
Dear editor and referees, 

Thank you very much for the constructive comments on our manuscript and for raising some 

interesting issues that need to be discussed. We have revised the manuscript following your 

comments. We tried to be more precise when discussing the consideration or not of the 

asymmetry in empirical or analytical MRC models present in the literature. We tried to 

address and discuss issues of artifacts, position classes, and seasonality by performing 

auxiliary analyses and simulations. Due to space limitations, the figures about these different 

experiments have been added to the Supplementary Material.  

Best regards,  

Kaltrina Maloku 

Response to anonymous referee #1 

We thank referee #1 for reading the manuscript carefully and providing thoughtful and 

constructive comments. The comments are noted with RC, our responses with AC, and the 
intended additions or changes in the manuscript are underlined.  

RC1.1 Based on some exploratory analysis in Rupp et al. (2009), I do have a lingering doubt 
related to the apparent asymmetry and the need to explicitly account for it fully. 
 
Asymmetry has been considered before although differently. For example, Olsson (1998) 
and Güntner et al. (2001) developed the distributions of the breakdown coefficients 
separately for time intervals that start or end a rainfall sequence or are within a rainfall 
sequence. They showed that starting/ending intervals had distinctly asymmetric 
distributions. 

 
AC1.1 We thank Reviewer #1 for this important comment. Yes, the dependency of the 
cascade generator on the external pattern of precipitation (i.e. the dependency of the 
cumulative distribution function (CDF) of the breakdown coefficients (BDCs) on the 

external pattern of precipitation), has been highlighted/commented in a number of 
publications. We were also aware of the work of Rupp et al. (2009) and of their 
analyses/doubts on the need/way to account for it in a MRC model. 
 
To our knowledge, accounting for this dependency in a MRC has mainly (almost only) 
been carried out with empirical MRC where the CDFs of the BDCs is estimated 
empirically and described with empirical CDFs. This allows to describe CDFs with 
different shapes. Analytical scaling MRC presented up to now, such as those described 
in Rupp et al. (2009), can conversely not account for this dependency. The reason is 
that the CDF of the BDCs is modelled with a symmetric distribution where one 
assumes equal wet/dry or dry/wet probabilities (p01 and p10) and a symmetric 
distribution of non-zero weights. For instance, the analytical model uses a symmetric 
beta distribution in Rupp et al. (2009), a mixed beta – normal distribution in Licznar et 
al. (2011a), a 3N-B distribution in Licznar et al. (2011b) where a symmetric beta 
distribution is combined to 3 two-side truncated normal distributions.  
 



One noticeable exception is the analytical MRC of McIntyre et al. (2016), who used a 
2-parameters beta distribution. This distribution, which can be asymmetric, was used 
to model the asymmetric CDFs found for precipitation amounts in asymmetric 
precipitation sequences, namely the starting/ending intervals (for the respectively 
named “followed” and “preceded” precipitation amounts in their work). McIntyre et 
al. (2016) did not consider scaling models to estimate the CDF parameters (the CDF of 
the BDCs was estimated for each temporal scale for different categories of rainfall, 
defined from the volume of precipitation and the external pattern class (isolated, 
enclosed, preceded and followed)). The number of parameters for their model is then 
considerable, and is potentially too large to allow for a robust estimation.  

 
In our work, we fill this methodological gap. We consider an analytical model which is 
by construction asymmetric and whose parameters are related – thanks to simple 

scaling laws, to the asymmetry of the local precipitation pattern. This allows us to 
keep the number of parameters very low, and to combine 1) scaling relationships with 
temporal scales and intensity and 2) “scaling dependency” on the external pattern 
structure. This is a first novelty. Next, we introduce the asymmetry index and we show 
that the asymmetry level of the cascade generator (i.e. the asymmetry level of the 
CDF used for the distribution of W’s) depends on this index in a continuous way. This 
allows conditioning the MRC on the external pattern but without the need to consider 
external pattern classes. This is another strength of our approach.  

 
As shown in Fig. 1, the “intensity” of the asymmetry of the local precipitation 
sequence can vary a lot from one external pattern to the other. This is not only a 
question of asymmetry class (‘ending/starting”, …). As shown in Hingray and Ben 
Haha (2005) (Fig. 4 of this work given below), the distribution of W is not expected to 
be the same in configurations b) (high gradient in a steep descending pattern) and c) 

(low gradient in a steep descending pattern). The asymmetry index introduced in our 
work is shown to allow the distinction between such configurations.  
 

The introduction of our paper will be strengthened to better describe previous issues.   

Modification: p.3-4, L76-90. 

 



 

Figure 1. Illustration of possible breaking coefficient for a steep and a non-steep decreasing 
pattern precipitation sequence (from Hingray and Ben Haha (2005)). 

 
RC1.2 Rupp et al. (2009) showed that models that did not explicitly incorporate asymmetry 

did not generate asymmetry at the time steps at which the rainfall was simulated. However, 
when they resampled their synthetic rainfall at an interval of the same duration but offset in 
time by small amount, asymmetry in the breakdown coefficients was introduced. The 

breakdown coefficients from the resampled series were remarkably like the breakdown 
coefficients from the observed data (see their Figure 16).  
 
