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Abstract. For over 25 years, satellite altimetry has provided invaluable information about the ocean dynamics at many scales.

In particular, gridded Sea Surface Height (SSH) maps allow to estimate the mesoscale geostrophic circulation in the ocean.

However, conventional interpolation techniques rely on static optimal interpolation schemes, hence limiting the estimation

of non linear dynamics at scales not well sampled by altimetry (i.e. below 150-200km at mid latitudes). To overcome this

limitation in the resolution of small-scale SSH structures (and thus small-scale geostrophic currents), a Back and Forth Nudging5

algorithm combined with a Quasi-Geostrophic model, a technique called BFN-QG, has been successfully applied on simulated

SSH data in Observing System Simulation Experiments (OSSEs). In result a significant reduction in interpolation error and an

improvement of space-time resolutions of the experimental gridded product compared to operational products. In this study,

we propose to apply the BFN-QG to real altimetric SSH data in a highly turbulent region spanning a part of the Agulhas

Current. The performances are evaluated within Observing System Experiments (OSEs) that use independent data (such as10

independent SSH, Sea Surface Temperature and drifter data) as ground-truth. By comparing the mapping performances to

the ones obtained by operational products, we show that the BFN-QG improves the mapping of short, energetic mesoscale

structures and associated geostrophic currents both in space and time. In particular, the BFN-QG improves (i) the spatial

effective resolution of the SSH maps by a factor of 20%, (ii) the zonal and (especially) the meridional geostrophic currents and

(iii) the prediction of Lagrangian transport for lead times up to 10 days. Unlike the results obtained in the OSSEs, the OSEs15

reveal more contrasting performances in low variability regions that are discussed in the paper.

1 Introduction

Ocean circulation drives most of the global heat and mass transport, greatly impacting climate, biodiversity and human ac-

tivities. In the open ocean, most of the kinetic energy is contained in mesoscale (50-500 km) structures (Ferrari and Wunsch,

2009). In particular, mesoscale eddies can transport heat and nutrients through very long distances and time (Fu et al., 2010).20
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Satellite altimetry is the only observing system capable of documenting mesoscale ocean geostrophic currents with con-

sistent temporal and spatial resolution. By merging several altimetric datasets into gridded Sea Surface Height (SSH) maps,

geostrophic velocities can be derived (Ducet et al., 2000). Today, one of the commonly used gridded SSH maps are the DUACS

products, distributed by the Copernicus Marine Environment Monitoring Service (CMEMS). The mapping algorithm is based

on a space-time optimal interpolation (OI) of the available altimetric SSH satellite data (Le Traon et al., 1998). These maps25

resolve oceanic processes down to 150-200km in wavelength at mid-latitudes (Ballarotta et al., 2019).

The maps designed by the DUACS system provide little information about short mesoscale dynamics (<200 km). In fact,

these fine scales are mostly governed by nonlinear dynamics, which makes the (linear) OI hardly effective given the relative

sparseness of observations. Yet, it is known from other observations and numerical models that these fine scales play a major

role in ocean circulation (Su et al., 2018). Recent efforts have been made to improve the space-time resolutions of the SSH30

maps. Ubelmann et al. (2015) proposed to add a dynamical constraint based on the conservation of the potential vorticity in

the OI procedure. This improved algorithm, called Dynamical Optimal Interpolation (DOI), has been tested with simulated

(Ubelmann et al., 2016) and real conventional altimetric data (Ballarotta et al., 2020). The results show a better estimation of

fine scale structures that are filtered out in the conventional DUACS system.

Motivated by the very recent Surface Water and Ocean Topography (SWOT) mission, Le Guillou et al. (2021a) have proposed35

a data assimilation algorithm (called the Back and Forth Nudging) operating with a 1.5-layer quasi geostrophic model (the

same as the one used in the DOI) to benefit from the high spatial resolution of SWOT, while compensating for its low temporal

resolution, in the design of SSH maps. The technique, referred to as BFN-QG, has been tested in an Observatory Simulation

System Experiment (OSSE) with simulated SWOT and conventional altimeter data. The authors have shown a net improvement

of the resolutions of maps both with conventional altimeter and SWOT data, in comparison with the DUACS algorithm. In40

addition to these good performances w.r.t. DUACS, the BFN-QG works at a relatively low computational cost thanks to the

simplicity of the algorithm.

