10

15

20

Noweasting Exploiting radar polarimetry for nowcastin
thunderstorm hazards using machine-deep learningwith

larimetri -

Nathalie Rombeek!, Jussi Leinonen', and Ulrich Hamann'
Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland

Correspondence: Ulrich Hamann (ulrich.hamann @meteoswiss.ch)

This work presents the importance of polarimetric variables as an additional data source for nowcasting thunderstorm haz-

ards using an existing neural network architecture with eenvolutional-and-reeurrentdayers—Thisnetwork-has—a—common

frameworkrecurrent-convolutional layers. The model can be trained to predict different target variables, which enables now-
casting of hail, lightning and heavy rainfall for lead times up to 60 min with a 5 min resolution—Fhe-stady-area-is-eovered

by-, in particular. the exceedance probabilities of Swiss thunderstorm warning thresholds predicted. This study is based on

observations from the Swiss operational radar network, which consists of five operational polarimetric C-band radars. The

study area of the Alpine region is topographically complex and has a comparatively very high thunderstorm activity. Different
model runs using combinations of single- and dual-polarimetric radar observations and radar quality indices are compared
to the reference run using only single-polarimetric observations. Two case studies illustrate the performance difference when
using all predictors compared to the reference model. The importances of the predictors are quantified by investigating the final
training loss of the model, skill scores such as CSI, precision, recall, precision-recall area-under-the-curve, and the Shapley.
value. Results indicate that including-pelarimetrie-variables-single-polarization radar data is the most important data source.
Adding polarimetric observations improves the model performance compared to reference model in term of the training loss
for all three target variables. Adding quality indices does so. too. Including both, polarimetric variables and quality indices
improve-the-at the same time improves the accuracy of nowcasting heavy precipitation and lightning, with the largest improve-

ment found for heavy precipitation. No improvement could be achieved for nowcasting of the probability of hail in this way.

1 Introduction

Severe convective weather events, such as hail, lightning and heavy precipitation, are likely to increase across Europe during

this century (Rédler et al., 2019; Raupach et al., 2021; Taszarek et al., 2021). Fhese-The heavy rainfall associated with these
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convective storms can turn into flash floods and eensequently-land slides and, consequently, be a great threat to humans-human
lives (Holle et al., 1993; Lynn and Yair, 2010). Additionally, a considerable part of the total weather-related economic losses
are caused by these-weatherpheromena-severe convective weather (Hoeppe, 2016). Therefore, accurate short-term predictions
of convective events are of interest, as they allow to send-outissue warnings in order to reduce societal and economic impact.

Stratiform precipitation typically has larger spatial scales and last longer than severe convection. Numerical weather pre-
diction (NWP) models are s

particularly
suited for this purpose. On the other hand, simulating severe convection with its short time and spatial scales, for which the
exploitation of the most recent observations is essential, is very challenging. Accordingly, many weather services aim for rapid
update cycles, i.e. an hourly instead of the former three-hour update cycle. Due to the computational demand of the assimilation
and prediction, more frequent update cycles than hourly are currently not feasible. The results of NWP models are typically
QXQ@WWCOSMOJE H-Swi i

lowerpredictability for shorterdead-timesrun requires 50 minutes runtime). NWP analysis is a combination of previous model
redictions and the latest available observations, and the assimilation creates a physically consistent state of the atmosphere

which typically deviates slightly from the latest observations. Meanwhile, nowcasting algorithms aim to provide their output

within tens of seconds up to a minute (Pierce et al., 2012). They typically do not strive for a physically consistent representation

3

of the atmosphere, but do make use of the latest observations, which results in higher performance on the very short and short
EHV@VECVELIVWGS(I e. 1 h) and smaller scales (Simonin et al., 2017) a&fheﬂmﬁﬂ}%ea{eﬁf—ﬂ&eﬂ&nesphefeﬁNWP—assnm}a&efﬁs

WWWM%@WW%IMWM&
nowcasting plays a crucial role in e tmewarning
systems for severe convection.

Weather radars are often utilized for nowcasting purposes as they provide high-reselutionnear real time input data with a

high resolution and broad spatial coverage. Conventional nowcasting techniques extrapetate-these tatest-observations-typically
extrapolate the latest observations from weather radars in time, based on either estimation of the motion field such as used in

Pysteps (Pulkkinen et al., 2019), NowPrecip (Sideris et al., 2020) or rainymotion (Ayzel et al., 2019), or identifying and tracking
individual storms¢e-g-, e.g. the Thunderstorms Radar Tracking (FRT)-(Hering-et-al52004)-algorithm (TRT; Hering et al., 2004

or Thunderstorm Identification, Tracking, Analysis, and Nowcasting (FHTAN)Dixen-and-Wiener; 19931 (TITAN; Dixon and Wiener, 199

. However, these methods have-often-often have difficulties to take at-the life cycle of convective cells with growth and dissipa-
tion processes into account and consequently result in relatively short skilful lead times for convective weather (Imhoff et al.,
2020; Foresti et al., 2016; Wilson et al., 1998).

