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Abstract. Exposure models for some criteria air pollutants have been intensively developed in past research; multi-air-
pollutant exposure models, especially for particulate chemical species, have been however overlooked in Asia. Lack of an
integrated model framework to calculate multi-air-pollutant exposure hinders the combined exposure assessment and the
corresponding health assessment. This work applied the land-use regression (LUR) approach to develop an integrated model
framework to estimate 2017 annual-average exposures of four major PMio chemical species as well as four criteria air
pollutants of PMio, PM2s, NOz, and Os in a typical high-rise and high-density Asian city (Hong Kong, China). Our
integrated multi-air-pollutant exposure model framework is capable of explaining 91-97% of the variability of measured air
pollutant concentration, with the leave-one-out cross-validation R? values ranging from 0.73 to 0.93. Using the model
framework, the spatial distribution of the concentration of various air pollutants at a spatial resolution of 500 m was
generated. The LUR model-derived spatial distribution maps revealed weak to moderate spatial correlations between the
PM3, chemical species and the criteria air pollutants, which may help to distinguish their independent chronic health effects.
In addition, further improvements in the development of air pollution exposure models are discussed. This study proposes an
integrated model framework for estimating multi-air-pollutant exposure in high-density and high-rise urban areas, serving an

important tool for combined exposure assessment in epidemiological studies.
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1 Introduction

Ambient air pollution has been identified as one of the most important health risk factors, contributing to premature deaths
and disabilities worldwide (Bowe et al., 2018; Burnett et al., 2018; HEI, 2019; Yim et al., 2019; Yim et al., 2022). In 2017,
air pollution is ranked as the fifth among all-mortality risk factors globally, accounting for nearly 5 million premature deaths
(HEI, 2019). Ambient PM s (particles of aerodynamic diameter less than or equal to 2.5 um) was associated with 2.9 million
premature deaths, and ozone (Os) accounted for approximately 0.5 million premature deaths in 2017 (HEI, 2019). Numerous
previous epidemiological studies have documented good evidence of the positive association between air pollution exposures
and various types of health-effect endpoints, such as stroke, heart diseases, asthma, and lung cancer (Crouse et al., 2015; Fan
et al., 2018; Renzi et al., 2019; Wang et al., 2017; Xue et al., 2021). For example, Renzi et al. (2019) estimated that there
were increases of 0.8%, 0.9%, and 1.4% in non-accidental, cardiovascular, and respiratory mortality, respectively, for every
1 pg/m3 increase in annual-average PMyo (particles of aerodynamic diameter less than or equal to 10 um) concentration in
the Latium region of Italy during 2006—-2012.

Polluted air mass contains a complex mixture of toxic particles and various gas-phase pollutants. Health effects from air
pollution are consequences from combined exposure to air pollution mixtures (Coker et al., 2016; Levy et al., 2014;
Stafoggia et al., 2017; Wang et al., 2022a; Xue et al., 2021; Yim et al., 2022). For instance, Wang et al. (2022a) found that
PMio and O3z dominated the health effects of air pollution mixtures on obstructive sleep apnea, a common sleep-related
breathing disorder, in a cross-sectional study in Beijing, China. Up until now, most epidemiological studies targeting at air
pollution and various health endpoints have typically focused on estimating the adverse health effects associated with
exposure to a single pollutant (or pollutant category) mainly due to the difficulties of conducting a multi-air-pollutant
exposure assessment (Dominici et al., 2010; Wang et al., 2022b). In recent years, the scientific community has been moving
toward a multi-air-pollutant concept to quantify the health hazards of air pollution mixtures as a whole (Chen et al., 2020a;
Dominici et al., 2010; Mauderly et al., 2010; Vedal et al., 2010; Xue et al., 2021; Yim et al., 2022). To achieve this target,
we need to work on multi-air-pollutant exposure assessment to support the corresponding health-related studies (Billionnet et
al., 2012; Mauderly et al., 2010).

