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Abstract. From both practical and theoretical perspectives, it is essential to be able to express observed salinity distributions 

in terms of simplified theoretical models, which enable qualitative assessment to be made in many problems concerning water 

resources utilization (such as intake of fresh water) in estuaries. In this study, we propose a general and analytical salt intrusion 

model inspired by Guo’s general unit hydrograph theory for predictions of flood hydrograph prediction in a watershed. To 15 

derive a simple, general and analytical model of salinity distribution, we first make four hypotheses on the longitudinal salinity 

gradient based on empirical observations; we then derive a general unit hydrograph for the salinity distribution along thea 

partially mixed or well-mixed estuary of the partially to well mixed typewe then derive a general unit hydrograph for the 

longitudinal salinity distribution in estuaries of the partial to well mixed type. The newly developed model can be well 

calibrated using a minimum of three salinity measurements along the estuary axis and does converge towards zero when the 20 

along-estuary distance approaches infinity asymptotically. The theory has been successfully applied to reproduce the salt 

intrusion in 21 estuaries worldwide, which suggests that the proposed method can be a useful tool for quickly assessing the 

spread of salinity under a wide range of riverine and tidal conditions and for quantifying the potential impacts due to human-

induced and natural changes. 

1 Introduction 25 

An estuary is the place where the fresh water meets the saline water. It is crucial to quantify the spatial-temporal salinity 

dynamics determined by the competition between the advective salt flux due to river flow and the dispersive salt flux caused 

by tidal currents, since it directly affects water quality and the related water resources management in general. It is well known 

that the key to quantify the salinity distribution along an estuary is the efficient dispersion coefficient, which incorporates all 

mixing mechanisms that counteract the advective salt transport and regards the complex estuarine system as a whole. With the 30 

one-dimensional steady-state salt balance equation, indicating the equilibrium between the advective and dispersive transports 
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of salt, it is possible to derive an empirical relationship for the salt intrusion in estuaries (Prandle, 1981; Savenije,1986, 1989, 

1993, 2005, 2012; Lewis and Uncles, 2003; Gay and O’ Donnell, 2007, 2009; Kuijper and Van Rijn, 2011; Cai et al.,  2015; 

Zhang and Savenije, 2017, 2018). Amongst the proposed solutions, the empirical model using the Van der Burgh’s coefficient 

(e.g., Van der Burgh, 1972; Savenije, 1986) functions well in a wide range of estuaries worldwide (e.g., Savenije, 2005, 2012). 35 

In addition to practical applications, such an empirical model can be very useful from a physical perspective when its 

theoretical basis is well understood.  

Recently, Guo (2022a, 2022b, 2022c) revisited the classical unit hydrograph (UH) theory, which is widely used in hydrology 

for predicting a flood hydrograph from a known storm in a watershed. Based on three hypotheses on instantaneous UH derived 

from observations, he derivedobtained a general and analytical expression of the S-hydrograph in terms of a unit-volume of 40 

excess rainfallhe derived a general and analytical unit-volume hydrograph for S-hydrograph, which represents the discharge 

from a continuous excess rainfall occurring at a uniform rate for an indefinite period. This so-called S-hydrograph is expressed 

in terms of a unit-volume of excess rainfall and is used to derive a UH of any storm duration. It appears that the shape of the 

S-hydrographs is rather similar to the salinity distribution curve along estuaries, while the instantaneous UH curve has 

similarity toresembles the longitudinal salinity gradient. This correspondence, which opens the possibility that the UH method 45 

can be applied to describe the spread of salinity in estuaries.  

The objective of this study is to derive a general and analytical expression of the salinity distribution and thus to derive the 

salinity gradient analytically following Guo’s UH method (Guo, 2022a, 2022b, 2022c). To this end, we start with a review on 

Guo’s general UH theory, together with the Savenije’s empirical salt intrusion model, which is derived from the steady salt 

balance equation and performs well against numerous salt measurements along many different estuaries (e.g., Savenije, 2005, 50 

2012). Subsequently, we make four hypotheses based on empirical observations and follow the general UH theory, which 

leads to a newly developed analytical model for the spread of salinity in estuaries. The model was then applied to real estuaries 

with a wide range of riverine and tidal conditions. After that, the proposed model was compared with the conventional 

Savenije’s model to discuss the physical foundation of the proposed model, which requires further study in the future. 

2 Review of the general unit hydrograph and empirical salt intrusion model 55 

2.1 General unit hydrograph theory 

It was shown that a classical instantaneous UH u(t) [T-1] (representing the discharge due to a unit-volume input of excess 

rainfall) with regard to time t [T] should satisfy the following properties (Chow et al., 1988): 

𝑢(𝑡) = 0     for 𝑡 ≤ 0,    (1) 

0 ≤ 𝑢(𝑡) ≤ 𝑢𝑝     for 𝑡 > 0,     (2)(1) 60 

𝑢(𝑡) → 0     for 𝑡 → ∞,     (3)(2) 
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and  

∫ 𝑢(𝑡)
∞

0
𝑑 𝑡 = 1     (3)(4) 

where up [T-1] in Eq. (2) represents the peak discharge of the instantaneous UH. Eq. (4) is the mass conservation equation, 

indicating that the total outflow volume (i.e., the left side) corresponds to the unit-volume input (i.e., the right side). Making 65 

use of the definition of the instantaneous UH u(t)=dU/dt (where U represents the dimensionless S-hydrograph), Eq. (4) can be 

rewritten as: 

