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Abstract. The evaluation and quantification of Southern Ocean cloud-radiation interactions simulated by climate models is

essential in understanding the sources and magnitude of the radiative bias that persists in climate models for this region. To

date, most evaluation methods focus on specific synoptic or cloud type conditions that do not consider the entirety of the

Southern Oceans cloud regimes at once. Furthermore, it is difficult to directly quantify the complex and non-linear role that

different cloud properties have on modulating cloud radiative effect. In this study, we present a new method of model evaluation,5

using machine learning, that can at once identify complexities within a system and individual contributions.

To do this, we use an XGBoost model to predict the radiative bias within a nudged version of the Australian Community

Climate and Earth System Simulator – Atmosphere-only Model, using cloud property biases as predictive features. We find

that the XGBoost model can explain up to 55% of the radiative bias from these cloud properties alone. We then apply SHapley

Additive exPlanations feature importance analysis to quantify the role each cloud property bias plays in predicting the radiative10

bias. We find that biases in liquid water path is the largest contributor to the cloud radiative bias over the Southern Ocean,

though important regional and cloud-type dependencies exist. We then test the usefulness of this method in evaluating model

perturbations and find that it can clearly identify complex responses, including cloud property and cloud-type compensating

errors.

1 Introduction15

The Southern Ocean (SO) shortwave cloud radiative bias is a well documented problem in global climate models (Bodas-

Salcedo et al., 2014; Schuddeboom and McDonald, 2021) as well as some numerical weather prediction models (Protat et al.,

2017; McFarquhar et al., 2021). The bias is characterised by too much shortwave radiation reaching the surface of the ocean,

and not enough being reflected by clouds back out to space. Significant work has been done to identify the cause of this
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model bias. Haynes et al. (2011) and Bodas-Salcedo et al. (2016) have shown that a large part of this bias can be attributed20

to the inability of models to simulate super-cooled liquid water clouds in the SO, in particular in cold sectors of extra-tropical

cyclones. A number of observational studies have shown the prevalence of super-cooled liquid water clouds over the SO (Huang

et al., 2012; Chubb et al., 2013; Mace and Protat, 2018). The prevalence of super-cooled liquid water clouds is attributed to the

pristine conditions found in the region, removed from the sources of terrestrial (eg. dust/biomass burning) and anthropogenic

(eg. black carbon) aerosol (although these aerosol can occasionally intrude into the region). The lack of these particular aerosol,25

which contribute large sources of ice-nucleating particles (INP), limits the ability of cloud droplets to freeze, resulting in liquid

clouds at temperatures well below zero. Currently, many climate and weather models do not take into account the pristine

composition of the SO atmosphere, assuming, like over much of the world, that INP are available to help freeze cloud droplets,

resulting in too many ice-phase clouds, which allow too much shortwave radiation to reach the surface of the ocean (Vergara-

Temprado et al., 2018; McCluskey et al., 2023).30

Numerous studies have attempted to address the shortwave cloud radiative bias via cloud phase parameterisations, including,

but not limited to, treatment of ice nucleating temperatures (Furtado and Field, 2017; Varma et al., 2020, 2021), ice crystal

shapes (Varma et al., 2020) and growth rates (Furtado et al., 2016), ice nucleating particle (INP) number concentrations (Vignon

et al., 2021) and sources (Vergara-Temprado et al., 2017, 2018), convective detrainment temperatures (Kay et al., 2016) and

more. Invariably, many of these studies find that altering parameters for specific SO conditions results in changes in model35

performance over other parts of the climate system for better or worse (as explored in Kay et al., 2016; Furtado et al., 2016;

Varma et al., 2020, 2021). This outcome is particularly important given the range of recent literature highlighting a latitudinal

dependence of cloud properties in the Southern Ocean, which has been attributed by some to differences in aerosol properties

(McCoy et al., 2015; Humphries et al., 2021; Mace et al., 2021b, a).

Many model evaluation techniques used to diagnose this problem rely on satellite observations and hence require a satel-40

lite simulator such as the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP)

described in Bodas-Salcedo et al. (2011). More recently, ground-based lidar simulators are also available for more accurate

model evaluation from ceilometers and lidars on the surface (eg. Kuma et al., 2020). In conjunction with such simulators, most

studies have separated their data into specific conditions, for example, by isolating particular synoptic situations (eg. Field and

Wood, 2007; Bodas-Salcedo et al., 2016) or by cloud regimes (or ‘weather states’) (eg. Williams and Webb, 2009; Tselioudis45

et al., 2013; Oreopoulos et al., 2014; Mason et al., 2015; Oreopoulos et al., 2016; McDonald et al., 2016; Leinonen et al.,

2016; Schuddeboom et al., 2018; Tselioudis et al., 2021; Fiddes et al., 2022). By isolating particular conditions, the specific

microphysical causes of the radiative bias that are relevant to that condition can be diagnosed. However that cause may not

perhaps be relevant to other conditions. Additionally, as Fiddes et al. (2022) (a companion paper to this study; herein F22)

found, the model being examined in this study rarely simulates cloud regimes correctly, which may reduce the usefulness of50

the cloud regime approach and calls for a different method of evaluation. Without the use of synoptic typing or cloud regimes,

calculating zonal means is a popular way of diagnosing model biases at a macro-scale. However, this method severely limits

the microphysical inferences that can be made.
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Another way to evaluate and in some instances tune models is to explore parameter uncertainty (Lee et al., 2013; Regayre

et al., 2020, 2023). In these cases the parameter space (the range of plausible values) and their impacts in global climate models55

are emulated with more simplified statistical models. This allows re-sampling over a range of multi-parameter values many

times over what is possible with physically driven models. From these large samples, the uncertainty attributed to particular

parameters can be identified and the best combination of parameter values can be constrained based on comparisons with

observations. These methods present a powerful way of reducing uncertainty of climate models within known and quantified

parameters and physical mechanisms.60

The evaluation techniques presented in the literature are important methods in understanding model biases and have been

shown to be useful in testing and tuning new parameterisations. However, these techniques are often limited to using human

ability to discern complex physical processes, interactions and patterns to diagnose the drivers of biases. We suggest that

utilising machine learning and associated feature importance metrics can enhance pattern recognition, aid our ability to assess

non-linearity and collinearity and shed new light on our understanding of the underlying causes of the biases across multiple65

conditions.

Increased computing power as well as increased data availability now means that machine learning techniques are a useful

tool to further understand and predict climate and weather problems, especially in relation to clouds (Beucler et al., 2021).

Currently, applications of machine learning in climate science are limited for a number of reasons, including the relatively

recent advances in the field with respect to both methods and accessibility of computing resources, the difficulty in applying70

often non-perfect or very limited data sets to a problem and the fact that physical understanding in climate science is often

more important than model accuracy (Beucler et al., 2021). Current applications include (but are not limited to): predicting

a particular field, such as low-marine clouds (Fuchs et al., 2018), liquid water path (Zipfel et al., 2022), radiation (Fan et al.,

2018; Mallet et al., 2023); improving retrievals for remote sensing (Yan et al., 2020); downscaling of coarse resolution data

(Vandal et al., 2019); improving subgrid-scale parameterisations (Rasp et al., 2018); or classification problems (Zhang et al.,75

2019).

Of particular note is the application of machine learning to climate emulation, i.e. emulating the global response of complex

climate models, as outlined in Watson-Parris et al. (2022). Climate emulation has typically used simple models to estimate

what the response of the climate (usually temperature) may be to changes in forcings. These models tend to not capture

spatially varying and non-linear processes well, whereas machine learning has been shown to do well in this space, but has80

been challenged by a lack of data for training purposes. Watson-Parris et al. (2022) have now provided a dataset and some

initial machine learning frameworks designed specifically for training models for this application, which may provide a new

way to determine possible climate responses to changes in forcings, beyond that of the temperature.