In order to assess health effects of air pollution mixture, an integrated model framework is urgently needed to estimate
exposures to multiple air pollutants. However, the available exposure assessment studies typically focused on one or several
criteria air pollutants, mainly traffic-related air pollutants of PM2s and nitrogen dioxide (NO,) (Cai et al., 2020; Cordioli et
al., 2017; Hoek et al., 2008; Jin et al., 2019; Luminati et al., 2021; Ross et al., 2007; Xu et al., 2019). For example, Jin et al.
(2019) estimated annual average exposures to PM.s and NO; in Lanzhou, China, with R? values at 0.77 and 0.71,
respectively. In addition, Luminati et al. (2021) developed the NO, exposure model in Sao Paulo, Brazil using the land-use
regression (LUR) approach. Apart from these criteria air pollutants, other air pollutants, such as the chemical species of

ambient particles, should also be studied, given their significant but independent toxicity and health risk (Li et al., 2022;
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Rappazzo et al., 2021; Requia et al., 2019; Wang et al., 2022b). To the best of our knowledge, none of these previous studies
has comprehensively evaluated the spatial heterogeneity among a large set of air pollutants (e.g., particles and their chemical
species, and gaseous pollutants) (Cai et al., 2020; Hoek et al., 2008; Li et al., 2021). Thus, it is essential to explore the
establishment of an integrated multi-air-pollutant model framework to support epidemiological studies to isolate the health

effects of multiple air pollutants.

The major objective of this study was to develop an integrated model framework for multi-air-pollutant exposure
assessments in high-density and high-rise cities. The case of Hong Kong was illustrated to estimate annual-average
exposures of major chemical species of ambient PM1oas well as ambient PM1o, PM2s, NO2, and Os. Materials and methods,
including the development and application of an integrated multi-air-pollutant model framework in Hong Kong, are
described in Section 2. Section 3 presents the established multi-air-pollutant models and the spatial distribution maps of

targeted air pollutants derived from the established models. The discussion and implications are provided in Section 4.

2 Materials and methods

As shown in Figure 1, we developed an integrated model framework for establishing multi-air-pollutant exposure models
with two major modules of particulate matters (PM module) and gaseous pollutants (GAS module). The PM and GAS
modules were separated because the measurement and LUR modelling of PM species and gaseous pollutants are largely
different in terms of measurement techniques, the number of required measurement sites, and selected predictor variables,
etc. The integrated model framework handles the input datasets required for the PM and GAS modules and develops the
LUR model for each air pollutant independently. The LUR models and the corresponding spatial distribution maps within
each module can be used to further validate the LUR models and the corresponding spatial distribution maps under the same
or another module (Li et al., 2021). For instance, in high-density cities, the spatial distribution of O; shows a generally
opposite spatial variability compared with traffic-related air pollutants because of the NOy reaction with Os. The established
LUR models of the PM and GAS modules were used for the assessment of exposure in epidemiological studies. In the
present study, the PM module includes the LUR models for different sizes of PM and its chemical components, whereas the
GAS module includes the LUR models for two typical gaseous pollutants of NO, and Os. The included air pollutants vary

depending on the data availability when the proposed integrated model framework is applied in other cities.

2.1 Study area

Hong Kong (latitude 22°08°N and 22°35°N, longitude 113°49’E and 114°31’E) is a mountainous high-density and high-rise
city situated at the southeast coast of the Pearl River Delta (PRD) region, China (Yim et al., 2009). Hong Kong has a total
land area of about 1100 km?, of which 24% is built-up area. It has a population of over 7 million, and the population density
of 6,690 people per square kilometer is among the highest in the world (Li et al., 2018). Hong Kong is characterized by cool

and dry winters with an average temperature of 19 °C, and hot and humid summers with afternoon temperatures often above
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31 °C and night temperatures around 26 °C (HKO, 2020). Hong Kong is typically influenced by the transboundary air
pollution issue, when polluted air masses are transported from the PRD region and beyond to the region in winter (Lee et al.,
2017; Li et al., 2020; Yim, 2020). The traffic density in Hong Kong is among the highest in the world, with 839,882
registered vehicles on 2100 km of road in 2017 (HKTD, 2020). Therefore, the traffic emission from different types of

vehicles is another important source of air pollution in Hong Kong (Li et al., 2022).

