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Abstract. This work presents the importance of polarimetric variables as an additional data source for nowcasting thunderstorm

hazards using an existing neural network architecture with recurrent-convolutional layers. The model can be trained to predict

different target variables, which enables nowcasting of hail, lightning and heavy rainfall for lead times up to 60 min with a 5 min

resolution, in particular. the exceedance probabilities of Swiss thunderstorm warning thresholds predicted. This study is based

on observations from the Swiss operational radar network, which consists of five operational polarimetric C-band radars. The5

study area of the Alpine region is topographically complex and has a comparatively very high thunderstorm activity. Different

model runs using combinations of single- and dual-polarimetric radar observations and radar quality indices are compared

to the reference run using only single-polarimetric observations. Two case studies illustrate the performance difference when

using all predictors compared to the reference model. The importances of the predictors are quantified by investigating the final

training loss of the model, skill scores such as CSI, precision, recall, precision-recall area-under-the-curve, and the Shapley10

value. Results indicate that single-polarization radar data is the most important data source. Adding polarimetric observations

improves the model performance compared to reference model in term of the training loss for all three target variables. Adding

quality indices does so, too. Including both, polarimetric variables and quality indices at the same time improves the accuracy

of nowcasting heavy precipitation and lightning, with the largest improvement found for heavy precipitation. No improvement

could be achieved for nowcasting of the probability of hail in this way.15

1 Introduction

Severe convective weather events, such as hail, lightning and heavy precipitation, are likely to increase across Europe during

this century (Rädler et al., 2019; Raupach et al., 2021; Taszarek et al., 2021). The heavy rainfall associated with these convective

storms can turn into flash floods and land slides and, consequently, be a great threat to human lives (Holle et al., 1993; Lynn

and Yair, 2010). Additionally, a considerable part of the total weather-related economic losses are caused by severe convective20

weather (Hoeppe, 2016). Therefore, accurate short-term predictions of convective events are of interest, as they allow to issue

warnings in order to reduce societal and economic impact.

Stratiform precipitation typically has larger spatial scales and last longer than severe convection. Numerical weather predic-

tion (NWP) models are particularly suited for this purpose. On the other hand, simulating severe convection with its short time

and spatial scales, for which the exploitation of the most recent observations is essential, is very challenging. Accordingly,25
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many weather services aim for rapid update cycles, i.e. an hourly instead of the former three-hour update cycle. Due to the

computational demand of the assimilation and prediction, more frequent update cycles than hourly are currently not feasible.

The results of NWP models are typically available after several tens of minutes (e.g. a COSMO-1E run requires 50 minutes

runtime). NWP analysis is a combination of previous model predictions and the latest available observations, and the assim-

ilation creates a physically consistent state of the atmosphere, which typically deviates slightly from the latest observations.30

Meanwhile, nowcasting algorithms aim to provide their output within tens of seconds up to a minute (Pierce et al., 2012). They

typically do not strive for a physically consistent representation of the atmosphere, but do make use of the latest observations,

which results in higher performance on the very short and short time scales (i.e. 1 h) and smaller scales (Simonin et al., 2017)

(but inferior performance on longer lead times). As localized warnings are often issued for the very short term time range,

nowcasting plays a crucial role in warning systems for severe convection.35

Weather radars are often utilized for nowcasting purposes as they provide near real time input data with a high resolution and

broad spatial coverage. Conventional nowcasting techniques typically extrapolate the latest observations from weather radars

in time, based on either estimation of the motion field such as used in Pysteps (Pulkkinen et al., 2019), NowPrecip (Sideris

et al., 2020) or rainymotion (Ayzel et al., 2019), or identifying and tracking individual storms, e.g. the Thunderstorms Radar

Tracking algorithm (TRT; Hering et al., 2004) or Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN;40

Dixon and Wiener, 1993). However, these methods often have difficulties to take the life cycle of convective cells with growth

and dissipation processes into account and consequently result in relatively short skilful lead times for convective weather

(Imhoff et al., 2020; Foresti et al., 2016; Wilson et al., 1998).