𝑈(∞) = 1     (5)(4) 

Nash (1957) derived an analytical expression for the instantaneous UH that satisfies Eqs. (1)-(4), which is the well-known 

Nash’s gamma function: 70 

𝑢(𝑡) =
1

𝛼1𝛤(𝛼2)
(

𝑡

𝛼1
)

𝛼2−1

𝑒𝑥𝑝(−𝑡/𝛼1)     (6)(5) 

where α1 and α2 are model parameters, while Γ(α2) is the gamma function. Figure 1 illustrates an arbitrary distribution (t=0-

30) of the instantaneous UH for given values of α1=α2=3. It can be seen from Figure 1 that the instantaneous UH consists of 

two distinct regions: the rising limb described by the power function in Eq. (6) and the recessing limb described by the 

exponential function in Eq. (6). 75 
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Figure 1. Illustration of the instantaneous UH analytically computed using Eq. (6) (5) for given values of α1=α2=3. 

Although Eq. (6) is widely used as the analytical solution of an instantaneous UH, it has two weaknesses: (1) it has a zero 

initial condition, which is not necessary the case for real instantaneous UH; and (2) a general and analytical solution of the S-

hydrograph does not exist. In order to remove these weaknesses, Guo (2022a) made three hypotheses on the instantaneous UH 80 

based on empirical observations: (1) the instantaneous UH increases exponentially along the rising limb; (2) the instantaneous 

UH decreases exponentially along the recessing limb; (3) the instantaneous UH tends to 0 and the S-hydrograph tends to 1 as 

t tends to infinity. Subsequently, he derived a general and analytical solution for the S-hydrograph: 

𝑈(𝑡) = 1 − {1 + 𝛽2 𝑒𝑥𝑝[𝛽1(𝑡/𝑡𝑝) − 1]}
−1/𝛽2

     (7)(6) 

where β1 is the dimensionless rising coefficient determined by the watershed characteristics, β2 is the dimensionless recessing 85 

coefficient affected by the downstream water surface condition, while t=tp corresponds to the inflection point with the 

maximum instantaneous UH: 

𝑑 𝑢

𝑑 𝑡
|

𝑡=𝑡𝑝

=
𝑑2 𝑈

𝑑 𝑡2 |
𝑡=𝑡𝑝

= 0     (8)(7) 

With Eq. (7), the instantaneous UH u(t) is expressed as: 

𝑢(𝑡) =
𝛽1 𝑒𝑥𝑝[𝛽1(𝑡/𝑡𝑝)−1]{1+𝛽2 𝑒𝑥𝑝[𝛽1(𝑡/𝑡𝑝)−1]}

−(1+1/𝛽2)

𝑡𝑝
    (9)(8) 90 

To illustrate the general and analytical solutions of the S-hydrograph from Eq. (7) (6) and of the instantaneous UH from Eq.  

(9)(8), Figure 2 shows the computed U(t) (solid line) and u(t) (dashed line) for given values of β1=β2=3 and tp=10. 
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Figure 2. Illustration of the S-hydrograph and instantaneous UH analytically computed using Eqs. (7) (6) and  (9)(8), respectively, 95 
for given values of β1=β2=3 and tp=10. 

2.2 Savenije’s salt intrusion model 

In estuaries, the key to derivinge an empirical relationship for the salinity distribution is the dispersion coefficient, which is 

either constant (e.g., Gay and O’ Donnell, 2007) or variable (e.g., Van der Burgh, 1972; Prandle, 1981). Based on the effective 

tidal average dispersion under steady state conditions, Van der Burgh (1972) proposed an empirical relationship for the 100 

dispersion coefficient: 

𝜕𝐷

𝜕𝑥
= −𝐾

|𝑄|

𝐴
    (10)(9) 

where D [L2T-1] is the longitudinal dispersion coefficient, x [L] is the longitudinal coordinate measured in the landward 

upstream direction, Q [L3T-1] is the fresh water discharge, A [L2] is the tidally averaged cross-sectional area, and K is the 

dimensionless Van der Burgh coefficient.  105 

It is assumed that the longitudinal cross-sectional area follows an exponential function: 

𝐴 = 𝐴0 𝑒𝑥𝑝(−𝑥/𝑎)    (11)(10) 
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where A0 is the cross-sectional area at the estuary mouth and a is the convergence length. Integration of Eq. (10) (9) and taking 

into account the exponential variation of the cross-sectional area using Eq. (11) (10) yields an analytical description of the 

longitudinal effective dispersion (Savenije, 2005, 2012): 110 

𝐷

𝐷0
= 1 −

𝐾𝑎|𝑄|

𝐷0𝐴0
[𝑒𝑥𝑝(𝑥/𝑎) − 1]     (12)(11) 

where D0 is the dispersion coefficient at the estuary mouth. 

With Eq. (10), Savenije (2005, 2012) derived a one-dimensional empirical model for salt intrusion based on the tidally averaged 

cross-sectional mass conservation equation: 

𝐹 = −|𝑄|𝑆 − 𝐴𝐷
𝜕𝑆

𝜕𝑥
    (13)(12) 115 

where F [MT-1]and S [ML-3] are the tidally averaged salt flux and salinity, respectively.  