2.2 Air pollution monitoring data

The Hong Kong air quality monitoring network provides good representation because the locations of air quality monitoring
stations (AQMSs) were chosen with reference to international guidelines and with practical consideration for the localized
city characteristics (Figure S1 in the Supplementary Information). The environmental characteristics of the AQMSs are
summarized in Table S1. The daily average concentration data of PM1o, PM2s, NOy, and Oz, measured at 16 AQMSs,
operated by the Hong Kong Environmental Protection Department (HKEPD), were collected from 1 January 2017 to 31
December 2017 (https://cd.epic.epd.gov.hk/EPICDI/air/station/, last accessed on September 2023). These AQMSs are
generally diverse and representative, ranging from rural stations under a limited influence of anthropogenic emissions to
traffic stations near the major roads in Hong Kong. PM1o and PM; s are measured continuously by automatic monitors, while
the Opsis AR 500 system and the T-API 400 system are used to measure NO, and O3 concentration, respectively (HKEPD,
2018). The details for the list of equipment for measurement of air pollutant concentration as well as the quality control and
assurance procedures are documented in HKEPD (2018). All of the air pollutant concentration data had at least 345 daily
values, which represents a relatively complete set of data. Due to data availability, the 2017 annual-average concentration of
these air pollutants was estimated for development of the LUR models using collected daily air pollutant concentration data.
In addition, the annual-average concentration of four major PM1o chemical species, including total carbon (TC), nitrate (NO3
), sulfate (SO4*), and cadmium (Cd), at 10 AQMSs was collected from the air quality reports of the HKEPD
(https://www.aghi.gov.hk/en/download/air-quality-reportse469.html?showall=&start=1, last accessed on September 2023)

for development of the LUR models.

2.3 Potential predictor variables

All of the potential predictor variables with their corresponding buffer sizes and data sources are summarized in Table S2
and Figure S2. Meteorological variables (i.e., wind speed, wind direction, relative humidity, and temperature) were collected
from nearby weather stations operated by the Hong Kong Observatory (https://www.hko.gov.hk/en/index.html, last accessed
on September 2023). In addition, five categories of geospatial predictor variables including land use, road networks with
traffic volume information, population density data, topography, and urban/building morphology were collected from
various databases (Table S2). The ArcGIS software, version 10.6 (ESRI Inc., Redlands, CA, USA) was used to process these
datasets. The land-use type was classified into 10 main categories and 27 subcategories. The 10 main categories of land use

included residential, commercial, industrial, institutional/open space, transportation, other urban or built-up land, agriculture,
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woodland/shrubland/grassland/wetland, barren land, and water bodies
(https://lwww.pland.gov.hk/pland_en/info_serv/open_data/landu/index.html, last accessed on September 2023). The traffic
volume data for different vehicle types were provided by the Hong Kong Transport Department (https://data.gov.hk/en-
data/dataset/hk-td-tis_15-road-network-v2, last accessed on September 2023). Seven vehicle types, including private cars,
non-franchised buses, light goods vehicles, franchised buses, medium and heavy goods vehicles, taxis, and public light buses
were counted. Values of these geospatial variables in buffer sizes of 50 m, 100 m, 300 m, 500 m, 700 m, 1000 m, 2000 m,
3000 m, 4000m, and 5000 m around the AQMSs were estimated as the potential predictor variables using ArcGIS buffer
analysis. The geo-locations (longitude and latitude) were also adopted because they can reveal a north-south or west-east
variability gradient of air pollutant concentrations which are not captured by the selected predictor variables in the model

(Huang et al., 2017). The geographical coordinate information for each station was obtained from the HKEPD.