To our knowledge, no study has yet applied machine learning methods to understanding biases in climate models. We now

believe that current methods for regression problems combined with feature importance metrics may provide useful insight into85

how biases are occurring. Feature importance metrics aim to provide quantification of how each predictive feature in a problem

(regressive or categorical) has contributed to the final outcome. Commonly, feature importance metrics have been considered

misleading due to their inability to take into account dependencies between predictive features (Hooker et al., 2021). However,
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the recent advances in this space, including the development of the SHAP (SHapley Additive exPlanations) feature importance,

mean that we can better take into account these dependencies.90

SHAP analysis builds on Shapley Values, a method originally derived for game theory applications to identify how important

one player in a team was to the outcome of the game (Shapley, 1953; Lundberg and Lee, 2017). SHAP feature importance can

be used to assess individual, accumulative and interacting feature importance, taking into account collinearities. Furthermore,

SHAP analysis is model agnostic and is considered a powerful tool in feature analysis.

In this study, we combine SHAP feature analysis with a regression model to evaluate and understand cloud radiative model95

biases for the first time. We test if we can perform such an evaluation in a more holistic manner than in previous studies,

considering all conditions at once, rather than specific cloud or synoptic regimes. To do this, rather than isolating a particular

regime and then examining the particular biases in cloud properties associated with it, biases in cloud microphysical properties

are used to predict the bias in the cloud radiative effect. We then apply SHAP feature importance to understand the primary

drivers of the cloud radiative bias at any point in space or time. We hypothesis that that this method can provide new insight100

into the cloud-radiative bias problem and may be useful tool when it comes to model sensitivity testing.

2 Data and methods

2.1 ACCESS-AM2 model and observational products

The Australian Community Climate and Earth System Simulator (ACCESS) - Atmosphere-only Model Version 2 (AM2) model

is used in this work (Bodman et al., 2020). ACCESS-AM2 uses the same atmospheric set-up as that of the Coupled Model105

Intercomparison Project (CMIP) ACCESS-Coupled Model 2 (CM2) (Bi et al., 2020) submission for the AMIP (atmosphere

only model intercomparison project) design (Eyring et al., 2016), but with prescribed sea surface temperatures and sea-ice

concentrations. While we will provide key details here, a full description of the exact model set-up can be found in F22 (Fiddes

et al., 2022). The atmospheric model is the Unified Model (UM) vn10.6, GA7.1 Walters et al. (2019), used in conjunction with

the Community Atmosphere Biosphere Land Exchange (CABLE) version 2.5 land surface scheme (also described in Bi et al.,110

2020) and the GLOMAP-mode (GLObal Model of Aerosol Processes) aerosol microphysical scheme (Mann et al., 2010; Ma

et al., 2012). Importantly, for this work we have the COSP simulator switched on (Bodas-Salcedo et al., 2011), in this case for

the the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, to allow for sensible comparison between satellite

fields and the model.

We have run the model from 2014-2019, discarding the year 2014 as spin-up. The European Centre for Medium-range115

Weather Forecasting (ECMWF) Reanalysis 5 (ERA5) product (Hersbach et al., 2020) is used to nudge the model every three

hours, using the the horizontal wind and temperature above the boundary layer. The ACCESS model runs at 1.25x1.875 degree

horizontal resolution with 85 vertical levels, and for this work we have output daily means.

We use two satellite products in this work: cloud properties from MODIS Combined Aqua/Terra, Level 3 daily, 1x1 degree

grid, Collection 6.1, COSP product (MCD06COSP_D3_MODIS) derived specifically for CMIP6 (Pincus et al., 2012; Platnick120

et al., 2017; Hubanks et al., 2020) and radiation fields from the Clouds and the Earth’s Radiant Energy System (CERES)
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Syn1Deg product (Doelling et al., 2013, 2016). Both these products are available at daily mean time-scales and have been

regridded to match the ACCESS-AM2 horizontal grid. How these products have been prepared is fully described in F22,

which has used the exact data set as this current work. F22 includes discussion about the satellite products strengths and

limitations, quality (including successful pixel retrieval), past evaluation and processing.125

We use the outgoing top of atmosphere (TOA) shortwave (SW) cloud radiative effect (CRE) (SWCRETOA) for this work.

We have defined the SWCRETOA as the difference between the clear-sky radiation and the all-sky radiation fields (for both the

model and the satellite products). A positive SWCRETOA bias indicates that the ACCESS-AM2 model is allowing too much

shortwave radiation to pass through the clouds and not reflecting enough shortwave radiation out to space. This corresponds to

too much shortwave radiation reaching the surface. We have excluded any land regions as significant cloud and radiative biases130

were found due to non-marine features such as orography. We only consider the summer period for this paper due to the much

larger biases found in this season (see F22). Our analysis has been limited to the region of 30-69◦S.

The cloud fields of interest include the grid box mean liquid and ice cloud fractions (CFL and CFI), liquid and ice cloud

optical depths (TauL and TauI), and cloud top pressure (CTP). These are described in detail in F22, including the pre-processing

performed and the decision making around what specific data set to use. As described in F22, the model’s COSP liquid water135

path (LWP) and ice water path (IWP) showed considerable biases when compared to the observed COSP products. This is

thought to be a continuation of poor retrievals of the cloud effective radius. While we acknowledge that this bring uncertainty

into our results, we have greater confidence in the raw model fields in this instance. For this reason the raw model output was

used for these fields (LWP and IWP) instead.

In addition to the cloud fields described above, we use the cloud top pressure - cloud optical depth histogram derived cloud140

types described in F22. These cloud types were developed using k-means clustering, where 12 cloud types were found using

the MODIS data set. The 12 cluster centers defined by k-means were then applied to the respective ACCESS-AM2 product,

so that each data point was assigned the cluster (aka cloud type) that most closely fit. After initial analysis the 12 cloud types

were merged into 10 cloud types. A full description of how these cloud types were found and an analysis of their patterns and

relationships to the cloud-radiation bias can be found in F22.145

2.2 XGBoost

XGBoost, or eXtreme Gradient Boosting, is a highly efficient, fast and scalable algorithm that can handle a large variety

of problems (Chen and Guestrin, 2016). XGBoost uses decision trees to predict either categorical or quantitative data, eg.

classification or regression problems. Instead of randomly bootstrapping data over many decisions trees to minimise variance,

as in the random forest technique, boosting takes a staged approach where each decision tree learns from the mistakes of150

the previous decision trees to minimise errors, while at the same time boosting higher performing trees (Hastie et al., 2009).

Gradient boosting, instead of minimising absolute or squared-errors, uses a gradient descent algorithm to minimise the errors

of previous trees (Hastie et al., 2009). XGBoost, an ‘extreme’ gradient boosting method, is computationally optimised, reduces

the amount of data being considered via tree pruning (i.e. removing parts of the trees that were not useful), or the number of

nodes in the trees and can reduce the risk of over-fitting (Chen and Guestrin, 2016).155
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In this work, we use XGBoost to predict the SWCRETOA biases using the biases in the cloud properties described in the

previous section. We refer to these cloud properties as ‘features’, in line with the language used in machine learning.

To make our prediction, the dataset was split into training and testing datasets, where it was trained on four years of data

and tested on one. We have tested the XGBoost model on each of the full summers available at daily resolution: 2015-2016,

2016-2017, 2017-2018 and 2018-2019 (where training was performed on the remaining years) to avoid over-fitting.160

Model tuning was performed to improve accuracy and efficiency of the XGBoost model. We have used 4-fold cross validation

which splits the training data into a further four individual data sets, in effect generating an ensemble. We note that the ’folds’

did not split the data at random, but rather into continuous sections in time, so to avoid the risk of over fitting due to auto

correlation. We have employed both the SciKit-Learn GridSearchCV function (Pedregosa et al., 2011) and the XGBoost cross

validation function (Chen and Guestrin, 2016) to identify the best combination of hyperparameters for our application. We note165

that the cross validation described here is in addition to testing on different summers. The workflow used for this tuning (and

the exact values used for this work) can be found in the available code linked to this study.

Tuning increased the XGBoost model root mean square error (RMSE) by only 0.44 and the explained variance by 0.014%.