In recent years, there have been significant advances in using deep learning for generating nowcasts of heavy precipitation

using radar as input, e.g. Guastavino et al. (2022), Han et al. (2021), Ritvanen et al. (2023) and Yin et al. (2021), or in the case of45

Leinonen et al. (2023) including multiple data sources. In addition, radar is also exploited as predictor for nowcasting lightning

e.g. by Leinonen et al. (2022b) and Zhou et al. (2020). However, these studies primarily focus on single-polarization radar

observations (e.g. precipitation rates based on horizontal reflectivity or the reflectivity itself), and do not utilize polarimetry

explicitly, despite polarimetry can provide further information about the micro-physical properties of hydrometeors. Hence,

adding polarimetric radar variables explicitly helps considerably to reduce ambiguities concerning the hydrometeor classes and50

drop size distributions.

Dual-polarization radars have two orthogonally polarized beams, making it possible to derive additional properties such as

particle shape and to some extent the size, which are useful for meteorological applications (Fabry, 2018; Kumjian, 2013b).

Hydrometeor classification algorithms such as those developed by Besic et al. (2016) and Vivekanandan et al. (1999) use this

extra information to identify different hydrometeors. Other studies showed the potential of polarimetric variables for providing55

information on other convective hazards, such as hail and lightning (Figueras i Ventura et al., 2019; Lund et al., 2009), or the

evolution of convective storms (Snyder et al., 2015). However, interpretation of polarimetric signatures for convective weather

forecasts remains challenging (Kumjian, 2013a, b), and requires more advanced data processing techniques such as machine

learning.
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This research investigates the additional value of polarimetric variables for nowcasting severe convective weather, which60

includes hail, lightning and severe precipitation. Data source importance is explored by performing both a qualitative and

quantitative analysis (i.e. focal loss or cross entropy, Shapley values, critical success index and fractions skill score). We use

the recurrent-convolutional deep learning model from Leinonen et al. (2023), as it is able to utilize multiple data sources and

predict, with a slight modification, multiple extreme events.

One of the first successful attempts to incorporate polarimetric variables for nowcasting convective precipitation using deep65

learning was realized by Pan et al. (2021). However, that study exploits only observations in 3 km altitude, i.e. the Constant

Altitude Plan Projection Indicator (CAPPI). In this study, we exploit relevant hydrometeors and their characteristics from

multiple altitudes. In addition, we investigate the potential to nowcast not only precipitation, but also hail and lightning, by

utilizing polarimetric variables.

This paper introduces the data used for training in section 2, while section 3 describes the model architecture. Results are70

described and discussed in section 4, and section 5 concludes the article.

2 Data

For training purposes, the “precipitation radar” dataset from Leinonen et al. (2022b) was used (here named “Single-pol Radar”),

which is described in more detail in the corresponding paragraph below. The training dataset was extended with polarimetric

variables retrieved from the Swiss operational radar network, and quality indices from Feldmann et al. (2021). The data were75

collected from April to September 2020. The creation of training samples is described in more detail in section 3.1.

2.1 Operational radar network

The study area is completely covered by the Swiss operational radar network, which consists of five operational polarimetric

C-band radars (Germann et al., 2022). Operationally available products have a resolution of 500 m, comprising 20 elevation

scans from -0.2◦to 40◦within 5 min per radar. The maximum observation range of a single radar is 246 km. In total, the study80

area covers more than 400.000 km2.

A sophisticated data-processing chain including bias correction, removal of ground clutter and non-weather echoes, visibility

correction and vertical profile correction (Germann et al., 2006) retrieves a high quality, radar-based precipitation estimate at

the surface (RZC). The final radar products that are used as input for the deep learning algorithm have a resolution of 1 km.

2.2 Data sources and processing85

The model was trained based on all possible combinations of the three data sources below:

(1) Single-pol radar (R) data retrieved from the Swiss operational weather radar network (Germann et al., 2022). The

considered variables in this source are the rain rate at the surface, column maximum echo intensity and altitude, echo top

height at radar reflectivity thresholds of 20 and 45 dBZ, and the vertically integrated water content. This source was used and
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described in more detail in Leinonen et al. (2022b). Note that dual-polarization data were used for clutter suppression in the90

processing chain of the Swiss operational weather radar network.

