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Abstract. Exposure models for some criteria air pollutants have been intensively developed in past research; multi-air-15 

pollutant exposure models, especially for particulate chemical species, have been however overlooked in Asia. Lack of an 

integrated model framework to calculate multi-air-pollutant exposure has hindered the combined exposure assessment and 

the corresponding health assessment. This work applied the land-use regression (LUR) approach to develop an integrated 

model framework to estimate 2017 annual-average exposures of multiple air pollutants in a typical high-rise and high-

density Asian city (Hong Kong, China) including four criteria gaseous air pollutants [particulate matters with an 20 

aerodynamic diameter equal to or less than 10 µm (PM10) and 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)], as 

well as four major PM10 chemical species. Our integrated multi-air-pollutant exposure model framework is capable of 

explaining 91–97% of the variability of measured gaseous air pollutant concentration, with the leave-one-out cross-

validation R2 values ranging from 0.73 to 0.93. Using the model framework, the spatial distribution of the concentration of 

various air pollutants at a spatial resolution of 500 m was generated. The LUR model-derived spatial distribution maps 25 

revealed weak to moderate spatial correlations between the PM10 chemical species and the criteria air pollutants, which may 

help to distinguish their independent chronic health effects. In addition, further improvements in the development of air 

pollution exposure models are discussed. This study proposed an integrated model framework for estimating multi-air-

pollutant exposure in high-density and high-rise urban areas, serving an important tool for multi-air-pollutant exposure 

assessment in epidemiological studies. 30 
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1 Introduction 

Ambient air pollution has been identified as one of the most important health risk factors, contributing to premature deaths 

and disabilities worldwide (Bowe et al., 2018; Burnett et al., 2018; HEI, 2019; Yim et al., 2019; Yim et al., 2022). In 2017, 

air pollution was ranked as the fifth among all-mortality risk factors globally, accounting for nearly 5 million premature 35 

deaths (HEI, 2019). Ambient PM2.5 (particles of aerodynamic diameter less than or equal to 2.5 µm) was associated with 2.9 

million premature deaths, and ozone (O3) accounted for approximately 0.5 million premature deaths in 2017 (HEI, 2019). 

Numerous previous epidemiological studies have documented good evidence of the positive association between air 

pollution exposures and various types of health-effect endpoints, such as stroke, heart diseases, asthma, and lung cancer 

(Crouse et al., 2015; Fan et al., 2018; Renzi et al., 2019; Wang et al., 2017; Xue et al., 2021). For example, Renzi et al. (2019) 40 

estimated that there were increases of 0.8%, 0.9%, and 1.4% in non-accidental, cardiovascular, and respiratory mortality, 

respectively, for every 1 µg/m3 increase in annual-average PM10 (particles of aerodynamic diameter less than or equal to 10 

µm) concentration in the Latium region of Italy during 2006–2012.  

Polluted air mass contains a complex mixture of toxic particles and various gas-phase pollutants. Health effects from air 

pollution are consequences from combined exposure to air pollution mixtures (Coker et al., 2016; Levy et al., 2014; 45 

Stafoggia et al., 2017; Wang et al., 2022a; Xue et al., 2021; Yim et al., 2022). For instance, Wang et al. (2022a) found that 

PM10 and O3 dominated the health effects of air pollution mixtures on obstructive sleep apnea, a common sleep-related 

breathing disorder, in a cross-sectional study in Beijing, China. Up until now, most epidemiological studies targeting at air 

pollution and various health endpoints have typically focused on estimating the adverse health effects associated with 

exposure to a single air pollutant (or pollutant category) mainly due to the difficulties of conducting a multi-air-pollutant 50 

exposure assessment (Dominici et al., 2010; Wang et al., 2022b). In recent years, the scientific community has been moving 

toward a multi-air-pollutant concept to quantify the health hazards of air pollution mixtures as a whole (Chen et al., 2020a; 

Dominici et al., 2010; Mauderly et al., 2010; Vedal et al., 2010; Xue et al., 2021; Yim et al., 2022). To achieve this target, 

we need to work on multi-air-pollutant exposure assessment to support the corresponding health-related studies (Billionnet et 

al., 2012; Mauderly et al., 2010). 55 

In order to assess health effects of air pollution mixture, an integrated model framework is urgently needed to estimate 

exposures to multiple air pollutants. However, the available exposure assessment studies typically focused on one or several 

criteria air pollutants, mainly traffic-related air pollutants including PM2.5 and NO2 (Cai et al., 2020; Cordioli et al., 2017; 

Hoek et al., 2008; Jin et al., 2019; Luminati et al., 2021; Ross et al., 2007; Xu et al., 2019). For example, Jin et al. (2019) 

estimated annual average exposures to PM2.5 and NO2 in Lanzhou, China, with R2 values at 0.77 and 0.71, respectively. In 60 

addition, Luminati et al. (2021) developed a NO2 exposure model in Sao Paulo, Brazil using the land-use regression (LUR) 

approach. It should be noted that chemical species of ambient particles has their significance but also independent toxicity 

and health risks (Li et al., 2022; Rappazzo et al., 2021; Requia et al., 2019; Wang et al., 2022b). Apart from the criteria 
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gaseous air pollutants, the chemical species of ambient particles should also be studied (Li et al., 2022; Rappazzo et al., 2021; 

Requia et al., 2019; Wang et al., 2022b). To the best of our knowledge, none of these previous studies has comprehensively 65 

evaluated the spatial heterogeneity among a large set of air pollutants (e.g., particulates and their chemical species, and 

gaseous pollutants) (Cai et al., 2020; Hoek et al., 2008; Li et al., 2021). Thus, it is essential to explore the establishment of an 

integrated multi-air-pollutant model framework to support epidemiological studies to isolate the health effects of multiple air 

pollutants. 