In therecent-yearsrecent years, there have been significant advances in using deep learning for generating nowcasts of heavy
precipitation using radar as input, such-as-done-by-¢.g. Guastavino et al. (2022), Han et al. (2021), Ritvanen et al. (2023) and Yin
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et al. (2021), or in the case of Leinonen et al. (2023) including multiple data sources. In addition, radar is also used-exploited as
predictor for nowcasting lightning ;-sueh-as-done-e.g. by Leinonen et al. (2022b) and Zhou et al. (2020). However, these studies
primarily focus on using-the-rainfall-fields-obtained-fromradar-despite-the-fact that-weather radars-ecan-provide-amuch-broade

range-of information—Adding single-polarization radar observations (e.g. precipitation rates based on horizontal reflectivity

the micro-physical properties of hydrometeors. Hence, adding polarimetric radar variables help-explicitly helps considerably
to reduce ambiguities concerning the hydrometeor classes and drop size distributions.

Dual-polarization radars have two orthogonally polarized beams, making it possible to derive additional properties such as
particles-particle shape and to some extent the size, which are useful for meteorological applications (Fabry, 2018; Kumjian,
2013b). Hydrometeor classification algorithms such as those developed by Besic et al. (2016) and Vivekanandan et al. (1999)
use this extra information to identify different hydrometeors. Other studies showed the potential of polarimetric variables for
providing information on other convective hazards, such as hail and lightning (Figueras i Ventura et al., 2019; Lund et al., 2009),
or the evolution of convective storms (Snyder et al., 2015). However, interpretation of polarimetric signatures for convective
weather forecasts remains challenging (Kumjian, 2013a, b), and requires more advanced data processing techniques such as
machine learning.

For-thatreason-this-research-will-investigate-This research investigates the additional value of polarimetric variables for
nowcasting severe convective weather, which includes hail, lightning and severe precipitation. This-research-uses-the-Data

source importance is explored by performing both a qualitative and quantitative analysis (i.e. focal loss or cross entro

Shapley values, critical success index and fractions skill score). We use the recurrent-convolutional deep learning model from
Leinonen et al. (2023), as it is able to utilize multiple data sources and predict, with a slight modification, multiple hazards

One of the first successful attempts to incorporate polarimetric variables for nowcasting convective precipitation using deep
learning was dene-rtealized by Pan et al. (2021). However, this-werk-onlyuses-data-of-that study exploits only observations
in 3 km altitude, i.e. the Constant Altitude Plan Projection Indicator (CAPPI);—while-relevantinformation-on-microphysies
ean-beretrieved-, In this study, we exploit relevant hydrometeors and their characteristics from multiple altitudes. Besides;-the
potentiatfornoweasting In addition, we investigate the potential to nowcast not only precipitation, but also hail and lightningby
asing polarimetrie-variablesis notinvestigated, by utilizing polarimetric variables.

This paper introduces the data used for training in section 22, while section 3-3 describes the model architecture. Results are

described and discussed in section 44, and section 5 concludes the article.

2 Data

For training purposespart-of-the-, the “precipitation radar’” dataset from Leinonen et al. (2022b) was used —This-(here named
“Single-pol Radar”), which is described in more detail in the corresponding paragraph below. The training dataset was extended

with polarimetric variables retrieved from the Swiss operational radar network, and quality indices from Feldmann et al. (2021).
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The data was-were collected from April to September 2020. The creation of training samples is described in more detail in

2.1 Operational radar network

The study area is completely covered by the Swiss operational radar network, which consists of five operational ¢tal-polarimet-
ric C-band radars (Germann et al., 2022). Operational-Operationally available products have a resolution of 500 m, eomprises
comprising 20 elevation scans from -0.2°to 40°within 5 min per radar. The maximum range-of-observations-observation range
of a single radar is 246 km. In total, the study area covers more than 400.000 km?,

Radar-derived-precipitationfields-are subjectto-a-A sophisticated data-processing chain which-tnehides-including bias cor-
rection, removal of ground clutter and nen—weathernon-weather echoes, visibility correction and vertical-profile-correetion
(Germant-et-ak;2006)-to-get-the-best-vertical profile correction (Germann et al., 2006) retrieves a high quality, radar-based
precipitation estimate at the surface (RZC).