In a steady state situation with no net salt flux (i.e., F=0), Eq. (13) (12) can be rewritten as: 

𝑑 𝑆

𝑆
= −

|𝑄|

𝐴𝐷
𝑑 𝑥    (14)(13) 

We can combine Eqs. (10) and (14) into a general relationship between the dispersion coefficient and salinity through the Van 

der Burgh’s coefficient (Savenije, 2005, 2012): 120 

𝐷/𝐷0 = (𝑆/𝑆0)𝐾    (15)(14) 

where S0 is the salinity concentration at the estuary mouth. 

Combing Eqs. (12) and (15) yields the tidally averaged salinity along an estuary (Savenije , 2005, 2012): 

𝑆

𝑆0
= (1 −

𝐾𝑎|𝑄|

𝐷0𝐴0
[𝑒𝑥𝑝(𝑥/𝑎) − 1])

1/𝐾

    (16)(15) 

To make Eq. (16) (15) dimensionless, we introduce the following dimensionless parameters: 125 

𝑆∗ =
𝑆

𝑆0
,     𝛾 =

𝑐0

𝜔𝑎
,     𝐷∗ =

|𝑄|𝑐0

𝐷0𝐴0𝜔
,     𝑥∗ =

𝑥𝜔

𝑐0
,    (17)(16) 

where S* is the dimensionless salinity that is scaled by the value at the estuary mouth, γ represents the estuary shape number 

describing the convergence rate of an estuary, ω is the tidal frequency, D* is the dimensionless dispersion coefficient 

representing the downstream dispersion condition, x* is the dimensionless longitudinal coordinate that is normalized by the 

frictionless wavelength in prismatic channels and c0 is the classical wave celerity of a frictionless progressive wave, which is 130 

defined as: 

𝑐0 = √𝑔ℎ/𝑟𝑆    (18)(17) 

in which g [LT-2] is the acceleration due to gravity, h [L] is the tidally averaged depth, and rS is the storage width ratio (see 

Savenije et al., 2008). Here, the asterisk denotes a dimensionless variable. 

Thus, Eq. (16) can be rearranged as (Cai et al., 2015): 135 
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𝑆∗ = (1 −
𝐷∗𝐾

𝛾
[𝑒𝑥𝑝(𝑥∗𝛾) − 1])

1/𝐾

    (19)(18) 

With Eq.  (19)(18), it is possible to derive an analytical expression for the salt intrusion length (i.e., the distance from the 

estuary mouth to the location where the water is totally fresh), which is obtained by setting S*=0 in Eq. (18):(19): 

𝐿∗ =
1

𝛾
𝑙𝑛 (

𝛾

𝐷∗𝐾
+ 1)    (20)(19) 

3 General unit hydrograph theory for salt intrusion 140 

Suppose there is an ocean coupling to an estuary with the coordinate origin located at the estuary mouth. If a unit-volume of 

excess salinity from the ocean is locally (Δx→0) released into the estuary during a time required for an equilibrium to occur, 

the resulting hydrograph is the instantaneous UH dS*(x)/dx that corresponds to the S-hydrograph S*(x) in the dimensionless 

form. Similar to Guo’s UH method (Guo, 2022a), we make four hypotheses on the instantaneous UH (representing the 

instantaneous rate of change with respect to the salinity at a specific position along the estuary axis, i.e., the salinity gradient) 145 

for the salinity distribution based on depth-average observations along estuaries (i.e., data facts): 

Hypothesis 1: Along the recessing limb, the salinity gradient dS*(x)/dx decreases exponentially, which makes the salinity S*(x) 

to decay exponentially in a convex shape.  

Hypothesis 2: The salinity is scaled by the almost constant salinity in the deep ocean, i.e., approximately 36 kg/m3; Thus, as x 

tends to negative infinity, the salinity gradient tends to zero and the salinity S*(x) tends to 1. 150 

Hypothesis 3: Along the rising limb, the salinity gradient dS*(x)/dx increases exponentially, which makes the salinity S*(x) to 

decay exponentially in a concave shape. 

Hypothesis 4: As x tends to infinity, the salinity gradient tends to zero and the salinity S*(x) tends to 0. 

It should be noted that the above hypotheses 1 and 3 are in principle valid only for well- mixed or partially mixed estuaries, 

where salt intrusion really matters. From a practical perspective, this is not a restrictive assumption since the salt wedge in 155 

highly stratified conditions only occurs at the time of high river discharge, when flood protection is generally the main concern 

and salt intrusion is not relevant (Savenije, 2005, 2012). 