The major objective of this study was to develop an integrated model framework for multi-air-pollutant exposure 70 

assessments in high-density and high-rise cities. The case of Hong Kong was illustrated to estimate annual-average 

exposures of major chemical species of ambient PM10 as well as ambient PM10, PM2.5, NO2, and O3. Materials and methods, 

including the development and application of an integrated multi-air-pollutant model framework in Hong Kong, are 

described in Section 2. Section 3 presents the established multi-air-pollutant models and the spatial distribution maps of 

targeted air pollutants derived from the established models. The discussion and implications are provided in Section 4.  75 

2 Materials and methods 

We developed an integrated model framework for establishing multi-air-pollutant exposure models with two major modules 

of particulate matters (PM module) and gaseous pollutants (GAS module) (Figure 1). The PM and GAS modules were 

separated because the measurement and LUR modeling of PM species and gaseous pollutants are largely different in terms 

of measurement techniques, the number of required measurement sites, and selected predictor variables, etc. The integrated 80 

model framework handles the input datasets required for the PM and GAS modules and develops the LUR model for each air 

pollutant independently. The LUR models and the corresponding spatial distribution maps within each module can be used 

to further validate the LUR models and the corresponding spatial distribution maps under the same or another module (Li et 

al., 2021). For instance, in high-density cities, the spatial distribution of O3 typically shows a generally opposite spatial 

variability compared with traffic-related air pollutants i.e., NOx because of the NOx titration. The established LUR models of 85 

the PM and GAS modules were used for assessing exposures to different air pollutants in epidemiological studies. In the 

present study, the PM module includes the LUR models for different sizes of PM and its chemical components, whereas the 

GAS module includes the LUR models for two typical gaseous pollutants of NO2 and O3. The included air pollutants can 

vary depending on the data availability when the proposed integrated model framework is applied for other cities in future 

studies.  90 

2.1 Study area 

Hong Kong (latitude 22°08’N and 22°35’N, longitude 113°49’E and 114°31’E) is a mountainous high-density and high-rise 

city situated at the southeast coast of the Pearl River Delta (PRD) region, China (Yim et al., 2009). Hong Kong has a total 

land area of about 1100 km2, of which 24% is built-up area. It has a population of over 7 million, and the population density 
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of 6,690 people per square kilometer is among the highest in the world (Li et al., 2018). Hong Kong is characterized by cool 95 

and dry winters with an average temperature of 19 oC, and hot and humid summers with afternoon temperatures often above 

31 oC and night temperatures around 26 oC (HKO, 2020). Hong Kong is typically influenced by the transboundary air 

pollution issue, when polluted air masses are transported from the PRD region and beyond to the region in winter (Lee et al., 

2017; Li et al., 2020; Yim, 2020). The traffic density in Hong Kong is among the highest in the world, with 839,882 

registered vehicles on 2100 km of road in 2017 (HKTD, 2020). Therefore, the traffic emission from different types of 100 

vehicles is another important source of air pollution in Hong Kong (Li et al., 2022).  

2.2 Air pollution monitoring data 

The Hong Kong air quality monitoring network provides a suitable demonstration because the locations of air quality 

monitoring stations (AQMSs) were chosen with reference to international guidelines and with practical consideration for the 

localized city characteristics (Figure S1 in the Supplementary Information). The environmental characteristics of the AQMSs 105 

are summarized in Table S1. The daily average concentration data of PM10, PM2.5, NO2, and O3, measured at 16 AQMSs, 

operated by the Hong Kong Environmental Protection Department (HKEPD), were collected from 1 January 2017 to 31 

December 2017 (https://cd.epic.epd.gov.hk/EPICDI/air/station/, last accessed on September 2023). These AQMSs are 

generally diverse and representative, ranging from rural stations under a limited influence of anthropogenic emissions to 

traffic stations near the major roads in Hong Kong. PM10 and PM2.5 were measured continuously by automatic monitors, 110 

while the Opsis AR 500 system and the T-API 400 system were used to measure NO2 and O3 concentration, respectively 

(HKEPD, 2018). The details for the list of equipment for measurement of air pollutant concentration as well as the quality 

control and assurance procedures are documented in HKEPD (2018). All of the air pollutant concentration data had at least 

345 daily values, which represented a relatively complete set of data. Due to data availability, the 2017 annual-average 

concentration of these air pollutants was estimated for development of the LUR models using collected daily air pollutant 115 

concentration data. In addition, the annual-average concentration of four major PM10 chemical species, including total 

carbon (TC), nitrate (NO3
-), sulfate (SO4

2-), and cadmium (Cd), at 10 AQMSs was collected from the air quality reports of 

the HKEPD (https://www.aqhi.gov.hk/en/download/air-quality-reportse469.html?showall=&start=1, last accessed on 

September 2023) for development of the LUR models.  