2.4 Development of multi-air-pollutant exposure models

The LUR approach is based on the principle that air pollutant concentration at a given location depends on the environmental
features (e.g., land-use types, traffic volume, meteorological conditions, etc.) of the surrounding area (Supplementary Text
S1) (Lietal., 2022; Lu et al., 2020; Meng et al., 2015; Naughton et al., 2018; Wu et al., 2017). The supervised forward linear
regression method was utilized to conduct the LUR modelling of multiple air pollutants (Eeftens et al., 2012; Eeftens et al.,
2016; Huang et al., 2017; Jin et al., 2019; Liu et al., 2016; Saha et al., 2020). The method computed the direction of effect
for a predictor variable to reflect the effect of the predictor variable on air pollutant concentration. While the direction of
effect can be positive or negative, the method first judged the direction of effect for each type of predictor variable based on
the currently known relationship between the predictor variable and the corresponding air pollutant. As a secondary
pollutant, Oz is involved in many complex chemical reactions and the expected directions of the predictor effects were not as
clear as for the other air pollutants (Li et al., 2022; Wolf et al., 2017), and O3 was thus considered carefully in the process.
Using the full dataset, we ranked all the predictor variables based on their adjusted explained variance (adjusted R?) with air
pollutant concentration. The predictor variable with the highest adjusted R? was selected to be included in the model if the
direction of effect was consistent with our judgement. We then evaluated which of the remaining predictor variables further
improved the adjusted R? of the LUR model, and selected the one giving the largest gain in the adjusted R? of the model and
with the right direction of effect. Subsequent predictor variables were not selected if they changed the direction of effect of
one of the previously included predictor variables. This process continued to be proceeded until there were no more predictor
variables with the right direction of effect, which added at least 1% to the adjusted R? of the previous LUR model. Finally,
the predictor variables with a P-value above 0.10 were removed from the LUR model. If the variance inflation factor (VIF),
which measures the severity of multicollinearity in regression analysis, was higher than 5.0, the predictor variable with the
highest VIF was removed and the model was re-established (Gulliver et al., 2018; Hsu et al., 2018; Jones et al., 2020; Ma et
al., 2019; Zhang et al., 2015). Due to this procedure, the included predictor variables may obscure the potential influence of

others.
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The spatial autocorrelation (Moran’s |) tool measures spatial autocorrelation using both feature locations and feature values
simultaneously. Meanwhile, z-score and P-values were calculated to evaluate the significance of Moran’s | value. z-score
values are standard deviations, whereas the Moran’s | index is bounded by -1.0 and 1.0. When the z-score or P-value
indicates statistical significance, a positive Moran's | index value indicates tendency towards clustering, whereas a negative
Moran's | index value indicates tendency towards dispersion (Cordioli et al., 2017; Luminati et al., 2021). Moran’s | index
and the corresponding z-score and P-value on concentration residuals of the final LUR models were quantified using ArcGIS
software to evaluate their spatial autocorrelation. Leave-one-out cross-validation (LOOCV) was used to evaluate the
predictive ability of the established LUR model to a new dataset (Ma et al., 2019; Wu et al., 2017). In brief, each station was
withheld from the model sequentially, whereas the remaining stations were used to establish the model. The concentration at
the withheld station was estimated using the established model in each iteration. The procedure was repeated until all the
stations have been predicted once (Eeftens et al., 2016; Ji et al., 2019; Wolf et al., 2017). A number of statistical parameters
of the linear regression between measured and predicted concentration of the omitted stations, including R?, root mean
squared error (RMSE), were used to validate the performance. The statistical analysis was performed using R statistical

software, version 3.5.2 for Windows (R Foundation for Statistical Computing, Vienna, Austria).

2.5 Spatial mapping of studied air pollutants

The spatial distribution maps of predicted annual-average concentration of PMyo and its chemical species, PMzs, NO,, and
O3 were generated based on the final LUR models, following the typical procedures of previous studies (Cai et al., 2020;
Huang et al., 2017; Xu et al., 2019). A spatial resolution of 500 m x500 m was adopted here due to the spatial resolution of
most predictor variables is at several hundred meters resolution. The study area of Hong Kong was divided into grids at the
spatial resolution of 500 m, and the pollutant concentration at the centroid of each grid was estimated. Finally, the pollution
distribution maps were generated using the predicted concentration values (Henderson et al., 2007). The LUR model

estimated concentration of the studied air pollutants in the eighteen districts of Hong Kong was summarized and compared.

3 Results
3.1 Air pollutant measurements

The measurements at the AQMSs show that the annual-average PMio and PMzs concentration varied between 30.9-45.7
ug/m® and 18.4-31.2 pg/m?, respectively (Figure S3), which were higher than the air quality guideline (AQG) for PMyo (15.0
ug/m3) and PMzs (5.0 pg/m®) proposed by the World Health Organization (WHO) (WHO, 2021). PMy TC, PM3 NO3,
PM1o SO4%, and PM1, Cd had annual-average concentration of 4511-9019 ng/m?3, 29204642 ng/m3, 6713-7525 ng/m?, and
0.58-0.72 ng/m3, respectively. The annual-average NO, concentration was from 9.70 pg/m?3 to 197.0 pug/m?®, which were
generally higher than the WHO NO; AQG of 10 pg/m® (WHO, 2021). The annual-average O3 concentration ranged from
17.8 pg/m?3 to 73.9 pg/m? in Hong Kong (Figure S3).
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3.2 Multi-air-pollutant exposure models