Rupp et al. (2009) concluded that at least some of apparent asymmetry in the breakdown 
coefficients arises from imposing a discrete, regularly timed sampling interval to an 
irregularly timed phenomenon. To what degree, then, are the authors simply reproducing an 
artifact of sampling by incorporating asymmetry explicitly into their models? I think this issue 
needs discussion. 
 

AC1.2 We thank Reviewer #1 for this very interesting comment. We had indeed seen 
this analysis of Rupp et al. (2009) and their offset experiment. Note that they do not 

strictly conclude that at least some of the apparent asymmetry in the breakdown 
coefficients arises from imposing a discrete, regularly timed sampling interval to an 
irregularly timed phenomenon. 

They only say: ”We suspect that the asymmetry in the starting and ending 
distributions is largely an artifact of sampling a semi-continuous and irregularly times 
process at discrete, regularly spaced intervals” (paragraph [41]).  

 
And after their “offset experiment”, which results they presented in Figure 16. Their 
conclusion was (paragraph [44]):  
 
“While we do not present definitive evidence that the variability in the cascade 
weights among class intervals is completely an artifact of the sampling method, our 



preliminary analysis raises interesting issues that warrant further investigation. For 
one, if the dependency is largely an artifact, is the approach of Olsson [1998] and 
Gunter et al [2001] to reproduce it explicitly warranted, particularly because it 
substantially increases the number of model parameters required? Also, if we sample 
our rainfall events such that the sampling intervals begin and end exactly when the 
rain actually begins and ends, will weights in the middle of an event still differ from 
those near its onset or termination?”  
 
To our knowledge, unfortunately, no other work has been carried out to investigate 
these interesting issues. Our work strongly suggests that their “suspicion” was likely 

wrong. Our work suggests that there is no one single cascade generator for a given 
time scale and given intensity class, but a large variety depending on the asymmetry 
importance of the local precipitation pattern. The cascade generator is asymmetric 

and as it was demonstrated empirically by the works of Olsson (1998), Gunter et al. 
(2001), McIntyre et al. (2016) and others, this asymmetry is determined by the 
asymmetry of the local precipitation sequence around the precipitation amount to 
disaggregate. In line with the work of Hingray and Ben Haha (2005), our work 
additionally shows that the asymmetry of the cascade generator can be more or less 
important, depending the importance of the asymmetry of the local precipitation 
sequence.  
 
The main argument of Rupp et al. (2009) to their conclusion recalled above is based 
on their offset experiment. However, another conclusion could (should) likely be given. 
This is at least what suggests the following offset experiment we carried out to 
answer this issue raised by Reviewer #1.  
 
Offset experiment. The offset experiment was carried out on 40min time series data, 

but similar results are expected for other temporal aggregation levels. Precipitation 
data available for this experiment have a 10-minute resolution 

• For a given station, in order to obtain 40-minute time series we aggregate 10-
minute time series by using different time offsets: no offset, 10 min, 20 min 
and 30 min. Four time series have been thus obtained with the same 
resolution, 40-minute. They are all derived from the same 10-minute initial 

time series.    

• For each of these 4 offset 40min time series, we calculate a set of different 
metrics. Obviously, we would expect the statistics to be independent of the 
offset experiment. For illustration, some results are shown for different 
stations in Figure 2 for standard deviation, autocorrelation at lag-1 and for 5 
and 20yrs return levels.  

• The initial 40min time series (without offset) was next disaggregated to 10min 
producing 30 time series scenarios.  

• The same offset experiment is performed for each of the 30 disaggregated 
time series scenarios. For each scenario, 4 offset 40-minute time series were 

produced with the 4 different offsets. The process was repeated for each 
station. The results obtained with the 4 models A, A+, B, B+ are presented in 
Figure 3 (the MAPE metric is presented for different statistics).   
 



The conclusions from our offset experiments are:   

• Whatever the statistics considered, the estimates calculated on observations for 
different offsets are very similar. This is highlighted in Figure 2 for 12 stations 
spread across Switzerland.  

• When calculated on disaggregated data, the estimates calculated for different 
offsets are no more similar. More precisely, the estimates obtained for the three 
non-zero offsets (10, 20, 30-minute) are similar to each other but often 
significantly different from the reference estimate (with the 0-minute offset). This 

is highlighted in Figure 3. Each box plot represents the estimated value of a given 
statistics for 81 stations. Estimates are given for standard deviation (first row), 
lag-1 correlation (2nd row), and 5 and 10-years return levels (3+4th rows) for the 
four seasons (the 4 columns) and the different models (model A, B, A+ B+ in the x-
axis). Whatever the season, whatever the statistics, the red boxplot (offset 0-min) 
is very often significantly different from the green/blue/magenta boxplots (10, 20, 
30-minute).  

• Models A and B (without asymmetry) are much more sensitive to temporal offset 
than models A+ and B+. 

• The model the less sensitive to temporal offset is model B+. 
 



Standard deviation of precipitation                                     Lag-1 autocorrelation  

 
 
5-year return levels                                                                 20-year return levels 

 

Figure 2. Effect of the offset on observed time series statistics.  Observed metrics as estimated 
on 40-minute time series obtained for different time axis offsets. On the left is shown the 
standard deviation and on the right autocorrelation at lag-1. Each panel corresponds to a given 
station (results presented for 12 stations).   