2.3 Potential predictor variables 120 

All of the potential predictor variables with their corresponding buffer sizes and data sources are summarized in Table S2 

and Figure S2. Meteorological variables (i.e., wind speed, wind direction, relative humidity, and temperature) were collected 

from nearby weather stations operated by the Hong Kong Observatory (https://www.hko.gov.hk/en/index.html, last accessed 

on September 2023). In addition, five categories of geospatial predictor variables including land use, road networks with 

traffic volume information, population density data, topography, and urban/building morphology were collected from 125 

various databases (Table S2). The ArcGIS software, version 10.6 (ESRI Inc., Redlands, CA, USA) was used to process these 

https://cd.epic.epd.gov.hk/EPICDI/air/station/
https://www.aqhi.gov.hk/en/download/air-quality-reportse469.html?showall=&start=1
https://www.hko.gov.hk/en/index.html
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datasets. The land-use type was classified into 10 main categories and 27 subcategories. The 10 main categories of land use 

included residential, commercial, industrial, institutional/open space, transportation, other urban or built-up land, agriculture, 

woodland/shrubland/grassland/wetland, barren land, and water bodies 

(https://www.pland.gov.hk/pland_en/info_serv/open_data/landu/index.html, last accessed on September 2023). The traffic 130 

volume data for different vehicle types were provided by the Hong Kong Transport Department (https://data.gov.hk/en-

data/dataset/hk-td-tis_15-road-network-v2, last accessed on September 2023). Seven vehicle types, including private cars, 

non-franchised buses, light goods vehicles, franchised buses, medium and heavy goods vehicles, taxis, and public light buses 

were counted. Values of these geospatial variables in buffer sizes of 50 m, 100 m, 300 m, 500 m, 700 m, 1000 m, 2000 m, 

3000 m, 4000m, and 5000 m around the AQMSs were estimated as the potential predictor variables using an ArcGIS buffer 135 

analysis. The geo-locations (longitude and latitude) were also adopted because they can reveal a north-south or west-east 

variability gradient of air pollutant concentrations that cannot captured by the selected predictor variables in the model 

(Huang et al., 2017). The geographical coordinate information for each station was obtained from the HKEPD. 

2.4 Development of multi-air-pollutant exposure models 

The LUR approach was based on the principle that air pollutant concentration at a given location depends on the 140 

environmental features (e.g., land-use types, traffic volume, meteorological conditions, etc.) of the surrounding area 

(Supplementary Text S1) (Li et al., 2022; Lu et al., 2020; Meng et al., 2015; Naughton et al., 2018; Wu et al., 2017). The 

supervised forward linear regression method was utilized to conduct the LUR modeling of multiple air pollutants (Eeftens et 

al., 2012; Eeftens et al., 2016; Huang et al., 2017; Jin et al., 2019; Liu et al., 2016; Saha et al., 2020). The method computed 

the direction of effect for a predictor variable to reflect the effect of the predictor variable on air pollutant concentration. It 145 

should be noted that the direction of effect can be positive or negative. Hence, the method first judged the direction of effect 

for each type of predictor variable based on the currently known relationship between the predictor variable and the 

corresponding air pollutant. As a secondary pollutant, O3 is involved in many complex chemical reactions, and the expected 

directions of its effects were not as clear as that of other air pollutants (Li et al., 2022; Wolf et al., 2017), and O3 has to be 

thus considered carefully in the process. Using the full dataset, we ranked all the predictor variables based on their adjusted 150 

explained variance (adjusted R2) with air pollutant concentration. The predictor variable with the highest adjusted R2 was 

selected to be included in the model when the direction of effect was consistent with our judgement. We then evaluated 

which of the remaining predictor variables further improved the adjusted R2 of the LUR model, and selected the one giving 

the largest gain in the adjusted R2 of the model and with the expected direction of effect. Subsequent predictor variables were 

not selected when they changed the direction of effect of one of the previously included predictor variables. This process 155 

continued to be proceeded until there were no more predictor variables with the expected direction of effect, which added at 

least 1% to the adjusted R2 of the previous LUR model. Finally, the predictor variables with a P-value above 0.10 were 

removed from the LUR model. If the variance inflation factor (VIF), which measured the severity of multicollinearity in the 

regression analysis, was higher than 5.0, the predictor variable with the highest VIF was removed, and the model was then 

https://www.pland.gov.hk/pland_en/info_serv/open_data/landu/index.html
https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2
https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2
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re-established (Gulliver et al., 2018; Hsu et al., 2018; Jones et al., 2020; Ma et al., 2019; Zhang et al., 2015). Due to this 160 

procedure, the included predictor variables may obscure the potential influence of others. 