The final radar products that are used as input for the deep learning algorithm have a resolution of 1 km.
2.2 Data sources and processing

The model was trained based on all possible combinations of the data-sourees-mentioned-three data sources below:
Weather-(1) Single-pol radar (R) ebservations-data retrieved from the Swiss operational network{(Germann-et-al52022)-
weretised-Fhis souree was already used-inbeinonen-etal2023) - weather radar network (Germann et al., 2022). The considered
variables in this source are the rain rate at the surface, column maximum echo intensity and altitude, echo top height at radar
reflectivity thresholds of 20 and eontains-information-abeut-the-rain-rate; 45 dBZ, and the vertically integrated water content;
echo-top-height-and-maximum-echo-. This source was used and described in more detail in Leinonen et al. (2022b). Note that
dual-polarization data were used for clutter suppression in the processing chain of the Swiss operational weather radar network.

(2) Polarimetric variables (P) were-also obtained from the Swiss operational radar network. The considered polarimetric
variables in this research are the reflectivity factor at vertical polarization (Zy/), differential reflectivity (Z4,-), co-polar cross-
correlation coefficient (p,.,), and specific differential phase (K g;).

Z 4 1s an indicator for shape, with positive values indicating targets that-are-larger in the horizontal than the vertical dimen-
sion. Such targets include large raindrops, which are flattened by aerodynamic forces while falling, but not solid hailstones,
which tend to be round and therefore have values close to 0 (Seliga and Bringi, 1976).

K 4p, 1s an indication for concentration and shape, and is used as a measure for rain intensity (Sachidananda and Zrnic, 1986).
Positive values can be an indicator for heavy rain, while negative values means that targets are more elongated vertically than
horizontally (e.g. graupel) and values close to zero indicate nearly round or randomly oriented particles (Rinehart, 2010). One
advantage of K4, over Zy, is that it is unaffected by differential attenuation.

Pry indicates homogeneity, with smaller values indicating more heterogeneity among the shape, size and orientation of the

detected particles (Fabry, 2018).



To reduce the dimensionality and ebtair-estimate values at the ground level, the polarimetric variables at various altitudes are
aggregated following the method of Wolfensberger et al. (2021), which-uses-a weighted sum ;-thattakes-taking both static radar
visibility and height abeee-above the ground level of each point into account. Radar visibility is determined by the fraction of
the radar beam that is not blocked due to partial and total beam shielding by the complex mountainous terrain. The weight is

130 determined using a linear relationship with visibility and an exponential relationship with height:

b VIS VIS
w(h) = cxpexp(Byyag) 100 100 M)

Here, h represents the height above the ground of the observation in meters, /3 indieates-(m 1) is the slope of the exponentiat
Mand VIS is the visibility ‘Aﬁeﬁhypef-pafame%eﬁufmﬂg %). A sensitivity study showed that a value of -6:5-0.5 for 3

135 bybﬁf&t—nﬁffﬂﬂ%ﬂiﬂg—x%kbﬂﬂgmg%he—meaﬂe}esﬂs best suited for precipitation retrieval (Wolfensberger et al., 2021), consequently,
the same value is used here. First, the polarimetric data were transformed by normalizing the standard deviation and by shiftin

the mean to 1. Second, to reduce presence of noise, fields were compared with RZC, and set to zero where RZC does not
contain precipitation.

(3) Quality indices (Q) were-obtained from Feldmann et al. (2021). Quality of radar observations in mountainous ter-

140 rain fluctuates over elevations and is influenced by the scanning strategy. Especially at low levels, visibility is reduced as a

consequence of radar beam blockage. The quality of the observations at every location is influenced by multiple properties.

The i i i uality index combines the following factors into a single index: visibility, minimum

altitude of observation, maximum altitude of observation and numerical noise.
2.3 Targets

145 The same targets-target variables from Leinonen et al. (2023) and Leinonen et al. (2022b) are used;-and-deseribed-in—the

feHewingderived:
Lightning occurrence is obtained from the observations by the Météorage-lightningnetwork-EUCLID lightning network

(Schulz et al., 2016; Poelman et al., 2016), delivered to MeteoSwiss by Météorage. The point-data was-were transformed to a
gridded binary map, with 1 indicating lightning within-a-vieinity-activity within a radius of 8 km of-the-grid-point-that-took
150 place-and in the last 10 min, and O otherwise. This definition is used in safety procedures at airports for takeoff and landing
- In this way, the result of our machine learning algorithm can be directly applied for METAR trend reports without any

adjustment of the temporal and spatial resolution.
Probability of hail (POH) is the probability of hail reaching the ground. This a product from the operational MeteoSwiss

155 radar network, using the formula from Foote et al. (2005) based on Waldvogel et al. (1979). It utilizes the difference between

the 45 dBZ echo top level and the freezing level.