 

 

 
 

Figure 3. Effect of the offset on disaggregated time series statistics. Mean Absolute 
Percentage Error (MAPE) between the observed and disaggregated values for different 
statistics (first row: standard deviation, 2nd row: lag-1 autocorrelation, 3 and 4th row: 5 and 
10-years return level). MAPE is given as a function of the time offset (boxplots of different 
colors: red - no offset, green, blue, magenta: 10, 20, 30min time offset, respectively), season 
(DJF, MAM, JJA, SON columns) and disaggregation model (A, A+, B, B+). Each boxplot 
summarizes the single-site performances obtained for 81 stations spread over Switzerland 

and for the 40-minute temporal aggregation level.  

 



Conclusions: The results of these offset experiments, with observations first and with 
disaggregated series next, strongly suggest that cascade models that disregard the 
asymmetry of the cascade generator and its dependency to the asymmetry of the 
local precipitation definitively break some important precipitation variability features. 
A comment on this interesting point will be also added in the discussion.   

 
Model parsimony argument. One last argument of Rupp et al. (2009) to disregard the 

asymmetry dependency was the large amount of model parameters required to 
describe this. This was indeed a critical point of the empirical models of Olsson (1998) 
and Gunter et al. (2001). Their models are based on empirical ECDFs, which are 

different from one “asymmetry” class to the other. Their models could thus not easily 
account for the dependency on intensity (at least not with the scaling relationships of 
analytical MRC developed by Rupp et al. (2009)). This was indeed an important 

limitation. This model parsimony argument was also an issue in the analytical model 
of McIntyre et al. 2016. As mentioned above, they did not consider scaling laws, which 
are needed to reduce the number of parameters. 
 
Our approach fills this gap. We account for the local asymmetry of precipitation in a 
very parsimonious way, with an asymmetry index which is continuous. Our model can 
be then analytical, both for the statistical distribution (which is a non-symmetric beta 
distribution) and for the scaling relationships linking the parameters of the model to 
different features of the rainfall amount to disaggregate (intensity, asymmetry, 
temporal scale).  
 
With our continuous asymmetry index, we do not have to define classes, allowing a 
much more robust estimation of model parameters. We are then able to present 
maps over Switzerland for the 5 parameters of the model. The very large spatial 

homogeneity of the parameters clearly shows the robustness of the estimates and 
strongly suggests the relevance of the model with respect to the different features 
that are of importance for the cascade generator.  

 
Is asymmetry an artifact of sampling? Notwithstanding previous elements, from 
what can be understand from observations, asymmetry in precipitation-related data 
is not an artifact of sampling.  

 

• The asymmetry index we introduce is defined per see. It just characterizes 
the asymmetry of any given (observed, simulated) temporal rainfall 
sequence {Rt-1, Rt, Rt+1}. As mentioned in the manuscript, for a given time t, 
the farthest the value of Z is from 0.5, the more asymmetric the sequence 
is. A Z value close to 0.5 means that Rt-1 and Rt+1 are very close to each 
other, or that they are very small when compared to the amount to 
disaggregate. This has no link with the sampling artifacts.  

• As shown in the manuscript, this rainfall sequence asymmetry translates 
directly to the asymmetry of the ECDF of the breakdown coefficients. This 
is clear from Figure 3 of the manuscript where statistical characteristics of 
the breakdown coefficients W are presented as a function of the 



asymmetry index Z. Some comments will be given in the discussion on 
these issues. 

Modification: p.22-23, L452-466. 

RC1.3 33-35:  Yes, many types and variations of disaggregation models exist. Although it 
would be excessive to describe them all here, I suggest referencing one or two review 
papers. 

AC1.3 Thank you for this suggestion. There is however to our knowledge no real 

review paper on disaggregation for the generation of high-resolution data. The 
review paper of Srikanthan and McMahon (2001) reviews some disaggregation 
techniques but it is somehow dated and does not consider the disaggregation to sub-

daily resolutions. The paper of Koutsoyiannis (2003) gives an interesting and rather 
large view of different disaggregation techniques but it is not really a review and 
some approaches are missing (e.g. Method of Fragments). We will nevertheless 

mention it in the manuscript.  
Modification: p.2, L33-34. 

RC1.4 157: Winter should be defined. 
AC1.4 As pointed out by you below in RC1.10, it should actually be Autumn which will 
also be defined as suggested.   
Modification: p.5, L142-144. 

RC1.5 169: The text claims to be referring to Figure 1d but I think it should be Figure 1b. 

AC1.5 Thank you for pointing out this error. We will fix it.  
Modification: p.7, L180. 

RC1.6 172: Model B has 5 parameters, not three. I_0 and I_1 should be included in the count 

of parameters. 
AC1.6 We agree that I_0 and I_1 can also be counted as parameters of the model. 
However, these parameters are kept fixed for all seasons and stations and do not 
depend on the specific precipitation data at the stations. Here, we will precise that 
only the free parameters of the model are counted, i.e. the ones that need to be 
estimated and vary through seasons and stations.   