The spatial autocorrelation (Moran’s I) tool measured spatial autocorrelation using both feature locations and feature values 

simultaneously. Meanwhile, z-score and P-values were calculated to evaluate the significance of Moran’s I value. z-score 

values are standard deviations, whereas the Moran’s I index is bounded by -1.0 and 1.0. When the z-score or P-value 

indicates statistical significance, a positive Moran's I index value indicates tendency towards clustering, whereas a negative 165 

Moran's I index value indicates tendency towards dispersion (Cordioli et al., 2017; Luminati et al., 2021). Moran’s I index 

and the corresponding z-score and P-value on concentration residuals of the final LUR models were quantified using the 

ArcGIS software to evaluate their spatial autocorrelation. Leave-one-out cross-validation (LOOCV) was used to evaluate the 

predictive ability of the established LUR model to a new dataset (Ma et al., 2019; Wu et al., 2017). In brief, each station was 

withheld from the model sequentially, whereas the remaining stations were used to establish the model. The concentration at 170 

the withheld station was estimated using the established model in each iteration. The procedure was repeated until all the 

stations have been predicted once (Eeftens et al., 2016; Ji et al., 2019; Wolf et al., 2017). We validated the model 

performance using training and LOOCV R2 values calculated based on the linear regression between measured and predicted 

concentration of the omitted stations. The statistical analysis was performed using the R statistical software, version 3.5.2 for 

Windows (R Foundation for Statistical Computing, Vienna, Austria). 175 

2.5 Spatial mapping of studied air pollutants 

The spatial distribution maps of predicted annual-average concentration of PM10 and its chemical species, PM2.5, NO2, and 

O3 were generated by our final LUR models, following the typical procedures of previous studies (Cai et al., 2020; Huang et 

al., 2017; Xu et al., 2019). A spatial resolution of 500 m was adopted here due to the spatial resolution of most predictor 

variables was at a spatial resolution of several hundred meters. The study area of Hong Kong was divided into grids at the 180 

spatial resolution of 500 m, and the air pollutant concentration at the centroid of each grid was estimated. Finally, the 

pollution distribution maps were generated using the predicted concentration values (Henderson et al., 2007). The LUR 

model estimated concentration of the studied air pollutants in the eighteen districts of Hong Kong was summarized and 

compared.  

3 Results 185 

3.1 Air pollutant measurements 

The measurements at the AQMSs show that the annual-average PM10 and PM2.5 concentration varied between 30.9–45.7 

µg/m3 and 18.4–31.2 µg/m3, respectively (Figure S3), which were higher than the air quality guideline (AQG) for PM10 (15.0 

µg/m3) and PM2.5 (5.0 µg/m3) proposed by the World Health Organization (WHO) (WHO, 2021). PM10 TC, PM10 NO3
-, 

PM10 SO4
2-, and PM10 Cd had annual-average concentration of 4511–9019 ng/m3, 2920–4642 ng/m3, 6713–7525 ng/m3, and 190 
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0.58–0.72 ng/m3, respectively. The annual-average NO2 concentration was from 9.70 µg/m3 to 197.0 µg/m3, which were 

generally higher than the WHO NO2 AQG of 10 µg/m3 (WHO, 2021). The annual-average O3 concentration ranged from 

17.8 µg/m3 to 73.9 µg/m3 in Hong Kong (Figure S3).  

3.2 Multi-air-pollutant exposure models 

The established annual-average LUR models for ambient PM10, PM2.5, NO2, O3, and four major PM10 chemical species are 195 

shown in Table S3. The training R2 values ranged between 0.91 and 0.97, whereas the LOOCV R2 values ranged between 

0.73 and 0.93. The results proved that the established LUR models overall achieved relatively good predictive accuracy 

(Table S3, Figures 2, S4, S5, S6, and S7). The prediction error fractions of the LUR models ranged between -5.9%–7.0%, -

6.1%–14%, -4.5%–7.3%, -1.1%–1.2%, -2.3%–3.8%, -8.1%–8.6%, -24%–25%, and -13%–27%, respectively, for PM10, PM10 

TC, PM10 NO3
-, PM10 SO4

2-, PM10 Cd, PM2.5, NO2, and O3 (Figure 2). There were two to five predictor variables included in 200 

the final models. This number of predictor variables was typically within the range of the number of predictor variables in 

previous studies (Cai et al., 2020; Henderson et al., 2007; Li et al., 2022; Meng et al., 2016; Miri et al., 2019). The selection 

of these predictor variables was driven by the emission sources of the air pollutants, the dispersion and transport condition, 

and the influence of transboundary air pollution in Hong Kong. The selected predictor variables included traffic emission-

related variables, different land-use types (e.g., the industrial land), population density, urban morphology (e.g., the canyon 205 

height), and geographical locations (Table S3).  