(2) Polarimetric variables (P) also obtained from the Swiss operational radar network. The considered polarimetric vari-

ables in this research are the reflectivity factor at vertical polarization (ZV ), differential reflectivity (Zdr), co-polar cross-

correlation coefficient (ρhv), and specific differential phase (Kdp).

Zdr is an indicator for shape, with positive values indicating targets larger in the horizontal than the vertical dimension. Such95

targets include large raindrops, which are flattened by aerodynamic forces while falling, but not solid hailstones, which tend to

be round and therefore have values close to 0 (Seliga and Bringi, 1976).

Kdp is an indication for concentration and shape, and is used as a measure for rain intensity (Sachidananda and Zrnic, 1986).

Positive values can be an indicator for heavy rain, while negative values means that targets are more elongated vertically than

horizontally (e.g. graupel) and values close to zero indicate nearly round or randomly oriented particles (Rinehart, 2010). One100

advantage of Kdp over Zdr is that it is unaffected by differential attenuation.

ρhv indicates homogeneity, with smaller values indicating more heterogeneity among the shape, size and orientation of the

detected particles (Fabry, 2018).

To reduce the dimensionality and estimate values at the ground level, the polarimetric variables at various altitudes are

aggregated following the method of Wolfensberger et al. (2021), a weighted sum taking both static radar visibility and height105

above the ground level of each point into account. Radar visibility is determined by the fraction of the radar beam that is not

blocked due to partial and total beam shielding by the complex mountainous terrain. The weight is determined using a linear

relationship with visibility and an exponential relationship with height:

w(h) = exp(β
h

1000
)
VIS

100
(1)

Here, h represents the height above the ground of the observation in meters, β (m−1) is the slope of the exponent, and VIS is110

the visibility (%). A sensitivity study showed that a value of –0.5 for β is best suited for precipitation retrieval (Wolfensberger

et al., 2021), consequently, the same value is used here. First, the polarimetric data were transformed by normalizing the

standard deviation and by shifting the mean to 1. Second, to reduce presence of noise, fields were compared with RZC, and set

to zero where RZC does not contain precipitation.

(3) Quality indices (Q) obtained from Feldmann et al. (2021). Quality of radar observations in mountainous terrain fluctuates115

over elevations and is influenced by the scanning strategy. Especially at low levels, visibility is reduced as a consequence

of radar beam blockage. The quality of the observations at every location is influenced by multiple properties. The quality

index combines the following factors into a single index: visibility, minimum altitude of observation, maximum altitude of

observation and numerical noise.

2.3 Targets120

The same target variables from Leinonen et al. (2023) and Leinonen et al. (2022b) are derived:
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Lightning occurrence is obtained from the observations by the EUCLID lightning network (Schulz et al., 2016; Poelman

et al., 2016), delivered to MeteoSwiss by Météorage. The point-data were transformed to a gridded binary map, with 1 in-

dicating lightning activity within a radius of 8 km and in the last 10 min, and 0 otherwise. This definition is used in safety

procedures at airports for takeoff and landing operations, and based on the regulations of the European Union (2017) and Inter-125

national Civil Aviation Organization (2018). In this way, the result of our machine learning algorithm can be directly applied

for METAR trend reports without any adjustment of the temporal and spatial resolution.

Probability of hail (POH) is the probability of hail reaching the ground. This a product from the operational MeteoSwiss

radar network, using the formula from Foote et al. (2005) based on Waldvogel et al. (1979). It utilizes the difference between

the 45 dBZ echo top level and the freezing level.130

CombiPrecip is an operational product of MeteoSwiss for precipitation combining real-time radar and rain-gauge obser-

vations to adjust the biases often are observed in radar measurements (Sideris et al., 2014a, b). The CombiPrecip product is

converted into a probability distribution. CombiPrecip estimations are considered as the expected precipitation E[R]. The stan-

dard deviation is approximated as Std[R] = 0.33E[R] by separating the error due to the lack of rain gauge representation from

the uncertainty in the radar measurement, using the method from Ciach and Krajewski (1999). The probability distribution is135

transformed to probabilistic estimates for four precipitation classes, based on warning levels of MeteoSwiss. The thresholds are