While this is a small improvement, we recognise that greater XGBoost model improvement could be found by adding more

features. We tested this by including the actual MODIS cloud features (ie. not the biases) as predictors, which also resulted170

in small improvements. However, by adding more features, physical interpretation of the results becomes more difficult. For

this reason, a decision was made to reduce the complexity of the XGBoost model (by only using the biases as features) for the

benefit of our understanding.

For the following methods and analysis, we have run the tuned XGBoost model over the entire data set. While this may

lead to some over fitting (up to 3% of explained variance), we felt it was important to capture some year-to-year variability, as175

opposed to just one summers worth of data.

2.3 SHAP Feature Importance

With our predictive XGBoost model, we can now begin to understand what cloud features are most important in driving the

radiative bias. SHAP aims to understand what contribution each feature has made, i.e. how important they are, to the prediction

of x at any particular point in time or space (known as a local prediction) (Lundberg and Lee, 2017). For the SHAP analysis,180

two key outputs need to be considered to understand the results. The first one is a singular ‘base’ value for the entire data set

of the target variable. This is equal to the mean prediction, in this case provided by the XGBoost model. Secondly, for each

point in time and space, and for each predictor variable, a SHAP value is given, with the same units as that of the base value. A

SHAP value quantifies how important a feature is to the total prediction of that point x. It is essential to note that the sum of all

SHAP values for a point x do not equal the prediction of x, the base value must also be added. In this sense, we can consider185

local SHAP values to represent information of the prediction away from the mean (the base value), giving us an indication

of how they are contributing to the overall variance. In Section 4, we will provide further description of how to interpret the

SHAP values, using the results from this study.
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An important strength of SHAP analysis is that the resulting SHAP values are additive with respect to feature attribution,

making comparisons across features easy to interpret, even if the features themselves have different units. Similarly, averaging190

across time or space allows for an in-depth analysis of the results. SHAP analysis further includes the ability to explore the

feature dependence and feature interaction, again making interpreting complex models more ‘humanly understandable’. Of

specific interest to this work are the inbuilt functions to cluster SHAP values, allowing us to determine if two predictors are

providing the same information to the XGBoost model and the SHAP interaction values. Clustering the SHAP values provides

an indication of how independent each predictor is.195

SHAP interaction values offer a further insight into what the ‘main’ contribution from each feature compared to the value

of its interactions with other individual features (Lundberg et al., 2020). It is calculated in a similar way to SHAP values, but

allocate credit not just to individual features, as normal SHAP values do, but to all possible pairs of features. It produces a matrix

for each individual prediction whereby the ‘main’ (i.e. non-interacting) contribution is represented by the diagonal values, while

the interaction value (Φ) is split evenly between each feature (e.g. ΦLWP,IWP =ΦIWP,LWP ), which are represented in the200

off-diagonal values of the matrix, so that the total interaction value is ΦLWP,IWP +ΦIWP,LWP (Lundberg et al., 2020).

Summing the SHAP interaction values along a particular feature gives the same value as the SHAP value for that feature for

any one point. Summing the entire interaction matrix (including the interaction values and the main values) will give the same

value as the sum of the SHAP values. In that sense, it can be useful to think of the ‘main’ values from the interaction matrix as

the SHAP values minus the interaction values.205

However, despite the increased ability to interpret how the features are contributing to the prediction, like many statistical

methods, strong feature importance does not provide a causal relationship. Physical understanding of the underlying data must

also be considered.

2.4 Tools and analysis methods

To produce the results presented in this work, we have applied the XGBoost model and SHAP analysis to the entire data set210

(2015-2019). For both the bias prediction and feature importance analyses performed in this work we have used the python

packages for the Dask (Dask Development Team, 2016) scheduling software, in conjunction with Xarray, SciKit-Learn and

other packages specifically mentioned below (Hoyer and Hamman, 2017; Pedregosa et al., 2011). We have run this analysis on

the National Computational Infrastructure supercomputer Gadi, using 16 CPUs and 44 GB of memory available via their Open

On Demand interface. The workflow for this paper can be found at with our exact methods.215

We have defined three regions in this work, following F22, with the boundaries of 30-43◦S for the mid-latitudes of the the

SO, 43-58◦S for the sub-polar region, and a polar region of 58-69◦S.

In order to fully evaluate the added value of using a powerful, yet complex and computationally expensive model such

as XGBoost, we also used a simple multiple linear regression and Pearson correlation to linearly predict and understand the

relationships of the SWCRETOA bias to the COSP cloud biases (MLR, available from Scikit-Learn, Pedregosa et al., 2011).220
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Figure 1. The true (a) and XGBoost predicted (b) DJF SWCRETOA bias (CERES-Syn1D minus ACCESS-AM2) averaged over time; c)

shows the residual difference between the predicted and true biases. The dashed lines represent the three regions of interest, mid-latitudes

(30-43◦S), sub-polar (43-58◦S) and the polar (58-69◦S) regions. In (d) a histogram of the residual against the prediction, the black lines are

represent 0 W m−2 for the residual and the mean prediction of 12.42 W m−2. All units are in W m−2.

3 Predicting the SWCRETOA biases

Figure 1a shows the difference in DJF SWCRETOA between the ACCESS-AM2 and satellite product (CERES-Syn1D). As a

reminder, the SWCRETOA is calculated as the clear-sky radiation minus the all-sky radiation fields, which results in negative

SWCRETOA values (see Figure A1). The biases are calculated as model minus observations, with positive SWCRETOA biases

indicating that the model has less negative values than the observations, resulting in a positive SWCRETOA bias, indicating225

that less sunlight is being refelted out to space.

As discussed in F22 (Fiddes et al., 2022), a strong bias in the polar region of the SO is found, corresponding to too little

shortwave solar radiation being reflected back out to space by clouds, and too much being absorbed into the Earth system,

including reaching the surface of the ocean. In the sub-polar region, a zonally asymmetric bias is found with positive biases

shown in the eastern Indian Ocean and Pacific Ocean sectors, while negative biases are found throughout the rest of that region,230

as well as in the mid-latitude region. Examination of the model and satellite fields separately (see Appendix Figure A1) shows

that the asymmetrical bias appears to be due to ACCESS-AM2 failing to capture the observed spatial variability. We will

consider causes of this asymmetry again in Section 4.2.

The spatial variability of this bias suggests that cloud/radiative regimes strongly vary across the Southern Ocean. The asym-

metry of this bias makes it difficult to evaluate and understand without splitting the region up into specific synoptic or cloud235

regimes, as done in studies such as Bodas-Salcedo et al. (2016) or Fiddes et al. (2022). Building on knowledge from previous

work, where we understand that particular cloud characteristics (or lack of) are responsible for driving the SWCRETOA bias

in parts of the Southern Ocean, in this study we use biases in such cloud characteristics to predict the SWCRETOA bias. We

hypothesise that if we can satisfactorily predict a bias, we can then use the derived XGBoost model to better understand the

sources contributing to the bias. Firstly however, we want to understand more about the individual relationships of each cloud240

feature bias and the SWCRETOA bias.
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Correlations have been calculated for each cloud feature (shown in Figure A3) with respect to the SWCRETOA bias, as well

as to each other to test for both linearity of the cloud-radiative bias relationship and collinearities between the cloud features.

We find that the LWP bias has the strongest relationship with the SWCRETOA bias, but can only linearly explain 30% of the

variance. The other cloud features explain very little of the SWCRETOA bias under a linear assumption. Similarly, correlations245

between cloud features do not exceed 31%, indicating weak collinearity. Analysis of the mean SWCRETOA bias versus the

cloud feature biases for each of the cloud types developed by F22 over three latitudinal areas is shown in Appendix Figure A2.

This figure confirms, even when only considering the means across cloud types/locations, that these relationships are in some

cases highly non-linear, and in other cases, very weak.

In reality, how clouds interact with radiation is a complex system that depends on many, not individual, variables. Hence,250

analysis comparing singular features should not be expected to provide strong indications of how this system works. For

this reason, we also wanted to test whether a simple technique such as multiple linear regression (MLR) could predict the

SWCRETOA bias more satisfactorily. The benefit of such a technique is the low computational requirements and easy initial

interpretation. The MLR was able to predict between 42-43% of the variance (when tested on different summers, in the same

way as described for the XGBoost training and testing data sets). We have provided more detail on how the MLR prediction255

performs in the supplementary material. The improvement of the MLR compared to a linear prediction from the individual

cloud features does give us an expectation we can improve upon this problem with a more sophisticated tool that can account

for the inherent characteristics of the data.