According to the first hypothesis, along the recessing limb, dS*(x)/dx and S*(x) satisfy the following relationship: 

𝑑 𝑆∗

𝑑 𝑥
= −𝜇𝑆∗     (21)(20) 

where μ represents the recessing coefficient [L-1]. Meanwhile, the second hypothesis requires that dS*(x)/dx=0 and S*(x)=1 160 

(representing the constant salinity in the ocean) at x→-∞. To meet this requirement, we revise Eq. (20) (21) as: 

𝑑 𝑆∗

𝑑 𝑥
= −𝜇(1 − 𝑆∗)     (22)(21) 

because S*(-∞)=1. Integrating Eq. (21) (22) for S*(x) and applying the initial condition (i.e., x=0, S*=𝑆0
∗) results in: 

𝑆∗ = 1 + (𝑆0
∗ − 1) 𝑒𝑥𝑝(𝜇𝑥)     (23)(22) 
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Similarly, according to the third hypothesis, along the rising limb, we have: 165 

𝑑 𝑆∗

𝑑 𝑥
= −

𝜇

𝑚
𝑆∗     (24)(23) 

where m represents the dimensionless rising coefficient. Integrating Eq. (23) (24) for S*(x) and applying the initial condition 

(i.e., x=0, S*=𝑆0
∗) results in: 

𝑆∗ = 𝑆0
∗ 𝑒𝑥𝑝 (−

𝜇

𝑚
𝑥)     (25)(24) 

which satisfies the fourth hypothesis. We can combine Eqs. (22) and (24) into a generalized differential equation: 170 

𝑑 𝑆∗

𝑑 𝑥
= −

𝜇

𝑚
𝑆∗(1 − 𝑆∗𝑚)     (26)(25) 

which reduces to Eq. (21) (22) at x→-∞ where S*=1 and Eq. (23) (24) at x→∞ where S*
→0. The inflection point x=xp where 

𝑑2 𝑆∗

𝑑 𝑥2 |
𝑥=𝑥𝑝

= 0     (27)(26) 

corresponds to the maximum absolute value of dS*/dx (i.e., the maximum salinity gradient). Integrating Eq. (25) (26) for S*(x) 

and applying Eq.  (26)(27) results in: 175 

𝑆∗ = {1 + 𝑚 𝑒𝑥𝑝[𝜇(𝑥 − 𝑥𝑝)]}
−1/𝑚

     (28)(27) 

To make μ dimensionless, we make a transform μxp→μ, then Eq. (28) (27) can be revised as: 

𝑆∗ = {1 + 𝑚 𝑒𝑥𝑝[𝜇(𝑥/𝑥𝑝 − 1)]}
−1/𝑚

= {1 + 𝑚 𝑒𝑥𝑝[𝜇(𝑥∗ − 1)]}−1/𝑚    (29)(28) 

where x*=x/xp is the dimensionless distance scaled by the position of the inflection point xp. With Eq. (28), (29), the 

instantaneous UH dS*/dx is written as: 180 

𝑑 𝑆∗

𝑑 𝑥∗ = −𝜇 𝑒𝑥𝑝[𝜇(𝑥∗ − 1)] {1 + 𝑚 𝑒𝑥𝑝[𝜇(𝑥∗ − 1)]}−(1+1/𝑚)    (30)(29) 

which satisfies the general UH definition, i.e., ∫
𝑑 𝑆∗

𝑑 𝑥∗

+∞

−∞
= 1. 

It can be seen from Eq. (28) (29) that the theoretical salt intrusion length L* is not available since S* tends to 0 as x approaches 

infinity asymptotically. However, it is possible to define a specific salt intrusion length for a given salinity threshold 𝑆𝑓
∗ (such 

as 0.01) by substituting 𝑆𝑓
∗ into Eq. (28):(29): 185 

𝐿∗ =
1

𝜇
𝑙𝑛 (

𝑆𝑓
∗−𝑚−1

𝑚
) + 1     (31)(30) 

Figure 3 illustrates the spatial distribution of the S-hydrograph (salinity distribution S*) and its instantaneous UH (salinity 

gradient dS*/dx*) for given values of μ=1.5 and m=1. 
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Figure 3. S-hydrograph S* (salinity concentration) and its instantaneous UH dS*/dx* (salinity gradient) as a function of the 190 
dimensionless along-estuary distance x* for given values of μ=1.5, m=1. 

4 Results and discussion 

4.1 Sensitivity analysis of the proposed salt intrusion model 

Although Eqs. (28), (29), (29) (30) and (30) (31) are analytical, the sensitivity to the two controlled parameters (μ and m) is 

not straightforward and directly clear. Thus, it is worthwhile to have a sensitivity analysis on the two calibrated parameters. 195 

Figure 4 presents the analytical solutions of the longitudinal salinity and its gradient as a function of μ and m. It can be clearly 

seen from Figure 4 that two distinct estuarine regions of estuaries display a very different behaviour. For x*<1 we see an 

exponential increase decrease of the salinity gradient until a minimum value is reached at a critical position x=xp (or x*=1) 

defined by Eq. (26), (27), beyond which the salinity gradient decreases increases exponentially until zero is reached 

asymptotically (Fig. 4c, d). The sensitivity analysis shows that the recessing coefficient μ determines the change rate of both 200 

the rising and recessing limbs (Figures 4a, c). With regard to the rising coefficient m, it can be seen from Figure 4b that the 

coefficient m exerts more influence along the rising limb and thus affects mainly the salinity distribution after the inflection 
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point (Figures 4b, d). In addition, Figures 4c, d show that m=1 gives a symmetric salinity gradient about x=xp (x*=1, S*=0.5); 

0 ≤ 𝑚 < 1 gives a negatively skewed salinity gradient; and m>1 gives a positively skewed salinity gradient. 

 205 

Figure 4. Sensitivity analysis of the dimensionless salinity S* and its gradient dS*/dx with regard to the recessing coefficient μ and 

the rising coefficient m. 