RC1.7 204: Why use lower-case z for the asymmetry index here and below when it was 
previously upper-case? 

AC1.7 We used lower-case in order to point out that z is a realization of the random 
variable Z. Anyway, we recognise that this can create confusion to the reader so we 
will uniformize the notation in the whole manuscript.  

Modification: the notation has been uniformized throughout the revised 
manuscript.  

RC1.8 275-279 & 385-398: Licznar et al. (2011) explore in some detail the artifacts arising 
from measurement resolution. They present a method of adding small amounts of random 
noise to discretized observations in an attempt to extract the underlying distribution of W at 
low intensities. It is at least worth a mention even if the authors don’t want to take that 

approach. 
AC1.8 The artifacts arising from measurement resolution lead to critical estimation 
issues, indeed. Thank you for pointing out this issue here. Actually, during our 
preliminary analysis, we employed a similar approach of “jittering” observation 



records. The objective was 1) to understand the influence of rain gauge tipping 
resolution on the distribution of cascade weights (especially on the non-zero 
probability amount px and on the shape of the distribution for the W+ breakdown 
coefficient) 2) to determine which data have to be disregarded to allow a relevant 
estimation of the model parameters, which would be not too much contaminated by 
the measurement resolution artifact.    
 
The jittering process considered in the present study consisted as follows. In 
Switzerland, sub-daily resolution precipitation is measured with tipping bucket rain 
gauges, with a measurement resolution of 0.1mm. In the measurement process, one 

rainfall pulse is recorded once the 0.1mm rainfall bucket is filled. The duration needed 
to fill the bucket is obviously not known. It may be a few seconds in the case of very 
intense rainfall rates or several hours or days in the case of very light rainfall rates. 

Our jittering process is based on the previous consideration. When X mm have been 
recorded within a given time step (and then displayed in the time series of 
precipitation data), we considered that:  

• (X-0.1) mm really belong to this time step and  

• Only part of the remaining 0.1mm belongs to this time step (this 0.1mm is 
obviously the first tipping bucket pulse recorded during this time step). The 
fraction Y of the 0.1 mm belonging to the current time step was sorted 
randomly. The complementary fraction (1-Y) was attributed to the previous 
time step.  

 

Generation of jittered time series. Our jittering process thus only applies to the first 
0.1mm recorded amount (i.e. first recorded tipping bucket pulse) of each time step. It 
was applied to the original high-resolution time series, available at 10min resolution. 
We generated 20 jittered time series from the original one and re-estimated the 
characteristics of the statistical distributions required to describe the breakdown 
coefficients. 
 
Comments from our jittering analyses.  
As mentioned in many previous papers, in the initial time series, rainfall amounts can 

only take discrete values. With the 0.1mm resolution, only 0.1, 0.2, 0.3…. 1, 1.1, … 
values are possible. The probability occurrence of breakdown coefficients with a value 
of 0 or 0.5, 1/3 or 2/3, 1/4 and 3/4 is overestimated (these values correspond to 

rainfall amounts of 0.1, or 0.2, or 0.3m, 0.4mm respectively, which are rather 
frequent). With this jittering process, rainfall values can take all possible positive 
values and the overestimation mentioned above is largely reduced. We thus largely 

reduce the artifact due to the tipping bucket resolution. As mentioned in the paper of 
Licznar et al. (2011b), the statistical distributions of W for the jittered time series are 
“very smooth and elegant, especially for small time scales ranging from 10 to 80min”.  

These jittering analyses highlighted also the following: 

Impact of the jittering on precipitation amounts and statistics. By construction, the 
largest is the initial rainfall amount for a given time step, the lowest is the difference 
between this initial value and the jittered value. For instance, for a 1mm initial 
amount, the jittered values can take values between 0.9mm and 1mm. The largest 



possible difference is 10%. For a 10mm initial amount, the jittered values can take 
values between 9.9mm and 10mm. The largest possible difference is 1%. The jittering 
process has thus almost no influence on rainfall properties for moderate to large 
precipitation amounts. This is for instance the case for precipitation maxima 
(especially return levels for different return periods) which are almost unchanged. 
 
Impact of the jittering on the statistical distribution of the breakdown coefficient. 
The jittering process leads to significantly modify the distribution of W and, in turn, it 
can significantly modify the scaling properties of the different parameters of the 
cascade generator.  

 
This was especially highlighted for the non-zero subdivision probability. In the 
Figure 1a of the manuscript (also shown below in Figure 4), the non-zero subdivision 

probability px varies from 0 - for very low rainfall intensities to 1 - for very large ones.  
• With the initial series, the precipitation intensity-px relationship is found to 

depend on the temporal scale (see the different curves in Fig. 1a). 

However, dots reported in the figure for small intensities correspond to 
small rainfall amounts, which are highly contaminated with the resolution 
issue as many of these small rainfall amounts are 0.1, 0.2, 0.3 values. This 

is especially critical for the smallest temporal scales. 

• When jittered, the differences between the different time scales – 
mentioned above for instance for the intensity-px relationship, is reduced 

suggesting that an important part of the dependency on temporal scale is 
mostly due to the measurement precision artifact (see Figure 4a and c). 
When we disregard all data smaller than 0.8 mm (that are numerous, 

especially for fine temporal scales), the different dots on the x-axis in the 
figure with a px value of 0 disappear. This confirms the relevance of one 
unique scaling model for px as a function of intensity only. This is the 
reason why we considered Model B, which by construction disregards 
possible relationships with temporal scale.  