Five predictor variables were entered into the PM10 LUR model, including the number of private cars in a buffer size of 100 

m, the area of buildings within a 100-m buffer, the area of residential land in a buffer size of 100 m, the area of industrial 

land within a 3000-m buffer, and the area of urban green space in a buffer size of 4000 m. Among these predictor variables, 

only the urban green space had a negative direction of effect. The R2 and LOOCV R2 values were 0.92 and 0.77, 210 

respectively, representing a remarkable PM10 concentration prediction (Table S3). Residual spatial autocorrelation analysis 

of the PM10 LUR model is shown in Figure S8. The z-score was 0.399, which means that the model residuals were not 

spatially correlated, confirming that the PM10 LUR model was reasonably established. 

For the LUR models of PM10 chemical species, two to three predictor variables were selected finally. As expected, the 

traffic-related predictor variables and urban/building morphology-related parameters dominated the variability of the four 215 

chemical species. It was because the PM10 chemical species in the city were mainly influenced by vehicular emissions and 

urban form patterns (Hsu et al., 2018; Li et al., 2022). For example, the Cd LUR model included the area of transportation 

land in a buffer size of 2000 m, latitude, and the average canyon height within a 300-m buffer. The R2 ranged from 0.92 to 

0.97, whereas the LOOCV R2 values ranged between 0.73 and 0.92, suggesting a relatively high predictive accuracy (Table 

S3). The assumption of spatial error independence was confirmed with z-score values at -0.249, 0.453, -0.504, and -0.843 for 220 

PM10 TC, PM10 NO3
-, PM10 SO4

2-, and PM10 Cd, respectively (Figure S8).  
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The PM2.5 LUR model included five predictor variables, namely the number of light-duty vehicles in a buffer size of 500 m, 

the area of urban green space within a 4000-m buffer, the area of residential land in a buffer size of 300 m, the area of 

buildings within a 50-m buffer, and the maximum building height in a buffer size of 100 m. Four of these variables were the 

same as those in the PM10 LUR model, even though the buffer sizes varied. The R2 and LOOCV R2 values and the z-score 225 

values all confirmed that the PM2.5 LUR model was reasonably established with an acceptable statistical performance (Table 

S3 and Figure S8). 

The predictor variables included in the NO2 LUR model were the number of total vehicles within a 500-m buffer, the number 

of people in a buffer size of 100 m, and the area of industrial land within a 1000-m buffer. These predictor variables all had a 

positive effect on NO2 concentration, as evidenced by the positive regression slope values. The R2 and LOOCV R2 values 230 

were 0.96 and 0.93, respectively, indicating the relatively good prediction performance of the model (Table S3). The model 

residuals were spatially independent, with a z-score value of 0.935 (Figure S8). 

The predictor variables included in the O3 LUR model were the number of total vehicles in a buffer size of 700 m, longitude, 

and the area of urban green space within a 300-m buffer. The predictor variable of vehicles had a negative effect on O3 

concentration. This negative effect reflected the titration of O3 in urban areas with a large amount of NO and NO2 emitted by 235 

traffic (Han et al. 2023). Longitude had a positive effect on O3 concentration, suggesting the influence of regional 

transported air masses. A LUR study in Nanjing, China also included longitude in the final O3 model (Huang et al., 2017). 

Urban green space had a positive effect on O3 concentration, which was probably due to biogenic volatile organic 

compounds as the precursors of ozone formation (Ma et al., 2021; Ren et al., 2017). The R2 and LOOCV R2 values were 0.92 

and 0.87, respectively, showing the relatively high predictive accuracy of the model (Table S3). The z-score (1.186) of the 240 

residual spatial autocorrelation analysis indicates that the O3 LUR model was well explained by the included predictor 

variables, with spatially independent model residuals (Figure S8). 

3.3 Spatial distribution maps 

The spatial distribution maps of multiple air pollutants derived from established LUR models are shown in Figure 3, whereas 

Table S4 shows the statistical description of the estimated air pollutant concentration. The PM10, PM2.5, and NO2 LUR 245 

models included several predictor variables representing vehicular emissions e.g., the number of medium and heavy-duty 

vehicles in a buffer size of 500 m (Table S3). Thus, the concentration of PM10, PM2.5, and NO2 was largely affected by the 

traffic emissions in Hong Kong, with higher concentration estimated along the road network. In addition, the relatively 

higher concentration of PM10, PM2.5, and NO2 was estimated in areas with the high population density (e.g., the northern part 

of Hong Kong Island, the Kowloon City district, and the Yau Tsim Mong district). PM10 and PM2.5 had moderate positive 250 

corrections with NO2, with Pearson correlation coefficient (PCC) values of 0.570 and 0.696, respectively (Table 1). 