In this paper, we continue the work of Le Guillou et al. (2021a) by exploring the performances of the BFN-QG algorithm

for mapping real conventional altimetry data. Both the BFN-QG and DUACS systems are applied in a study area that spans

a part of the energetic Agulhas Current. The performances are assessed with independent SSH satellite data, in situ velocity45

from drifters and Sea-Surface-Temperature (SST) data. The paper is organized as follows: first we recall the main features

of the BFN-QG and its implementation with real SSH data; second we present the experimental setup designed to assess the

mapping performances; third we report the performances both in mapping SSH and geostrophic current and finally we discuss

the results by giving some perspectives for future works.
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2 The BFN-QG algorithm50

2.1 The QG dynamics

The dynamics of SSH is simulated by a 1.5-layer Quasi-Geostrophic (QG) model. This model simulates the dynamics of

the first baroclinic mode, known to capture most of the SSH variability. In this model, the conserved potential vorticity q is

diagnosed from SSH :

q =∇2ψ− 1

L2
D

ψ (1)55

with LD the Rossby radius of deformation, ∇2 = ∂2

∂x2 +
∂2

∂y2 , and ψ the streamfunction such as:

ψ =
g

f
SSH (2)

g being the gravity constant and f the Coriolis frequency.

The conservation of potential vorticity is written:

∂q

∂t
+ug · ∇q = 0 (3)60

where ug is the geostrophic velocity vector diagnosed from SSH:

ug = k×∇ψ =
g

f0
k×∇SSH (4)

where f0 is the mean value of the Coriolis frequency over the domain (f-plane) and k denotes the vertical direction and

∇= ( ∂
∂x ,

∂
∂y ).

2.2 Formulation with Sea Level Anomalies65

In reality, an altimeter only provides accurate observations of the time-fluctuating part of SSH, called Sea Level Anomaly

(SLA). The time-averaged SSH, called Mean Dynamical Topography (MDT) is computed with the combination of in situ data

and other satellite observations (Mulet et al., 2021). Then:

SSH =MDT +SLA (5)

To formulate the QG dynamics with SLA, we decompose the geostrophic flow and the potential vorticity using the Reynolds70

decomposition:

ug = ug +ug
′ (6a)

q = q+ q′ (6b)
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Figure 1. Top: raw MDT field (left), its rotational part (middle) and the difference between the two (right). Bottom: absolute geostrophic

velocity computed from the associated top fields using Eq.4.

where ug and q stand for the mean components (SLA-independent) and u′
g and q′ the time-fluctuating components (diagnosed

from SLA):75

ug
′ =

g

f0
k×∇SLA (7a)

q′ =
g

f0
∇2SLA− g

f0L2
D

SLA (7b)

The prognostic equation for the potential vorticity fluctuation is then:

∂q′

∂t
+ug · ∇q′ +u′

g · ∇q+u′
g · ∇q′ = 0 (8)

2.3 Data assimilation80

The SLA observations (denoted as SLAobs) are assimilated in the QG model with the Back and Forth Nudging (BFN, Auroux

and Blum, 2008) technique. This technique is based on the nudging strategy, which consists in "gently" pulling the model

trajectory towards the observations. Mathematically, an extra term proportional to the difference between the model SLA and

the observations is added in equation 8:

∂q′

∂t
+ug · ∇q′ +u′

g · ∇q+u′
g · ∇q′ =K(SLAobs −SLA) (9)85

where K is the tunable nudging coefficient. Its value determines the balance between the weights given to the observations and

the QG dynamics. As explained in Le Guillou et al. (2021a), K is varying in time and space to allow a smooth nudging of the

model towards the observations. Mathematically, the nudging coefficient at time t and at the model grid point x is computed

4



by the following equation:

K(x,t) =K0

Nobs∑
i=1

e
−
(

||x−xi||
D

)2

e−
(
t−ti
τ

)2
(10)90

where K0 is the nominal value of the nudging coefficient, Nobs is the number of observations, (xi, ti) are the space-time

coordinates of the ith observation.D and τ are the space and time scales at which the model is nudged towards the observations,

impacting directly the scales of the reconstructed structures.

