𝑚𝑜𝑑 

 

𝑖𝑓 𝑥 > 0 

𝑖𝑓 𝑥 = 0 

(9)  

with 𝑛𝑚𝑜𝑑 the number of available models on the sub-catchment considered, 𝑥 the number of direct upstream sub-catchments 560 

and 𝑛𝑢𝑝𝑖
 the number of possible streamflow available at the outlet of the upstream sub-catchment 𝑖. 

It is therefore necessary to make an a priori choice on the different upstream sub-catchments in order to reduce the number of 

possibilities downstream. The assumption made in this study is to propagate a single simulation, resulting from the best 

combination of models, for each sub-catchment. Equation 8 then becomes: 

𝑛 = 𝑛𝑚𝑜𝑑 + 𝑛𝑐(𝑛𝑚𝑜𝑑) (10)  

This hypothesis ensures the same number of downstream streamflow simulations in a lumped or semi-distributed modelling 565 

framework (as complex as it can be). 

Simplified tests (semi-distributed configurations with one upstream catchment – i.e. 70 catchments – and only four distinct 

models – see Table 4 – used without combination) were made in order to check the impact of this simplification on downstream 

performance. Figure 19 shows that for approximately 85% of the catchments, the use of an a priori choice on the injected 

upstream simulations has a limited impact (< 0.02 difference in KGE values) on the downstream performance. However, a 570 

decrease of up to 0.05 can be observed. 
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Figure 19: Ranked performance difference curve obtained for the evaluation periods on each catchment by the best downstream 

model with an a priori choice on upstream simulation or not. The black line indicates the equivalence between both modelling 

frameworks. A negative value indicates a decline in performance due to the a priori choice of upstream simulations injected. 575 

Although the assumption made here (i.e. to propagate the best upstream simulations) may occasionally lead to significant 

performance losses, we remain convinced that an a priori choice is necessary for a large gain in computation time even in 

simple semi-distributed configurations. 

5 Conclusion 

The main conclusions of this work are as follows: 580 

1. The mixed multi-model approach provides higher KGE values than the different lumped single models. The gain is 

mainly due to the multi-model aspect, while the spatial framework brings a more limited added value. 

2. At the event scale, the mixed multi-model approach does not show a large improvement on average, but seems to 

reduce the variability (i.e. inter-quantile deviation) compared to the benchmark. 

3. Although some models are more often selected in multi-model combinations, almost all models have proven useful 585 

on at least one catchment. Moreover, the models that are most often selected in the model combinations are not always 

the best models on their own. However, the converse does not seem to be true since a model with good individual 

performance always seems to be a key element of the multi-model. 

4. The largest improvement of a multi-model approach over the single models comes from the simple average 

combination of two models among a large ensemble. The performance gain when increasing the number of models 590 

in the multi-model becomes limited when more than four different models are combined. 

5. The simplified mixed multi-model (based on a sub-sample of only four models applied to a lumped and a semi-

distributed framework) outperform the benchmark (based on the 39 available models applied to a lumped framework) 

but does not reach the performances obtained with a full mixed multi-model (based on the 39 available models applied 

to a lumped and a semi-distributed framework). 595 
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These conclusions are valid in the modelling framework used. As a reminder, in this work we aimed to obtain simulations that 

represent a wide range of streamflow and that can be applied to a large number of French catchments with limited human 

influences. 

It would be interesting to test other deterministic methods to combine models such as random forest, artificial neural network 

or long short-term memory networks, which are increasingly applied in hydrology (Li et al., 2022). Another perspective of 600 

this work would be to test the semi-distributed multi-model approach in a probabilistic framework by considering the different 

models as a hydrological ensemble in order to quantify the uncertainties related to the models. It would also be relevant to 

conduct this study in a forecasting framework by combining a hydrological ensemble with a meteorological ensemble. 

