This review is for the manuscript: "Multi-model approach in a variable spatial framework for streamflow simulation" by Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue.

This is a well written paper. For a large sample, 121 catchments in France, different combinations of model structures, calibration strategies, and spatial frameworks are tested. The amount of data, results and analysis is substantial. I believe the topic is of interest to the hydrological community, and that the paper contributes to the research and practical application of modelling approaches to improve streamflow simulations.

I have only minor comments.

Page10. Line245

The split-sample test was used, and calibration applied to the two separate time periods. Did you then use two different parameter sets and two different evaluation periods for each catchment?

Page11. Line251. The use of streamflow transformation is set to +0.5, +0.1 and -0.5. Could you please explain what this means and why these numbers were selected? Experience, other?

Figure 3: I find this figure very informative and helpful. Return to it several times.

Page14. Figure 6, right panel Am I right that positive values are lumped better than semi-distributed? It was a bit difficult to grasp from the y-axis information. Could that be stated in the subtitle or perhaps put "median ($KGE_L - KGE_{SD}$)" as label on the y-axis?

Page17. Figure 11

It was difficult to see the thin grey lines. Especially for the printed version. Is it possible to make this a bit more visible.

Page25. Figure 19 Include the total number of catchments in the figure text. (Why not 121?) It would be nice to include the -0.01 line in the plot, referred to in L515.

And I totally agree that it would be very interesting to see how this approach would apply to catchment with a steeper gradient/elevation and snow.