The established annual-average LUR models for ambient PM1o, PM. 5, NO», O3, and four major PMio chemical species are
shown in Table S3. Overall, the established LUR models achieved relatively good predictive accuracy (Table S3, Figures 2,
S4, S5, S6, and S7), with training and LOOCV R? values ranging between 0.91-0.97 and 0.73-0.93, respectively. The
prediction error fractions of the LUR models ranged between -5.9%-7.0%, -6.1%-14%, -4.5%-7.3%, -1.1%-1.2%, -2.3%—
3.8%, -8.1%-8.6%, -24%-25%, and -13%-27%, respectively, for PMio, PMig TC, PMig NOs", PM1o SO4%, PM1oCd, PMzs5,
NO,, and Oz (Figure 2). There were two to five predictor variables included in the final models, which is typically within the
range of the number of predictor variables in previous studies (Cai et al., 2020; Henderson et al., 2007; Li et al., 2022; Meng
et al., 2016; Miri et al., 2019). The selection of these predictor variables was driven by the emission sources of the air
pollutants, the dispersion and transport condition, and the influence of transboundary air pollution in Hong Kong. The
selected predictor variables included traffic emission-related variables, different land-use types (e.g., the industrial land),
population density, urban morphology (e.g., the canyon height), and geographical locations (Table S3).

Five predictor variables were entered into the PM1g LUR model, including the number of private cars in a buffer size of 100
m, the area of buildings within a 100-m buffer, the area of residential land in a buffer size of 100 m, the area of industrial
land within a 3000-m buffer, and the area of urban green space in a buffer size of 4000 m. Among these predictor variables,
only the urban green space had a negative direction of effect. The R? and LOOCV R? values were 0.92 and 0.77,
respectively, representing a remarkable PM 1o concentration prediction (Table S3). Residual spatial autocorrelation analysis
of the PM1o LUR model is shown in Figure S8. The z-score is 0.399, which means that the model residuals are not spatially

correlated, confirming that the PM1o LUR model was reasonably established.

For the LUR models of PMjo chemical species, two to three predictor variables were selected finally. As expected, the
traffic-related predictor variables and urban/building morphology-related parameters dominated the variability of the four
chemical species, because the PMjo chemical species in the city were mainly influenced by vehicular emissions and urban
form patterns (Hsu et al., 2018; Li et al., 2022). For example, the Cd LUR model included the area of transportation land in a
buffer size of 2000 m, latitude, and the average canyon height within a 300-m buffer. The R? and LOOCV R? values ranged
between 0.92-0.97 and 0.73-0.92, respectively, suggesting a relatively high predictive accuracy (Table S3). The assumption
of spatial error independence was confirmed with z-score values at -0.249, 0.453, -0.504, and -0.843 for PMig TC, PM1g
NOjs", PM1o SO4%, and PMy, Cd, respectively (Figure S8).

The PM2s LUR model included five predictor variables, namely the number of light-duty vehicles in a buffer size of 500 m,
the area of urban green space within a 4000-m buffer, the area of residential land in a buffer size of 300 m, the area of
buildings within a 50-m buffer, and the maximum building height in a buffer size of 100 m. Four of these variables were the

same as those in the PMio LUR model, even though the buffer sizes varied. The R? and LOOCV R? values and the z-score
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values all confirmed that the PM,s LUR model was reasonably established with an acceptable statistical performance (Table
S3 and Figure S8).

The predictor variables included in the NO, LUR model were the number of total vehicles within a 500-m buffer, the humber
of people in a buffer size of 100 m, and the area of industrial land within a 1000-m buffer. These predictor variables all had a
positive effect on NO, concentration, as evidenced by the positive regression slope values. The R? and LOOCV R? values
were 0.96 and 0.93, respectively, indicating the relatively good prediction performance of the model (Table S3). The model

residuals were spatially independent, with a z-score value at 0.935 (Figure S8).