Although we have worked in the context of a large hydrological sample, the catchments are exclusively located in continental 

France. Testing the semi-distributed multi-model approach on catchments under other hydroclimatic conditions may therefore 605 

be useful. For example, applying the multi-model approach to different snow modules for taking into account snow melt is 

food for thought regarding high mountain catchments. It should be noted that the Matryoshka dolls approach developed in this 

study allows for only a simple division of the catchments. A more complex semi-distribution may be more relevant, especially 

in places where the spatial variability of rainfall is high. The catchments with human influences were removed from our sample 

because they do not have a natural hydrological behaviour. However, semi-distribution often enables a better representation 610 

of streamflow in these areas which are difficult to model. 

Appendix A. Event selection methodology: flood events 

The selection procedure of flood events was based on the methodology developed/used by Astagneau et al. (2022). It is an 

automated procedure selecting peak flows exceeding the 95% quantile and setting the beginning and the end of the flood event 

to 20% and 25%, respectively, of the flood peak. The starting window has been slightly extended by a few hours in the case 615 

of flash floods, characterized by a rapid rise in water levels (Figure A1). 
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Figure A1: Flood event from 24 to 26 August 2009 on the Dore River at Saint-Gervais-sous-Meymont (K287191001). The yellow 

time window corresponds to the automatically selected event. The dashed red line represents the detection threshold set to 

streamflow quantile 95 %. The dashed black lines refer to the initial entry and end dates of the events (respectively below 20 % and 620 
25 % of the flood peak). The arrow here shows an extension of the event start due to the rapid rise of water level. 

Each selected event was visually inspected to mitigate the errors associated with automatic selection. This step is particularly 

important for large catchments with inter-annual processes. In order to obtain consistent statistics between the catchments, a 

maximum of 50 events (25 in calibration and 25 in evaluation) was set. In the end, 5,447 events were selected. Figure A2 

shows the distribution of the number of flood events on each catchment. 625 

 

Figure A2: Distribution of the number of flood events on each catchment over the whole catchment set. The red line shows the 

maximum number allowed. 



32 

 

Appendix B. Event selection methodology: low-flow events 

The selection procedure of low-flow events was based on the methodology developed and used by Caillouet et al. (2017). It is 630 

an automated procedure selecting periods under a threshold (fixed here to the 10% quantile) and aggregating the intervals 

corresponding to the same event thanks to the severity index (Figure B1). 

 

Figure B1: Low-flow event from summer 2015 on the Dore River at Saint-Gervais-sous-Meymont (K287191001). The yellow time 

window corresponds to the automatically selected event. The dashed red line represents the detection threshold set to the 10% 635 
quantile for streamflow. The severity corresponds to the cumulated deficit under threshold. 

Each selected event was visually inspected to mitigate the errors associated with automatic selection. This step is rather difficult 

because the quality of the low-flow data is quite heterogeneous (e.g. influenced by noise) from one catchment to another. In 

the end, 1,332 events were selected. Figure B2 shows the distribution of the number of low-flow events on each catchment. 
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 640 

Figure B2: Distribution of the number of low-flow events on each catchment over the whole catchment set. 

 

Author contributions. CP, CT, GT, SL and VA conceptualized the study. CP and CT developed the methodology. CT and 

OD developed the model code. CT performed the simulations and analyses. CT prepared the manuscript with contributions 

from all co-authors. 645 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. The authors wish to thank Météo-France and the SCHAPI, for making available the climate and 

hydrological data used in this study. CNR and INRAE are thanked for co-funding the PhD grant of the first author. Paul 650 

Astagneau and Laurent Strohmenger are also thanked for their advice on the manuscript. The authors thank Isabella 

Athanassiou for copyediting the manuscript. 

  



34 

 

References 

Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Multimodel Combination Techniques for Analysis of Hydrological 655 

Simulations: Application to Distributed Model Intercomparison Project Results, J. Hydrometeorol., 7, 755–768, 

https://doi.org/10.1175/JHM519.1, 2006. 