To understand the response of the salt intrusion length to both calibrated parameters, Eq. (30) (31) was used to analytically 

compute L* for a wide range of μ and m values (Figure 5) considering a salinity threshold 𝑆𝑓
∗=0.01. We can clearly see that the 

isolines are almost linear, converging towards the origin of the m-μ diagram. Generally, the salt intrusion length increases with 210 

m, while it decreases with μ. This suggests that the model parameter m is generally proportional to the strength of tidal dynamics 

that induces dispersive transport of salt in the landward upstream direction, while the model parameter μ is proportional to the 

strength of the riverine flushing seaward. With this plot, it is possible to understand the potential impacts of different 

hydrodynamic conditions on the salt intrusion length, which is particularly useful for to decision makers for salt intrusion 

prevention. 215 
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Figure 5. Response of the salt intrusion length L* to the dimensionless parameters μ and m for a given salinity threshold 𝑺𝒇
∗=0.01. 

4.2 Application to real estuaries 

The proposed salt intrusion model has been applied to observations in real estuaries worldwide with a wide range of different 220 

riverine and tidal hydrodynamics. In Table 1, a selection is presented of for 21 estuaries, of which where 89 salt intrusion 

measurements were collected at either high water slack (HWS) or low water slack (LWS) are available (all observations are 

available on the web at https://salinityandtides.com/data-sources/). In this table the three model parameters xp, μ and m were 

obtained by fitting Eq. (28) (29) to the observed longitudinal salt intrusion. This can be easily done by means of a nonlinear 

curve-fitting method in the least squares sense (such as using the Matlab ‘lsqcurvefit.m’ function). The model performance 225 

was evaluated by using the root mean square error (RMSE). Figure 6 shows the comparison of the observed and computed 

salinity concentrations in different estuaries. It can be seen from Figure 6 that the correspondence with the observed salt 

intrusion is good with the RMSE being 1.1 kg/m3 on average (see also the model performance reported in Table 1 for many 

estuaries worldwide with distinct salt intrusion lengths).   

Table 1. Measured salinity distributions, calibrated parameters, computed salt intrusion length and the model performance in terms 230 
of RMSE 
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Estuary Date Condition xp (km) μ m L (km) RMSE (kg/m3) 

Bernam 01/06/12 HWS 22.73 2.17 0.47 51.97 0.18 

Bernam 01/06/12 LWS 10.41 1.07 0.36 34.44 0.39 

Chaophy 05/06/62 HWS 23.61 1.47 0.32 61.44 0.71 

Chaophy 05/06/62 LWS 2.49 0.13 0.10 35.48 0.40 

Chaophy 23/02/82 HWS 19.99 1.23 0.10 48.69 0.56 

Chaophy 29/01/83 HWS 28.08 1.72 0.17 59.86 0.42 

Chaophy 16/01/87 HWS 5.68 0.38 0.10 32.05 1.04 

Corantijn 09/12/78 HWS 20.43 1.04 0.45 73.81 0.21 

Corantijn 09/12/78 LWS 11.05 3.30 3.38 59.09 0.10 

Corantijn 14/12/78 HWS 13.80 0.66 0.60 81.26 0.01 

Corantijn 14/12/78 LWS 6.63 1.31 2.69 64.51 0.22 

Corantijn 20/12/78 HWS 15.27 0.52 0.10 66.90 0.21 

Corantijn 20/12/78 LWS 2.99 0.61 2.87 62.63 0.18 

Elbe 09/07/02 HWS 0.01 0.00 0.10 44.03 0.58 

Elbe 04/04/04 HWS 10.21 0.31 0.10 67.82 0.90 

Elbe 21/09/04 HWS 35.77 1.18 0.10 89.37 0.88 

Elbe 21/09/04 LWS 14.36 0.46 0.15 73.98 0.65 

Endau 28/03/13 HWS 14.81 2.16 0.10 26.89 1.17 

Endau 28/03/13 LWS 3.83 0.46 0.10 18.64 0.82 

Incomati 05/09/82 HWS 20.61 4.41 1.80 56.48 0.32 

Incomati 23/06/93 HWS 16.62 3.94 1.43 42.78 0.66 

Incomati 23/06/93 LWS 9.46 1.52 0.78 33.21 0.27 

Incomati 07/07/93 HWS 16.56 3.88 1.56 45.37 0.27 

Incomati 07/07/93 LWS 8.56 2.01 1.41 34.60 0.72 

Kurau 27/02/13 HWS 8.78 1.89 0.10 16.98 1.72 

Kurau 27/02/13 LWS 0.00 0.00 0.10 5.54 0.86 

Kurau 28/02/13 HWS 9.06 1.97 0.10 17.17 1.40 

Kurau 28/02/13 LWS 0.00 0.00 0.10 6.29 0.42 

Lalang 20/10/89 HWS 24.60 1.28 0.10 58.50 2.64 

Lalang 20/10/89 LWS 0.00 0.00 0.10 17.02 1.96 

Landak 15/09/09 HWS 15.93 0.57 0.10 65.20 0.71 

Landak 15/09/09 LWS 7.18 0.35 0.10 42.94 0.39 
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Limpopo 04/04/80 LWS 3.17 0.40 0.10 17.31 0.70 