R0 = 0, R1 = 10 mm, R2 = 30 mm and R3 = 50 mm precipitation aggregated over 60 min at a 1 km2 grid point. Probabilities

qc are assigned to each class c ∈ [0,3] as

qc =

Rc+1∫
Rc

p(R)dR (2)

where p is a lognormal probability distribution function. Note that the machine learning model can be adapted to calculate a

larger number of thresholds. In this publications, we concentrate on these four thresholds representing the warning levels of140

MeteoSwiss.

3 Methods

3.1 Event selection

The radar-derived rainfall rate was used to select training samples where convective activity was likely to happen. Regions

with 10 neighbouring pixels that exceeded 10 mm h−1 were located, and at every timestep for ±2 h a box of 256× 256 km2145

was added to the identified region. Duplicated regions were removed by dividing the study area into tiles of 32× 32 km2, and

storing only unique tiles that do not overlap in time and space simultaneously. This resulted in a total of 30641 different starting

times for the training sequences. In total 1021447 different samples could be created in this way (not including the further

diversity added by data augmentation). Around 10 % of the total training samples was used for validation, another 10 % for

testing and the rest for training. Entire days were randomly selected for either the validation, testing or training set to minimize150
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the correlation between the datasets. The event selection process is identical to that of Leinonen et al. (2022b); more detailed

description of the selection procedure can be found in that article.

3.2 Neural network

The recurrent-convolutional deep learning model from Leinonen et al. (2023) is used, adding the newly introduced sources

described in Sect. 2.2. The recurrent connections enable to model the temporal evolution, while the convolutional connections155

model the spatial structure. This model has an encoder-forecaster framework, in which the encoder produces a deep repre-

sentation of the atmospheric state, which is decoded into a prediction by the forecaster. It has a generic architecture, making

it possible to predict lightning, POH and heavy precipitation by only changing the target. The main difference between the

predicted thunderstorm hazards is that the output of heavy precipitation is accumulated over 1 hour for predefined warning

levels, whereas hail and lightning are produced at a 5-min resolution for 12 time steps (1 hour). In order to make the results160

comparable with (Leinonen et al., 2023), a maximum lead time of 60 min is selected here. For a more detailed description of

the model we refer to the publications of Leinonen et al. (2022b) and Leinonen et al. (2023).

Hail and precipitation targets have a probabilistic output, and for that reason cross entropy (CE; Goodfellow et al., 2016) was

used as a loss function. CE measures the difference in the probability distributions between the true distribution and predicted

distribution of the target classes. To be consistent with Leinonen et al. (2023), the focal loss (Lin et al., 2017) is used for165

lightning. The focal loss is an adaptation of the CE and focuses more on the pixels whose classification is more uncertain

(pt < 0.5). In which pt is the predicted probability of the target.

In order to estimate the influence of the random weight initialization on the consistency of the model, we trained the model

with each possible combination of data sources three times. As the sample size is rather small, we used the unbiased sample

standard deviation for calculating the standard deviation between these runs.170

In order to have variation in the training process and reduce overlap, during each epoch one training sample is randomly

selected for each starting time. For the validation set, a fixed set of samples was used to compute the validation loss after

each epoch in order to avoid coincidental improvement in the loss. The number of epochs was not fixed; instead, an early

stopping strategy was employed. The learning rate is divided by 5 when the loss in the validation set has not improved for three

consecutive epochs, and the training ends when the loss in the validation set did not improve for six consecutive epochs. The175

weights corresponding to the best validation loss are saved in the end. On average training stopped after 20–30 epochs, for

which one epoch took around 18 min of time on a computing cluster node with eight Nvidia V100 GPUs.

Contrary to the training time, it takes only 8 seconds to nowcast one hazard with 12 time steps on a machine with 4 CPUs

(Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz), requiring 16 GB of RAM.