The BFN algorithm calls iteratively the forward nudging, defined as a forward-in-time propagation of equation 9 with K>0,

and the backward nudging, defined as a backward-in-time propagation of equation 9 with K<0, within a fixed temporal window95

T . The temporal window T has to be chosen considering the observation sampling, the decorrelation time of the QG model,

and the computational complexity. At the beginning of each temporal loop, the SLA variable is initialized with the value

estimated from the previous loop. In a few iterations (less than 20), the BFN converges towards a trajectory that both fits the

observations and the model dynamics. For more details on the BFN-QG technique, the reader is referred to Auroux and Blum

(2008), Amraoui et al. (2023) and Le Guillou et al. (2021a).100

3 Experimental set-up

3.1 Study area and input data

We assess the BFN-QG performances in a part of the Agulhas Current (10–40°E, 25–45°S) from January 1, 2010 to December

31, 2019. The Agulhas Current is the major western boundary current of the Southern Hemisphere, transporting large volumes

of warm and saline water from the Indian Ocean to the Atlantic Ocean, greatly impacting climate (Bryden et al., 2005) and105

vessel trajectories (Le Goff et al., 2021).

As input data of the BFN-QG, we use the along-track L3 filtered SLA products from Jason-3, Sentinel-3A, Sentinel-3B,

HaiYang-2, CryoSat-2 and SARAL/AltiKa. These SLAs have been distributed by the CMEMS (http://marine.copernicus.eu/)

after the reprocessing of 25 years of altimetric data (Taburet et al., 2019). For our analysis, we use the spatially filtered data,

whose cutoff has been set to 65km, corresponding to altimeters’ effective resolution (Pujol et al., 2016).110

3.2 Mean geostrophic current

The mean state of the ocean surface needed to advect the QG potential vorticity anomaly q′ through equation 8 is extracted from

the CNES-CLS18 mean dynamic products (Mulet et al., 2021). In this product, the topography (MDT) and velocity (MDV; for

Mean Dynamical Velocity) are estimated with a multivariate objective analysis of a combination of altimeter and space gravity

data and in situ measurements. A central step of the analysis lies in the filtering of the ageostrophic component of the in situ115

velocity measurements.

In equations 8 and 9, both ug and q have to be prescribed. For reasons not investigated during this work, the MDV product is

not divergence-free. Because ug must be divergence-free by construction (after Eq. 4), we prescribe it with the divergence-free
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Figure 2. SLA mapped by the BFN-QG (left) and DUACS (right) systems on the 15 October 2019. The fields are plotted with native spatial

resolution (0.25° for the DUACS product, 0.1° for the BFN-QG product). The red lines represent the track of the independent SARAL/AltiKa

altimeter at this date. The middle panel of the Figure compares the 1D SLA profile of the independent with the estimated SLAs interpolated

on the track location.

part of MDV, called MDVrot (the subscript indicates that MDVrot contains the rotational part of MDV). The field MDVrot

is computed with the geostrophic equation 4 from a mean dynamic topography called MDTrot, obtained after solving the120

following elliptic equation:

∆ (MDTrot) =
g

f

−→rot (MDV) (11)

The rotational operator on the right rules out the divergent part of MDV. For consistency, q is diagnosed from equation 1

and MDTrot. Figure 1 indicates the significance of this procedure: Original MDT and MDV differ from their divergence-free

counterparts by the orders of magnitude of the fields.125

At the end of the mapping processing, we add the full MDV to the estimated velocity anomalies.

3.3 Performances assessment strategies

We compare the performances of the BFN-QG system and the DUACS DT2018 system (Taburet et al., 2019). We use the

global daily product provided by CMEMS on a 0.25° longitude x 0.25° latitude grid. The BFN-QG is run on a 0.1° longitude x

0.1° latitude grid and the output maps are saved every 3hrs. The parameters of the BFN-QG (defined in the previous sections)130

have been prescribed after a sensitivity experiment and are listed in table 1

The comparison focuses on SLA (hereafter called SLA-mapping; see section 4) and geostrophic currents (hereafter called

Velocity-mapping; see section 5). For assessing the SLA-mapping capability, we exclude SARAL/AltiKa of the altimetric

observation network to use it as independent data and we focus only on the year 2019. For assessing the Velocity-mapping

capability, all the available altimetric observation network is used and the validation is performed with independent drifter and135