The tool we have chosen to address these issues is XGBoost because it can handle non-linear applications and its perfor-

mance isn’t significantly impacted by collinearity among predictor variables, although as we discuss shortly, these must be still260

considered when we interpret the importance of these predictors. Using XGBoost, we model the DJF SWCRETOA biases using

the biases in the cloud features discussed above. The results for each period of training and testing were similar, predicting

between 54-55% of the SWCRETOA bias (the R2) and a root mean squared error of between 29.45-30.12. For the subsequent

results and analysis, we use the full data set, where 58% of the SWCRETOA bias is explained.

Figure 1 shows the XGBoost predicted bias (b), the residual between the true and predicted bias (c) and a histogram of the265

residual versus the predicted bias (d). If we were to consider just the median values of the entire region, the XGBoost model

predicts a SWCRETOA bias of 11.4 W m−2 compared to 11.7 W m−2 (the means are 12.4 W m−2 and 12.4 W m−2 respec-

tively), implying that the XGBoost model performs quite well, albeit with a lower standard deviation (32.9 W m−2) than that of

the true bias values (44.4 W m−2). The area weighted statistics for the entire region for the true and XGBoost predicted values

respectively are: means of 12.0 W m−2 and 11.5 W m−2; medians of 11.1 W m−2 and 10.6 W m−2 and standard deviations of270

45.2 W m−2 and 33.5 W m−2. In Figure 1d, a more symmetrical concentration of residuals (y-axis), centred around zero, and

a narrow range of predictions is an indicator of a well performing model (x-axis). We can see that the XGBoost model does

provide a relatively symmetric pattern, with little skew in any direction. This is especially the case when compared to the MLR,

shown in the supplementary material.

We get a much clearer picture of the XGBoost model’s performance in different spatial regions in Figure 1a, b and c. Here275

we can see that the XGBoost model appears to capture the SO negative bias in the polar region reasonably well, with the
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predicted median of 23.2 W m−2 and a true value of 19.4 W m−2. The residual is fairly uniform except in the Weddell Sea

region, which could reflect the influence of sea ice. In the sub-polar region, there are small differences between the predicted

and true SWCRETOA biases, with a median predicted bias of 6.9 W m−2 compared to the true bias of 7.3 W m−2. Interestingly,

these small residuals are not zonally symmetrical, with positive values in the Australian and Pacific Sectors and negative biases280

in the Atlantic and most of the Indian Ocean sectors. In the mid-latitude region, the positive SWCRETOA bias is slightly

underestimated in the XGBoost model (median of 8.6 W m−2 for the predicted bias compared to 12.6 W m−2). The residuals,

however, are more zonally symmetric than the sub-polar and polar latitude bands.

As stated previously, our XGBoost model can explain just over half of the variance in the SWCRETOA bias (R2 0̃.55). The

remainder of this variance, as well as some of the spatial differences observed in Figure 1c suggests that the biases in the cloud285

fields used in this work may not be the only contributors towards this particular feature of the radiative bias. Alternatively,

it could also imply that the robustness of the data that we consider truth are not the same for all regions. The study that the

current work follows on from, F22, showed little zonal asymmetry in the LWP, IWP, CFL and CFI biases and similarly, little

asymmetry in the relative frequency of occurrence biases of different cloud types, suggesting the need to account for additional

physical properties and relationships in these regions.290

The missing component could be a range of things, for example, another microphysical cloud field, dynamical field or

environmental factor, i.e: the presence of ice nucleating particles, sea surface temperatures or thermodynamical properties of

the atmosphere. For example, the influence of dust derived ice nucleating particles may be greater in particular sectors of the SO,

in certain seasons, which may change cloud properties in those regions. Alternatively, Zipfel et al. (2022), in predicting LWP

over marine boundary layer clouds in the Southeast Atlantic, found that dynamical characteristics and sea surface temperature295

were important environmental factors, along with other cloud property predictors.

Although the XGBoost model is able to explain a larger amount of the SWCRETOA bias than any individual or linearly

associated cloud feature could, we must keep two things in mind. Firstly, by adding more (and in particular, not internally

consistent) data we make interpretation more difficult and secondly, that the relationships shown here do not prove a causal

relationship. We must understand what the model is inferring physically for us to make such association. In this work, we show300

that even with only 54-55% of the variance explained by these cloud biases we can derive valuable information in how they

contribute or do not contribute to the radiative bias. For these reasons, we will continue with our described method, and explore

how each of these cloud features contribute to predicted SWCRETOA bias using SHAP analysis.

4 Understanding the SWCRETOA biases

SHAP feature importance analysis allows us to quantify the contribution (or importance) of each cloud feature made to the305

predicted result, in this case the XGBoost radiative bias. This is demonstrated in Figure 2a, where a so-called force plot is

shown. Here, we can see how, for this singular prediction of x, each cloud feature has contributed to the total prediction f(x),

by shifting the values away from the base value (12.4 W m−2). We note that for the cloud features, their actual values, not the

SHAP values are shown in text for the top predictors, while the magnitude and sign of the SHAP value is indicated by the bar.
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a) SHAP force plot (for one point in time and space)

c) Global importance plotb) Sum of all SHAP values
(or predicted bias  - base value)

Figure 2. (a) a SHAP force plot showing the SHAP values for each predictor for a single example prediction. The sum of these values is

the difference between the ’base’ value (i.e. mean prediction) of 12.4 W m−2 and the individual prediction of 9.17 W m−2. (b) the sum of

all SHAP values for each spatial point. (c) the global importance plot showing the mean of the absolute SHAP values (in W m−2) for each

predictor across all predictions, with the dendrogram indicating the degree to which these predictors are clustered.

The base value can be considered as the starting point of any prediction, i.e. if we had no information about the cloud state, a310

good prediction to start with is the base value. Each cloud feature then adds subsequent information to the prediction, which

all together sum (with the base value) to the total prediction. This also means that when summed together for any individual

point, or subsection of points, the SHAP values do not represent the total prediction for that point or subsection, but rather the

difference from the base value. This is demonstrated by Figure 2b, which shows the mean sum of all SHAP values spatially,

which is equivalent to the difference between the predicted bias (shown in Figure 1b) minus the base value. This characteristic315

of the SHAP analysis must be kept in mind when considering the SHAP values.

4.1 The mean importance of cloud features to the SWCRETOA bias

With this functionality of SHAP features in mind, we can now start to analyse our results both globally (ie. the mean across all

points) and locally (using subsections, either spatially, temporally or other groupings). Figure 2c shows the global importance

values, which is simply the absolute mean (|M|) of all SHAP values for each cloud feature. These values give us the first320

indication of how important each cloud feature is comparatively, with the higher the |M| value, the more important that feature
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2.31 1.73 9.03

1.47 2.62 2.52 9.51

2.26 1.1 2.08 1.54 5.29

2.44 1.19 0.857 1.9 0.738 6.93

1.2 1.37 1.87 1.98 1.09 1.07 5.5

Figure 3. A heat map of the absolute mean values for the SHAP interaction matrix. The diagonal values represent the ‘main’ contribution, i.e.

the contribution to the total SHAP values that can be attributed to that individual feature. The off diagonal values represent total interaction

value for any two features combined.

is to the overall prediction. Here we can clearly see that the biases in liquid water path contribute most to the predicted

SWCRETOA bias, with |M| equal to 12.12 W m−2. This is followed by the liquid cloud fraction (9.38 W m−2), ice cloud

fraction (9.27 W m−2) and ice water path (7.59 W m−2), ice optical depth (5.80 W m−2), cloud top pressure (5.18 W m−2) and

liquid optical depth (5.16 W m−2) biases.325

Figure 2c has not been arranged in order of most to least important, but has instead been clustered, using the in-built

SHAP clustering function. This is shown by the dendrogram on the right of the plot, where features are hierarchically merged

into clusters. Clustering the SHAP features together can give us an indication of which cloud features are providing similar

information to our XGBoost model. If two features provide the same information, the XGBoost model will only use one of

them for efficiency, which, while maintaining statistical robustness (eg. avoiding the effects of collinearity), can impact our330

interpretation of the results. For this plot, we have used a clustering distance cut-off of 0.8, allowing us to see that our features

merge at a distance closer to one. A distance of one would imply complete feature independence, while zero would imply

complete redundancy. Here we see that one of the least important cloud feature (CTP) is the first to be merged into clusters

with the most important cloud features (eg. CFI). However, the merge is occurring only slightly before other features are

merged into the other clusters, indicating that even the weakest cloud features are providing independent, if not as important,335

information to the XGBoost model.