3.3 Importance of data sources180

The importance from individual data sources can be assessed using the Shapley value (Shapley, 1951) as a quantitative indicator

of the total importance of each data source. The total contribution among the predictors is distributed by assigning a value that

represents their marginal contribution. For more information on calculating the Shapley value we refer to the description of
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Molnar (2022) (chapter 9.5). We normalize the sum of the values of the individual components to add up to 1, with higher

values indicating higher importance.185

3.4 Model evaluation

Before calculating different metrics to evaluate the models, the target variables for hail and precipitation were transformed to

binary fields. For hail a threshold of 0.5 was selected, meaning that a POH≥ 50% is considered as hail and set to 1, otherwise

0. For precipitation the skill score per class is analysed by summing all probabilities in and above the selected class. Second, a

threshold of 0.5 is used, with setting probabilities ≥ 0.5 to 1.190

The models are evaluated based on the critical success index (CSI), precision recall (PR) curve and the fractions skill

score (FSS). The CSI and PR curve are based on contingency tables, containing true positives (TP), false positives (FP), false

negatives (FN) and true negatives (TN).

CSI indicates the amount of events that were correctly predicted:

CSI =
TP

TP+FP+FN
. (3)195

When there is an imbalance between two classes (no event and event), the PR curve is a useful tool for interpretation of

probabilistic forecasts. Precision indicates how good the model is at predicting an event:

Precision =
TP

TP+FP
(4)

Recall gives the fraction of events that were predicted:

Recall =
TP

TP+FN
(5)200

The PR curve is obtained by computing both precision and recall at all threshold levels ranging from 0 to 1. The information of

the PR-curve can be summarized by the area under the curve (AUC). A larger AUC indicates a better-performing model over

the whole range of thresholds.

The FSS is a measure for neighbourhood verification, which measures the skill of the forecast in predicting the occurrence

of an event at a selected spatial scale (Roberts and Lean, 2008). The FSS is the mean-square error of the observed and forecast205

fractions for a neighbourhood of length n, relative to a low-skill reference forecast. Values range between 0 and 1, with higher

values indicating a more skilled forecast.

4 Results and discussion

4.1 Example cases

This section presents examples that illustrate the difference of adding polarimetric variables on top of single-polarization radar210

data for hazard prediction purposes. However, unlike for lightning and heavy precipitation, no significant differences were

observed in the hail prediction, consequently no example is provided here.
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Figure 1. Results of the lightning prediction on 10 July 2020, 19:10 UTC. On the left three input variables are shown (Rain rate, Kdp and

Zdr), and on the right the observed lightning occurrence and the predicted lightning probability according to the input sources RPQ and R at

different lead times (indicated at the top of each column) are shown.

Figure 1 serves as an example of the model output for lightning for several time steps. This event took place on 10 July, 2020,

which was characterized by a low pressure system over Scandinavia, that steered a cold front towards Switzerland. Ahead of

this front, very warm and humid air flowed from southwest towards the Alps. The gradual humidification of the various layers215

of the atmosphere and the inflow of more unstable air first activated the diurnal cycle of showers and thunderstorms in the Alps

and then the pre-frontal thunderstorm activity, particularly in southern and western Switzerland.

Both data source combinations (R: single-pol radar and RPQ: single-pol radar, polarimetric variables and quality indices) are

able to accurately predict the location of the lightning (see Fig. 1). However, the difference is in the certainty of the predicted

lightning over all lead times, with higher probabilities seen in RPQ. Locations where RPQ is more certain compared to R are220

also at locations with higher Kdp values.

In Fig. 2 an example for the prediction of rain exceeding 10 mm is shown. This event took place on 07 June 2020 and was

characterized by a low pressure area that was very pronounced throughout the depth of the troposphere, moving southward

over the North Sea. A related cold front was located over the northern side of the Alps. Ahead of this front, a southwesterly

flow conveyed very humid and unstable air toward the Alps; behind, the cold front colder polar maritime air moved from the225

northwest to the southeast. There was an strong air mass gradient with very pronounced instability in the Alps.

Figure 2 shows that both R and RPQ are able to accurately predict the location of the rainfall. However, compared to R, RPQ

is more certain about the precipitation in the lower area of the rainfall field, which corresponds with the observed probability.

These locations also have higher Kdp values, which can be an indication of heavy rain.