The predictor variables included in the Oz LUR model were the number of total vehicles in a buffer size of 700 m, longitude,
and the area of urban green space within a 300-m buffer. The predictor variable of vehicles had a negative effect on Os;
concentration. This negative effect reflects the titration of Oz in urban areas with a large amount of NO and NO2 emitted by
traffic (Han et al. 2023). Longitude has a positive effect on O3 concentration, suggesting the influence of regional transported
air masses. A LUR study in Nanjing, China also included longitude in the final Oz model (Huang et al., 2017). Urban green
space had a positive effect on O3 concentration, which is probably due to biogenic volatile organic compounds as the
precursors of ozone formation (Ma et al., 2021; Ren et al., 2017). The R? and LOOCV R? values were 0.92 and 0.87,
respectively, showing the relatively high predictive accuracy of the model (Table S3). The z-score (1.186) of the residual
spatial autocorrelation analysis indicates that the Oz LUR model was well explained by the included predictor variables, with

spatially independent model residuals (Figure S8).

3.3 Spatial distribution maps

The spatial distribution maps of multiple air pollutants derived from established LUR models are shown in Figure 3, whereas
Table S4 shows the statistical description of the estimated air pollutant concentration. The PMi, PMa2s, and NO; LUR
models included several predictor variables (e.g., the number of medium and heavy-duty vehicles in a buffer size of 500 m)
representing vehicular emissions (Table S3). Thus, the concentration of PMi, PM.s, and NO; is largely affected by the
traffic emissions in Hong Kong, with higher concentration estimated along the road network. In addition, the relatively
higher concentration of PM1, PM25, and NO, was estimated in areas with the high population density (e.g., the northern part
of Hong Kong island, the Kowloon City district, and the Yau Tsim Mong district). PMio and PMys had moderate positive
corrections with NO, with Pearson correlation coefficient (PCC) values at 0.570 and 0.696, respectively (Table 1).
Consistent with Li et al. (2022), the LUR model-derived concentration of PMi, TC, PM3y NOg, and PMiy SO,* was
relatively higher at developed urban areas and along major roads. In contrast to this, the spatial distribution of PM;, Cd
showed a north—south gradient, with relatively higher concentration in the northern part and relatively lower concentration in
the southern part. These PM1o chemical species only had weak to moderate positive correlations with PM1g mass, with PCC

values ranging from 0.189 to 0.589 (Table 1). For Ogs, there was an increasing trend from west to east, suggesting the
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influence of transboundary pollution on the spatial distribution pattern. In addition, O3 concentration was largely affected by
traffic emissions, with lower concentration estimated along major roads compared with other areas. Due to nitric oxide
titration (Han et al., 2023), O3 concentration was generally negatively correlated by various degree with PMiy, PM1g
chemical species, PMzs, and NO- (Table 1).

The spatial patterns of the studied air pollutants varied largely among the districts (Table S5 and Figure S9). As shown by
the three example districts in Figure 4, the Yuen Long district had relatively high concentration of PM1, PM1o Species, and
PMas, and moderate concentration of NO, and Os. For the Yau Tsim Mong district, the PM1o, PM1g species, PMzs, and NO;
concentration was relatively high, whereas the Oz concentration was quite low. In contrast to this, the Sai Kung district had

quite high concentration of Os but relatively low concentration of other studied air pollutants.

4 Discussion and implications

High-density cities usually have spare air quality monitoring stations. This discrepancy clearly highlighted the need to
develop LUR models for the spatial mapping of air pollution in high-density cities. This work developed an integrated model
framework for a high-density city based on the air quality data collected at the sparse monitoring stations. Following the
proposed integrated model framework, we established multi-air-pollutant exposure models for four major PMi, chemical
species as well as four criteria air pollutants in Hong Kong using the LUR model approach (Table S3). Similar to other LUR
model studies, one limitation of this study is typically the limited number of monitoring stations. It should be noted that the
adequacy of monitoring should not be determined by number of stations alone. This study therefore performed detailed
evaluations to examine the adequacy. In the GAS module, the established NO, and O3 exposure models had R? values at 0.96
and 0.92, respectively, which are similar with previous studies. In the PM module, our PM1o and PMzs exposure models
achieved remarkable predictive accuracy, comparable with or higher than those of the traditional LUR studies (Tables 2 and
S3; Supplementary Text S2). Following our previous study of Li et al. (2021), in the PM module, we established LUR
exposure models of PMio TC, PMio NO3', PM1g SO4%, and PMio Cd, with model R? values higher than 0.92 (Table S3). The
detailed evaluation results have proved that our models had promising performance and are capable of reflecting the air
quality characteristics of the city. Therefore, our models are considered as sufficient for the scope of this study. Certainty, it
is strongly recommended to carry out a further study using different modelling methods (e.g., machine learning) when more

data are available with at a finer temporal resolution or collected from a larger number of monitoring stations.

