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Abstract. In semi-arid irrigated environments, agricultural drainage is at the heart of three agro-environmental 15 

issues: it is an indicator of water productivity, it is the main control to prevent soil salinization and waterlogging 

problems, and it is related to the health of downstream ecosystems. Crop water balance models combined with 

subsurface models can estimate drainage quantities and dynamics at various spatial scales. However, such models' 

precision (capacity of a model to fit the observed drainage using site-specific calibration) and accuracy (capacity 

of a model to approximate observed drainage using default input parameters) have not yet been assessed in irrigated 20 

areas. To fill the gap, this study evaluates four parsimonious drainage models based on the combination of two 

surface models (RU and SAMIR) and two subsurface models (Reservoir and SIDRA) with varying complexity 

levels: RU-Reservoir, RU-SIDRA, SAMIR-Reservoir, and SAMIR-SIDRA. All models were applied over two 

sub-basins of the Algerri-Balaguer irrigation district, northeastern Spain, equipped with surface and subsurface 

drains driving the drained water to general outlets where the discharge is continuously monitored. Results show 25 

that RU-Reservoir is the most precise (average KGE (Q0.5) of 0.87), followed by SAMIR-Reservoir (average KGE 

(Q0.5) of 0.79). However, SAMIR-Reservoir is the most accurate model for providing rough drainage estimates 

using the default input parameters provided in the literature. 
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1 Introduction 30 

In the context of ongoing global changes, semi-arid irrigated areas especially face multiple challenges. First, 

agricultural water productivity is a critical issue in regions where water resources are under increasing pressure 

(FAO, 2021). Second, one-third of the world's irrigated land is affected by the soil salinization issue, which is 

likely to bring a significant loss of arable lands (Singh et al., 2019). Third, non-point pollution is another issue in 

irrigated areas, with return flows that may contain high concentrations of nutrients (García-Garizábal et al., 2012) 35 

and/or pesticides (Abdi et al., 2021). 

Agricultural drainage is at the heart of the above three challenges (water productivity, soil salinization, and non-

point pollution). More than 20% of the total irrigated lands in the world are equipped with drainage systems, 

including open ditches or buried drains (Schultz et al., 2007). Drainage systems are generally installed to prevent 

waterlogging during heavy rainfall (through a sudden rise in the water table), to facilitate salt leaching (particularly 40 

when the irrigation water has high salt concentrations), and to maintain a low water table to avoid salt accumulation 

in the root zone by capillary rise (particularly when the groundwater has high salt concentrations). Moreover, the 

drained water quantity and quality are strong indicators of agricultural water productivity and the possible impact 

of nitrates, salts, and pesticide concentration on downstream ecosystems (Blann et al., 2009). 

Measuring drainage discharge is an effective way of monitoring the quantity and quality of drainage to help address 45 

the three challenges mentioned above. However, the proportion of drained irrigation districts equipped with such 

instruments is very low. In this context, estimating the drained water in irrigated areas, including those not 

instrumented, is of major importance. Some work has been done in this direction over rainfed areas, focusing on 

modeling the quantity and quality of the drained water discharged (e.g., Negm et al., 2017), or on developing 

drainage scenarios that integrate changes in agricultural practices (e.g., Tournebize et al., 2004) or in climatic 50 

conditions (e.g., Golmohammadi et al., 2020; Jeantet et al., 2022). However, only a few studies have dealt with 

the quantitative estimation of drainage in semi-arid irrigated areas. At the field scale, Ale et al. (2013) compared 

the ability of the physically-based DRAINMOD (Skaggs et al., 2012) and ADAPT (Gowda et al., 2012) models 

to simulate monthly drainage in a drip-irrigated plot in the US. The determination coefficient between simulated 

and observed drainage was 0.90 and 0.85 for ADAPT and DRAINMOD, respectively, for data during seven years. 55 

More recently, Feng et al. (2021) simulated the daily drainage with the physically-based Hydrus-2D model in a 

furrow-irrigated plot and obtained a Nash-Sutcliffe model efficiency coefficient (NSE) value of 0.91 and 0.94 for 

the calibration and validation year respectively. At a larger spatial scale, Cavero et al. (2012) simulated the monthly 

drainage of three Mediterranean irrigated catchments (mainly surface irrigation) located in Spain, Algeria, and 

Turkey, ranging from 4000 to 10000 hectares. They used the crop water balance model APEX (Gassman et al., 60 

2009) coupled with DRAINMOD over two hydrological years and obtained Root-mean-square deviation (RMSD) 

ranging from 3.4 mm to 25.3 mm per month. On a much larger scale, Wen et al. (2020) simulated the monthly 

drainage over 19 sub-basins in a 1.2 million-hectare irrigation district in northern China using an empirical 

approach based on water table observations. The results showed a mixed performance with an average NSE of 

0.64, a standard deviation of 0.21 for the 2-year calibration period, an average NSE of 0.34, and a standard 65 

deviation of 0.44 for the 2-year validation period. In the same irrigation district, Chang et al. (2021) simulated the 
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annual drainage discharge under different management scenarios using the semi-empirical SAHYSMOD model 

(Oosterbaan et al., 2005). 

Although the literature on agricultural drainage is still limited for semi-arid irrigated areas, there are many 

scientific papers on drainage estimation in humid regions where waterlogging problems are common. The vast 70 

majority of them use physically-based models such as DRAINMOD (Moursi et al., 2022; Muma et al, 2015), 

RZWQM2 (Ma et al., 2012; Xian et al., 2017; Jiang et al. 2020), MACRO (Larsbo et al., 2005; Jarvis and Larsbo, 

2012), SWAP (van Dam et al., 2008), HydroGeoSphere (De Schepper et al., 2015), and FLUSH (Turunen et al., 

2013; Nousiainen et al., 2015). Generally, these models are implemented at the plot scale and represent the 

intermediate processes (e.g., macropore infiltration, deep seepage, water redistribution in the soil profile, rooting 75 

distribution, lateral flows) involved in drainage at the daily or hourly time step. They rely on a lot of information 

for model parameterization, implying a detailed knowledge of the studied site and potentially numerous parameters 

to calibrate. For example, Ma et al. (2012) recommend for the RZWQM2 model an independent measurement for 

11 parameters and a calibration for 11 others out of a total of 24 parameters (the two remaining ones being taken 

from the literature). In fields where intensive measurement campaigns have been conducted, these models can 80 

simulate the observed drainage well at hourly, daily, weekly, or monthly scales. However, the application of such 

models to poorly monitored basins remains limited due to the need for site-specific calibration (using drainage 

measurements) to set their relatively numerous input parameters.  

Henine et al. (2022) proposed a simple semi-empirical drainage model, RU-SIDRA, to generalize a drainage model 

for various agricultural conditions. It combines a surface model (RU) to simulate the daily recharge and a 85 

subsurface model (SIDRA) (Lesaffre and Zimmer, 1987; Bouarfa and Zimmer, 2000) to convert the simulated 

recharge into daily drainage discharge. RU is a water balance model based on a simplified version of the FAO-56 

method (Allen et al., 1998) and relies only on a single sensitive parameter. SIDRA is based on the resolution of a 

semi-analytical formula derived from the Boussinesq physical equation (Boussinesq, 1904), leading to two main 

sensitive parameters. The robustness of RU-SIDRA was evaluated by Jeantet et al. (2021) on 22 non-irrigated 90 

French fields and sub-basins over 200 hydrological years. It was found that RU-SIDRA performs as well as 

physically-based models in reproducing daily drainage and is as robust as the latter from one hydrological year to 

another. However, Jeantet et al. (2021) emphasized a limitation of RU-SIDRA associated with the empirical nature 

of the RU model. Indeed, in RU, the start of drainage, occurring in autumn in the non-irrigated sites studied by 

Jeantet al. (2021), is not systematically well reproduced from year to year. This is potentially due to its poor 95 

representation of the processes governing the variation of the soil water stock (e.g., root growth or 

evapotranspiration). Over irrigated areas, this difficulty is expected to be further exacerbated by the impact of 

summer crops. In addition, as the physically based models described previously, RU-SIDRA also relies on a site-

specific calibration step using rarely available observed drainage data.  