We can further investigate the nature of feature interaction by using the SHAP interaction values. SHAP interaction values

are similar to SHAP values, but provide the ‘main’ contribute from each feature (along the diagonal) plus the interaction values
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for each combination of features, for every point in the data set. How to interpret these values is explained in more detail in

Section 2.3. In Figure 3 we show the absolute mean values across the whole data set. We note that the off-diagonal values show340

the total interaction between the two features (see Section 2.3 for more details on how this is calculated).

Figure 3 shows us that the LWP has the highest ‘main’ interaction, indicating that it provides the most important, individual

contribution overall. This is then followed by the CFI, CFL, IWP, TauI, CTP and TauL, which is a slightly different order to

that provided by the overall SHAP values in Figure 2c, though this is only occurring when SHAP values are very close in

magnitude. Importantly, we can see that the absolute mean of the interaction values are overall, smaller than the main values,345

indicating that feature interaction is less important to the overall result than the main contributions. If we consider the off-

diagonal values in Figure 3, we can see that the largest value is between LWP and IWP, though this value is still smaller than

even the lowest ‘main’ SHAP value. We believe this analysis supports our earlier finding of only weak-moderate collinearity

between cloud features and means that we are able to make inferences about how each cloud feature is impacting the radiative

bias physically.350

4.2 Drawing physical conclusions from our SHAP values

While these global importance values are useful to summarise results, they limit the information needed to be able to physically

explain why a particular feature may or may not be important. A strength of the SHAP analysis is that an individual SHAP

value can be calculated for each feature for every point in time and space. Thus, we can use them to understand how these

cloud features contribute to the radiative bias spatially (i.e. their ‘local’ values), and use the relationships of the SHAP values to355

their respective cloud feature to try to understand their contribution physically. Figure 4 summarises the outcome of the SHAP

analysis.

The density plots of Figure 4 (bottom row) help us understand the spatial means that are presented along the top two rows.

Here we find that most of the relationships shown are non-linear, especially with respect to the outliers, with at least one case

being parabolic (CTP in Figure 4u). Interestingly, the ice and liquid counterparts for each field (bar cloud top pressure), are360

similar in shape, giving us confidence that this method is able to capture the role cloud phase plays in the SWCRETOA bias.

Examining Figure 4 field by field, for LWP, we can see that the spatial SHAP values and the bias patterns line up closely

(plots a and h), indicating that increasingly large and positive values of the LWP bias do contribute to an increasingly negative

radiative bias (and vice versa). Figure 4o indicates that this behaviour should be expected, with the distribution diagonally

centred on zero. In the mid-latitudes, positive LWP biases are associated with negative SHAP values, which transition to365

negative LWP biases and positive SHAP values in the polar region. Both of these outcomes make sense with our physical

knowledge of how LWP interacts with radiation, where clouds with high LWP would increase the amount of sunlight being

reflected out to space.

For the CFL, SHAP values are negative in the mid-latitudes while positive in the sub-polar and polar regions. The change

in sign of the biases in CFL does not coincide spatially with the SHAP values, which are strongly negative in the polar and370

sub-polar region, and weakly negative in the mid-latitudes. Examining Figure 4p shows that the relationship between the biases

and SHAP values is offset from zero so that weakly negative CFL biases can produce negative SHAP values. These weakly
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Figure 4. Top row (a-g): the time-averaged SHAP values for each cloud feature over the SO domain. Middle row (h-n): the time-mean

biases (ACCESS-AM2 - MODIS) for each of the cloud features. Bottom row (o-u): Scatter plot distributions (darker colours indicate greater

density) showing the relationship between the bias in each cloud feature and respective the SHAP values. Note that the scatter plots have

been limited along the x and y axis to better show the behaviour of the majority of the distribution.

negative CFL biases are occurring predominantly in the northern boundary of the sub-polar region. If we consider making a

prediction of the radiative bias, starting from our base value (12.4 W m−2), and only knowing about the CFL properties, we can

say that in instances where the CFL bias is weakly negative, the radiative bias will be less positive than if the CFL bias is much375

larger. While this makes sense when considered together with the base value, this result still demonstrates that the radiative

influence of clouds is not as simple as "less cloud (even marginally) equals more sunlight passing through", but highlights the

ability of the SHAP analysis to capture non-linear processes.

Unlike the CFL, the CFI SHAP values and bias patterns are easier to interpret, with the spatial patterns of Figure 4c and j

lining up neatly. Weakly negative biases in CFI correspond to moderately strong positive SHAP values in the mid-latitudes,380

while positive CFI biases contribute to moderately negative SHAP values. Similarly, the IWP SHAP values are negative in the

polar and sub-polar regions and positive in the mid-latitudes. The IWP biases are strongly positive in the polar region, positive
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in the sub-polar region and are a mixture of positive and negative values for the mid-latitude, depending on proximity to land

masses.

Negative SHAP values are associated with positive IWP and CFI values where too much ice is resulting in too much385

SWCRETOA being reflected out to space. The broad similarity in SHAP patterns between the LWP and CFL, as well as the

IWP and CFI implies that the underestimation of liquid clouds is a key driver of the SWCRE bias, while the underestimation

of ice clouds is actually having a compensating effect. These results suggest that modelling efforts to simply shift water mass

from the liquid to the ice phase (eg. by changing ice nucleation temperatures or slowing crystal growth rates) may not entirely

solve the problems in radiative properties. Instead we suggest that these two phase types may need to be tackled independently,390

with consideration of the ice nucleating particle availability explicitly included in future model development.

The TauI SHAP values presents an almost cubic function compared to the TauI bias in Figure 4s, which is, on average,

positive. The weaker the positive TauI bias (ie. the thinner the cloud), the more positive the SHAP values (less sunlight being

reflected out to space). Interestingly, the weakest TauI biases occur in the polar region (Figure 4l), despite strongly overesti-

mated IWP (and to some degree CFI). We suggest that the ice water may be dispersed through the overestimated cloud fraction,395

resulting in lower biases in optical thickness. However, the positive SHAP value (rather than a simply weak negative value)

indicates the non-linearity of this system and possibly a process that we are yet to understand. For TauL, we see a similar

relationship, where the thinner the cloud (eg. negative biases), the more sunlight is allowed to pass through the cloud (positive

SHAP values). Positive SHAP values are found in the polar and sub-polar regions, while this transitions to negative in the

mid-latitude region (Figure 4f).400

Finally, the CTP presents the only zonally asymmetric cloud SHAP values in the sub-polar and polar region, with negative

SHAP values in the Pacific sector and West Antarctic region. The relationship between SHAP values and CTP bias is non-

linear (Figure 4n), where positive and negative CTP values can correspond to both positive and negative SHAP values. What

is causing the difference in SHAP values is difficult to discern at this broad scale, as meridional differences such as this have

not been previously identified in this study. As discussed earlier (Section 3), the XGBoost model does a poor job of capturing405

the asymmetry of the SWCRETOA bias. While the CTP does contribute a small amount, it is, tellingly, the weakest predictor

of all the fields examined. We speculate that this field is providing some measure of the cloud type, which is supported by the

strongly linear relationship with the cloud types derived previously (with total cloud optical depth and cloud top pressure).

The results presented in this section have provided us with an overall understanding of what the relationships of the SHAP

values are with the respective biases. In most cases, the relationships presented make physical sense, aligning with our under-410

standing of how cloud biases may influence radiative biases.