Consistent with Li et al. (2022), the LUR model-derived concentration of PM10 TC, PM10 NO3
-, and PM10 SO4

2- was 
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relatively higher at developed urban areas and along major roads. In contrast to this, the spatial distribution of PM10 Cd 

showed a north–south gradient, with relatively higher concentration in the northern part and relatively lower concentration in 

the southern part. These PM10 chemical species only had weak to moderate positive correlations with PM10 mass, with PCC 255 

values ranging from 0.189 to 0.589 (Table 1). For O3, there was an increasing trend from west to east, suggesting the 

influence of transboundary pollution on the spatial distribution pattern. In addition, O3 concentration was largely affected by 

traffic emissions, with lower concentration estimated along major roads compared with other areas. Due to nitric oxide 

titration (Han et al., 2023), O3 concentration was generally negatively correlated by various degree with PM10, PM10 

chemical species, PM2.5, and NO2 (Table 1). 260 

The spatial patterns of the studied air pollutants varied largely among the districts (Table S5 and Figure S9). As shown by 

the three example districts in Figure 4, the Yuen Long district had relatively high concentration of PM10, PM10 species, and 

PM2.5, and moderate concentration of NO2 and O3. For the Yau Tsim Mong district, the PM10, PM10 species, PM2.5, and NO2 

concentration was relatively high, whereas the O3 concentration was relatively low. In contrast to this, the Sai Kung district 

had quite high concentration of O3 but relatively low concentration of other studied air pollutants. 265 

4 Discussion and implications 

High-density cities usually have spare air quality monitoring stations. This discrepancy clearly highlighted the need to 

develop LUR models for the spatial mapping of air pollution in high-density cities. This work developed an integrated model 

framework for assessing multi-air-pollutant exposures in a high-density city based on the air quality data collected at the 

sparse monitoring stations. Following the proposed integrated model framework, we established multi-air-pollutant exposure 270 

models for four major PM10 chemical species as well as four criteria gaseous air pollutants in Hong Kong using the LUR 

model approach (Table S3). Similar to other LUR model studies, one limitation of this study is typically the limited number 

of monitoring stations. It should be noted that the adequacy of monitoring should not be determined by number of stations 

alone. This study performed detailed evaluations to examine the adequacy of number of stations. In the GAS module, the 

established NO2 and O3 exposure models had R2 values of 0.96 and 0.92, respectively, which were similar with previous 275 

studies. In the PM module, our PM10 and PM2.5 exposure models achieved remarkable predictive accuracy, comparable with 

or higher than those of the traditional LUR studies (Tables 2 and S3; Supplementary Text S2). Following our previous study 

of Li et al. (2021), in the PM module, we established LUR exposure models of PM10 TC, PM10 NO3
-, PM10 SO4

2-, and PM10 

Cd, with model R2 values higher than 0.92 (Table S3). The detailed evaluation results have proved that our models had 

promising performance and are capable of reflecting the air quality characteristics of the city. Therefore, our models are 280 

considered as sufficient for the scope of this study. Certainty, it is strongly recommended to carry out a further study using 

different modeling methods (e.g., machine learning) when more data are collected from a larger number of monitoring 

stations and at a finer temporal resolution. 
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This research work aimed to contribute to the research area of exposure assessment through providing new opportunities to 

distinguish the independent associations between combined exposures to multiple air pollutants (i.e., PM10, PM10 TC, PM10 285 

NO3
-, PM10 SO4

2-, PM10 Cd, PM2.5, NO2, and O3) and chronic health effects. For example, the finding of weak to moderate 

spatial correlation between PM10 and its chemical species may enable epidemiological studies to separate the chronic health 

effects of PM10 chemical species from the total mass. In addition, the spatial variation of air pollution, together with the 

geospatial locations of the subjects, can be used for hotspot identification in air quality management and exposure 

assessment in epidemiological studies (Crouse et al., 2015; Jones et al., 2020; Li et al., 2021). The major explanation for the 290 

spatial differences in concentration of multiple air pollutants was the differences in their emission sources (Cai et al., 2020; 

Jin et al., 2019; Levy et al., 2014; Wu et al., 2017). For instance, PM2.5 and NO2 are more linked to traffic and industrial 

emissions in developed urban areas, while relatively high O3 concentration in rural areas is formed through complex 

chemical reactions between biogenic volatile organic compounds and nitrogen oxides (Table S3 and Figure 3). The results 

highlight the importance of the synergistic control of multiple air pollutants and emission sources (Saha et al., 2020; Yim et 295 

al., 2019). For instance, the Hong Kong government has spent tremendous efforts on the reduction of vehicular emissions 

over the past two decades, which successfully reduced traffic-related air pollutants like PM2.5 and NO2. However, as revealed 

by the present study and previous studies (HKEPD, 2022; Zeng et al., 2022), O3 pollution has become an emerging issue, 

especially in rural areas of Hong Kong. The relationship between the control of vehicular emissions and O3 pollution is 

complex (Song et al., 2023; Zeng et al., 2022). In Hong Kong, NOx reductions from the control of vehicular emissions may 300 

lead to an increase in the levels of oxidants, and then cause a net O3 production. It is suggested that the control of volatile 

organic compounds should be implemented to better mitigate O3 pollution in HK (Zeng et al., 2022). This highlights the 

importance to simulate multiple air pollutants together during exposure assessments. In addition, more research should be 

conducted to understand the complex and varying interaction of emission sources, pollutant sensitivity to its precursors, and 

air quality in a city to formulate more effective and specific air quality management policies.  305 