Finding the right balance between the simplicity required for a drainage model to be easily applicable over large 100 

areas and the complexity needed to ensure a sufficient realism of intermediate processes and, hence, the robustness 

of drainage estimates in time remains challenging. In this context, this study seeks to address the following 

questions: 
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- Can parsimonious models with different degrees of complexity precisely reproduce the daily drainage in a semi-

arid irrigated context with site-specific calibration? 105 

- Can such models with default calibration (with parameter values provided in the literature) reproduce drainage 

quantities and dynamics, even roughly?  

In this context, we evaluated the precision and accuracy of several parsimonious models based on the RU-SIDRA 

formalism. By precision and accuracy, it is meant the capacity of each model to predict the drainage after site-

specific calibration (using drainage measurements) and by setting the model input parameters to default values 110 

found in the literature (without using drainage measurements), respectively. Precision evaluation aims to 

investigate the models' strengths and weaknesses by calibrating and validating them over the same period. The 

accuracy evaluation aims to determine i) whether it is possible to estimate drainage when no in situ drainage data 

is available for calibration (which is the case for most irrigation districts), i.e., under non-optimal calibration 

conditions, and ii) which of the models evaluated performs best under these conditions.  115 

To cover a range of modeling complexity, we investigate the SAMIR model (Simonneaux et al., 2009) as an 

alternative to the RU model. SAMIR is more complex than RU as it simulates more processes (e.g., root growth, 

vegetation development, evaporation, vegetation cover, specific crop water needs, and stress resistance) while 

remaining parsimonious with only two parameters integrating most of the sensitivity for the recharge simulation 

(Laluet et al., 2023). We also investigate the Reservoir model as an alternative to the SIDRA model. Reservoir is 120 

a fully empirical model driven by a single parameter. It is a simplified version of a module recently incorporated 

in the SASER (Safran-Surfex-Eaudysee-Rapid) hydrological model (Quintana-Seguí et al., 2017; Vergnes and 

Habets, 2018; David et al., 2011) by Cenobio-Cruz et al. (2023) who showed its ability to satisfactorily reproduce 

the low flows (groundwater discharge) observed at 53 hydrological stations in France and Spain. 

The combination of both recharge (RU and SAMIR) models and both subsurface (Reservoir and SIDRA) models 125 

generate four drainage models by order of increasing complexity: RU-Reservoir (two main parameters), RU-

SIDRA (three main parameters), SAMIR-Reservoir (three main parameters), SAMIR-SIDRA (four main 

parameters). In this study, the precision and accuracy evaluations of the four drainage models are carried out in 

two sub-basins of the Algerri-Balaguer irrigation district located in the Ebro basin, northeast of Spain. These two 

sub-basins are instrumented with flow meters that continuously measure the daily drainage discharge into the main 130 

drains.  
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2 Material and methods 

The overall methodology to assess both the precision and accuracy of RU-Reservoir, RU-SIDRA, SAMIR-

Reservoir, and SAMIR-SIDRA is presented in the flowchart of Fig. 1. First, the study site and data used are 135 

presented (Section 2.1), followed by a description of the four models (Section 2.2). The following sections describe 

the site-specific calibration strategy used for evaluating the precision of the models (Section 2.3) and the selection 

of input parameter ranges used for evaluating the accuracy of the models (Section 2.4). 

 

Figure 1. Flowchart of the proposed methodology for precision and accuracy evaluation of the drainage simulated by four 140 

parsimonious models with different levels of complexity.  
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2.1 Study area and data 

2.1.1 Study area 

The Algerri-Balaguer (AB) irrigation district is located in northeast Spain, 20 km north of Lleida. It is characterized 

by a semi-arid continental Mediterranean climate with an average annual reference evapotranspiration (ET0) of 145 

1027 mm and precipitation of 380 mm (2000-2021). AB has an area of 8100 hectares of cropland with mainly 

corn, barley, wheat, fruit trees, and alfalfa. 6800 hectares are equipped for irrigation with sprinklers for annual 

crops and drip systems for fruit trees. An overview of the AB area is shown in Fig. 2. For an extensive description 

of the irrigation district in terms of soil, geology, crops, irrigation, and drainage system, the reader is referred to 

Altés et al. (2022). 150 

In 1998, modernization works were carried out in the AB district, including flattening the land for plot 

consolidation and installing irrigation systems and a drainage network. The drainage network consists of surface 

(open ditches) and subsurface (buried pipes) drains (Altés et al., 2022). Field drains (underground perforated 

plastic pipes) are connected to collectors (underground concrete pipes larger than field drains). These collectors, 

in turn, are connected to main drains (either larger underground concrete pipes or open ditches). The main drains 155 

ultimately convey the water to general outlets (green dots in Fig. 2). During irrigation implementation, the 

collectors and main drains were installed in the first few years. Since then, field drains have been installed 

progressively at the initiative of each farmer according to his needs. We have no precise information on the surface 

that has been equipped with field drains or on their spacing. From field observations, we know that the surface 

drains were dug at a depth of approximately 2 m, as were the main drains. 160 

Two of these main drains have been equipped with CTD-10 sensors (Meter Group Inc., Pullman, WA, USA) that 

continuously measure the water level. They collect drainage water from areas of 116 and 2050 hectares each, 

forming two sub-basins, AB1 and AB2 (see Fig. 2). These areas correspond to the topographic basins formed by 

the main drains at the CTD-10 sensors locations and were computed using the QGIS software with a 2 m resolution 

DEM provided by the Cartographic and Geological Institute of Catalonia. Table 1 shows, for AB, AB1, and AB2, 165 

the area and percentages of the main crop types. Figure 2.b shows the land cover of AB1 and AB2 for 2021. 
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Figure 2. The AB irrigation district with the two monitored sub-basins AB1 and AB2 and their outlets, as well as the location 

of the pumping station for irrigation (coordinates: 797157/4636983.4 ETRS89/UTM zone 31N) (a); Zoom on the two sub-170 

basins with their land use for the year 2021 and a picture of inside the AB1 outlet where water level is measured before being 

converted into drainage discharge (b).  
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Table 1. Irrigated surfaces of AB, AB1, and AB2, and percentage of surface area occupied by their main crops in 2021 and 

2022. 

 175 

 

2.1.2 Description of the data used in this study 

The water levels measured in the AB1 and AB2 outlets are obtained hourly and converted into daily discharge 

using the Manning-Strickler equation and the knowledge of the main drain hydraulic characteristics (Altés et al., 

2022). The available drainage data used herein cover the period from February 2021 to October 2022 (21 months) 180 

for AB1 and from May 2021 to October 2022 (18 months) for AB2. The observed drainage at AB1 was 29 mm in 

2021 and 26 mm in 2022, while it was 61 mm in 2021 and 46 mm in 2022 at AB2. 

 

Figure 3. Bottom: Daily drainage data of AB1 and AB2 from May 2021 to October 2022. 

The irrigation data consists of the daily flow of water pumped from a river next to the AB district (see Fig. 2), 185 

which is the only supply for the irrigation network. They are provided by the Automatic Hydrological Information 

System of the Ebro Basin (SAIH). Pumping flow data are aggregated to the weekly scale to consider the potential 

delay of several days between pumping and application in the field. 5.8% of the volume is removed to account for 

evaporation loss and leakage, based on a comparison between the water pumped from the river and irrigation data 

from water meters (Olivera-Guerra et al., 2023). 190 

Soil texture is obtained from the 250-meter resolution SoilGrids product (Hengl et al. 2017; Poggio et al. 2021). It 

is relatively uniform over the AB area and corresponds to a silty clay loam soil (Jahn et al., 2006).  