Ajami, N. K., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: 

Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, 

https://doi.org/10.1029/2005WR004745, 2007. 660 

Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Introduction and synthesis: Why should hydrologists work on a 

large number of basin data sets?, in: Large sample basin experiments for hydrological parametrization : results of the models 

parameter experiment- MOPEX. IAHS Red Books Series n° 307, AISH, 1–5, 2006. 

Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A comparative analysis of 9 multi-model averaging 

approaches in hydrological continuous streamflow simulation, J. Hydrol., 529, 754–767, 665 

https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015. 

Artigue, G., Johannet, A., Borrell, V., and Pistre, S.: Flash flood forecasting in poorly gauged basins using neural networks: 

case study of the Gardon de Mialet basin (southern France), Nat. Hazards Earth Syst. Sci., 12, 3307–3324, 

https://doi.org/10.5194/nhess-12-3307-2012, 2012. 

Astagneau, P. C., Bourgin, F., Andréassian, V., and Perrin, C.: Catchment response to intense rainfall: Evaluating modelling 670 

hypotheses, Hydrol. Process., 36, e14676, https://doi.org/10.1002/hyp.14676, 2022. 

Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape controls on water balance model complexity over 

changing timescales, Water Resour. Res., 38, 50-1-50–17, https://doi.org/10.1029/2002WR001487, 2002. 

Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Nord. Hydrol, 4, 147–170, 

https://doi.org/10.2166/nh.1973.0012, 1973. 675 

Berthet, L., Andréassian, V., Perrin, C., and Loumagne, C.: How significant are quadratic criteria? Part 2. On the relative 

contribution of large flood events to the value of a quadratic criterion, Hydrol. Sci. J., 55, 1063–1073, 

https://doi.org/10.1080/02626667.2010.505891, 2010. 

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, 

https://doi.org/10.1016/0309-1708(93)90028-E, 1993. 680 

Beven, K. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modèle à base 

physique de zone d’appel variable de l’hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–69, 

https://doi.org/10.1080/02626667909491834, 1979. 

Block, P. J., Souza Filho, F. A., Sun, L., and Kwon, H.-H.: A Streamflow Forecasting Framework using Multiple Climate and 

Hydrological Models1, JAWRA J. Am. Water Resour. Assoc., 45, 828–843, https://doi.org/10.1111/j.1752-685 

1688.2009.00327.x, 2009. 

Bourgin, F., Ramos, M. H., Thirel, G., and Andréassian, V.: Investigating the interactions between data assimilation and post-

processing in hydrological ensemble forecasting, J. Hydrol., 519, 2775–2784, https://doi.org/10.1016/j.jhydrol.2014.07.054, 

2014. 



35 

 

Caillouet, L., Vidal, J.-P., Sauquet, E., Devers, A., and Graff, B.: Ensemble reconstruction of spatio-temporal extreme low-690 

flow events in France since 1871, Hydrol. Earth Syst. Sci., 21, 2923–2951, https://doi.org/10.5194/hess-21-2923-2017, 2017. 

Clark, M. P., Vogel, R. M., Lamontagne, J. R., Mizukami, N., Knoben, W. J. M., Tang, G., Gharari, S., Freer, J. E., Whitfield, 

P. H., Shook, K. R., and Papalexiou, S. M.: The Abuse of Popular Performance Metrics in Hydrologic Modeling, Water Resour. 

Res., 57, e2020WR029001, https://doi.org/10.1029/2020WR029001, 2021. 

Cormary, Y. and Guilbot, A.: Etude des rélations pluie-débit sur trois bassins versants d’investigation, 1974. 695 

Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.: The suite of lumped GR hydrological models in an R 

package, Environ. Model. Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002, 2017. 

Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for 

Precipitation-Runoff Modelling. R package version 1.6.12., https://doi.org/10.15454/EX11NA, 2021. 

Coron, L., Perrin, C., Delaigue, O., and Thirel, G.: airGRplus: Additional Hydrological Models to the “airGR” Package. R 700 

package version 0.9.14.7.9001., 2022. 