Limpopo 31/12/82 HWS 39.06 2.13 0.10 71.49 0.36 

Limpopo 31/12/82 LWS 30.23 1.49 0.10 66.16 0.27 

Limpopo 14/07/94 HWS 24.73 1.59 0.10 52.18 0.67 

Limpopo 24/07/94 HWS 20.67 3.29 2.01 74.36 1.45 

Limpopo 24/07/94 LWS 12.22 2.26 2.76 75.31 1.92 

Limpopo 10/08/94 HWS 16.65 5.26 6.15 100.58 1.24 

Limpopo 10/08/94 LWS 13.78 1.96 2.28 82.03 1.26 

Maeklong 09/04/77 HWS 15.65 2.01 0.21 31.48 1.16 

Maeklong 09/04/77 LWS 7.65 0.91 0.10 22.52 1.34 

Maputo 28/04/82 HWS 18.65 4.09 0.30 29.08 0.69 

Maputo 28/04/82 LWS 2.20 0.90 2.04 23.52 0.00 

Maputo 15/07/82 HWS 18.07 5.05 1.77 45.25 0.22 

Maputo 19/04/84 HWS 15.09 2.18 0.10 27.32 0.64 

Maputo 19/04/84 LWS 4.25 1.93 0.90 13.63 0.05 

Maputo 17/05/84 HWS 16.78 3.18 0.16 26.91 0.90 

Maputo 17/05/84 LWS 1.55 2.45 5.25 15.77 2.13 

Maputo 29/05/84 HWS 6.14 1.09 0.25 18.31 0.32 

Maputo 29/05/84 LWS 18.59 2.66 0.10 30.92 1.20 

Muar 01/08/12 HWS 11.09 1.22 0.66 41.90 0.50 

Muar 01/08/12 LWS 0.50 0.05 0.53 30.05 0.24 

Pangani 27/10/07 HWS 21.27 3.61 0.10 31.66 2.14 

Pangani 27/10/07 LWS 8.78 1.32 0.10 20.50 0.63 

Pangani 11/12/07 HWS 16.89 3.37 0.10 25.74 1.67 

Pangani 11/12/07 LWS 6.47 1.11 0.10 16.72 0.51 

Perak 13/03/13 HWS 5.02 1.01 0.81 24.61 0.40 

Pungue 26/09/80 HWS 55.28 2.93 0.10 88.64 0.63 

Pungue 26/05/82 HWS 33.10 2.10 0.10 60.99 0.39 

Pungue 06/08/82 HWS 39.44 2.87 0.10 63.72 0.36 

Pungue 06/08/82 LWS 23.37 0.96 0.10 66.15 0.67 

Pungue 22/09/82 HWS 46.59 3.34 0.10 71.24 0.54 

Pungue 22/09/82 LWS 29.20 1.41 0.10 65.74 0.75 

Pungue 29/10/82 LWS 23.77 1.73 0.10 47.98 0.01 
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Pungue 03/10/93 HWS 61.29 4.71 0.10 84.26 1.70 

Pungue 12/10/93 HWS 54.61 6.09 0.10 70.44 0.63 

Pungue 12/10/93 LWS 39.86 3.21 0.10 61.82 1.59 

Pungue 16/10/93 HWS 74.46 7.52 0.10 91.96 0.68 

Pungue 16/10/93 LWS 54.74 3.16 0.10 85.32 0.82 

Pungue 31/01/02 HWS 17.77 1.16 0.25 50.52 0.58 

Pungue 27/02/02 HWS 13.26 1.54 1.14 57.38 1.00 

Pungue 27/02/02 LWS 1.88 0.26 0.61 25.62 0.38 

Pungue 01/03/02 HWS 17.54 1.26 0.76 69.29 0.62 

Selangor 01/08/12 HWS 10.48 2.11 0.10 19.25 1.52 

Selangor 01/08/12 LWS 0.00 0.00 0.10 6.13 3.18 

Sinnamary 12/11/93 HWS 5.67 1.95 0.10 10.80 0.89 

Sinnamary 27/04/94 HWS 5.75 1.32 0.10 13.42 1.34 

Sinnamary 02/11/94 HWS 9.06 2.53 0.10 15.38 1.56 

Sinnamary 02/11/94 LWS 0.88 0.23 0.10 7.51 0.29 

Sinnamary 03/11/94 HWS 7.49 1.77 0.10 14.99 1.23 

Tha-chin 16/04/81 HWS 22.45 1.00 0.10 62.00 0.62 

Tha-chin 27/02/86 HWS 16.88 1.77 0.63 48.47 0.01 

Tha-chin 01/03/86 HWS 18.79 2.19 0.85 53.64 0.02 

Tha-chin 13/08/87 HWS 15.90 1.11 0.10 41.27 0.72 

Tha-chin 13/08/87 LWS 4.77 2.22 2.25 25.32 0.16 

Thames 07/04/49 LWS 43.41 1.82 0.10 85.55 0.73 

Westerschelde 02/11/00 HWS 82.23 2.93 0.10 131.81 0.84 

Westerschelde 02/11/00 LWS 73.90 2.41 0.10 128.11 0.99 
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Figure 6. Comparison between the analytically computed salinity concentrations and 89 observations in 21 estuaries worldwide. 