 Irrigated 

surface 

(hectares) 

Year Percentage of surface occupied by... 

Double crop (mostly wheat 

or barley in winter and maize 

in summer) 

Summer cereal (mainly 

maize) 

Others (alfalfa, winter 

cereals, olives, fruit trees, 

etc.) 

AB 6800 2021 58 % 8 % 34 % 

2022 69 % 7 % 24 % 

AB1 116 2021 59 % 6 % 35 % 

2022 69 % 6 % 25 % 

AB2 2050 2021 72 % 6 % 22 % 

2022 78 % 4 % 18 % 
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Meteorological data are obtained from five stations belonging to the Catalan Meteorological Station Network. Two 

are located within the AB district, and the three others are located around the area at a maximum distance of 5 km. 

The mean and standard deviation of the instantaneous measurements of precipitation and ET0 made by the five 195 

stations are very low. Therefore, the spatial average of precipitation and ET0 measurements is used as forcing at 

the scale of the AB sub-basins. 

2.2 Description of the four models 

The four models evaluated herein result from the combination of two water balance models (RU and SAMIR) and 

two drainage discharge models (Reservoir and SIDRA). Their main characteristics are listed in Table 2. 200 

Table 2. Description of the four models used. 

 RU SAMIR Reservoir SIDRA 

Description Simple water balance 

model 

FAO-2Kc-based crop 

water balance model 

Exponential 

emptying of 

a reservoir 

Semi-analytical formula 

derived from the 

Boussinesq equation  

Inputs ET0, rainfall, irrigation, 

soil texture type 

ET0, rainfall, soil 

texture, land cover, 

NDVI 

Recharge Recharge, drainage 

network characteristics, 

soil texture type 

Parameters 2 crop parameters 

3 soil parameters 

 

7 crop parameters 

2 soil parameters 

2 irrigation parameters 

1 depletion 

coefficient 

parameter 

2 drainage network 

geometry parameters 

2 soil parameters  

Sensitivity 1 param. most sensitive 

(Sinter) (Henine et al., 

2022; Chelil et al., 2022) 

2 param. most sensitive 

(Zrmax and aKcb) (Laluet 

et al., 2023) 

1 param. 

sensitive (k) 

2 param. most sensitive 

(K and μ) (Henine et al., 

2022; Chelil et al., 

2022) 
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2.2.1 SAMIR 

The SAMIR model (Simonneaux et al., 2009) is a FAO-56 double crop coefficient-based model (FAO-2Kc) (Allen 205 

et al., 1998) designed to simulate the crop water balance components for daily ET estimation and crop water 

requirements by considering the plant and soil water status. It uses i) meteorological forcing variables to calculate 

ET0 (calculated using the Penman-Monteith equation), ii) precipitation, iii) crop and soil parameters to calculate 

soil reservoir properties, as well as plant and soil resistance to water stress, and iv) Normalized Difference 

Vegetation Index (NDVI) to drive plant development, obtained from the Sentinel-2 satellites with a resolution of 210 

10 m and a revisit of five days. 

The daily water balance equation simulated with SAMIR is: 

𝐷𝑟𝑡 = 𝐷𝑟𝑡−1 + 𝐸𝑇𝑡 − 𝑃𝑡 − 𝐼𝑡 + 𝑅𝑡            (1) 

where Dr is the root zone depletion, ET is the actual evapotranspiration, P is the precipitation, I is the irrigation, 

and R is the underground recharge. Every term is expressed in mm for the day t (and t-1 for Dr). ET is estimated 215 

by multiplying two crop coefficients to ET0 as follows: 

𝐸𝑇𝑡 = (𝐾𝑐𝑏𝑡 ∙ 𝐾𝑠𝑡 + 𝐾𝑒𝑡 ∙ 𝐾𝑟𝑡) ∙ 𝐸𝑇0𝑡
        (2) 

where ET0·Kcb·Ks is the water transpired by plants (T, mm), and ET0·Ke·Kr is the soil evaporation (E, mm). Kcb 

(-) is the basal crop coefficient governing the potential crop transpiration. It is estimated from a linear relationship 

with NDVI. Ks (-) is the water stress coefficient reducing the potential transpiration, Ke (-) is the potential soil 220 

evaporation coefficient, and Kr (-) is the evaporation reduction coefficient.  

Kr is calculated with a pedotransfer function using clay and sand fractions that were derived and evaluated over a 

variety of sites (Lehmann et al., 2018; Merlin et al., 2016) and recently implemented into SAMIR by Amazirh et 

al. (2021).  

Ks is calculated based on the daily computation of the water balance in the root-zone layer, as follows: 225 

𝐾𝑠𝑡 =
𝑇𝐴𝑊𝑡−𝐷𝑟𝑡

𝑇𝐴𝑊𝑡(1−𝑝)
            (3) 

where Dr is calculated from the daily water balance according to Eq. (1), TAW (mm) is the maximum available 

water in the root zone, and p (-) is the fraction of TAW that a crop can extract without facing water stress. Allen et 

al. (1998) suggest that p controls the water depth threshold below which irrigation should be triggered to avoid 

crop water stress by keeping Dr smaller than TAW·p (and thus Ks equal to 1). TAW is estimated as follows: 230 

𝑇𝐴𝑊𝑡 = (𝑆𝑀𝐹𝐶 − 𝑆𝑀𝑊𝑃) ∙ 𝑍𝑟𝑡            (4) 

where SMFC (m3 m-3) is the soil moisture at field capacity and SMWP (m3 m-3) the soil moisture at the wilting point, 

both derived from the soil texture by applying the pedotransfer function proposed by Román-Dobarco et al. (2019). 

Zr (mm) is the rooting depth that varies between a minimum value (set to 100 mm for annual crops) and a crop-

dependent maximum value (reached at the maximum NDVI of the simulated field).  235 
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A spatialized version of SAMIR at the plot scale was recently developed and is used in this study to simulate 

recharge at AB1 and AB2. More details on the methodology behind this spatialization can be found in Olivera-

Guerra et al. (2023). 

To simulate plot-scale irrigation using SAMIR, we used the method proposed by Olivera-Guerra et al. (2023), 

which consists of inverting two time-varying SAMIR irrigation parameters from the irrigation data measured at 240 

the pumping station. By applying the inverted parameters to each irrigated field and aggregating the resulting 

simulations over the entire AB district, the simulated irrigation volumes and timing were close to those measured 

at the pumping station (RMSD < 0.70 mm d-1 on average for six irrigation seasons). The values of the SAMIR 

irrigation parameters found by Olivera-Guerra et al. (2023) for the AB district were used herein for 2021 and 2022. 

The plot-scale irrigations simulated by SAMIR are then averaged for AB1 and AB2 to be used as forcing in the 245 

RU model (as RU is not spatialized). 

2.2.2 RU 

RU is a water balance model designed to simulate the recharge of the water table. It is one of the components of 

the RU-SIDRA model introduced by Henine et al. (2022). In contrast to SAMIR, RU has not been designed to 

precisely reproduce ET by simulating plant phenology or processes related to evaporation. Its purpose is to 250 

reproduce the correct amount of recharge to be converted into drainage with the SIDRA model. While a detailed 

description of the model can be found in Henine et al. (2022) and its evaluation in Jeantet et al. (2021), only a 

general overview is provided here.  