The development and applicability of exposure models depend on the focus of the air pollution epidemiological studies, 

which either focus on long-term or short-term or even acute exposure. To the best of our knowledge, the annual or long-term 

LUR exposure models have been widely adopted in providing long-term exposure estimates for health studies (Chen et al., 

2021; Wang et al., 2020b). Meanwhile, considering the requirement for high spatial-resolution and short-term acute exposure 

assessment, it is recommended that more studies should be conducted to establish high spatiotemporal-resolution exposure 310 

models when detailed measurement data are available. Indeed, several recent studies have explored the possibility of 

estimating high spatiotemporal-resolution air pollution exposure models using the spatiotemporal statistical modeling 

approach (Lu et al., 2020; Masiol et al., 2018). In addition, in future studies, a multi-dimensional and multi-air-pollutant 

exposure modeling approach is recommended, for instance, by combining spatiotemporal statistical modeling with 

atmospheric chemistry knowledge, with the particulate chemical species and their toxicity and volatile organic compounds 315 

being modeled (Brokamp et al., 2017; Chen et al., 2020b; Lu et al., 2020). In addition, the vertical distribution of air 
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pollutants should also be measured and modeled to combine with spatiotemporal exposure models to reveal the vertical 

variability of population exposure to air pollution (Eeftens et al., 2019; Ho et al., 2015; Jin et al., 2019). Moreover, most 

previous air pollution exposure assessment studies and the current work have focused on ambient air quality, but it is 

strongly recommended that more research efforts should be made toward developing prediction models of air pollutant 320 

concentration in indoor environments (e.g., residential households) for more accurate exposure estimates (Tang et al., 2018). 

5 Conclusions 

In the present study, we developed an integrated model framework for accurate multi-air-pollutant exposure assessments in 

high-density and high-rise cities. Following the proposed integrated model framework, with the air pollutant concentration 

data from a routine monitoring network, annual-average multi-air-pollutant exposure models for ambient PM10, major PM10 325 

chemical species, PM2.5, NO2, and O3 were developed with relatively high predictive performance in Hong Kong, a typical 

high-rise high-density Asian city. The estimated air pollution maps (500 m × 500 m resolution) of these air pollutant 

mixtures could be used to support a unique combined exposure assessment in health studies. 

We anticipate that the proposed integrated model framework can be easily extended to establish multi-air-pollutant exposure 

models in other cities. Apart from the LUR approach, other spatiotemporal statistical modeling methods, such as various 330 

machine learning algorithms, should be applied when a larger data set is available. Particularly, the development of high 

spatiotemporal exposure models should be explored when a high temporal-resolution air pollutant measurement data set is 

collected. Furthermore, the associations of combined exposures to multiple air pollutants with health endpoints should be 

analysed to provide new insights on the health-oriented air pollution control. 

 335 

 

Data availability. The model data presented in this article are available from the authors upon request 

(yimsteve@gmail.com). 

 

Author contributions. ZYL and SHLY designed the study. ZYL performed all the data analysis with support from SHLY. 340 

ZYL wrote the paper with contributions from all co-authors. 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. We would like to thank the Hong Kong Environmental Protection Department and the Hong Kong 345 

Observatory for providing air quality and meteorological data, respectively. 

 

mailto:yimsteve@gmail.com


12 

 

Financial support. This work is funded by the Vice-Chancellor's Discretionary Fund of The Chinese University of Hong 

Kong (grant no. 4930744), the Dr. Stanley Ho Medical Development Foundation (grant no. 8305509), and the project from 

the ENvironmental SUstainability and REsilience (ENSURE) partnership between the CUHK and UoE. ZYL was supported 350 

by the “100-top-talents Program” Start-up Grant of Sun Yat-sen University (Grant No. 220204). 

References 

Billionnet, C., Sherrill, D., and Annesi-Maesano, I.: Estimating the health effects of exposure to multi-pollutant 

mixture. Ann. Epidemiol. 22(2), 126-141, 2012. 

Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., and Al-Aly, Z.: The 2016 global and national burden of diabetes mellitus 355 

attributable to PM2.5 air pollution. Lancet Planet. Health 2(7), e301-e312, 2018. 

Brokamp, C., Jandarov, R., Rao, M.B., LeMasters, G., and Ryan, P.: Exposure assessment models for elemental components 

of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. 

Environ. 151, 1-11, 2017. 

Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C.A., Apte, J.S., Brauer, M., Cohen, A., Weichenthal, 360 

S., and Coggins, J.: Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. 

Proc. Natl. Acad. Sci. U.S.A. 115(38), 9592-9597, 2018. 

Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W., Niu, C., Kan, L., Schikowski, T., and Yan, B.: Application of 

land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations. Atmos. Environ. 

223, 117267, 2020. 365 

Chen, H., Zhang, Z., van Donkelaar, A., Bai, L., Martin, R.V., Lavigne, E., Kwong, J.C., and Burnett, R.T.: Understanding 

the joint impacts of fine particulate matter concentration and composition on the incidence and mortality of 

cardiovascular disease: A component-adjusted approach. Environ. Sci. Technol. 54(7), 4388-4399, 2020a. 