 

This artifact issue obviously deserves more attention in all works with MRC. It would 

require too long explanation and was not integrated in the manuscript. We will 
nevertheless mention it more clearly in the discussion. 
Modification: p.21-22, L420-429. 
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Figure 4. Non-zero subdivisions probability px as estimated on observation data from Zurich 
station for each intensity class and temporal scale. (a) Same model A as in the manuscript, 
(b) model B, a threshold of 0.8mm is applied to discard px (same figure as in Supplementary 
Material) and (c) same analysis as in panel (a) but this time a jittering procedure is applied to 
the data before performing the estimation.   

RC1.9 Table 1: As I stated above Model B has a total of 5 parameters when parameters I_0 
and I_1 are included. Similarly, Model B+ has 7 parameters. 

AC1.9 Please see our answer to RC1.6.  
RC1.10 Figure 1: “SON” should be defined. I assume it is Sep – Nov?  Also, the caption says 
“winter”, whereas SON would be autumn. 

AC1.10 Thank you for spotting this error. Yes, SON means September to November 
corresponding to the autumn season. Similarly, DJF means December to February, 
corresponding to the winter season. This will be clarified.  

Modification: p.8, caption of the figure 1.  

RC1.11 Figure 3: Panel (a) takes effort to interpret. I have a few comments: 

1. What is “x”? Is it W?  W_1?  W+?  For clarity, please replace x by what is represent. 
2. An ECDF should go from 0 to 1 but it is not obvious that each individual curve does 

that. For example, the Z =1 curve appears to have a value F(x) ~= 0.5 at x = 1, but does the Z 
= 1 curve jump to a value of F(x) = 1 very close to x = 1? 

3. Lastly, although plotting the ECDF is convenient in that several curves can be 
plotted in one panel, I think it would be much easier to interpret histograms of W for various 
classes of Z. Notable differences between winter and summer might also be more obvious. 

AC1.11 Thank you for the detailed comments on these panels.  

• x here referred to W. We will replace x by W for simplicity as suggested.   
• Sure, each ECDF should go from 0 to 1 and it is also the case here. We 

agree that in the figure this is unnoticeable due to the superposition of 
different curves and axis.  It is also true that for “z=1” the ECDF jumps from 
around 0.5 for values close to 1, to 1, when x gets 1. The same behaviour 
can be noticed for “z=0” for very small x. This effect is due to the 
intermittency of the precipitation process that is reflected on the observed 
cascade weights with a considerable number of x = 0 or x = 1.  

• The distribution of positive weights can indeed significantly differ between 
Winter and Summer and these differences may be slightly difficult to 
appreciate with ECDFs. Please find below in Figure 4 histograms of 



observed weights that correspond to different classes of Z-index. On the 
left are shown histograms for Winter (December to February) and on the 
right for Summer (June to August). The above assumption is supported by 
the histograms, even though we believe that the differences can be better 
observed by looking at the ECDFs than at histograms in our case. It is due 
to the considerable number of weights equal to 0 or 1, that get more 
visual attention than the distribution of positive weights, 0<W<1.  

Modification: p.11, figure 3.  

 

 
 

Figure 4. Histograms of observed breakdown coefficients for each class of asymmetry index 
Z. In the left panel are the results for winter (DJF) while on the right are the results for 



summer (JJA). Please note that the weights calculated for precipitation amounts smaller than 
0.8 mm are discarded from this analysis.     

 
RC1.12 Figure 6: Consider using a log-log scale. 

AC1.12 This is a great suggestion as with the current presentation more visual 
attention is given to very high return levels, which usually occur in summer. Please 
find below the analogue figure (Figure 5) but in log-log scale. These results 

correspond to 5-year and 20-year return levels at 40-minute temporal scale. The 
following representation will replace the one in Figure 6.   

Modification: p.18, figure 6.  

 
 

 
Figure 5. (Log-scale) Observed versus simulated return levels at the 40-minute temporal 

resolution for (a) 5-year and (b) 20-year return periods, for each model and at each site. 
Same results as in Figure 6 of the manuscript but log-log scale is used for plotting.  

RC1.13 229: Replace “confronted” with “compared”. 
AC1.13 Thank you for this suggestion. We will account for it.  
Modification: p.14, L318.  

RC1.14 474: “…reveals actually not obvious…”  Typo? 
AC1.14 Thank you for pointing out this mistake. We will remove the word “actually”.  
Modification: p.27, L542.  

 

 

 

 



Response to anonymous referee #2 

We thank referee #2 for reading the manuscript carefully and providing thoughtful and 
constructive comments. The comments are noted with RC, our responses with AC, and the 
intended additions or changes in the manuscript are underlined.  

RC2.1 The authors compare their results with a very narrow field of the latest developments 
(here: analytic solvable micro-canonical cascade models). However, the results can be 
interpreted from a larger perspective (at least micro-canonical cascade models, better: 
cascade models in general). For example the scale-dependency (model A vs. B, bounded 
vs. unbounded model) and position-dependency. The discussion would benefit from it 

and the reader would be provided with a broader perspective on the scientific field. It is 
also important because some findings (which are new for the analytic solvable MRC) are 
quite common to apply for other cascade models. 