RU uses as input precipitation, irrigation, ET0, and soil texture type (for default parameter values). It comprises a 

module simulating the net infiltration (Pnet, mm) and a soil reservoir module transforming Pnet into recharge R. 255 

Pnet is calculated as follows:  

𝑃𝑛𝑒𝑡𝑡
= 𝑃𝑡 + 𝐼𝑡 − 𝐶𝐸𝑇𝑡           (5) 

With CET (mm) being the corrected ET, which is computed as follows: 

𝐶𝐸𝑇𝑡 = {𝐸𝑇0𝑡
∙ 𝑒

−
𝑆𝑅𝐹𝑈−𝑆𝑡

𝑆𝑡 𝑖𝑓𝑆𝑡 < 𝑆𝑅𝐹𝑈

𝐸𝑇0𝑡
𝑖𝑓𝑆𝑡 ≥ 𝑆𝑅𝐹𝑈

            (6) 

where St (mm) is the current water level in the soil reservoir on day t and SRFU (mm) is a water level threshold 260 

triggering the plant water stress limiting ET0. SRFU is 0.4·Sinter with Sinter (mm) being a threshold in the soil reservoir 

that triggers recharge, analogous to SMFC in SAMIR. 

The soil reservoir module is designed to simulate recharge (R) depending on three stages related to the amount of 

water in the soil reservoir (S):  

𝑆𝑡𝑎𝑔𝑒 1: 𝑆𝑡 < 𝑆𝑖𝑛𝑡𝑒𝑟; 𝑅𝑡 = 0          (7) 265 

𝑆𝑡𝑎𝑔𝑒 2: 𝑆𝑡 ∈ [𝑆𝑖𝑛𝑡𝑒𝑟; 𝑆𝑚𝑎𝑥]; 𝑅𝑡 = 𝛽 ∙ 𝑃𝑛𝑒𝑡𝑡
        (8) 
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With Smax (mm) being the water level below which recharge occurs with a reduction coefficient β (−) and calculated 

as follows:    

𝑆𝑚𝑎𝑥 = 𝑆𝑖𝑛𝑡𝑒𝑟 + 𝑆𝐼𝐷𝑆           (9) 

Where SIDS (mm) is the intense drainage season reservoir level, reached at the season period where drainage is 270 

most important due to large amounts of precipitation and/or irrigation (Jeantet et al., 2021). During this time, the 

level of the reservoir is higher than that of Sinter. Henine et al. (2022) and Chelil et al. (2022) found that SIDS and β 

are not significantly sensitive. Based on the values used in Jeantet et al. (2021), SIDS was set to 20 mm and β to 

0.33. 

𝑆𝑡𝑎𝑔𝑒 3: 𝑆𝑡 > 𝑆𝑚𝑎𝑥; 𝑅𝑡 = 𝑃𝑛𝑒𝑡𝑡
         (10) 275 

Note that RU is not spatialized, implying that a single simulation is performed for AB1 and AB2 separately with 

average forcings and parameters. 

2.2.3 SIDRA 

SIDRA is a physically-based model designed to calculate the drainage flow of a drained plot or sub-basin. It is 

based on the resolution of a semi-analytical formula derived from the Boussinesq equation, which leads to Eq. 280 

(11) and Eq. (12). For a complete description of SIDRA, readers are referred to Tournebize et al. (2004), Henine 

et al. (2022), and Zimmer et al. (2023). 

First, the water table level variation under the influence of recharge (R) and drainage is computed as follows: 

𝑑ℎ𝑡

𝑑𝑡
=

𝑅𝑡−𝐾
ℎ𝑡

2

𝐿2

𝐶µ
; ℎ𝑡+1 = ℎ𝑡 +

𝑑ℎ𝑡

𝑑𝑡
         (11) 

where h is the water table at the midpoint between drains (m), K is the horizontal hydraulic conductivity (m d-1), 285 

μ the drainable porosity (m3 m-3), and C is a water table shape factor (-) equal to 0.904. h is bounded between 0 

and 1.5 (the average drain depth assumed at AB). Eq. (11) is based on the assumption that the water table is flat, 

which is consistent with the flat topography of the AB district. The drainage of the water table into buried pipes 

or open drains, leading to drainage flow Q, is calculated as follows: 

𝑄𝑡 = 𝐴𝐾
ℎ²

𝐿²
+ (1 − 𝐴)𝑅𝑡            (12) 290 

where L is the half of the drain spacing (m) and A is a water table shape factor (-) equal to 0.896. As we do not 

have precise information on the location of the field drains and the proportion of the surface equipped with them 

at AB, L can be either calibrated with drainage data or set to a value frequently found in the literature (generally 

between 3 and 12 m).  

Boussinesq's equation assumes that buried pipes and open drains rest on an impermeable layer, meaning that the 295 

entire water table could be drained after a given period without rain or irrigation. The hydrogeological 
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configuration of the AB district, with the presence of a shallow impervious layer, allows us to assume that this 

condition is respected. 

SIDRA is not spatialized; therefore, when combined with SAMIR (which is spatialized, unlike RU), it uses the 

average daily recharge from all the simulated plots of AB1 and AB2 as input. 300 

2.2.4 Reservoir 

Reservoir (Cenobio-Cruz et al., 2023) is a conceptual model designed to reproduce the delay between the recharge 

and the water table draining into a river, buried pipes, or open drains. The idea of this model is that a reservoir 

filled by recharge is drained according to a linear relationship between the water level Z (mm) and a depletion 

coefficient ω (-). It can be expressed as follows: 305 

𝑄𝑡 = 𝑍𝑡 ∙ 𝜔            (13) 

Cenobio-Cruz et al. (2023) incorporated a reservoir size parameter to simulate overflow and generate quick flows. 

We decided not to include this parameter to make the Reservoir model as simple as possible. 

2.2.5 Initialization of the state variables 

The four models, RU-Reservoir, RU-SIDRA, SAMIR-Reservoir, and SAMIR-SIDRA, require initialization of 310 

their state variables. These variables were initialized with a 12-month spin-up simulation using data from 2020. 

SAMIR initializes the depletion parameters of the soil and surface reservoirs, RU the water level in the soil 

reservoir, SIDRA the water table level, and Reservoir the water level in the conceptual reservoir. 

2.2.6 Sensitivity of model parameters 

Laluet et al. (2023) conducted an extensive sensitivity analysis of ET and recharge simulated by SAMIR over 315 

various agro-pedoclimatic conditions. Two of the nine parameters were found to dominate the model sensitivity: 

aKcb governs the relationship between NDVI and Kcb (related to T demand), and Zrmax is the maximum rooting 

depth that governs the size of the root zone reservoir. 

Henine et al. (2022) and Chelil et al. (2022) analyzed the sensitivity of the RU-SIDRA parameters for drainage 

simulation on two different plots. They both showed that for the RU model, the Sinter parameter controls most of 320 

the model sensitivity and that for SIDRA, it is K and μ. 

2.3 Strategy for evaluating the models’ precision 

2.3.1 Calibration strategy 

It is reminded that precision means a model's ability to approximate the observed drainage data as closely as 

possible using site-specific calibration (using drainage measurements). The most sensitive parameters of the four 325 

models were calibrated using an automatic calibration algorithm. Since we do not have information on the half of 

the drain spacing on AB, we calibrated the L parameter, bringing the number of parameters to be calibrated for 

RU-SIDRA to four and for SAMIR-Reservoir to five. Indeed, although Chelil et al. (2022) showed that L is not 
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very sensitive when it varies between 3.5 m and 6 m, its uncertainty within the AB district is large enough for it 

to be significantly sensitive. The other less sensitive parameters are fixed at the default values given in the 330 

literature. To analyze the variability of the parameters from one hydrological year to the next, we split the data 

into 12 months named “2021 period” and a period with the remaining months (9 months for AB1, 6 months for 

AB2) called “2022 period”. Analysis of the variability of the values of the calibrated parameters between the two 

periods provides information on the predictive capacity of the models. If the values are close from one period to 

another, this suggests that the model robustness is high. If they are not, this indicates a low level of robustness. 335 

The calibration method used is the multi-objective, Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb 

et al., 2002). For the case of SAMIR, which simulates both irrigation and recharge, we use a multi-objective 

method to ensure that the calibration of aKcb and Zrmax parameters does not significantly modify the simulated 

irrigation. Therefore, for both SAMIR-Reservoir and SAMIR-SIDRA, drainage and irrigation are optimized 

together, whereas, for both RU-Reservoir and RU-SIDRA, only drainage is optimized (an averaged irrigation is 340 

given as forcing in this case as RU cannot simulate irrigation). NSGA-II is one of the most widely used multi-

objective algorithms. It implements a fast, non-dominant sorting approach to discriminate solutions based on 

dominance and Pareto optimality. It provides a set of optimal non-dominated solutions (set of parameters), 

allowing the user to choose the best solution according to his priorities. In the SAMIR case, the best solution would 

be the one that simulates the most precise drainage, provided that it simulates irrigation consistent with the 345 

observed data at the pumping station. Readers are referred to Deb et al. (2002), Bekele and Nicklow (2007), and 

Shafii and De Smedt (2008) for a detailed description of the algorithm.  