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Weinmayr, G., Bauwelinck, M., van Donkelaar, 

A., Hvidtfeldt, U.A., and Atkinson, R.: Development of Europe-wide models for particle elemental composition using 370 

supervised linear regression and random forest. Environ. Sci. Technol. 54(24), 15698-15709, 2020b. 

Chen, J., Rodopoulou, S., de Hoogh, K., Strak, M., Andersen, Z.J., Atkinson, R., Bauwelinck, M., Bellander, T., Brandt, J., 

Cesaroni, G., Concin, H.: Long-term exposure to fine particle elemental components and natural and cause-specific 

mortality—A pooled analysis of eight European cohorts within the ELAPSE project. Environ. Health Perspect. 129(4), 

047009, 2021. 375 

Coker, E., Liverani, S., Ghosh, J.K., Jerrett, M., Beckerman, B., Li, A., Ritz, B., and Molitor, J.: Multi-pollutant exposure 

profiles associated with term low birth weight in Los Angeles County. Environ. Int. 91, 1-13, 2016. 

Cordioli, M., Pironi, C., De Munari, E., Marmiroli, N., Lauriola, P., and Ranzi, A.: Combining land use regression models 

and fixed site monitoring to reconstruct spatiotemporal variability of NO2 concentrations over a wide geographical area. 

Sci. Total Environ. 574, 1075-1084, 2017. 380 

Crouse, D.L., Peters, P.A., Hystad, P., Brook, J.R., van Donkelaar, A., Martin, R.V., Villeneuve, P.J., Jerrett, M., Goldberg, 

M.S., Pope III, C.A., and Brauer, M.: Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 

years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Health Perspect. 

123(11), 1180-1186, 2015. 

Dominici, F., Peng, R.D., Barr, C.D., and Bell, M.L.: Protecting human health from air pollution: shifting from a single-385 

pollutant to a multi-pollutant approach. Epidemiol. 21(2), 187-194, 2010. 

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dėdelė, A., Dons, E., de 
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Table 1. Pearson correlation coefficients (PCCs) among the LUR estimated concentration of ambient PM10, PM10 TC, PM10 

NO3
-, PM10 SO4

2-, PM10 Cd, PM2.5, NO2, and O3 in Hong Kong. 540 

  PM10 PM10 TC PM10 NO3
- PM10 SO4

2- PM10 Cd PM2.5 NO2 O3 

PM10 1 0.397** 0.589** 0.189** 0.430** 0.781** 0.570** -0.354** 

PM10 TC   1 0.747** 0.418** 0.432** 0.598** 0.785** -0.677** 

PM10 NO3
-     1 0.495** 0.479** 0.729** 0.921** -0.654** 

PM10 SO4
2-       1 0.192** 0.256** 0.488** -0.383** 

PM10 Cd         1 0.368** 0.522** -0.174** 

PM2.5           1 0.696** -0.500** 

NO2             1 -0.678** 

O3               1 

 ** Correlation is significant at the 0.01 level (2-tailed). 
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Table 2. A comparison of this study with previous LUR studies. The example LUR studies focusing on at least one of the 

criteria air pollutants published in recent five years were included. 

Study area  PM
10

 
 PM

10
 

TC 

 PM
10

 

NO
3

-
 

 PM
10

 

SO
4

2-
 

 PM
10

 

Cd 
 PM

2.5
  NO

2
  O

3
 References 

Hong Kong, China 0.92 0.94 0.93 0.97 0.92 0.91 0.96 0.92 This work 

Beijing, China      0.86   Xu et al. (2019) 

Tianjin, China        0.98 Wang et al. (2020) 
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Figure 1. An integrated model framework for multi-air-pollutant exposure assessments in high-density cities. It mainly 

includes two components of particulate matters (PM module) and gaseous pollutants (GAS module). PM module consists of 

the measurement and LUR modeling of PM2.5, PM10, and PM10 major chemical components (e.g., ions, metals, and carbon), 

while GAS module involves the measurement and LUR modeling of NO2 and O3.  550 
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Figure 2. The distribution of prediction error fractions (%) of the established LUR models. The prediction error fraction is 

defined as [(predicted concentration – observed concentration)/observed concentration].   
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Figure 3. LUR model-derived spatial distribution maps of annual-average ambient PM10, PM10 TC, PM10 NO3
-, PM10 SO4

2-, 555 

PM10 Cd, PM2.5, NO2, and O3 concentration in Hong Kong. The colored circles represent observations at AQMSs. 
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Figure 4. The average LUR estimated ambient PM10, PM10 TC, PM10 NO3
-, PM10 SO4

2-, PM10 Cd, PM2.5, NO2, and O3 

concentration in three representative districts in Hong Kong. (a) The distribution of Yuen Long, Yau Tsim Mong, and Sai 560 

Kung districts in Hong Kong with the population density shown. (b) Yuen Long (a district more influenced by the 

transboundary pollution). (c) Yau Tsim Mong (a high-density district more influenced by vehicular emissions). (d) Sai Kung 

(a rural district).  

 