Delaigue, O., Génot, B., Lebecherel, L., Brigode, P., and Bourgin, P.-Y.: Database of watershed-scale hydroclimatic 

observations in France, INRAE, HYCAR Research Unit, Hydrology group, Antony, 2020. 

Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model 

averaging, Adv. Water Resour., 30, 1371–1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007. 705 

Dufeu, E., Mougin, F., Foray, A., Baillon, M., Lamblin, R., Hebrard, F., Chaleon, C., Romon, S., Cobos, L., Gouin, P., Audouy, 

J.-N., Martin, R., and Poligot-Pitsch, S.: Finalisation of the French national hydrometric data information system modernisation 

operation (Hydro3), LHB, 0, 2099317, https://doi.org/10.1080/27678490.2022.2099317, 2022. 

van Esse, W. R., Perrin, C., Booij, M. J., Augustijn, D. C. M., Fenicia, F., Kavetski, D., and Lobligeois, F.: The influence of 

conceptual model structure on model performance: a comparative study for 237 French catchments, Hydrol. Earth Syst. Sci., 710 

17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, 2013. 

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. 

Motivation and theoretical development, Water Resour. Res., 47, https://doi.org/10.1029/2010WR010174, 2011. 

Ficchì, A., Perrin, C., and Andréassian, V.: Hydrological modelling at multiple sub-daily time steps: Model improvement via 

flux-matching, J. Hydrol., 575, 1308–1327, https://doi.org/10.1016/j.jhydrol.2019.05.084, 2019. 715 

Garçon, R.: Modèle global pluie-débit pour la prévision et la prédétermination des crues, Houille Blanche, 88–95, 

https://doi.org/10.1051/lhb/1999088, 1999. 

Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation 

uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, https://doi.org/10.1016/j.jhydrol.2004.03.037, 2004. 

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance 720 

criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 

https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. 



36 

 

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a 

need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014. 

Her, Y. and Chaubey, I.: Impact of the numbers of observations and calibration parameters on equifinality, model performance, 725 

and output and parameter uncertainty, Hydrol. Process., 29, 4220–4237, https://doi.org/10.1002/hyp.10487, 2015. 

Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G.: Computation of the instantaneous unit hydrograph and identifiable 

component flows with application to two small upland catchments, J. Hydrol., 117, 275–300, https://doi.org/10.1016/0022-

1694(90)90097-H, 1990. 

Khakbaz, B., Imam, B., Hsu, K., and Sorooshian, S.: From lumped to distributed via semi-distributed: Calibration strategies 730 

for semi-distributed hydrologic models, J. Hydrol., 418–419, 61–77, https://doi.org/10.1016/j.jhydrol.2009.02.021, 2012. 

Klemeš, V.: Operational testing of hydrological simulation models, Hydrol. Sci. J., 31, 13–24, 

https://doi.org/10.1080/02626668609491024, 1986. 

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and Woods, R. A.: A Brief Analysis of Conceptual Model 

Structure Uncertainty Using 36 Models and 559 Catchments, Water Resour. Res., 56, e2019WR025975, 735 

https://doi.org/10.1029/2019WR025975, 2020. 

Kumar, A., Singh, R., Jena, P. P., Chatterjee, C., and Mishra, A.: Identification of the best multi-model combination for 

simulating river discharge, J. Hydrol., 525, 313–325, https://doi.org/10.1016/j.jhydrol.2015.03.060, 2015. 

de Lavenne, A., Thirel, G., Andréassian, V., Perrin, C., and Ramos, M. H.: Spatial variability of the parameters of a semi-

distributed hydrological model, in: 7th International Water Resources Management Conference of ICWRS, Bochum, 740 

Germany, 87–94, https://doi.org/10.5194/piahs-373-87-2016, 2016. 