4.2.1 Evaluating feature dependence

While our conclusions above make physical sense, the SHAP values presented do not tell us about how individual pairs of

features may interact with each other to provide these results. Our linear regressions and clustering analysis has suggested that

each of these features have little dependence on one another, however, our knowledge of the physical world would suggest415

that some interaction exists. To explore this further we use the SHAP interaction values, which provide a quantitative value
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Figure 5. The mean SHAP values (y-axis) versus bias (x-axis) for each cloud feature (a-g) averaged by MODIS cloud type (colours) for

the three regions of interest indicated by: upwards triangle - mid-latitudes; square - sub-polar; downwards triangle - polar. The size of the

shape indicates the frequency of occurrence of each cloud type; a larger shape indicates a more dominant cloud type. The cloud types are as

follows: thin cirrus, TC; cirrus, Ci; convective, Cv; frontal, Fr; mid-level, ML; stratocumulus, StC; marine stratiform, MS; cloud decks, CD;

shallow cumulus ShC; Antarctic, Ant

of the interaction, as well as the ‘main’ component from an individual feature alone. As Figure 3 indicated, the main SHAP

component for each feature is the dominant driver of the overall SHAP values. We have explored this further by reproducing

Figure 4, but for the main component alone. This plot is shown in the Appendix (Figure A4) and shows very little difference to

that of Figure 4 in terms of pattern, but does show slightly increased SHAP values. With this result we can be confident that the420

relationships we are deriving are attributable to the individual feature, and that the interactions between features do not make

up the majority of the ‘information’ provided.

4.3 Cloud-scale dependence

In the remaining analysis, we use the F22 MODIS derived cloud types to summarise the SHAP values and biases to determine

if a cloud-type dependent relationship exists. Figure 5 shows a scatter plot of SHAP values versus the cloud feature bias,425

similar to the bottom row of Figure 4. However, in Figure 5, the points represent the mean SHAP versus bias value relationship

for each of the MODIS derived cloud types, shown by the colours, with the shapes representing the three regions of interest

and sized by their frequency of occurrence. The cloud types are arranged from the highest, thinnest clouds (thin cirrus, TC;

cirrus, Ci), to optically thick mid-high clouds (convective, Cv; frontal, Fr), optically thick mid-low level clouds (mid-level, ML;

stratocumulus, StC) through to optically thick low level clouds (marine stratiform, MS; cloud decks, CD) and less optically430

thick low clouds (shallow cumulus, ShC). Finally the Antarctic (Ant) clouds represent mid-level very optically thin clouds.

More details about the properties, frequencies and distribution of these clouds can be found in F22.
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Figure 5 offers a new, quantitative insight as to how the biases for each cloud type are contributing to the overall SWCRETOA

bias. Firstly, it is clear that there is a dependence on cloud type for the role played by the cloud biases on the radiative bias.

For most cloud features shown, the cloud types are grouped by height/thickness. For example, Figure 5a, the LWP, shows that435

the mid-level, stratocumulus and marine stratiform clouds in the polar region contribute most to the SWCRETOA bias, with

SHAP values of up to 15.8 W m−2 associated with large negative LWP biases. For the sub-polar and mid-latitude regions,

lower LWP biases correspond to lower SHAP values for these same cloud types, despite their continued dominance (indicated

by size), indicating that for these regions, these optically thick, mid-low level clouds are not driving the SWCRETOA bias, but

rather the CFL is. The remainder of the cloud types exhibit the opposite trend, where both the higher clouds (eg. convective,440

frontal) and the lower, less optically thick clouds (cloud decks, shallow cumulus) are characterised by positive LWP biases

and negative SHAP values. These cloud types are much more dominant in the sub-polar and mid-latitude regions, indicating a

regional dependence with respect to the role that LWP path plays in radiative bias.

The CFL, shown in Figure 5b, shows a similar trend to that of the LWP, where the polar mid-low level, optically thick

clouds demonstrate the largest SHAP values and biases. With this figure, we can also begin to understand the conditions where445

negative CFL biases result in negative SHAP values, where the optically thinner shallow cumulus, frontal and convective cloud

types of the sub-polar region, and interestingly, cloud decks of the mid-latitudes are the major contributors.

For the CFI, Figure 5c, clear groupings of cloud types are found with less dependence on region. Higher clouds, including

cirrus, convective and frontal clouds are primarily responsible for driving positive SHAP values, associated with negative

biases. Most other mid-latitude clouds, in addition to the mid-level polar and sub-polar clouds show little bias/SHAP value,450

while the majority of low-level polar and sub-polar clouds are associated with too much CFI, resulting in negative SHAP

values. Interestingly, less clear trends are found for the IWP.

The two optical depth cloud features show a larger regional dependence, where points are grouped more so by region than

by cloud type. The SHAP values of all cloud types for the optical depths are small (regardless of bias) compared to the other

cloud features. This may indicate that how the optical depth biases interact with radiation biases is much less dependant on the455

cloud type than other physical characteristics (eg. latitude).

Finally, the CTP shows the clearest separation of SHAP/bias relationship by cloud type of all the cloud features. The cloud

types are clearly grouped together, with the lowest clouds having negative CTP biases/SHAP values and the higher clouds

having positive CTP biases/SHAP values. CTP, in earlier analysis, was characterised as the weakest contributor of the radiative

bias, but these results show that if appropriately grouped, it has a similar importance as that of the CFI. This finding indicates460

that CTP (or cloud vertical structure) may be of greater importance for the radiative bias than currently acknowledged in the

literature.

These results offer a new perspective of how different cloud properties, for different clouds and regions may affect the

radiative bias. The SHAP analysis allows us to consider many properties at once, in a meaningful and quantitatively comparable

way. Most previous work, including the work preceding this analysis, F22, has been unable to provide such an all-inclusive,465

and yet quantitative analysis of the cloud-radiative bias to date. For example, while F22 was able to highlight the importance
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of stratocumulus and mid-level clouds for the SO cloud-radiative bias, as well as the compensating effects of lower, thinner

clouds such as shallow cumulus clouds, the analysis was far more qualitative than what has been presented in this work.

5 Using SHAP analysis to understand model perturbations

We have demonstrated the usefulness of the SHAP method in quantitatively understanding drivers of biases. This method has470

provided useful insights into the mean drivers of the SWCRETOA bias as well as into cloud-specific influences. We now want

to test if this method is useful in understanding how perturbations applied to a model may change the results. To do this, we

have performed a second nudged simulation, where we have altered the ice-crystal capacitance, following the work of (Varma

et al., 2020). We refer to the new simulation as the ‘ice’ simulation (compared to the ‘control’). In the ice simulation, we

have changed the capacitance from 1 in the control, which assumes a spherical crystal, to 0.5, which assumes an oblate ice475

crystal. The effect of this change is to slow down ice crystal growth rates. Overall, reducing the ice crystal growth rates reduces

the radiative bias by -1.0 W m−2 for the entire region (-1.2 W m−2 for polar region, -1.0 W m−2 for sub-polar region and -

0.8 W m−2 for mid-latitudes) in our simulations. This difference is smaller on average and noisier than that found in Varma

et al. (2020) (and not statistically significant), which we expect is a result of the nudging of the model. Similar constraints on

meteorology was found in Fiddes et al. (2021) when nudging was applied during model perturbation experiments. This study480

compared perturbed nudged simulations to perturbed free-running simulations. The nudged simulations had a smaller overall

response, with a lot of seemingly random variation, which, as in this study, we are referring to as ‘noise’. Regardless, this small

perturbation experiment provides an opportunity to test the usefulness of the SHAP method, even if the changes are very small.

With this second simulation, we have re-trained (and re-tuned) our XGBoost model. The performance of the XGBoost-

ice model is very comparable to that of the control, explaining between 54-55% of the variance. The mean difference in the485

predicted bias from the control is similar to that of the true bias, of 0.9 W m−2. Once again, LWP is the most important cloud

feature, and the order of importance for each cloud feature has not changed.