AC2.1 Thank you for this remark. We agree that our results could be interpreted from 
a larger perspective for other disaggregation approaches, for other cascade model 
approaches. We believe that the impact of the local asymmetry of precipitation on 
precipitation variability will be worth further investigations and may improve our 
understanding and modelling of some precipitation properties. We will add a 
comment on this in the conclusion.  

Modification: p.27, L551-554.  

RC2.2 Section 4.1 The authors highlight the improvement by introducing the asymmetry in 
comparison to model A and model B. From my understanding neither model A nor model 
B takes into account the position-dependency of the current time step to disaggregate. 
To my knowledge the latest references on micro-canonical cascade models all take into 
account position dependency (so starting, enclosed, ending, isolated position classes 
depending on the wetness state of: {Rt-1, Rt, Rt+1}). As mentioned before, for analytic 
solvable MRC it is maybe not common to take into account the positions/patterns from 
the coarser scale, but it is common for MRC in general. Here, the asymmetry can be 

interpreted as an extension of the position-dependency, since it takes into account the 
intensity of the surrounding time steps rather than the wetness state only (so real vs. 
boolean). So it is not surprising that A+ and B+ outperform A and B, respectively, but A 

and B do not represent the state-of-science. I recommend to add a position-dependent 
cascade model to evaluate the added value of the asymmetry in comparison to the 
wetness state. Even if both approaches result in similar statistics, the asymmetry would 
have the benefit of being more parameter parsimonious. It is important here to show the 
reader the clear benefit of the introduced model approach.  

AC2.2 Yes, you are right, the asymmetry can be interpreted as an extension of the 
position-dependency already accounted for in a number of previous works. Models A 
and B, do not account for the position dependency. They are not the state-of-the-art 
models if empirical cascade models are considered. They are however state to the art 
models if analytical models (with scaling models included) are considered. To our 
knowledge, the gap between both approaches was unsolved to date. Our modelling 

approach proposes a bridge between both approaches: accounting for asymmetry in 
an analytical way with a continuous asymmetry index which allows to develop 
analytical scaling laws.   



The point you raised is however very relevant. Is there some added value of the 
asymmetry approach in comparison to the position dependency approach? To assess 
this, we considered two more models “A position” and “B position” (“Ap” and “Bp”). 
These two models are based on models A and B respectively, but we added a 
dependency to the position class (starting, enclosed, ending, isolated). Therefore, for 
each station, we estimated a set of parameters by season and by position class. In the 
same manner, as explained in the manuscript, the observed quasi-daily amounts were 
disaggregated to time series of 40-minute resolution following these two models. 

Results are shown in Figure 6 and can be interpreted as follows: 

• For Standard deviation, (a), and the proportion of wet steps, (b): Models Ap / 
Bp perform similarly as models A/B and models A+/B+. 

• For Lag-1, (c), and Lag-2, (d), autocorrelation: Models Ap and Bp perform 
worse than models A and B (and then much worse A+ and B+)  

• For mean length of wet spells, (e): Ap is slightly better than A but Ap is still 
worse than model A+.  

• For return levels Figure 7, results are almost the same for all models.  

Overall, in our case, conditioning the analytical models to the position class improves 
the performance of classical analytical models. As shown in Figure 6 it is however less 
efficient than considering scaling laws with a continuous asymmetry index. This will 

be worth further investigations to assess if these results could be valid in other 
climates. We believe that this better performance of the models A+/B+ is due to the 
fact that the models are additionally able to make a distinction between different 

“starting” sequences (or different ending sequences) as the asymmetry index is also a 
measure of the “intensity” of the asymmetry (i.e. steep decreasing intensity over the 
three consecutive precipitation amounts or only slow decreasing) (see Figure 1 of our 
response to comment RC1.1). As they are additionally highly parsimonious, Models A+ 
and B+ appear to be really promising alternative to the class-conditioned models.   

Modification: p.23, L467-481. The figures below have been added to the 
Supplementary Material and referred to in the manuscript.  

 

 

 



 

Figure 6. Conditioning the MRC on ending/starting classes. Observed versus simulated 
statistics for each considered model at a 40-minute temporal resolution for different metrics. 

Four first columns correspond to the results and models presented on the manuscript, the 
fifth and sixth column correspond to the results obtained when in the model A, respectively 
model B, the position class dependency is added.  

 



 

Figure 7. The interest of conditioning the MRC on position classes 
(ending/starting/enclosed/isolated). Observed versus simulated return levels at the 40-
minute temporal resolution for (a) 5-year and (b) 20-year return periods, for each model and 
at each site. The four first columns correspond to the results and models presented in the 
manuscript, the fifth and sixth columns correspond to the results obtained when in model A, 
respectively model B, the position class dependency is added.   

RC2.3 The seasonal classification is not common for all cascade models and more common 
for the pulse models (NSRP & BLRP). The authors show the seasonal variations of 
parameters in Fig. 8, but I’m still curious how this would affect the results. How would 
the results look if there is one parameter set applied for the disaggregation of the whole 
time series? 