2.3.2 Parameters distribution for calibration 

NSGA-II requires a distribution provided by the user for each calibrated parameter. The distribution and references 

used in this study are provided in Table 3.  350 

The distribution of aKcb of the SAMIR model is based on Laluet et al. (2023a), who obtained aKcb values for 37 

agricultural seasons (mainly maize and wheat, being widely present in the AB district) from the linear relationship 

Kcb = aKcb ⋅ NDVI + bKcb. Knowing the value of NDVI at bare soil (where Kcb is zero) and at full vegetation (where 

Kcb is equal to Kcbmax), aKcb and bKcb can be inferred.  

The distribution of Zrmax is derived from tables provided by Allen et al. (1998) and Pereira et al. (2021). This study 355 

uses the mean and standard deviation of Zrmax for maize, being the most present and irrigated crop type at AB1 

and AB2.  

The distribution of Sinter of the RU model is taken from Jeantet et al. (2021), who calibrated this parameter on 

drainage discharge in situ data from 22 French drained sites.  

The distribution of K and μ of the SIDRA model is also based on Jeantet et al. (2021), who derived the mean and 360 

standard deviation of these parameters from field measurements performed on 15 silty soils in France, similar to 

the soil texture of AB1 and AB2. The half of the drain spacing parameter L distribution was chosen to be wide 

(uniform distribution between 4 m and 60 m) to consider that some plots are not drained at AB1 and AB2. As a 

comparison, Chelil et al. (2022) used a uniform distribution between 3.5 m and 6 m for fully drained sites.  

The distribution of the ω parameter of the Reservoir model is derived from Cenobio-Cruz et al. (2023), who cali-365 

brated this parameter on discharge flow data of about 25 catchments in northern Spain. 
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2.3.3 Metrics used for calibration and validation 

For drainage calibration, the objective function Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) is used: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛿 − 1)²        (14) 

where r is the Pearson’s correlation coefficient, α the bias component, and δ the ratio of the discharge variance: 370 

𝛼 =
𝑚𝑠

𝑚𝑜
  𝑎𝑛𝑑  𝛿 =

𝜎𝑠

𝜎𝑜
            (15) 

where m and σ are the mean and standard deviation, respectively. Subscripts s and o represent the simulated and 

observed flow, respectively. 

Since KGE tends to place more weight on high flows (Santos et al., 2018), we used KGE (Q0.5). KGE (Q0.5) is the 

KGE calculated from the squared roots of simulated and observed drainage, allowing the weights between high 375 

and low flows to be more balanced. Following Jeantet et al. (2021), we consider simulations as “excellent” when 

KGE (Q0.5) is larger than 0.8, "very good" when it is larger than 0.7, "good" when it is larger than 0.6, "acceptable" 

when it is between 0.5 and 0.6, and “unsatisfactory” when it is below 0.5. Furthermore, to get a reference in mind, 

a KGE of -0.41 is equivalent to having a simulation performance equal to the average of the observed data (Knoben 

et al., 2019). 380 

The RMSD objective function is used for irrigation calibration: 

𝑅𝑀𝑆𝐷 = √
∑ (ŷ𝑖−𝑦𝑖)²

𝑗
𝑖=1

𝑗
           (16) 

where j is the number of days in the simulated time series, i is one day of the time series, ŷi is the simulated time 

series, and yi is the reference time series. We consider irrigation to be well simulated when the RMSD calculated 

between the irrigation measured at the pumping station and the one simulated by SAMIR for all the plots in AB is 385 

below 0.70 mm d-1. This value corresponds to the RMSD found on average from 2017 to 2021 by Olivera-Guerra 

et al. (2023).  
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Table 3. Distributions of the main parameters calibrated with the NSGA-II algorithm to evaluate the models’ precision, and 

associated references. 390 

 Parameter Distribution Reference 

SAMIR aKcb (-) Normal (mean: 1.45; std. dev.: 0.12) Laluet et al. (2023) 

Zrmax (mm) Normal (mean: 1000; std. dev.: 170) Allen et al. (1998) 

Pereira et al. (2021) 

RU Sinter (mm) Normal (mean: 138; std. dev.: 53) Jeantet et al. (2021) 

 SIDRA K (m d-1) Lognormal (mean: 0.99; std. dev.: 2.53) 

μ (-) Lognormal (mean: 0.018; std. dev.: 2.19) 

L (m) Uniform (low: 4; high: 60) 

Reservoir k (-) Normal (mean: 0.02; std. dev.: 0.05) Cenobio-Cruz et al. (2023) 

 

2.4 Strategy for evaluating the models’ accuracy 

Complementarily to the evaluation of the models’ precision, this study also aims to assess the accuracy of the four 

models. It is reminded that by accuracy, we mean the ability of a model to approximate the observed data as closely 

as possible by relying only on default values given by the literature for its main parameters, i.e., without any site-395 

specific calibration step. 

To this end, for each of the four models, 2000 sets of their most sensitive parameters are generated randomly using 

a Monte Carlo sampling, with the distributions presented in Table 3, except for the half of the drain spacing L. 

Indeed, for the accuracy evaluation, we consider a situation where we have no information on the geometry of the 

drainage network and therefore on L. In this hypothetical situation we don’t know that a portion of the surface is 400 

not drained, resulting potentially in high L values. Therefore, we use a value of 6 meters for the accuracy 

evaluation, which is a value frequently found in the literature (Jeantet et al., 2021). In addition, to focus only on 

the drainage accuracy evaluation, the irrigation obtained with SAMIR during the precision evaluation step is 

injected into SAMIR as a forcing. The KGE (Q0.5) obtained with a simulation performed with average default 

parameters is calculated, and the ensemble generated by the 2000 Monte-Carlo simulations is analyzed. 405 

 

2.5 Complexity of models’ calibration  

The models involving SAMIR are more complex to calibrate than those involving RU. This is due in particular to 

the fact that i) SAMIR-based models involve input data that are not always readily available at the required fine 

resolution (in particular land use maps), ii) SAMIR is spatialized and therefore requires more computing resources 410 

(several hours of computation for 2000 simulations on the AB district with 8 GB RAM and 4 CPUs running in 

parallel). The RU-based models are simpler to calibrate than the SAMIR-based ones because RU requires only 
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meteorological data as input, they are not spatialized and demand fewer computing resources (a few minutes to 

run 2000 simulations on the AB district with the same computing configuration).   

The two subsurface models are simple and require few computing resources. SIDRA-based models are slightly 415 

more complex to calibrate than Reservoir-based models as they require two drainage network characteristic pa-

rameters (half of the drain spacing and depth of drains) as input. However, they are not the most sensitive param-

eters in the SIDRA model (Henine et al., 2022; Chelil et al., 2022). 