CombiPrecip is an operational product at-MeteoSwiss—for-estimating-preeipitation—-which-combines-of MeteoSwiss for
precipitation combining real-time radar and rain-gauge observations to adjust the bias-that-biases often are observed in radar
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auge representation from the uncertainty in the radar measurement, using the method from Ciach and Krajewski (1999). The

robability distribution is transformed to probabilistic estimates for four precipitation classes, based on warning levels used-by
MeteoSwissforeeastersof MeteoSwiss. The thresholds are 0;10-mm;30-mm-and-50-mm-Rg = 0, 21 = 10 mm, Ry = 30 mm

and R3 = 50 mm precipitation aggregated over 60 min aggregated-preeipitationatat a 1 km? grid point. Probabilities g. are

assigned to each class ¢ € [0,3] as

Reya
%z/mmm @)
R.

where p is a lognormal probability distribution function. CembiPrecip-estimations-are-considered-as-the-expected-value B[R}

—Note that the machine learning model can be
adapted to calculate a larger number of thresholds. In this publications, we concentrate on these four thresholds representin
the warning levels of MeteoSwiss.

3 Methods

3.1 Event selection

The radar-derived rainfall rate was used to select training samples where convective activity was likely to happen. Regions
with 10 neighbouring pixels that exceeded 10 mm h™" were located, and at every timestep for 22 h a box of 256 x 256 km?
was added to the identified region. Duplicated regions were removed by dividing the study area into tiles of 32 x 32 km?, and
storing only unique tiles that do not overlap in time and space simultaneously. This resulted in a total of 30641 different starting.
times for the training sequences. In total 1021447 different samples could be created in this way (not including the further
diversity added by data augmentation). Around 10 % of the total training samples was used for validation, another 10 % for
testing and the rest for training. Entire days were randomly selected for either the validation, testing or training set to minimize
the correlation between the datasets. The event selection process is identical to that of Leinonen et al. (2022b); more detailed
description of the selection procedure can be found in that article.
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4 Methods
3.1 Neural network

The recurrent-convelutionrecurrent-convolutional deep learning model architecture-from Leinonen et al. (2023) is extended

by including-the-new-introdueed sources—used, adding the newly introduced sources described in Sect. 2.2. The recurrent
connections enable to model the temporal evolution, while the convolutional connections model the spatial structure. This
model has a-eommon-—framework,—which—makes-an encoder-forecaster framework, in which the encoder produces a deep
representation of the atmospheric state, which is decoded into a prediction by the forecaster. It has a generic architecture,
making it possible to predict the-probabilities-of-hail-tightninglightning, POH and heavy precipitation ;-by only changing the
target. The main difference between the predicted thunderstorm hazards is that the output of heavy precipitation is trained
for-only-predicting-the-aceumulated-preeipitation-accumulated over 1 hour for predefined warning levels, while-whereas hail
and lightning are produced at a 5-min resolution —for 12 time steps (1 hour). In order to make the results comparable with
(Leinonen et al., 2023), a maximum lead time of 60 min is selected here. For a more detailed description of the model we refer

to the publications of Leinonen et al. (2022b) and Leinonen et al. (2023).

Hail and precipitation targets have a probabilistic output, and for that reason cross entropy (CE; Goodfellow et al., 2016) was
used as a loss function. CE measures the difference in the probability distributions between the true distribution and predicted
distribution of the target classes. Forlightning-To be consistent with Leinonen et al. (2023), the focal loss (Lin et al., 2017) is
used for lightning. The focal loss is an adaptation of the CE and focuses more on the diffieult-eases—pixels whose classification
is more uncertain (p; < 0.5). In which p, is the predicted probability of the target.

In order to estimate the influence of the random weights-tised-forinitialization-and-weight initialization on the consistency

of the model, we trained the model with each possible combination of data sources three times. As the sample size is rather

small, we used the unbiased sample standard deviation for calculating the standard deviation between these runs.