Overall, we see similar spatial patterns in the predictions for lightning and precipitation when using RPQ compared to R,230

but RPQ tends to give higher confidence in the predictions.

8



Ra
in

 ra
te

 [m
m

 h
1 ] 15 min

10 1

100

101

102 0 min

KD
P 

[d
eg

 k
m

1 ]

0.5

1.5

2.5

ZD
R 

[d
B]

1.5
1.0
0.5
0.0
1.5
3.0
4.5

Ob
se

rv
ed

Next 60 min

RP
Q

0.0005

0.05
0.1
0.2
0.5
1

R

256 km

Figure 2. Same as Fig. 1, but for heavy precipitation on 07 June 2020, 08:50 UTC. Only one output is shown as the precipitation is predicted

as the accumulation over the next 60 min.

4.2 Predictor importance

The average loss and the unbiased sample standard deviation, derived from the test dataset, are shown in Fig. 3a for lightning,

indicating that incorporating polarimetric variables with the single-pol radar source improves the overall outcome. While

including all sources (RPQ) for the lightning model results in the highest skill, it is within the spread of RP or RQ, indicating235

that multiple runs are necessary to verify the robustness of the results, avoiding that coincidental convergence resulted in

slightly better or worse results.

Figure 3b indicates that although incorporating either polarimetric variables or quality indices on top of the single-pol radar

source improves the performance for hail, surprisingly this does not hold when including all three predictor sources.

From the losses for heavy precipitation (Fig. 3c), it is evident that incorporating polarimetric variables benefits the results,240

and produces the most significant improvement compared to lightning and hail. While the pattern of the standard deviation are

somewhat similar to that of lightning, the average loss between the model combinations lie further apart.

For lightning, the performance marginally improves from 0.335 (using single-polarization radar and quality index) to 0.333

when using all data sources. However, the difference is similar to the standard deviation of the losses of the three training runs.

For hail, the standard deviations of the losses are even higher than for lightning (Fig. 3a) and for rain (Fig. 3c). An increase of245
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Figure 3. The average loss in the test dataset for the prediction of (a) lightning, (b) hail and (c) heavy precipitation using different combina-

tions of the selected data sources. The mean loss and the spread of the three runs is shown here. Each panel shows a matrix where the data

sources corresponding to each element can be found by combining the row and column labels. With “R” indicating single-pol radar data, “P”

the polarimetric variables and “Q” quality indices. All loss scores are normalized with the same loss value from from Leinonen et al. (2023),

such that the baseline model (model without any input) is set to 1.

the loss from 0.463 using single-polarization radar and quality index to 0.468 when using all three data sources is within the

standard deviations of 0.005 or 0.009, respectively.

A reason for the larger spread of the hail results might the indirect retrieval method of the POH. While the precipitation radar

and lightning sensors are designed for a direct observation of precipitation and lightning, the hail retrieval is a parametrization

based on the vertical extent of the updraft core, i.e. a macroscopic property of the storm. Therefore, the POH observations -250

used as reference - might be less precise in comparison to precipitation and lightning observations, and, in consequence, could

cause higher variation of the training performance.

As a final remark, the performance of a machine learning algorithm does not always improve when adding more predictors.

In case of highly correlated or redundant predictors, no additional information content is added. However, a larger number of

weights must be trained, which typically requires a larger training dataset. Furthermore, a more complex algorithm is more255

prone to overfitting.
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Table 1. Normalized Shapley values in the test dataset for the input sources (R: single-pol radar, P: polarimetric variables and Q: quality

indices), and the prediction of lightning, hail and heavy precipitation.

R P Q

Lightning 0.508 0.481 0.012

Hail 0.537 0.463 0.000

Precipitation 0.508 0.475 0.018

Table 2. Comparison of the average PR AUC and standard deviation of different model configurations (R: single-pol radar and RPQ: single-

pol radar, polarimetric variables and quality indices) with the test set. For hail and lightning the average over all lead times is shown; for

precipitation, the score is given for the accumulated precipitation in 1 hour exceeding 10 mm.