Figure 6 shows the changes in SHAP values (ice-control) for each cloud field along the top row, and the changes in the fields

themselves along the middle row (also ice-control). The noisiness introduced by the nudging is clear in these plots and we note

that none of the changes are statistically significant. Nevertheless, some interesting features can been seen in these results.490

Firstly, we can see that changing the ice crystal shape, which slows ice growth and increases LWP in the polar and sub-

polar regions (Figure 6h). This change reduces the overall bias in the polar region (which is negative - see Figure 4h). In the

mid-latitudes the change is much less coherent. The resulting change in SHAP values indicates that in the polar region, the

increased LWP has overall reduced the SHAP values, although results are quite noisy. Figure 6o demonstrates that polar and

sub-polar stratocumulus clouds are associated with the largest increase in LWP and reduction in SHAP values. Interestingly,495

shallow cumulus clouds, despite showing only small increases in LWP, are also associated with larger SHAP values for all

regions.

CFL (Figure 6i) shows a varied and very small response to the change in ice crystal growth. CFI on the other hand (Figure

6j) shows a clear and consistent increase in fraction. This increase in CFI may be caused by an increase in cloud lifetime as
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Figure 6. Top row (a-g): the time-averaged difference in SHAP values (ice-control) for each cloud feature over the SO domain. Middle row

(h-n): the time-mean changes (ice-control) for each of the cloud features

the ice crystal growth rate slows down, which is supported by a small decrease in snowfall rates over the polar region (not500

shown). The change in SHAP values for CFL is predominantly negative in the polar regions and positive in the sup-polar to

mid-latitudes. For the CFI, the changes in SHAP values are harder to differentiate.

Considering these changes grouped by cloud type, some interesting patterns are apparent, though we note the magnitude

of these values in cloud fraction are again very small. For CFL, higher clouds (cirrus, convective, frontal) are found to be

associated with a reduction in CFL and an increase in SHAP values. In the case of mid-latitude convective clouds we suggest505

this is caused by the associated increase in LWP converting into an increase in rainfall, overall reducing cloud lifetime. For

the remaining cloud types, the picture is less clear with very little change in rainfall. Polar marine stratiform and cloud decks

exhibit a stronger positive change in CFL, associated with a decrease in SHAP values, while the remaining cloud types (for
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all regions) show a much more neutral response. For CFI, all cloud types, for all regions, experience on average an increase

in fraction, but this increase results in positive change in SHAP values for the lower, thicker clouds and a negative change in510

SHAP values for the higher, thinner clouds. The varying behaviour of higher/thinner clouds compared to lower/thicker clouds

for CFI and CFL, both with respect to the cloud properties themselves, and their resulting SHAP values, highlights that a ’one

solution fits all’ approach to reducing cloud-radiative biases in models is not appropriate.

We will not discuss the changes in optical depth or IWP for brevity, however, will touch on CTP in Figure 6g, n, and u.

Consistent reductions in CTP are found for the entire regions, which acts to increase in magnitude the already negative bias515

(Figure 4n). The changes to SHAP values on average are small. However, if we consider these values separated by cloud

type/region, we can see a strong separation in behaviour between cloud types. Thinner, higher clouds, which were on average

overestimating CTP, are found to have larger decreases in the CTP. The lower, thicker cloud types exhibit a smaller magnitude

decrease, only minimally exacerbating the CTP bias (see Figure 4u). These two groups of clouds types are also associated with

different SHAP values, where the lower/thicker clouds, decreases in CTP (increases in cloud height) results in more positive520

SHAP values. The higher/thinner clouds, despite also decreasing in CTP, are found to have negative changes in SHAP values.

The results presented in this section indicate very small, insignificant changes to cloud properties when ice crystal growth

rates are slowed within a nudged model framework. Nevertheless, these changes have resulted in the expected decrease in

radiation bias and are of use to us within the context of this analysis: can we use SHAP values to examine changes in model

parameterizations? Here, the behaviours of cloud types/regions, with respect to changes in cloud properties/SHAP values, are525

of greater interest to this work for a number of reasons. Firstly, these results highlight that despite the averages presented in

the top two rows of Figure 4, cloud-radiative interactions are much more complex. Importantly, this analysis has been able

to condense and analyse a large amount of information in a more succinct way than previously possible, with many prior

studies only concentrating on one region and/or one cloud type (typically low-level stratiform). Secondly, this analysis clearly

demonstrates instances of compensating radiative errors between different cloud properties, types and regions. While spatial530

compensating errors have previously been identified, few prior studies have examined them with respect to cloud type. To

our knowledge, no other study has been able to directly associate changes in cloud properties to changes in the radiative bias

(though we stress that the results here do not present a casual relationship).

We believe that this last point is where the power of SHAP analysis lies. In this work we can see that, for example, for

low/thick clouds in the polar region, the resulting changes in LWP, CFL and IWP caused by the model perturbation work to535

decrease the prediction of the radiative bias, while CFI and CTP have the opposite effect. Our method is able to easily account

for individual and interaction, sometimes non-linear, influences from each predictor, while still allowing us to interpret our

predictions are made.

6 Discussion and Conclusions

The SO radiation bias has been a topic of considerable research over the last decade, motivating a number of innovative methods540

and studies to understand its controls. While methods such as cloud regime clustering or cyclone tracking have become standard
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ways to evaluate the SO radiative bias (eg. as in Bodas-Salcedo et al., 2016), they do not account for the entirety of the SO

and the range of biases found across it. This narrower view has proven detrimental to some model development studies, where

some aspects of cloud microphysics, such as ice nucleation temperatures, have been altered to target the worst of the radiative

bias, but have led to unwanted changes in other regions (eg. as in Varma et al., 2020; Furtado et al., 2016).545

In this study, we have proposed a new method for model bias evaluation, employing modern machine learning and taking

advantage of the large amount of cloud and radiation data available to us and facilitated by enhanced computing resources.

This method, where we use biases in cloud properties to predict the SWCRETOA bias, considers the entire SO, from the

mid-latitudes to the polar regions, at a daily timescale. This study has been made possible due to our ability to perform a

nudged climate model simulation, an underutilised method in climate research without which coincident in time comparisons550

to satellite fields are not possible. This work provides a new perspective on the downwelling shortwave radiation bias, which

will help guide our future model developments. Furthermore, we expect that this method could be applied to a range of complex

model biases throughout the climate system beyond radiation.

We note that the cloud fields used in this work, including the satellite products, and the modelled products each contain in-

herent uncertainties. While the MODIS L3 product has specifically been produced for model evaluation, we must acknowledge555

that these products may not represent the ‘truth’. Greater discussion on this can be found in F22. Similarly, Pei et al. (2023) find

an underestimation of short wave cloud radiative effect at the surface of 7.9Wm2 in CERES compared to ground observations

at Macquarie Island, indicating that similar issues exist in the satellite radiative fields. To add to this, despite satellite simulators

such as COSP being designed to reduce the uncertainties between modelled and satellite retrieved products, we have found

that some of these simulated fields were of too poor a quality to be used with confidence. This was the case for the LWP and560

IWP fields, for which we used the raw modelled products instead. While this decision adds to the uncertainty of our analysis,

we are none-the-less confident in our overall results (eg. LWP being a dominant driver of biases radiative biases).

Specifically, in this work we have continued our evaluation of the ACCESS-AM2 models SO cloud and radiative biases

(from Fiddes et al., 2022). The ACCESS-AM2 SO SWCRETOA bias is shown to be the largest in magnitude over the polar

region, while it weakens in the sub-polar and mid-latitude regions. Of interest to this work in particular is that the ACCESS-565

AM2 model lacks the zonal asymmetry of the CERES-Syn1D SWCRETOA, with positive biases in the Australian and Pacific

sectors. This asymmetry has not previously been considered, and is possibly a reflection of the differences in SWCRETOA

biases between cloud regimes, or other unaccounted for physical processes.