In order to have variation in the training process and reduce overlap, during each epoch one training sample is randomly
selected for each starting time. For the validation set, a fixed set of samples was used to compute the validation loss after
each epoch in order to avoid coincidental improvement in the loss. The number of epochs was not fixed; instead, an early.
stopping strategy was employed. The learning rate is divided by 5 when the loss in the validation set has not improved for three
consecutive epochs, and the training ends when the loss in the validation set did not improve for six consecutive epochs. The
weights corresponding to the best validation loss are saved in the end. On average training stopped after 20-30 epochs, for
which one epoch took around 18 min of time on a computing cluster node with eight Nvidia V100 GPUs._
Contrary to the training time, it takes only 8 seconds to nowcast one hazard with 12 time steps on a machine with 4 CPUs
(Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GH2), requiring 16 GB of RAM._

3.2 Importance of data sources

The importance from individual data sources can be assessed using the Shapley value (Shapley, 1951) ;which-distributes-the
total-seore-among-its-predietors—as a quantitative indicator of the total importance of each data source. The total contribution
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among the predictors is distributed by assigning a value that represents their marginal contribution. For more information on

calculating the Shapley value we refer to the description of Molnar (2022) (chapter 9.5). We normalize the sum of the values

of the individual components to add up to 1, with higher values indicating higher importance.

3.3 Model evaluation

Before calculating different metrics to evaluate the models, the ground-truth-target variables for hail and precipitation were
transformed to binary fields. For hail a threshold of 0-5-0.5 was selected, meaning that a POH>-50%-is-seen-POH > 50% is
considered as hail and set to 1, otherwise 0. For precipitation the predictabitity-skill score per class is analysed by summing all
probabilities in and above the selected class. Second, a threshold of 0:5-0.5 is used, with setting probabilities >-0:5-> 0.5 to 1.

The models are evaluated based on the critical success index (CSI)and-, precision recall (PR) curve —These-metries-and
the fractions skill score (FSS). The CSI and PR curve are based on contingency tables, containing true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN).

CSI indicates the amount of events that were correctly predicted:

TP

[=—
= TP FP+FN

3)

When there is a-an imbalance between two classes (no event and event), the PR curve is a useful tool for interpretation of

probabilistic forecasts. Precision indicates how good the model is at predicting an event:

TP
Precision = m (4)
Recall gives the fraction of events that were predicted:
TP
Recall = —— 5
AT TP EEN ©)

The PR curve is obtained by computing both precision and recall at all threshold levels ranging from O to 1. AH-The information
of the PR-curve can be summarized by the area under the curve (AUC). A larger AUC indicates a better-performing model

over the whole range of thresholds.

3.4 Spatial-verification

Thefraction-skilk-seere(HESS—-The FSS is a measure for neighbourhood verification, which measures the skill of the forecast
againstin predicting the occurrence of an event at a selected spatial scale (Roberts and Lean, 2008). The FSS is the mean-sqaure

mean-square error of the observed and forecast fractions for a neighbourhood of length n, relative to a low-skill reference

forecast. Values range between 0 and 1, with higher values indicating a more skilled forecast.

4 Results and discussion

4.1 Example cases
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Figure 1. Results of the lightning prediction on 10 July 2020, 19:10 UTC. On the left three input variables are shown (Rain rate, K, and

Za,), and on the right the observed lightning occurrence and the predicted lightning probability according to the input sources RPQ and R at

different lead times (indicated at the top of each column) are shown.

Figure-This section presents examples that illustrate the difference of adding polarimetric variables on top of single-polarization

radar data for hazard prediction purposes. However, unlike for lightning and heavy precipitation, no significant differences were
observed in the hail prediction, consequently no example is provided here.

Figure 1 serves as an example of the model output for lightning for several time steps. This event took place on 10 July, 2020,
which was characterized by a low pressure system over Scandinavia, that steered a cold front towards Switzerland. Ahead of
this front, very warm and humid air flowed from southwest towards the Alps. The gradual humidification of the various layers
of the atmosphere and the inflow of more unstable air first activated the diurnal cycle of showers and thunderstorms in the Alps
and then the pre-frontal thunderstorm activity, particularly in southern and western Switzerland.

Both data source combinations (RPQ-and-RR: single-pol radar and RPQ: single-pol radar, polarimetric variables and quality

indices) are able to accurately predict the location of the lightning —(see Fig. 1). However, the difference is in the certainty

of the predicted lightning over all lead times, with higher probabilities seen in RPQ. Locations where RPQ is more certain

compared to R ;-are also at locations with higher K4, values.

In Fig. 2 an example for the prediction of rain exceeding 10 mm is shown. Beth-This event took place on 07 June 2020 and

was characterized by a low pressure area that was very pronounced throughout the depth of the troposphere, moving southward
over the North Sea. A related cold front was located over the northern side of the Alps. Ahead of this front, a southwesterly.
flow conveyed very humid and unstable air toward the Alps; behind, the cold front colder polar maritime air moved from the
northwest to the southeast. There was an strong air mass gradient with very pronounced instability in the Alps._
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Figure 2. Same as Fig. 1, but for heavy precipitation on 07 June 2020, 08:50 UTC. Only one output is shown as the precipitation is predicted

as the accumulation over the next 60 min.