PR AUC

R RPQ

Lightning 0.626± 0.001 0.632± 0.003

Hail 0.239± 0.005 0.235± 0.010

Rain 0.466± 0.003 0.482± 0.005

4.3 Shapley values

Another method to quantify the importance of the data sources is by computing the Shapley score. This was calculated for

the model runs with the optimal loss score (i.e. the model with the lowest loss out of three runs). The Shapley values for all

thunderstorm hazards indicate the same: that single-polarization radar is the most important source, followed by polarimetric260

variables (Table 1). The single-polarization radar source is relatively more dominant for hail compared to lightning and heavy

precipitation. While previous results (Fig. 3) showed that including Q improves the results, the Shapley score indicates that the

importance of Q is small. However, the effect of Q is relatively independent of R and P, whereas R and P contain redundant

information, and consequently, one does not add that much over the other. The Shapley value is computed from the marginal

contributions of the predictors and thus does not fully capture this interdependence of features.265

4.4 Performance of the forecasts

To get a more complete understanding of the skill of the model to predict the different variables, it is also important to see

how it performs using other metrics. In Table 2 the average PR AUC and unbiased sample standard deviation are given. These

values align with the loss, indicating that for both lightning and rain the model improves by incorporating all sources, with the

largest improvement seen in precipitation. Meanwhile, for hail the RPQ model results in a slightly lower skill when including270

all sources instead of the single-polarization radar source alone. In addition, the least consistency is seen in the results of RPQ

for hail.
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Figure 4. Critical Success Index over the test dataset at different thresholds for (a) lightning and (b) hail for different lead times and (c) the

accumulated precipitation in 1 hour exceeding 10 mm, 30 mm or 50 mm, using the source combination “RPQ” (single-polarization radar,

polarimetric variables and quality indices). The value behind the lead time or class in the legend indicates the optimal CSI.

We also investigated the effect of different probability thresholds and lead time on the skill of the forecasts. In Fig. 4 the

CSI was calculated for different thresholds. For hail and lightning this was done for lead times of 5, 15, 30 and 60 min. With

increasing lead times the skill of the forecasts decreases. The decrease in skill is more gradual for lightning, while for hail the275

values drop quickly, having barely half of the maximum CSI (indicated value in the legend) after 15 min compared to 5 min.
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Table 3. Optimal Critical Success Index over the test dataset, calculated for different probability thresholds to transform POH to binary fields.

CSI

5 min 15 min 30 min 60 min

POH≥ 30% 0.469 0.263 0.148 0.057

POH≥ 50% 0.463 0.265 0.143 0.053

POH≥ 80% 0.420 0.236 0.108 0.037

For heavy precipitation, CSI was calculated over the accumulated precipitation in 1 hour for the three classes. Figure 4c

indicates that more extreme precipitation is more difficult to predict. The lifetime of precipitation events decreases with higher

rain rates, affecting the skill of the forecasts.

It is also evident that the threshold resulting in the highest CSI is not fixed over the lead times (for lightning and hail) or over280

the classes (for precipitation). Thresholds should be decided on by the end users, selecting values that fit their desired criteria.

In Fig. 4b the target variable POH was transformed to binary fields by considering POH≥ 50% as hail. Selecting other

probabilities to convert POH into a hail event results in a different skill, as shown in Table 3. The skill of the predictions

improves when smaller thresholds are selected, that is, POH≥ 30% produces the highest skill (Fig. 4b and Table 3. Lower

POH thresholds (i.e. 20–50%) are often related to graupel or soft hail (Löffler-Mang et al., 2011). While according to insurance285

loss data, a POH threshold of 80% is related to severe hail locally (Nisi et al., 2016). These extreme events are are less frequent,

and therefore, more difficult to predict.

Lower skill for precipitation and hail than for lightning can be a consequence of the time and space scales of the target

variables. This difference can be enhanced due to the definition of lightning occurrence that we inherit from Leinonen et al.