AC2.3 This is an interesting issue to discuss, thank you for bringing it up. Actually, it 
not really uncommon for the cascade models to consider a seasonal dependency,  see 

for example Olsson (1998), Günter et al. (2001), Onof et al. (2005), McIntyre et al. 
(2015). The seasonality of the scaling properties of rainfall – in view of modelling have 
been also highlighted in other works, especially in Molnar and Burlando (2008) for 
Switzerland. Conditioning on the season was thus rather natural for us.  

To show the added value of this seasonal conditioning, we performed the parameter 
estimation procedure without accounting for seasonality, so only a set of parameters 
was obtained for each station. In the same manner, as explained in the manuscript, 
the observed quasi-daily amounts were disaggregated to time series of 40-minute 
resolution. In order to do a fair comparison with results obtained when considering a 
seasonal dependency, the evaluation is done on a seasonal basis. The results are not 
at all satisfactory, neither for standard metrics, see Figure 8, nor for return levels, 
Figure 9. A huge gap between the results obtained for summer and for other seasons 
can be noticed, resulting from the mix between short convective events in summer 
and other precipitation events in other seasons while estimating the parameters.  

This point will be briefly mentioned in the manuscript.  

Modification: p.24, L511-516. The figures below have been added to the 
Supplementary Material and referred to in the manuscript.  



 

Figure 8. Results without seasonal stratification (results to be compared with results of 
Figure 5 in the manuscript). Observed versus simulated statistics for each considered model 
at a 40-minute temporal resolution for different metrics. Each triangle represents a site and a 

season. Same analytical models as in the manuscript but no seasonal stratification is done on 
parameter estimation. 



 

Figure 9. Results without seasonal stratification (results to be compared with results of 
Figure 6 in the manuscript). Observed versus simulated return levels at the 40-minute 
temporal resolution for (a) 5-year and (b) 20-year return periods, for each model and at each 
site. Same analytical models as in the manuscript but no seasonal stratification is done for 
parameter estimation.  

RC2.4 L2 The term ‘simple scaling law’ can be confusing. What does ‘simple’ refer to? 
Linear? Please clarify. 

AC2.4 Thank you for pointing this possible confusing term. We will modify this 
sentence as follows: This class of models applies scaling models to represent the 
dependence of the cascade generator on the temporal scale and the precipitation 
intensity. 

Modification: p.1, L2.  

RC2.5 L5 ‘…is usually disregarded.’ I would add the following extension to this sentence: ‘…or 
taken into account in a simplified way.’ (or similar), since there are possibilities out there 

taking into account the wetness state of the surrounding time steps.  

AC2.5 We agree that many empirical cascade models account for the external 
pattern of precipitation, nevertheless, as far as we are aware this is not the case for 
analytical scaling models. Our statement was intended for analytical models. For 
clarification, we will modify the sentence as follows: Although determinant, the 
dependence on the external precipitation pattern is usually disregarded in the 
analytical scaling models.   

Modification: p.1, L4-5.  

RC2.6 L176 The term ‘shadow breakdown coefficient’ sounds spectacular, but it is not clear 
what ‘shadow’ exactly refers to? From my understanding it takes into account the 
position-dependency as well as the rainfall amounts, because higher rainfall amounts 
would cause more shadow. However, this name should be introduced/defined so that 
other authors know when to use it. 



AC2.6 Thank you for your comment. The term “shadow breakdown coefficient” will 
be replaced by “hidden breakdown coefficient”.  

Modification: the term has been replaced throughout the manuscript.   

RC2.7 Section 2.2 When introducing Zt the authors could state the intended application 

briefly and refer to Sec. 2.4 with the detailed description: It only affects p01 and p10, px 
remains unaffected. 

AC2.7 Thank you for the suggestion. We will do so.  

Modification: p.8, L186-190.   

RC2.8 Fig. 3c For very low and very high values of z tipping points can be identified. How can 
it be explained? By the measuring resolution of the measuring instrument, leading to 
minimum values of e.g. 0.1mm? 

AC2.8 As mentioned in Section 2.2 of the manuscript, Zt values close to 0 indicate 
sequences with very little rain on the first two time steps when compared to the last 
one (very steep "ascending" sequences), whereas Zt values close to 1 indicate 
sequences with very little rain on the two last time steps when compared to the first 
one (very steep "descending" sequences). This means that the value of the 

precipitation amount Rt  for the central step has to be rather low for those 
configurations. As a consequence; the observed weights for those rainfall 
configurations are typically 0 or 1 (this can be observed in the histograms given for 

the response AC1.11 for the two configurations Z=0.05 and Z=0.95). This leaves only a 
small sample to estimate the mean of the weights 0<W<1. On the other hand, in 
order to reduce the effects of measurement artifacts, weights considered for the 
analysis are only calculated from precipitation amounts Rt larger than 0.8 mm. This is 

expected to drastically reduce the sample size which we believe is the main reason for 
the tipping points. This issue will be worth further investigation but as this is not a 
central issue in our work, we will not discuss/mention it in the manuscript. 