Figure 2 shows that both R and RPQ are able to accurately predict the location of the rainfall. However, compared to R, RPQ
is more certain about the precipitation in the lower area of the rainfall field, which corresponds with the observed probability.
These locations also have higher K, values, which can be an indication of heavy rain.

Overall, we see similar spatial patterns in the predictions for lightning and precipitation when using the-RPQ compared to
R, thatis-but RPQ tends to give higher confidence in the predictions.

4.2 Predictor importance

The average normatizedtoss—of-lightning-loss and the unbiased sample standard deviationbased-on—, derived from the test

RASRIAANRAAANAAAA

dataset, are shown in Fig. 3a for lightning, indicating that incorporating polarimetric variables with the single-pol radar source

10
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Figure 3. The average loss in the test dataset for the prediction of (a) lightning, (b) hail and (c) heavy precipitation using different
combinations of the selected data sources. The mean loss and the spread of the three runs is shown here. Each panel shows a matrix
where the data sources corresponding to each element can be found by combining the row and column labels. With “R” indicating single-pol

radar data, “P” the polarimetric variables and “Q” quality indices. All loss scores are normalized with the same loss value from from

Leinonen et al. (2023), such that the baseline model (model without any input) is set to 1.

improves the overall outcome. While including all sources (RPQ) for the lightning model results in the highest skill, it is within

the spread of only-ineludingpolarimetrie-variables-or-quality-indicesRP or RQ, indicating that multiple runs are necessary to

verify robustness-of-the robustness of the results, avoiding that coincidental convergence resulted in slightly better or worse

results.

Figure 3b indicates that despite-incorperating-only-although incorporating either polarimetric variables or quality indices
on top of the single-pol radar source improves en-average-theresults-the performance for hail, surprisingly this does not hold

when including all three ne-there whentrehiding-allseurees-canbeanindicationof redundaneye Te

s-predictor sources.
From the losses for heavy precipitation (Fig. 3c), it is evident that incorporating polarimetric variables benefits the results,

and produces the most significant improvement compared to lightning and hail. While the pattern of the standard deviation are

somewhat similar to that of lightning, the average loss between the model combinations lie more-further apart.

11



295

300

305

310

315

320

325

improves from 0.335 (using single-polarization radar and quality index) to 0.333 when using all data sources. However,
the difference is similar to the standard deviation of the losses of the three training runs. For hail, the standard deviations
of the losses are even higher than for lightning (Fig. 3a) and for rain (Fig. 3¢). An increase of the loss from 0.463 usin
single-polarization radar and quality index to 0.468 when using all three data sources is within the standard deviations of 0.005

A reason for the larger spread of the hail results might the indirect retrieval method of the POH. While the precipitation radar
and lightning sensors are designed for a direct observation of precipitation and lightning, the hail retrieval is a parametrization
based on the vertical extent of the updraft core, i.e. a macroscopic property of the storm. Therefore, the POH observations -
used as reference - might be less precise in comparison to precipitation and lightning observations, and, in consequence, could

As a final remark; the performance of a machine learning algorithm does not always improve when adding more predictors.
In case of highly correlated or redundant predictors, no additional information content is added. However, a larger number of
weights must be trained, which typically requires a larger training dataset. Furthermore, a more complex algorithm is more
prone to overfitting,

4.3 Shapley values

Another method to quantify the importance of the data sources is by computing the Shapley score. This was calculated for
the model runs with the optimal loss score (i.e. the model with the lowest loss out of three runs). The Shapley values for
all thunderstorm hazards indicate the same;-that-; that single-polarization radar is the most important source, followed by
polarimetric variables (Table 1). The single-polarization radar source is relatively more dominant for hail compared to lightning
and heavy precipitation. While previous results (Fig. 3) showed that including guality-indicesbenefits-Q improves the results,

the Shapley score indicates that the importance of the-guality-indicesis-minimal-as-thissouree-doesnotprovide-any-informatio

is relatively independent of R and P, whereas R and P contain redundant information, and consequently, one does not add that
much over the other. The Shapley value is computed from the marginal contributions of the predictors and thus does not fully.
capture this interdependence of features.

4.4 Performance of the forecasts

To get a more complete understanding of the skill of the model to predict the different variables, it is also important to see
how it performs using other metrics. In Table 2 the average PR AUC and unbiased sample standard deviation are given. These

values align with the loss, indicating that for both lightning and rain the model improves by incorporating all sources, with the
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Table 1. Normalized Shapley values in the test dataset for the input sources (R: single-pol radar, P: polarimetric variables and Q: quality

indices), and the prediction of lightning, hail and heavy precipitation.