(2022b). This was set to the lightning occurrence within 8 km in the last 10 min, which assigns a larger spatial and temporal290

footprint to the lightning. Both PR AUC and CSI are sensitive to any degree of error, i.e. it compares the occurrence of an event

pixel-wise, resulting in double penalization. Matching exactly high-resolution forecasts with observed small-scale features,

such as thunderstorms, is rather difficult (Ebert, 2008). For that reason the FSS is calculated over multiple scales (Fig. 5). The

differences between FSS for RPQ and R are marginal, especially for shorter lead times. RPQ is slightly better for predicting

lightning, with increasing differences for larger lead times (Fig. 5a), which is in line with the previous results, while for hail295

we find the opposite result, i.e. R is slightly more accurate compared to RPQ and differences decrease at longer lead times

(Fig. 5b). For precipitation RPQ results in a higher skill for warning levels of 10 mm and 30 mm, while R is better for warning

levels of 50 mm.

The machine learning model learned from a dataset that was limited to one convective season. Nevertheless, the training

dataset contained around a million samples. In this paper, we chose to use the same period as Leinonen et al. (2023) to300

make the results comparable. By providing a dataset covering more convective seasons, it is expected that skill scores of the

different model versions will improve. It is not expected that the ranking of different model versions with different input dataset
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Figure 5. Fractions Skill Score (FSS) over the test dataset at different lead times for (a) lightning and (b) hail and (c) the accumulated

precipitation in 1 hour exceeding 10 mm, 30 mm or 50 mm, using the source combination “RPQ” (single-pol radar, polarimetric variables

and quality indices; solid lines) and “R” (single-pol radar; dashed lines).

will change, as more events will be available for all observation types (lightning, single polarimetric radar and polarimetric

moments).
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5 Conclusions305

The objective of this work was to evaluate the benefits from including polarimetric radar observations as an additional data

source for nowcasting thunderstorm hazards, compared to exploiting single-polarization radar data alone, as polarimetry pro-

vides information about the microphysical properties of hydrometeors, such as particle shape and size, consequently reducing

ambiguities concerning the hydrometeor classes and drop size distribution. Additionally the benefits of exploiting radar quality

indices were investigated. This work utilizes the convolutional-recurrent neural network from Leinonen et al. (2022b), which310

can nowcast the probability of lightning and hail occurrence up to 60 min with a 5 min resolution, as well as the probability of

one-hourly accumulated precipitation exceeding pre-defined threshold levels.

The importance of the polarimetric variables (P) and quality indices (Q) is investigated by comparing model runs using

extended sets of input variables compared to a reference run using only the single- polarimetric radar data (R). For all three

hazards, single-pol radar is the most dominant data source according to the Shapley values. Incorporating polarimetric variables315

in addition to single-polarimetric radar data results in a higher skill for lightning, hail and heavy precipitation predictions. In

addition, quality indices that take into account quality properties of the radar reflectivity fields have a positive impact on the

results in most cases. Each model version was trained three time to test the robustness of the results. Slightly different final

loss values were obtained and the standard deviation was calculated. The variation of the loss values caused by different

combinations of input datasets (RP, RQ and RPQ) have a similar order of magnitude as the variations by the initial training320

conditions, in particular for lightning nowcasting. Differences in mean loss values should be interpreted with care and it is

important to verify the robustness of the results. Among the three targets, the nowcasting for heavy precipitation improves the

most when polarimetric variables are included. For hail, the results show that different input combinations are not significantly

different from each other, but the differences could be rather caused by random variation within the training. Consequently,

we cannot conclude that the polarimetric variables, in the form used in this study, improve the hail predictions in a statistically325

significant way.

Given that the nowcasting performance improve for lightning and precipitation, but not for hail, we recommend to investigate

further how information of polarimetric variables, such as ZDR-columns, can be exploited for improving hail predictions.

While it is not expected that the ranking of the data importance will change, nevertheless, we recommend to include a larger

training period, covering more convective seasons, in order to improve the skill of the model.330

Code and data availability. The code used in this study can be found at https://github.com/MeteoSwiss/c4dl-polar. The datasets from the

radar source are available for noncommercial use at https://doi.org/10.5281/zenodo.6802292 (Leinonen et al., 2022a). The additional datasets,

models and results can be found at https://doi.org/10.5281/zenodo.7760740 (Rombeek et al., 2023).
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