We see a gradient in terms of the level of complexity and expertise required to calibrate the models: from SAMIR-

SIDRA to RU-Reservoir. The four models are coded in Python, as is the NSGA-II calibration algorithm provided 420 

by the Python package spotpy. 

 

3 Results and discussion 

 

3.1 Precision evaluation 425 

This section will first give a quick overview of the irrigation simulated by SAMIR and used as a forcing by RU. 

The precision of the drainage simulated by each model is then presented. Finally, we will explain why the model 

precision differs between the four models and provide some recommendations and perspectives. 

3.1.1 Irrigation simulated by SAMIR 

Table 4 shows for SAMIR-Reservoir and SAMIR-SIDRA the RMSD obtained between simulated and observed 430 

irrigation at the pumping station over all the irrigated plots of AB, resulting from the NSGA-II multi-objective 

calibration performed for AB1 and AB2. The average RMSD obtained is 0.35 mm d-1 for 2021 and 0.66 mm d-1 

for 2022, in line with the quality criteria defined previously (< 0.70 mm d-1). The average amount of irrigation 

simulated for the AB1 sub-basin is 592 mm on average for the period from May to October 2021 and 693 mm for 

the period from May to October 2022. For AB2, it is 619 mm in 2021 and 720 mm in 2022. These amounts are 435 

fully consistent given the amounts of irrigation measured at the pumping station and the proportions of surface 

used for double crops and summer cereals in each AB1 and AB2 sub-basins compared to those in the entire AB 

district (see Table 2). 
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Table 4. RMSD between daily simulated and observed irrigation, seasonal (between May and October for each year) cumulated 440 

simulated irrigation obtained with site-calibrated SAMIR-Reservoir and site-calibrated SAMIR-SIDRA separately, and 

seasonal in situ irrigation over the whole AB district (including non-irrigated plots).  

 Irrigation obtained for AB1 

calibration 

Irrigation obtained for AB2 calibration In situ irrigation 

(entire AB district) 

 2021 2022 2021 2022 2021 2022 

 RMSD 

(mm d-1) 

Average 

amount 

(mm) 

RMSD 

(mm d-1) 

Average 

amount 

(mm) 

RMSD 

(mm d-1) 

Average 

amount 

(mm) 

RMSD 

(mm d-1) 

Average 

amount 

(mm) 

Average 

amount 

(mm) 

Average 

amount 

(mm) 

SAMIR-

Reservoir 

0.37 595 0.69 693 0.34 621 0.62 719 509 587 

SAMIR-

SIDRA 

0.32 590 0.65 694 0.38 617 0.66 720 

 

3.1.2 Which model is more precise? 

Figures 4 and 5 compare the simulated and observed drainage for the AB1 and AB2 sub-basins, respectively, and 445 

the 2021 and 2022 periods. Table 5 shows that among the 16 combinations of model/sub-basin/period, nine have 

KGE (Q0.5) considered as "excellent", four "very good", two "good", and one "acceptable", and there is no 

“unsatisfactory” simulation. RU-Reservoir stands out as the most precise model (mean KGE (Q0.5) = 0.87), 

followed by SAMIR-Reservoir (0.79), RU-SIDRA (0.76), and SAMIR-SIDRA (0.68). From these results, two 

highlights stand out: 450 

i) The models based on Reservoir are more precise in terms of drainage simulations than those based on SIDRA. 

This is particularly true for the AB1 sub-basin. 

ii) The models based on RU are more precise in terms of drainage simulations than those based on SAMIR. 
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 455 

Figure 4. Daily and cumulated drainage of the AB1 sub-basin simulated by the four site-calibrated models for 2021 (left) and 

2022 (right) periods. Plots at the top show the observed precipitation and the simulated irrigation. 
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Figure 5. Same as Fig. 4 but for AB2 sub-basin. 460 
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Table 5. KGE (Q0.5) obtained with NSGA-II calibration for the AB1 and AB2 sub-basins, the four models, and both study 

periods. Values above 0.8 are considered as "excellent", between 0.7 and 0.8 as "very good", between 0.6 and 0.7 as "good", 

and between 0.5 and 0.6 as “acceptable". 465 

 

Table 6. Parameter values obtained with NSGA-II calibration for the AB1 and AB2 sub-basins, the four models, and both 

study periods.  

 Parameters AB1 /  

2021 period 

AB1 /  

2022 period 

AB2 /  

2021 period 

AB2 /  

2022 period 

RU-Reservoir Sinter (mm) 13 76 16 27 

k (-) 0.015 0.008 0.014 0.007 

RU-SIDRA Sinter (mm) 10.5 94 28 51 

K (m d-1) 0.58 1.30 1.08 0.75 

μ (-) 0.07 0.13 0.14 0.11 

L (m) 29 42 38 39 

SAMIR-Reservoir aKcb (-) 1.34 1.23 1.29 1.23 

Zrmax (mm) 1087 1130 1087 1004 

k (-) 0.009 0.004 0.012 0.005 

SAMIR-SIDRA aKcb (-) 1.36 1.19 1.23 1.24 

Zrmax (mm) 1072 1104 943 1079 

K (m d-1) 0.55 0.58 0.91 0.70 

μ (-) 0.10 0.10 0.17 0.09 

L (m) 36 38 32 43 

 

  470 

 KGE (Q0.5) for AB1 KGE (Q0.5) for AB2 

 2021 period 2022 period 2021 period 2022 period 

RU-Reservoir 0.81 0.91 0.82 0.93 

RU-SIDRA 0.67 0.75 0.82 0.77 

SAMIR-Reservoir 0.81 0.83 0.71 0.82 

SAMIR-SIDRA 0.63 0.51 0.80 0.76 
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3.1.3 Why are Reservoir-based models more precise? 

The differences in the formalism of Reservoir and SIDRA and the low responsiveness of the AB1 and AB2 

hydrosystems explain the better performance of the site-calibrated RU-Reservoir and SAMIR-Reservoir models. 

Indeed, SIDRA was designed to simulate flow peaks followed by relatively steep recession curves. In contrast, 

Reservoir does not simulate peaks and generates flow according to a depletion coefficient ω that can be very low. 475 

However, the measured drainage dynamics for AB1 and AB2 are representative of low-responsive hydrosystems. 

This can be seen in Fig. 4 and 5, where the 40 mm rainfall in December 2021 generates a peak of less than 1 mm 

d-1 for both sub-basins, followed by a smooth recession curve with a discharge that never reaches 0 during the 

hydrological year. In comparison, the data used by Jeantet et al. (2021) from 22 French experimental sites, 

accounting for nearly 200 hydrological years, show winter peaks exceeding 20 mm d-1 in most of the studied years, 480 

followed by steep recession curves where 0 flow is reached in a few weeks. Therefore, the Reservoir model is 

favored by the low responsiveness of the AB1 and AB2 hydrosystems, especially for AB1. The SIDRA model 

shows a better precision for AB2 than AB1 because AB2 is more responsive with larger amounts of discharge. In 

addition, the values of the Reservoir depletion coefficient ω are low at our sites (0.009 on average) compared to 

those obtained by Cenobio-Cruz et al. (2022) (0.02 on average), which again reflects the relatively low 485 

responsiveness of the studied area. 

The soil does not explain this low responsiveness since the mean calibrated values of K and μ (0.81 m d-1 and 0.11 

m3 m-3, respectively; see Table 6) are consistent with the order of magnitude found in Jeantet et al. (2021) for a 

similar soil type (K from 0.1 to 1.8 m d-1, and μ from 0.05 to 0.08 m3 m-3). The explanation seems to lie in the fact 

that the surfaces of AB1 and AB2 are not fully equipped with field drains. The transfer time from the recharge 490 

location to the main drain would be longer on non-equipped plots. The values of the calibrated half of the drain 

spacing L support this assumption, with an average of 37 m (see Table 6), being a value that could represent an 

average between low L values for plots equipped with field drains and high L values for plots that are not.  