R P Q

Lightning ~ 0:5080.508 04810481  0:6120.012
Hail 0:537-0.537  0:4630.463  0:600-0.000
Precipitation  0:508-0.508 04750475  0:6180.018

Table 2. Comparison of the average PR AUC and standard deviation of different model configurations (R: single-

single-pol radar, polarimetric variables and quality indices) with the test set. For hail and lightning the average over all lead times is shown;

for precipitation, the score is given for the accumulated precipitation in 1 hour exceeding 10 mm.

PR AUC
R RPQ

largest improvement seen in precipitation;-by-ineorporating-at-sources—While-. Meanwhile, for hail the RPQ model results in
a slightly lower skill when including all sources s-instead of the single-polarization radar source alone. In addition, the least

consistency is seen in the results of RPQ for hail.

We also investigated the effect of different thresholds-and-leadtime-probability thresholds and lead time on the skill of the
forecasts. In Fig. 4 the CSI was calculated for different thresholds. For hail and lightning this was done for teadtimes-lead times
of 5, 15, 30 and 60 min. With increasing leadtimes-lead times the skill of the forecasts deereasedecreases. The decrease in skill
is going-more-gradually-more gradual for lightning, while for hail the values drop quickly, with-having-almest-having barely
half of the maximum CSI (indicated value in the legend) after 15 min compared to 5 min.

For heavy precipitation, CSI was calculated over the accumulated precipitation in 1 hour for the three classes. Figure 4c
indicated-that-extremer-indicates that more extreme precipitation is more difficult to reweastpredict. The lifetime of precipita-
tion events decreases with higher rain rates, affecting the skill of the forecasts.

It is also evidently-evident that the threshold resulting in the highest CSI is not fixed over the leadtimes-lead times (for
lightning and hail) or over the classes (for precipitation). Thresholds should be decided on by the end users, selecting values

that fits-with-their-desirablefit their desired criteria.

In Fig. 4b the target variable POH was transformed to binary fields by considering POH > 50% as hail. Selecting other
robabilities to convert POH into a hail event results in a different skill, as shown in Table 3. The skill of the predictions

improves when smaller thresholds are selected, that is, POH > 30% produces the highest skill (Fig. 4b and Table 3. Lower

POH thresholds (i.e. 20-50%) are often related to graupel or soft hail (Loffler-Mang et al., 2011). While according to insurance
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Figure 4. Critical Success Index over the test dataset at different thresholds for (a) lightning and (b) hail for different lead times and (c) the

accumulated precipitation in 1 hour exceeding 10 mm, 30 mm or 50 mm, using the source combination “RPQ”

olarimetric variables and quality indices). The value behind the lead time or class in the legend indicates the optimal CSI.

single-polarization radar,

loss data, a POH threshold of 80% is related to severe hail locally (Nisi et al., 2016). These extreme events are are less frequent.
345 and therefore, more difficult to predict.

Lower skill for precipitation and hail than for lightning can be a consequence of the time and space scales of the tar-

get variables. This difference can be enhanced due to the defined-definition of lightning occurrence that we inherit from
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Table 3. Optimal Critical Success Index over the test dataset, calculated for different probability thresholds to transform POH to binary fields.

CSI
5 min 15 min 30 min 60 min
POH>30% 0469 0263 0148 0057
POH>50% 0463 0265 043 0053
POH>80% 0420 0236 0108 0037

Leinonen et al. (2022b). This was set to the lightning occurrence within 8 km in the last 10 min, which assigns a larger spatial
and temporal footprint to the lightningslightning. Both PR AUC and CSI are sensitive to any degree of error, i.e. it compares the
occurrence of an event pixel-wise, resulting in double penalization. Matching exactly high-resolution forecasts with observed
small-scale features, such as thunderstorms, is rather difficult (Ebert, 2008). For that reason the fraction—skill-seore-I'SS is
calculated over multiple scales (Fig. 5). The differences between FSS for RPQ and R are marginal, especially for shorter lead

—RPQ-RPQ is slightly better for predicting

lightning, with increasing differences for larger lead times (Fig. 5a), which is in line with the previous results, while for hail it
is-the-other-way-areundwe find the opposite result, i.e. R is slightly more accurate compared to RPQ and differences decrease
over-at longer lead times (Fig. 5b). For precipitation RPQ results in a higher skill for warning levels of 10 mm and 30 mm,

while R is better for warning levels of 50 mm.