Li, D., Marshall, L., Liang, Z., and Sharma, A.: Hydrologic multi-model ensemble predictions using variational Bayesian deep 

learning, J. Hydrol., 604, 127221, https://doi.org/10.1016/j.jhydrol.2021.127221, 2022. 

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water 

Resour. Res., 43, https://doi.org/10.1029/2006WR005756, 2007. 745 

Lobligeois, F.: Mieux connaître la distribution spatiale des pluies améliore-t-il la modélisation des crues ? Diagnostic sur 181 

bassins versants français, These de doctorat, AgroParisTech, 2014. 

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall 

information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, 

https://doi.org/10.5194/hess-18-575-2014, 2014. 750 

Loumagne, C., Vidal, J., Feliu, C., Torterotot, J., and Roche, P.: Procédures de décision multimodèle pour une prévision des 

crues en temps réel: Application au bassin supérieur de la Garonne, Rev. Sci. Eau J. Water Sci., 8, 539–561, 

https://doi.org/10.7202/705237ar, 1995. 

Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire ? Développements empiriques et comparaison de 

modèles sur un large échantillon de bassins versants, phdthesis, Doctorat spécialité Sciences de l’eau, ENGREF Paris, 2005. 755 

McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for hydrology: rainfall, river discharge 

and water quality, Hydrol. Process., 26, 4078–4111, https://doi.org/10.1002/hyp.9384, 2012. 



37 

 

Michel, C.: Hydrologie appliquée aux petits bassins ruraux, Cemagref, Antony, France, 1991. 

Moore, R. J. and Clarke, R. T.: A distribution function approach to rainfall runoff modeling, Water Resour. Res., 17, 1367–

1382, https://doi.org/10.1029/WR017i005p01367, 1981. 760 

Moradkhani, H. and Sorooshian, S.: General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and 

Uncertainty Analysis, in: Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models, 

edited by: Sorooshian, S., Hsu, K.-L., Coppola, E., Tomassetti, B., Verdecchia, M., and Visconti, G., Springer, Berlin, 

Heidelberg, 1–24, https://doi.org/10.1007/978-3-540-77843-1_1, 2008. 

Nielsen, S. A. and Hansen, E.: Numerical simulation of the rainfall-runoff process on a daily basis, 765 

https://doi.org/10.2166/NH.1973.0013, 1973. 

O’Connell, P. E., Nash, J. E., and Farrell, J. P.: River flow forecasting through conceptual models part II - The Brosna 

catchment at Ferbane, J. Hydrol., 10, 317–329, https://doi.org/10.1016/0022-1694(70)90221-0, 1970. 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential 

evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential 770 

evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303, 290–306, 

https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. 

Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel, C.: Dynamic Averaging of Rainfall-Runoff Model 

Simulations from Complementary Model Parameterizations, Water Resour. Res., 42, https://doi.org/10.1029/2005WR004636, 

2006. 775 

Pechlivanidis, I., Jackson, B., Mcintyre, N., and Wheater, H.: Catchment scale hydrological modelling: A review of model 

types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and 

applications, Glob. Int. J., 13, 193–214, 2011. 

Perrin, C.: Vers une amélioration d’un modèle global pluie-débit, phdthesis, Institut National Polytechnique de Grenoble - 

INPG, 2000. 780 

Perrin, C., Michel, C., and Andréassian, V.: Does a large number of parameters enhance model performance? Comparative 

assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275–301, 

https://doi.org/10.1016/S0022-1694(00)00393-0, 2001. 

R Core Team: R: A language and environment for statistical computing, 2020. 

Saadi, M., Oudin, L., and Ribstein, P.: Physically consistent conceptual rainfall–runoff model for urbanized catchments, J. 785 

Hydrol., 599, 126394, https://doi.org/10.1016/j.jhydrol.2021.126394, 2021. 

Santos, L.: Que peut-on attendre des Super Modèles en hydrologie ? Évaluation d’une approche de combinaison dynamique 

de modèles pluie-débit, phdthesis, Doctorat en Hydrologie, AgroParisTech, 2018. 