Importantly, the XGBoost model suggests that the ACCESS-AM2 SO SWCRETOA bias cannot be completely explained

by the biases in several key cloud properties, including LWP, IWP, CFL, CFI, TauL, TauI, and CTP. Many of these cloud570

biases have a non-linear relationship with the radiative bias, as well as weak collinearities amongst them, demonstrating the

complexity of the system and the need for a method that can take such complexities into account. For this purpose, we have

used a tuned and tested XGBoost model to predict the SWCRETOA bias, using the biases from these cloud fields as predictors.

The XGBoost model can explain up to 55% of the SWCRETOA bias; more than any one of the cloud fields alone or a linear

combination could. While the general pattern of the radiative bias is captured, the zonal asymmetry is not, with the XGBoost575

prediction lacking the positive values found in the sub-polar region. This finding suggests that the asymmetry may not be a
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function of the cloud properties explored in this work, but possibly some other environmental factor, such as a dynamical

or thermodynamical property, aerosol sources and interaction or proximity to the polar front. Other studies have found that

environmental factors, such as SSTs or dynamical predictors are important for predicting cloud characteristics or radiation

(Zipfel et al., 2022; Mallet et al., 2023). Such factors may contribute to the missing 45% of predictability, though this has580

not been tested in this work. For this analysis, we have chosen not to explore additional parameters for three reasons: 1) to

maintain interpretability - the more parameters you have the less interpretable your model becomes; 2) to maintain some level

of data homogeneity - we try to limit the number of sources (eg. different satellite products) our predictors are coming from

to limit inconsistencies in assumptions; and 3) to keep our focus on the cloud-radiative relationship, without compounding it

with other external factors. However, we suggest that future work should explore how environmental factors may influence585

the SWCRETOA bias, including looking at cloud condensation nuclei availability, cloud droplet number concentration, ice

nucleating particle concentration, sea surface temperature, and vertical cloud overlap.

One of the benefits of using the XGBoost model is that it can efficiently be interpreted and analysed with the SHAP feature

importance method. Our SHAP analysis has shown that the biases in LWP are the main drivers of the SWCRETOA bias (with

CFL, CFI and IWP following). Further exploration of the SHAP feature importance and the cloud biases indicates that the590

relationships are still non-linear, but for the most part, we can make physical sense of them. In addition, we have shown that

there are cloud-type specific behaviours that can be easily captured using this type of analysis, including that for mid-latitude

and sup-polar mid-level, stratocumulus and marine stratiform clouds the CFL has higher SHAP values than the LWP, indicating

a greater importance. This method allows us to evaluate cloud-radiative biases in a much more holistic way, compared to

isolating just one, often pre-designated, ‘important’ cloud type. Furthermore, we find distinct cloud-type behaviours in the595

SHAP/bias relationship, which we we expect can be leveraged in future model development.

We have tested this by exploring a simple model perturbation, previously described in Varma et al. (2020), where we reduce

the ice shape capacitance from 1.0 to 0.5, thereby reducing the ice crystal growth rates, increasing LWP and reducing the

radiative bias by approximately 1 W m−2. We note that (Varma et al., 2020) saw much larger radiative changes in response to

this perturbation, which we suggest is due to the free-running nature of their experiments. Although the changes between this600

test run and our control were small (and insignificant), we believe that our results demonstrate the power of SHAP analysis,

where complex changes within a system can be evaluated and their impact quantified.

This finding is particularly relevant to methods used to constrain models to observationally plausible values, such as that done

in Regayre et al. (2020, 2023). In these studies, perturbed parameter ensembles (PPEs) have been used to sample distributions

of many parameters, after which, observations are used constrain the model to internally consistent and plausible values. These605

studies, which provide an efficient and comprehensive way to both evaluate and tune model parameters, use huge arrays of data

representing complex changes in the model. While alternative methods to determine feature importance have been implemented

in these studies, an approach such as the one presented in this work would provide an efficient way to interpret the effects of

the parameter tuning. We further note recent developments in SHAP in which multiple targets can be predicted and evaluated,

potentially providing a significant advantage for studies using PPEs.610
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In this work, we find that the SHAP values for opposite cloud phases do not balance out. Total liquid phase values outweigh

the total ice phase values. This finding, plus the non-linearities and cloud-type dependencies of the system suggest that changing

our cloud parameterisations to simply move mass from one phase to another in order to balance the liquid and ice phases may

not remove the SWCRETOA bias entirely. We suggest that concerted effort is required to improve the individual representation

of each phase, in a more physical way, which can take into consideration different environmental conditions. We suggest that615

the parameterisations of CCN and INP is a good place to start as, unlike other changes to the model (eg. changing the freezing

temperatures, detrainment temperatures, ice crystal shape or growth rates: Varma et al., 2020; Furtado and Field, 2017; Kay

et al., 2016), they are derived independently, and do not simply change phase partitioning. Note we are not suggesting that

improvements to microphysical representations are futile (in fact the opposite); we do suggest that they may have a lesser

impact, or in some cases, undesirable impacts, if not done with strong physical backing.620

Vignon et al. (2021) has shown that empirically forcing a model’s INP concentrations can result in significant improvements

in super cooled liquid water fraction. Such work has begun for the UM model family: (Vergara-Temprado et al., 2017) have

explored the importance of marine organics and dust to INP concentrations in the SO and their subsequent control on cloud

reflectivity, but a more concerted effort is needed. Specifically, we need to ensure the chemical and aerosol pathways respon-

sible for both INP and CCN are a) accurate and b) coupled to the cloud scheme satisfactorily (two-way coupling preferred).625

In ACCESS-AM2, analysis has shown that CCN concentrations are significantly underestimated in the SO (manuscript in

preparation), while INP concentrations are not resolved by the aerosol scheme, but rather parameterised without consideration

of the compositional environment. This is a key area for development, a process that has been started by Varma et al. (2021),

though still requires considerable work with a stronger connection to the aerosol scheme. We hope that future work in this

space can make use of the methods presented in this study, to holistically quantify how their changes to the model affect the630

cloud-radiative system.

To summarise, we have provided a new method for understanding model biases, using a nudged climate simulation and

machine learning. We hope that this method can be applied to other fields to gain new insight into the complexity and the drivers

of modelling biases, and how model perturbations may improve or worsen such biases. When considered as a whole, the SO

SWCRETOA bias is shown to be complex, with large non-linearities, cloud-type and regional dependencies and compensating635

errors. Our results suggest that the liquid phase of clouds is the most important contributor to the SWCRETOA bias, more so

than the ice phase, and that different higher/thinner clouds often behave in an opposing manner to that of the lower/thicker

cloud types, in some cases having compensating effects on the radiative bias. We propose that we need to address the biases in

the liquid and ice phase of SO cloud properties individually (i.e. more physically) in order to reduce the SWCRETOA bias and

we expect that the best way to do this is to ensure the nucleating particles (CCN and INP) are resolved by an aerosol scheme640

and fully coupled to the microphysics.

Code and data availability. Processed model and observational data and the relevant code for this project is available at
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Figure A1. The summer time (DJF) ocean SWCRETOA for the a) CERES-Syn2D satellite product, b) the ACCESS-AM2 model. All units

are in W m−2

Figure A2. The mean SWCRETOA bias (y-axis) versus the bias (x-axis) for each cloud feature (a-g) averaged by MODIS cloud type

(colours) for the three regions of interest indicated by: upwards triangle - mid-latitudes; square - sub-polar; downwards triangle - polar. The

size of the shape indicates the frequency of occurrence of each cloud type; a larger shape indicates a more dominant cloud type. The cloud

types are as follows: thin cirrus, TC; cirrus, Ci; convective, Cv; frontal, Fr; mid-level, ML; stratocumulus, StC; marine stratiform, MS; cloud

decks, CD; shallow cumulus ShC; Antarctic, Ant
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Figure A4. Top row (a-g): the time-averaged main SHAP values (as calculated via the interaction analysis) for each cloud feature over the

SO domain. Middle row (h-n): the time-mean biases (ACCESS-AM2 - MODIS) for each of the cloud features. Bottom row (o-u): Scatter

plot distributions (darker colours indicate greater density) showing the relationship between the bias in each cloud feature and respective the

main SHAP values. Note that the scatter plots have been limited along the x and y axis to better show the behaviour of the majority of the

distribution.
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