 

3.1.4 Why are RU-based models more precise? 495 

To understand the better performance of the site-calibrated RU-Reservoir and RU-SIDRA models, in comparison 

with SAMIR-Reservoir and SAMIR-SIDRA, respectively, it is again necessary to look at the differences in 

formalism between RU and SAMIR. Indeed, RU, unlike SAMIR, has a stage during which a reduction factor β of 

0.33 is applied to the recharge (Eq. (8); this stage is triggered by the water level in the soil reservoir). In AB1 and 

AB2, this stage is triggered, particularly during the irrigation season, and results in the spread of recharge amounts. 500 

This benefits RU-SIDRA, which, owing to the lower recharge events simulated by RU, generates lower peaks 

consistent with the drainage observations. This process is well illustrated in Fig. 4.d, where RU-SIDRA simulates 

numerous small peaks during the irrigation period, allowing better matching of the observations. In contrast, in 

Fig. 4.h, SAMIR-SIDRA simulates larger and fewer peaks. 

Furthermore, the Sinter values of RU obtained through calibration are very low (17 mm on average for the 2021 505 

period and 61 mm for the 2022 period; see Table 5) compared with those obtained by Jeantet et al. (2021) (138 

mm on average). This is because the RU-based models are not spatialized and use average irrigation derived from 
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the irrigation simulated by SAMIR, whether for intensely irrigated corn plots generating a lot of recharge or non-

irrigated plots generating no recharge. RU-based models simulate less recharge by simulating an average plot 

using average irrigation. To compensate for this, the NSGA-II optimization algorithm finds low Sinter values to 510 

reduce the reservoir size and, therefore, the ET, increasing the recharge. This explains the low Sinter values retrieved 

over AB1 and AB2. 

3.1.5 Variability of calibrated parameter values between the two periods analyzed  

We can see from Table 6 that the calibrated values of most parameters vary between the two periods for a given 

sub-basin. These variations indicate a lack of predictive capacity of the models, at least between the two periods 515 

analyzed (using the parameters values obtained from calibration on the first period the models fail to predict the 

second period). We believe this is due to the semi-empirical nature of the models. Indeed, parameter values vary 

between the two periods to compensate for the fact that physical processes (e.g., lateral subsurface flows, root 

growth, evapotranspiration) are either too empirically simulated or neglected. 

 520 

3.1.6 Recommendations and perspectives 

Based on the results obtained over AB by the four models with varying complexity levels, we recommend using 

RU-Reservoir when drainage data are available for calibration. The simplest model can reproduce the drainage 

observed at the AB1 and AB2 outlets fairly well. The RU-Reservoir model efficiently combines the performance 

of RU (allowing a better temporal distribution of recharge than SAMIR) and Reservoir (offering drainage 525 

simulations with relatively low responsive dynamics), which fits perfectly with the present study. However, if a 

study concerns a more responsive hydrosystem with larger peaks and steeper recession curves, we recommend 

using RU-SIDRA. Indeed, for the AB2 sub-basin, which is slightly more responsive than AB1, RU-SIDRA shows 

during the 2021 period (Fig. 5.c) a precision comparable to that of RU-Reservoir (Fig. 5.a). This leads us to assume 

that RU-SIDRA could be more appropriate than RU-Reservoir for even more responsive hydrosystems. 530 

To support the strength of these recommendations and to ensure that the models can be ultimately used as decision 

support tools with confidence, we believe it is necessary to improve the robustness of the models by better 

simulating certain physical processes (e.g., lateral subsurface flows, root growth, evapotranspiration). Indeed, the 

variability of calibrated parameter values between the two periods indicates their limited robustness. 

Since RU is not spatialized and has a very simple formalism, the models based on it are more straightforward to 535 

run and require fewer resources than those based on SAMIR. However, they do not consider the spatial 

heterogeneity in irrigation generally encountered in irrigated sub-basins, resulting in very low Sinter calibrated 

values to simulate enough recharge. Spatialization of the RU-based models with irrigation data for each plot would 

lead to higher calibrated Sinter values that are more consistent with those proposed in Jeantet et al. (2021). However, 

unlike SAMIR, RU cannot simulate irrigation, and its spatialization would require plot-scale irrigation data that 540 

are rarely available. 

In some cases, SAMIR shows a relatively low KGE (Q0.5) and difficulties reproducing the right amount of drainage 

(see Fig. 4.d, 4.h, and 5.e). Modifying the SAMIR formalism by taking inspiration from RU and adding a stage 
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related to the soil water availability in which recharge is limited by a factor β could help improve the precision of 

SAMIR-SIDRA and SAMIR-Reservoir. 545 

 

3.2 Accuracy evaluation 

Figures 6 and 7 show for each of the 16 model/sub-basin/period combinations the drainage simulated by using the 

mean values of the default parameters as input (red line), and the 2000 model runs from randomly generated input 

parameters sets within pre-defined distributions provided by the literature (gray lines). Table 7 summarizes the 550 

KGE (Q0.5) obtained with the average default parameters. It indicates that all the 16 cases present "unsatisfactory" 

KGE (Q0.5) values (below 0.5). Moreover, nine cases show KGE (Q0.5) lower than -0.41, the value corresponding 

to the KGE obtained with the temporal average of the observed data.  

RU-Reservoir shows relatively satisfactory KGE (Q0.5) for 2022 (0.22 for AB1 and 0.29 for AB2). However, when 

looking at the drainage dynamics and amounts illustrated in Fig. 6.b and 7.b, it appears that these performances 555 

are due to the nature of the objective function KGE (Q0.5), giving significant importance to low flows. SAMIR-

Reservoir shows a relatively good KGE (Q0.5) for AB2 for 2022 (0.29). Furthermore, the timing and quantities that 

SAMIR-Reservoir simulated for AB1 for both periods 2021 and 2022, as well as for AB2 for the 2021 period, are 

more consistent than those simulated by the other three models. 
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 560 

Figure 6. Daily drainage of AB1 sub-basin simulated using average default parameters of the four models separately (red line), 

and the drainage values ensemble obtained by running each model 2000 times using randomly generated input parameters sets 

within pre-defined distributions (gray lines). 
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 565 

Figure 7. Same as Fig. 6 but for the AB2 sub-basin. 
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Table 7. KGE (Q0.5) values obtained with average default values of model parameters for the AB1 and AB2 sub-basins, the 

four models, and the two study periods separately. 

 570 

3.2.1 Accuracy of RU-Reservoir and RU-SIDRA 

Figures 6.a, 6.c, 7.a, and 7.c show that the RU-based models do not simulate any discharge for the 2021 period 

with the average default parameters (red lines). This is related to the fact that, in a context where RU is not 

spatialized while irrigation is spatially heterogeneous, the optimal Sinter value to generate sufficient recharge is 

lower than in the literature (optimal Sinter values are shown in Table 5). The Sinter values taken from the literature 575 

for the accuracy evaluation are then too high to simulate enough recharge. This implies that without calibration 

with drainage data, models based on RU are only effective in contexts where irrigation practices are homogeneous, 

e.g., on sites under monoculture. Note that for the 2022 period, the RU-based models simulate more drainage than 

in 2021 because the irrigation amounts applied by farmers in 2022 (587 mm between May and October 2022 in 

average over the AB district) are significantly larger than in 2021 (509 mm between May and October 2021). 580 

3.2.2 Accuracy of SAMIR-SIDRA 

Figures 6 and 7 show that with average default parameter values, the SAMIR-based models simulate the drainage 

dynamics with some consistency with the irrigation season and the rain events for both the 2021 and 2022 periods. 