Schaake, J. C., Hamill, T. M., Buizza, R., and Clark, M.: HEPEX: The Hydrological Ensemble Prediction Experiment, Bull. 

Am. Meteorol. Soc., 88, 1541–1548, https://doi.org/10.1175/BAMS-88-10-1541, 2007. 790 

Shamseldin, A. Y., O’Connor, K. M., and Liang, G. C.: Methods for combining the outputs of different rainfall runoff models, 

J. Hydrol., 197, 203–229, https://doi.org/10.1016/S0022-1694(96)03259-3, 1997. 



38 

 

Smith, M. B., Seo, D.-J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F., and Cong, S.: The distributed model 

intercomparison project (DMIP): motivation and experiment design, J. Hydrol., 298, 4–26, 

https://doi.org/10.1016/j.jhydrol.2004.03.040, 2004. 795 

Squalli, E. M.: Quelle plus-value de l’approche multi-modèle dans le cas d’un modèle hydrologique semi-distribué ?, 2020. 

Sugawara, M.: Automatic calibration of the tank model / L’étalonnage automatique d’un modèle à cisterne, Hydrol. Sci. Bull., 

24, 375–388, https://doi.org/10.1080/02626667909491876, 1979. 

Tabary, P., Dupuy, P., L’Henaff, G., Gueguen, C., Moulin, L., Laurantin, O., Merlier, C., and Soubeyroux, J.-M.: A 10-year 

(1997-2006) reanalysis of quantitative precipitation estimation over France: Methodology and first results, IAHS-AISH Publ., 800 

351, 255–260, 2012. 

Thiéry, D.: Utilisation d’un modèle global pour identifier sur un niveau piézométrique des influences multiples dues à diverses 

activités humaines, https://doi.org/10.1080/02626668209491102, 1982. 

Thirel, G., Santos, L., Delaigue, O., and Perrin, C.: On the use of streamflow transformations for hydrological model 

calibration, EGUsphere, 1–26, https://doi.org/10.5194/egusphere-2023-775, 2023. 805 

Turcotte, R., Fortier Filion, T.-C., Lacombe, P., Fortin, V., Roy, A., and Royer, A.: Simulation hydrologique des derniers jours 

de la crue de printemps: le problème de la neige manquante, Hydrol. Sci. J., 55, 872–882, 

https://doi.org/10.1080/02626667.2010.503933, 2010. 

Vaze, J., Chiew, F. H. S., Perraud, J. M., Viney, N., Post, D., Teng, J., Wang, B., Lerat, J., and Goswami, M.: Rainfall-Runoff 

Modelling Across Southeast Australia: Datasets, Models and Results, Australas. J. Water Resour., 14, 101–116, 810 

https://doi.org/10.1080/13241583.2011.11465379, 2011. 

Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.: Can a multi-model approach improve hydrological ensemble 

forecasting? A study on 29 French catchments using 16 hydrological model structures, Adv. Geosci., 29, 33–42, 

https://doi.org/10.5194/adgeo-29-33-2011, 2011. 

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-resolution atmospheric 815 

reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010. 

Wan, Y., Chen, J., Xu, C.-Y., Xie, P., Qi, W., Li, D., and Zhang, S.: Performance dependence of multi-model combination 

methods on hydrological model calibration strategy and ensemble size, J. Hydrol., 603, 127065, 

https://doi.org/10.1016/j.jhydrol.2021.127065, 2021. 

Winter, C. L. and Nychka, D.: Forecasting skill of model averages, Stoch. Environ. Res. Risk Assess., 24, 633–638, 820 

https://doi.org/10.1007/s00477-009-0350-y, 2010. 

Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble machine learning paradigms in hydrology: 

A review, J. Hydrol., 598, 126266, https://doi.org/10.1016/j.jhydrol.2021.126266, 2021. 

 