This research work aimed to contribute to the research area of exposure assessment through providing new opportunities to
distinguish the independent associations between combined exposure to multiple air pollutants (i.e., PM1g, PM1o TC, PM1g
NOs’, PM1o SO4%, PM1o Cd, PM25, NO2, and O3) and chronic health effects. For example, the finding of weak to moderate
spatial correlation between PM1o and its chemical species may enable epidemiological studies to separate the chronic health

effects of PM1o chemical species from the total mass. In addition, the spatial variation of air pollution can be used for hotspot
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identification for air quality management and exposure assessment in epidemiological studies using the geospatial locations
of the subjects (Crouse et al., 2015; Jones et al., 2020; Li et al., 2021). The major explanation for the spatial differences in
concentration of multiple air pollutants was the differences in their emission sources (Cai et al., 2020; Jin et al., 2019; Levy
et al., 2014; Wu et al., 2017). For instance, PM2s and NO; are more linked to traffic and industrial emissions in developed
urban areas, while relatively high O3 concentration in rural areas is formed through complex chemical reactions between
biogenic volatile organic compounds and nitrogen oxides (Table S3 and Figure 3). The results highlight that the synergistic
control of multiple emission sources and key precursors is urgently needed for the joint control of multiple air pollutants
(Saha et al., 2020; Yim et al., 2019). For instance, the Hong Kong government has spent tremendous efforts on the reduction
of vehicular emissions over the past two decades, which successfully reduced traffic-related air pollutants like PM2s and
NO,. However, as revealed by the present study and previous studies (HKEPD, 2022; Zeng et al., 2022), O pollution has
become an emerging issue, especially in rural areas of Hong Kong. The relationship between the control of vehicular
emissions and Oz pollution is complex (Song et al., 2023; Zeng et al., 2022). In Hong Kong, NOy reductions from the control
of vehicular emissions may lead to an increase in the levels of oxidants, and then cause a net O3 production. It is suggested
that the control of volatile organic compounds should be implemented to better mitigate O3 pollution in HK (Zeng et al.,
2022). This highlights the importance to simulate multiple air pollutants together during exposure assessments. In addition,
more research should be conducted to understand the complex and varying interaction of emission sources, pollutant

sensitivity to precursors, and air quality in a city to formulate more effective and specific air quality management policies.

The development and applicability of exposure models depends on the focus of the air pollution epidemiological studies,
which either focus on long-term or short-term or even acute exposure. To the best of our knowledge, the annual or long-term
LUR exposure models have been widely adopted in providing long-term exposure estimates for health studies (Chen et al.,
2021; Wang et al., 2020b). Meanwhile, considering the requirement for high spatial-resolution and short-term acute exposure
assessment, it is recommended that more studies are conducted to establish high spatiotemporal-resolution exposure models
when detailed measurement data are available. Indeed, several recent studies have explored the possibility of estimating high
spatiotemporal-resolution air pollution exposure models using the spatiotemporal statistical modelling approach (Lu et al.,
2020; Masiol et al., 2018). In addition, in future studies, a multi-dimensional and multi-air-pollutant exposure modelling
approach is recommended, for instance, by combining spatiotemporal statistical modelling with atmospheric chemistry
knowledge, with the particulate chemical species and their toxicity and volatile organic compounds being modelled
(Brokamp et al., 2017; Chen et al., 2020b; Lu et al., 2020). In addition, the vertical distribution of air pollutants should be
measured and modelled to combine with spatiotemporal exposure models to reveal the vertical variability of population
exposure to air pollution (Eeftens et al., 2019; Ho et al., 2015; Jin et al., 2019). Moreover, most previous air pollution
exposure assessment studies and the current work have focused on ambient air quality, but it is strongly recommended that
more research efforts should be made toward developing prediction models of air pollutant concentration in indoor

environments (e.g., residential households) for more accurate exposure estimates (Tang et al., 2018).
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5 Conclusions

In the present study, we developed an integrated model framework for accurate multi-air-pollutant exposure assessments in
high-density and high-rise cities. Following the proposed integrated model framework, with the air pollutant concentration
data from a routine monitoring network, annual-average multi-air-pollutant exposure models for ambient PM1o, major PM1o
chemical species, PM.s, NO, and O3 were developed with relatively high predictive performance in Hong Kong, a typical
high-rise high-density Asian city. The estimated air pollution maps (500 m x 500 m resolution) of these air pollutant

mixtures could be used to support a unique combined exposure assessment in health studies.