The machine learning model learned from a dataset that was limited to one convective season. Nevertheless, the training
dataset contained around a million samples. In this paper, we chose to use the same period as Leinonen et al. (2023) to make
the results comparable. By providing a dataset covering more convective seasons. it is expected that skill scores of the different
model versions will improve. It is not expected that the ranking of different model versions with different input dataset
will change, as more events will be available for all observation types (lightning, single polarimetric radar and polarimetric
moments).

5 Conclusions

The objective of this work was to evaluate the impertance—ef-benefits from including polarimetric radar observations as
an additional data source for nowcasting thunderstorm hazards, compared to exploiting radar—refleetivity—alone;—using—the

single-polarization radar data alone, as polarimetry provides information about the microphysical properties of hydrometeors
such as particle shape and size, consequently reducing ambiguities concerning the hydrometeor classes and drop size distribution.

15



0 10 20 30 40 50 60
Lead time [min]
(b) Hail
0.5 A
— RPQ
0.4 A --- R
n 0.3
wn
[N,
0.2 A
0.1 -
0-0 T T T T T
0 10 20 30 40 50 60
Lead time [min]
(c) Precipitation
10 mm —— 0.307 — 0.337 — 0.373
---- 0.300 ---- 0.330 ---- 0.367
30mm —— 0.168 —— 0.189 — 0.215
---- 0.159 ---- 0.178 ---- 0.202
50 mm —— 0.106 — 0.125 —— 0.154
---- 0.114 ---- 0.132 ---- 0.161

Figure 5. Fraction-Fractions Skill Score (FSS) over the test dataset ever-at different lead times for (a) lightning and (b) hail and (c) the

accumulated precipitation in 1 hour exceeding 10 mm, 30 mm or 50 mm, using the source combination “RPQ” (single-pol radar, polarimetric

variables and quality indices; solid lines) and “R” (single-pol radar; dashed lines).
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Additionally the benefits of exploiting radar quality indices were investigated. This work utilizes the convolutional-recurrent

neural network from Leinonen et al. (2022b)—This-medel, which can nowcast the probability of lightning and hail occurrence

up to 60 min with a 5 min resolution, as well as one-hourly-accumulated-precipitation-abeve-the probability of one-hourly
accumulated precipitation exceeding pre-defined threshold levels. Quatitative-differencesfor-lightning-and-heavy-preeipitation

The importance of the polarimetric variables (P) and quality indices (Q) en-top-ofis investigated by comparing model runs
using extended sets of input variables compared to a reference run using only the single- polarimetric radar data (R). For
all three hazards, single-pol radar is the most dominant data source according to the Shapley values. Incorporating polari-
metric variables en-top-of-radarresult-in addition to single-polarimetric radar data results in a higher skill for lightning, hail
and heavy precipitation predictions. In addition, quality indices that take into account quality properties of the radar reflec-
tivity fields have a positive impact on the results —Hoewever,-the-differences-between-the-dataseurce-combinations-in most

cases. Each model version was trained three time to test the robustness of the results. Slightly different final loss values were

obtained and the standard deviation was calculated. The variation of the loss values caused by different combinations of input
datasets (RP, RQ and RPQ) is-s ightning - il

have a similar order of magnitude as the
variations by the initial training conditions, in particular for lightning nowcasting. Differences in mean loss values should be
interpreted with care and it is important to verify the robustness of the results. Among the three targets, the nowcasting for
heavy precipitation improves the most when polarimetric variables are included. For hail, results-ean-be-improved -by-adding

. - . L so-additional information-is-extractedfrom-the
results show that different input combinations are not significantly different from each other, but the differences could be rather
caused by random variation within the training. Consequently, we cannot conclude that the polarimetric variablesthatimproves
the prediction-aceuracyFor thatreason, in the form used in this study, improve the hail predictions in a statistically significant
w

Given that the nowcasting performance improve for lightning and precipitation, but not for hail, we recommend to investigate
further how information of polarimetric variables, such as Zppr-columns, can be u: i S He st
dimensionatityexploited for improving hail predictions. While it is not expected that the ranking of the data importance will

change, nevertheless, we recommend to include a larger training period, covering more convective seasons, in order to improve
the skill of the model.

Code and data availability. The code used in this study can be found at https://github.com/MeteoSwiss/c4dl-polar. The datasets from the
radar source are available for noncommercial use at https://doi.org/10.5281/zenodo0.6802292 (Leinonen et al., 2022a). The additional datasets,

models and results can be found at https://doi.org/10.5281/zenodo.7760740 (Rombeek et al., 2023).
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