For illustrations, Figure 7 shows the longitudinal computation applied to the Pungue, Incomati and Limpopo estuaries by 235 

means of both the newly proposed and Savenije’s models. Generally, the results of the two models are satisfactory for the 

different shapes of salt intrusion curves in well- mixed or partially mixed estuaries (Savenije, 2005, 2012): (1) a “dome-shape” 

intrusion curve (such as along the Pungue estuary, Figure 7a), which generally occurs in strong funnel-shaped estuaries; (2) a 

“bell-shaped” intrusion curve (such as along the Incomati estuary, Figure 7b7c), which generally occurs in estuaries that have 

a trumpet shape ; (3) a “recession-shape” intrusion curve (such as along the Limpopo estuary, Figure 7c7e), which generally 240 

occurs in narrow estuaries with a near-prismatic shape and a high river discharge. It is worth noting that these types of salt 

intrusion curves are very much linked to the geometry of the estuary (Savenije, 2005, 2012). However, we observe from Table 

1 that the calibrated model parameters (μ and m) are rather sensitive to the varied riverine and tidal forcing for a specific 

estuary. Thus, further studies concerning the relationship between the forcing conditions and the model parameters (μ and m) 

are required in the future. It can be seen from Figure 7 that one important difference of performance between these two models 245 

lies in the rising limb when the distance approaches infinity. As x tends to infinity, the salinity gradient of the newly proposed 

model asymptotically approaches to zero, while it reduces to zero at a critical position corresponding to the salt intrusion length 

from Eq. (19) (20) for Savenije’s model. This feature allows an improved fit with observations at the toe of the salt intrusion 
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curve (e.g., Figure 7a). Figures S1-S8 show the comparison between the observed longitudinal salinity and the analytically 

computed salt intrusion curves along 21 estuaries worldwide (see the Supplementary Material). 250 
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Figure 7. Observed and analytically computed salt intrusion curves using the newly proposed and Savenije’s models in the Pungue 

estuary (a, b), in the Incomati estuary (d, e) and in the Limpopo estuary (g, h), together with the idealized shape of the estuary (c: 

Funnel shape; f: Trumpet shape; i: Prismatic shape).Observed and analytically computed salt intrusion curves using the newly 255 
proposed and Savenije’s models in the Pungue estuary (a, b), in the Incomati estuary (c, d) and in the Limpopo estuary (e, f).  

4.3 Analytical difference with Savenije’s salt intrusion model 

In order to understand the differences between the newly proposed model and empirical solutions based on the steady salt 

balance equation, we have made a comparison with the widely used Savenije’s salt intrusion model (Savenije, 2005, 2012) by 

means of a Taylor expansion. The Taylor expansion of Savenije’s salt intrusion model, i.e., Eq. (18), (19), is written as: 260 

𝑆∗ = 1 − 𝐷∗𝑥∗ +
1

2
(𝐷∗2 − 𝐷∗𝛾 − 𝐷∗2𝐾)𝑥∗2 + 𝑂(𝑥∗3)    (32)(31) 

To make a comparison of the proposed model (i.e., Eq. (28)(29)) with Eq. (18), (19), we introduce -m→K (the Van der Burgh’s 

coefficient), then Eq. (28) (29) becomes: 

𝑆∗ = {1 − 𝐾 𝑒𝑥𝑝[𝜇(𝑥∗ − 1)]}1/𝐾      (33)(32) 

The Taylor expansion of Eq. (32) (33) is written as: 265 

𝑆∗ = (1 − 𝐾𝑒−𝜇)1/𝐾 − (1 − 𝐾𝑒−𝜇)(1/𝐾−1)𝑒−𝜇𝜇𝑥∗ +
1

2
(1 − 𝐾𝑒−𝜇)(1/𝐾−2)𝑒−𝜇𝜇2(𝑒−𝜇 − 1)𝑥∗2 + 𝑂(𝑥∗3)   (34)(33) 
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It is difficult to directly compare directly Eq. (31) (32) and Eq. (33). (34). Alternatively, the difference between Eq. (18) (19) 

and Eq. (32) (33) can be explored by looking at the exponential function parts, which can be expanded by the Taylor series: 

𝐷∗

𝛾
[𝑒𝑥𝑝(𝑥∗𝛾) − 1] = 𝐷∗𝑥 +

1

2
𝐷∗𝛾𝑥∗2 + 𝑂(𝑥∗3)     (35)(34) 

𝑒𝑥𝑝[𝜇(𝑥∗ − 1)] = 𝑒−𝜇 + 𝑒−𝜇𝜇𝑥∗ +
1

2
𝑒−𝜇𝜇2𝑥∗2 + 𝑂(𝑥∗3)    (36)(35) 270 

Interestingly, if we slightly modified Eq. (34) (35) by removing “1” from the brackets, then the Taylor expansion of Eq. (34) 

(35) can be rewritten as: 

𝐷∗

𝛾
[𝑒𝑥𝑝(𝑥∗𝛾)] =

𝐷∗

𝛾
+ 𝐷∗𝑥 +

1

2
𝐷∗𝛾𝑥∗2 + 𝑂(𝑥∗3)     (37)(36) 

In this case, Eq. (35) (36) and Eq. (36) (37) are identical if they satisfy the following conditions: 

𝐷∗ = 𝑒−𝜇𝜇     (37)(38) 275 

𝛾 = 𝜇     (39)(38) 