We anticipate that the proposed integrated model framework can be easily extended to establish multi-air-pollutant exposure
models in other cities. Apart from the LUR approach, other spatiotemporal statistical modelling methods, such as various
machine learning algorithms, should be applied when a larger data set is available. Particularly, the development of high
spatiotemporal exposure models should be explored when a high temporal-resolution air pollutant measurement data set is
collected. Furthermore, the associations of combined exposure to multiple air pollutants with health endpoints should be

analysed to provide new insights on the health-oriented air pollution control.
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Table 1. Pearson correlation coefficients (PCCs) among the LUR estimated concentration of ambient PM1o, PM1o TC, PMio
N03', PM1o 3042', PM1o Cd, PMz,s, NOz, and O3 in HOﬂg Kong.

PMiyo | PMy TC | PM1p NO3 | PMyp 3042' PMjio Cd PM; 5 NO, O3
PMio 1 0.397™ 0.589™ 0.189™ | 0.430™ | 0.781™ | 0.570™ | -0.354™
PMio TC 1 0.747™ 0.418™ | 0.432" | 0.598™ | 0.785™ | -0.677"
PM31o NOs® 1 0.495™ | 0.479™ | 0.729™ | 0.921™ | -0.654™
PM1o SO4* 1 0.192™ | 0.256™ | 0.488™ | -0.383™
PMy Cd 1 0.368™ | 0.522™ | -0.174™
PM:s 1 0.696™ | -0.500™
NO; 1 -0.678™
O3 1

** Correlation is significant at the 0.01 level (2-tailed).
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Table 2. A comparison of this study with previous LUR studies. The example LUR studies focusing on at least one of the
criteria air pollutants published in recent five years were included.

Study area PM,, :_I\glo ::I(\;Ijo ;I;j%o Pcl\glo PM,.| NO, | O, References
Hong Kong, China 092 | 0.94 0.93 0.97 092 | 091 | 0.96 | 0.92 This work
Beijing, China 0.86 Xu et al. (2019)
Tianjin, China 0.98 Wang et al. (2020)
Nanjing, China 0.75 | 0.87 | 0.65 Huang et al. (2017)
Lanzhou, China 0.77 | 0.71 Jinetal. (2019)
Hong Kong, China 0.59 | 0.46 Lee et al. (2017)
Southern California, USA 0.47 Jones et al. (2020)
Sabzevar, Iran 0.75 0.71 Miri et al. (2019)
Auckland, New Zealand 0.66 Ma et al. (2019)
Mexico City, Mexico 0.73 0.83 | 0.81 Son et al. (2018)
Augsburg, Germany 0.91 0.84 | 095 | 0.92 Wolf et al. (2017)
Manchester, UK 0.95 Mdlter(;gczjllsindley
Sydney, Australia 0.84 Cowie et al. (2017)
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while GAS module involves the measurement and LUR modelling of NO; and Os.
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545  Figure 2. The distribution of prediction error fractions (%) of the established LUR models. The prediction error fraction is

defined as [(predicted concentration — observed concentration)/observed concentration].
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Figure 3. LUR model-derived spatial distribution maps of annual-average ambient PMio, PM1o TC, PM1o NO3", PM1g SO47,
PMyo Cd, PM_ 5, NO2, and O3 concentration in Hong Kong. The colored circles represent observations at AQMSs.
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Figure 4. The average LUR estimated ambient PM1o, PMio TC, PM1o NOg, PM1y SO4*, PMyo Cd, PMzs, NO2, and Os
concentration in three representative districts in Hong Kong. (a) The distribution of Yuen Long, Yau Tsim Mong, and Sai
Kung districts in Hong Kong with the population density shown. (b) Yuen Long (a district more influenced by the

transboundary pollution). (c) Yau Tsim Mong (a high-density district more influenced by vehicular emissions). (d) Sai Kung
(a rural district).
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