RC2.9 Table 1-caption. Please add the information that the number of parameters is not 
taking into account any seasonal variation. So four seasons would lead to 4*parameter 
number mentioned in the table. 

AC2.9 Thank you for your valid suggestion. Such information will be added to the 
table’s caption. 

Modification: p.13, caption of the table 1.  

RC2.10 L271-274 The description is valid and does not be changed. Nevertheless I’m curious 
why the authors stop the disaggregation procedure at 40mins and don’t go all the way to 
10min? Did the scaling behaviour change for finer resolution (often scale invariance hold 

for ~1d-> ~1h)? 
AC2.10 Of course, the disaggregation can go on to finer resolutions. The choice of 
stopping at 40-minutes was mainly based on the application needs. By contract with 

the Swiss Confederation, we have to produce weather scenarios for small catchments 
(from 10 to 1000 km2). The time resolution retained for hydrological simulation in the 
project was thus 30min. On the other hand, the artifact induced by the measurement 
precision would make difficult the evaluation of disaggregated scenarios at lower 
temporal resolutions (e.g. Paschalis et al. (2013)). 



RC2.11 Section 2.6 Maybe I’ve just not seen it: Which distribution function is used to 
estimate the return periods analysed in Fig. 6? 

AC2.11 Actually, no distribution is fitted to the data. We use the Gringorten plotting 
position to plot annual maximums, and then the quantile for a given non-exceedance 
probability is determined by linear interpolation of annual maxima. This will be 
precised in the revised manuscript.  

Modification: p.14, L325-328.  

RC2.12 L379-384 The scale-dependency often plays a minor role if the scaling behaviour is 
linear, which is often the case for the analysed range of resolution in this study. I suggest 
to add a figure on scaling behaviour (the typical Mq (Moments of order q=1,2,3,..)-
temporal resolution-plot) to verify the finding that A not necessarily outperforms 
B.  Other cascade models apply scale-invariance already for this range of temporal 
resolutions (e.g. Günther et al, 2001) 

AC2.12 Please find below in Figure 10 the moments of order 1 to 4 estimated on 
observation data (points) and on the generated scenarios (the lines show the median 

among the metrics estimated on 30 scenarios). The results here concern the station of 
Zurich. Each column corresponds to a model and each row to a season. We find the 
differences between models are only minor for moments of order 1 to 3, while for 4-
order moments more differences can be noticed and depend on the season. To our 

opinion, this interesting scaling behaviour of precipitation is rather out of scope of our 



study. We will therefore not mention it in the revised version. 

 

Figure 10. Log-log plots of the empirical q moments versus temporal scale. Each color 
corresponds to one moment, dots to moments estimated on observations, and full lines 
correspond the median of estimated moments on the 30 scenarios. Each column to one 

model and each row to one season. The analysis is performed on the data for Zurich station.  

RC2.13 Fig. 5a) ‘Standard deviation’ – of what? 

AC2.13 Thank you for noting that the description needs to be detailed. We will add 
“Standard deviation of precipitation”. 

Modification: p.17, figure 5a.   

RC2.14 L376-378 This is maybe true for analytical developments, but for non-analytical 
approaches position-dependencies are most often taken into account. This information 
should be added here for the sake of completeness. 

AC2.14 Our focus here was on the analytical scaling models. Anyway, this is a valid 
point and we will complete this information as suggested.  

Modification: p.21, L394-399.   



RC2.15 L408-420 The persistence/intermittency is a weakness of micro-canonical cascade 
models. Müller-Thomy (2020) has introduced an extended position-dependency that 
improves the autocorrelation for all lags. Here, lag-1 and lag-2 are studied, results for 
other lags are not shown. Are results similar for all lags? Would the involvement of the 
extended position-dependency (would be an extended asymmetry approach) also an 
(additional) improvement for the analytical MRC? 

AC2.15 Yes, results are similar for all lags. We had mentioned it in the manuscript. 

Figure 11 below presents results obtained for other lags (lag-3 to lag-6 estimated on 
40-minute data). Accounting for the asymmetry index significantly improves the 
reproduction of the lag 1 and 2. The added value decreases with higher degree lags 
but is still important for lag 3 and 4 (see Figure 11 below).  

 

Thank you also for the interesting question relative to the “Extended position 
dependency”. We have shown in our paper that the asymmetry of the CDF depends 
on the precipitation structure of the precipitation sequence {Rt-1, Rt, Rt+1} and that the 
hidden breakdown coefficient Z is a skilful predictor for this dependence. We could 
also expect that the CDF asymmetry additionally depends on the precipitation 
structure at different coarser temporal resolutions and that nth order hidden 
breakdown coefficient Zn defined with the extended precipitation sequence {Rt-n, …. Rt-

1, Rt, Rt+1,… Rt+n} could be of interest there. This will however introduce some 
additional complexity to the model. This will be worth further investigation.  

RC2.16 Fig. 9 Which temporal resolution is shown here? 

AC2.16 Thank you for pointing out that the specification of the temporal resolution is 
missing for the Figure 9a. We will specify that the temporal resolution is 40-minutes. 

Modification: p.26, caption of figure 9.   

 



  
Figure 11. Observed versus simulated statistics for each considered model at a 40-minute 
temporal resolution for lags of higher order.  
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