However, SAMIR-SIDRA shows lower performance than SAMIR-Reservoir. Several factors may explain this 

result. First, although they are physical parameters, the values of the SIDRA parameters K and μ found in the 585 

literature do not necessarily correspond to their optimal values for a given site. Second, SIDRA is more appropriate 

for more responsive hydrosystems than AB1 and AB2. Finally, the lack of information on the half of the drain 

spacing L on the AB district led us to set it at 6 m, whereas when calibrated on AB1 and AB2, this parameter is on 

average 37 m (average value considering the plots that are not equipped with field drains). This lower L value 

results in a high reactivity of the simulated drainage. 590 

3.2.3 Accuracy of SAMIR-Reservoir 

Figures 6.e, 6.f, 7.e, and 7.f. show that the drainage simulated by SAMIR-Reservoir with average default parameter 

values is more consistent with the observed drainage than the other three models. It also presents less variability 

within the 2000 simulations ensemble. Fig.7.e shows that SAMIR-Reservoir simulates particularly well the 

drainage dynamics and quantities for the AB2 sub-basin during the 2021 period. SAMIR-Reservoir tends to 595 

overestimate the drainage when the discharge is lower for AB1 during the 2021 and 2022 periods and AB2 during 

 KGE (Q0.5) for AB1 KGE (Q0.5) for AB2 

 2021 period 2022 period 2021 period 2022 period 

RU-Reservoir -1.04 0.22 -0.82 0.29 

RU-SIDRA -1.04 -0.77 -1.19 -0.11 

SAMIR-Reservoir -0.11 -0.68 0.28 -0.21 

SAMIR-SIDRA -1.13 -1.87 -0.32 -0.48 
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the 2022 periods. The fact that SAMIR-Reservoir shows higher accuracy than the more complex models using 

SIDRA is an interesting result since it shows that the descriptive complexity of the models may not be useful for 

predictive purposes. One reason for this is the difficulty of linking SIDRA soil parameters to physically measurable 

soil properties.   600 

The SAMIR-Reservoir accuracy varies spatially between AB1 and AB2 and temporally between 2021 and 2022. 

These differences reflect the semi-empirical nature of SAMIR and Reservoir models. Indeed, they can be attributed 

to the impact of unrepresented processes (e.g., lateral flows) or misrepresentation of ET and recharge processes in 

unusual situations (e.g., 2022 drought and heat waves). SAMIR especially fully neglects the lateral flow. Such 

subsurface flows may come from outside sub-basin boundaries and contribute significantly to the sub-basin 605 

discharge measured at the outlet, depending on the hydrometeorological conditions encountered in a given year. 

Note that representing subsurface lateral flows would be challenging, especially to estimate them accurately across 

system boundaries. Furthermore, this would require more complex models than those tested in this study and 

additional data (e.g., piezometric), which are currently not available in the study area. 

3.2.4 Recommendations and perspectives 610 

Due to the semi-empirical nature of the four models investigated in this study, it is difficult to reproduce the 

drainage discharge with default parameters from the literature. A limitation of RU-based models is their lack of 

spatialization, leading to the use of an average irrigation in forcing, while the irrigation of AB1 and AB2 sub-

basins is spatially heterogeneous. This results in RU not having enough irrigation to generate a correct recharge 

with the Sinter values suggested in the literature (being too high). One way to overcome this would be to spatialize 615 

RU with irrigation data at each plot, but these data are rarely available. 

SAMIR-Reservoir offers a certain consistency with the observed data and could provide an approximate idea of 

the drainage dynamics and amount occurring in an ungauged irrigated sub-catchment. Figures 6.e, 6.f, 7.e, and 7.f 

show that SAMIR-Reservoir 2000 simulations are less dispersed than for the other three models, suggesting greater 

robustness. For decision support, we therefore recommend the use of SAMIR-Reservoir. However, its accuracy 620 

should be further evaluated on other sites. Furthermore, its accuracy could be improved i) by modeling lacking 

physical processes and ii) by investigating a link between the depletion coefficient parameter ω and the soil texture 

or the characteristics of the drainage network. 

 

4 Summary and conclusion 625 

Estimating the drainage in semi-arid irrigation conditions is essential to prevent soil salinization issues and assess 

the water productivity and the irrigation impact on downstream ecosystems. A few studies have used physically-

based models to simulate drainage in an irrigated context. However, these models have many parameters requiring 

extensive data that are rarely available. In this paper, we thus assessed the capacity of four parsimonious semi-

empirical models to simulate drainage at the scale of two sub-basins of the AB district in northeastern Spain. The 630 

four models are built from the combination of two surface models (RU and SAMIR) and two subsurface models 

(Reservoir and SIDRA) with varying complexity levels: RU-Reservoir (two main parameters), RU-SIDRA (three 
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main parameters), SAMIR-Reservoir (three main parameters) and SAMIR-SIDRA (four main parameters). 

SAMIR is based on the FAO-56 ET and crop water balance formulations relying on two main sensitive parameters, 

while RU is a simplified version of the FAO-56 relying on a single sensitive parameter only. SIDRA solves the 635 

Boussinesq equation from two main sensitive parameters, while Reservoir is an empirical drainage model based 

only on a single depletion parameter.  

The precision of the four models, i.e., their ability to reproduce observed drainage data with a site-specific 

calibration, was first evaluated. An optimal calibration approach was implemented for each model and each sub-

basin using the multi-objective genetic algorithm NSGA-II. The comparison between the drainage simulated by 640 

site-specific calibrated models and observations indicates that RU-Reservoir presents a better precision, followed 

closely by SAMIR-Reservoir. This is explained by the fact that the Reservoir model is well suited to represent the 

low responsiveness of both studied sub-basins and that the RU model manages to artificially better spread out the 

recharge events during the irrigation period than the SAMIR model. In addition, the calibrated parameter values 

vary between the two periods analyzed for a given sub-basin. This indicates that the models have limited predictive 645 

capacities (robustness). It is therefore necessary to identify the processes poorly simulated or not simulated at all, 

such as lateral subsurface flows, root growth, and evapotranspiration, and to better take them into account in the 

models. 

Complex models, with many processes simulated and parameters to calibrate, are likely to simulate drainage more 

precisely than simple models when calibrated on observed data. However, when no data is available for calibration, 650 

the most complex models are also the most prone to uncertainty (Puy et al., 2022). Moreover, drainage observations 

required for site-specific calibration are rarely available. Therefore, the accuracy of the four models was also 

evaluated. By accuracy, we mean the ability of the four models to reproduce the observed drainage using default 

parameter values provided by the literature. The comparison between the drainage simulated by default-calibrated 

models and observations indicates that SAMIR-Reservoir is the only model among the four tested capable of 655 

giving a rough estimate of the drainage dynamics and amounts from default parameters.  

However, it was found that the accuracy of SAMIR-Reservoir is quite variable from one sub-basin to another and 

from one hydrological year to another. Therefore, calibration strategies are still needed to reduce uncertainties in 

SAMIR-Reservoir drainage estimates in sub-basins with contrasted conditions. In addition, better constraining the 

value of the Reservoir's depletion coefficient k, especially by seeking a link with soil texture or with the 660 

characteristics of the drainage network, should be investigated in future studies to improve the accuracy of SAMIR-

Reservoir.  

Furthermore, our study took place in an irrigation district where the water use is known and accurately monitored 

through the pumping data. Such irrigation data are rarely available in practice, and no model can predict drainage 

accurately based on inaccurate irrigation forcing, regardless of the model calibration issue. Hence, it is crucial to 665 

develop tools to retrieve the irrigation practices, notably at the integrated spatial scales of sub-basin or irrigation 

districts. To this end, many recent works seek to assimilate satellite products of soil moisture or ET in crop water 

balance models at a range of scales (e.g., Ouaadi et al., 2021; Massari et al., 2021; Dari et al., 2022; Olivera-Guerra 

et al., 2020). The coupling of such remote sensing approaches with surface and subsurface models is likely to 

improve the predictive capabilities of drainage in irrigated areas. 670 
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