Thus, for given prior conditions (37) (38) and (38), (39), the main difference between the newly proposed model and Savenije’s 

model lies in the inclusion of the term -KD*/γ=mexp(-μ) in the braces of Eq. (32), (33), which is closely related to the upstream 

river discharge, the dispersion coefficient at the estuary mouth, the tidal frequency and the geometry of the estuary according 

to Eq. (16). (17). As an illustration, Figure 8 displays the longitudinal variations of the dimensionless salinity S* and its gradient 280 

dS*/dx* for different values of the recessing coefficient μ and the rising coefficient m, where the solid and dashed lines 

represents the solutions obtained by Savenije’s model and the newly proposed model, respectively while the dashed lines 

obtained by the newly proposed model. It can be seen from Figure 8 that the additional term mexp(-μ) mainly affects the 

downstream part of the salt intrusion curve, while the two methods tend to be the same for larger values of x* (at the toe of the 

salt intrusion curve).  285 
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Figure 8. Longitudinal variations of the dimensionless salinity S* (a, b) and its gradient dS*dx* (c, d) along the estuary axis for 

different values of input parameters. The solid and dashed lines indicate the solutions obtained by Savenije’s model and the newly 

proposed model, respectively. 290 

It is worth noting that the above analysis suggests that the Van der Burgh’s coefficient K (being equal to -m) should be negative 

rather than positive since m is generally positive (see Table 1). This indicates that the dispersion coefficient D should be 

increased along the estuary axis according to Eq. (9). (10). Figure 9 shows the analytically computed longitudinal 

dimensionless salinity S* using Eq. (18) (19) for a wide range of the input parameters K and D* when γ=1. We can see that the 

computed S* does converge to 0 when the distance x* approaches infinity when K values are negative, which is very different 295 

from the performance of the previous analytical solutions using positive K values, where the computed S* generally diverges 

for larger values of x*. Consequently, from a curve-fitting perspective, the Savenije’s model using negative K values can be 

regarded as a special case of the newly proposed salt intrusion model if we further rescale the salinity by the dimensionless 

salinity in the deep ocean (see Figure S9 in the Supplementary Material). This also suggests that an enhanced empirical 

relationship concerning the effective dispersion coefficient (instead of the conventional Van der Burgh’s relationship) is 300 

required for deriving an accurate salt intrusion curve from a theoretic point of view.  

It should be noted that although the model fits the observations very well, the physical foundation of Eq. (29) (28) needs further 

study in the future. This limitation could be relaxed by carefully comparing the proposed model with those based on the steady-
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state salt balance equation. Specifically, several idealized numerical models (1-D, 2-D or 3-D models) have been adopted as a 

first approximation to quantify the along-channel salinity dynamics (e.g., Pein et al., 2018; Dijkstra and Schuttelaars, 2021; 305 

Wei et al., 2022). With these idealized numerical models, the physics behind the Eq. (29) can be understood thatin order to 

make the model could be made fully predictive through the relation of the three model parameters (xp, μ and m) to measurable 

or quantifiable variables (e.g., river discharge, tidal amplitude, cross-sectional area convergence length) by means of regression 

modelstechniques or similar approaches. It should be noted that the proposed salt intrusion model is in principle valid only for 

well- mixed or partially mixed estuaries, where salt intrusion really matters. From a practical perspective, this is not a restrictive 310 

assumption since the salt wedge in highly stratified conditions only occurs at the time of high river discharge, when flood 

protection is generally the main concern and salt intrusion is not relevant (Savenije, 2005, 2012). If the physics behind the Eq. 

(28) is understood, the model could be made fully predictive through the relation of the three model parameters (xp, μ and m) 

to measurable or quantifiable variables (e.g., river discharge, tidal amplitude, cross-sectional area convergence length) by 

means of regression models or similar approaches. Moreover, the proposed salt intrusion model is particularly useful for 315 

quantifying the alterations in salt intrusion dynamics owing to climate change or human interventions by comparing the three 

calibrated model parameters for two different periods with considerablye different conditions owing to the climate change or 

human interventions. 
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Figure 9. Longitudinal variation of the dimensionless salinity S* computed using Eq. (18) (19) along the estuary axis for different 320 
values of K and D* when γ=1.  

5 Conclusions 

In this paper, we revisited the empirical salt intrusion model making use of Guo’s general unit hydrograph theory (2022a, 

2022b, 2022c) and proposed a general and analytical model for the salinity distribution in estuaries of the partially mixed to 

well -mixed types. The newly developed method does not require observed or calibrated salinity at the estuary mouth and can 325 

be well calibrated using a minimum of three salt measurements along the estuary axis. This is mainly due to the fact that Eq. 

(29) is a monotonic function that itswhich first derivative (i.e., Eq. 30) does not change sign and has only one minimum. In 

addition, the salinity converges towards zero as the along estuary distance approaches infinity asymptotically, which might 

improve the model performance near the toe of the salt intrusion curve when compared to empirical solutions based on the salt 

balance equation. The model has been applied to numerous estuaries worldwide and the results agree very well with the 330 

observations. This indicates that the proposed model can be a useful tool to understand the dynamics of salt intrusion in 

estuaries and for assessing the potential impacts due to human-induced (e.g., dredging) or natural (e.g., mean sea level rise) 

changes. However, the underlying physical foundation of the proposed model and the physics of model parameters need further 

study in the future. 
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