SST data over the entire time period (ten years).
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Parameter Description Value

dx QG model grid resolution 0.1°

dt QG model timestep 1200 s

LD First Rossby radius of deformation 30 km

K0dt (non-dimensionalized) Nudging coefficient 0.7

D Nudging space scale 10 km

τ Nudging time scale 1 days

T BFN sliding time window length 7 days

Table 1. BFN-QG parameters

4 SLA-mapping performances

The SLA-mapping performances are assessed by comparing the mapped products with the independent altimetric data, follow-

ing the same method as in Ballarotta et al. (2020). The estimated gridded maps noted ŜLA are interpolated on the locations

of the independent measurements SLAind to compute the differences ∆SLA= ŜLA−SLAind. Figure 2 shows maps from140

BFN-QG and DUACS, for one single day, with a SARAL/AltiKa altimeter track superimposed. SARAL/AltiKa SLA observa-

tions and SLA interpolated from both maps onto the satellite track are shown in the middle panel. In the case presented here,

the BFN-QG result fits the independent observations SLAind better than the DUACS product.

A first quantitative comparison between BFN-QG and DUACS over the whole 2019 year is performed with root mean square

errors (RMSEs). As the independent data are sparse, the differences ∆SLA= ŜLA−SLAind are aggregated in 1° longitude145

x 1° latitude boxes to give a spatial distribution of the errors. For each box, the RMSE is computed as:

RMSE =
1

N

N∑
i=1

[∆SLAi]
2 (12)

where N is the number of independent observations in a specific grid box. Before computing the RMSE, we can apply a spatial

filtering on ∆SLA to isolate frequency bands of interest. In the present case, we filter out scales larger than 300km in order to

focus on the estimation of mesoscale structures (right panel of Figure 3). The comparison of the performances of the BFN-QG150

versus DUACS is then given by the gain/loss ratio R:

R=
RMSEBFN-QG −RMSEDUACS

RMSEDUACS
(13)

A second quantitative evaluation of the scale-wise mapping performances is carried out with a spectral analysis. As before

with RMSEs, the analysis is applied to the reconstructed SLAs interpolated on the independent tracks. Each independent

satellite track in the study area is split in 800-km segments overlapping every 200km. The data along the segments are then155

detrended and a Hanning window is applied. We use the Welch (Welch, 1967) method to compute the power spectral density

(PSD) distribution for each segments. We average the PSDs for all segments to get a statistically robust estimation of the energy

distribution among spatial scales. We compute also the wavelength-dependent PSD score, SPSD, defined as:

7



Figure 3. Geographical statistics of the SLA-mapping performances for the year 2019. On the left panel: number of independent SAR-

AL/AltiKa altimeter data available. On the right panels: RMSE of the BFN-QG (top) and the gain/loss ratio R with respect to DUACS

(bottom) for all spatial scales (left) and mesoscales (right). Negative values (blue) indicate better performances for the BFN-QG method

compared to DUACS. The green contour is the 200 cm2 SSH variance contour.

SPSD = 1− PSD(∆SLA)

PSD(SLAind)
(14)

SPSD is equal to one for a perfect reconstruction and zero when the error is as energetic as the observed oceanic signal. The160

effective resolution of the maps is defined as the spatial scale for which the spectral score is equal to 0.5.

The results of the quantitative evaluations are reported in Figures 3 and 4. Figure 3 shows the number of observations per

box, the spatial distribution of RMSEBFN-QG and R for all scales and for the mesoscales. Figure 4 presents the PSDs and the

PSD scores.

The BFN-QG considerably improves the mapping of energetic mesoscale structures compared to DUACS. In terms of165

RMSEs, the improvement (i.e. density and intensity of blue pixels on Fig. 3, right) is higher for the mesoscales (defined as

scales below 300km) than for all scales. This is corroborated by the spectral analysis which shows that the BFN-QG maps are

in better agreement (both in amplitude and phase) with the independent data especially for scales below 300km. The effective

resolution of the maps is improved by a factor of 20% compared to DUACS (Fig. 4 right). The performances of the BFN-

QG are reduced for larger spatial scales and in low variability regions. For scales higher than 300km, DUACS outperforms170

the BFN-QG on average by a factor of 1.3% in spectral score. For all scales, the improvement brought by the BFN-QG is

reduced in low variability regions (delimited by the green contours in Figure 3). These weak performances of the BFN-QG in

reconstructing the large scale structures may be due to the way we compute the nudging coefficient K (through equation 10),

whose space and time scales (see table 1) have been tuned to enhance the mapping of short scale dynamics.
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Figure 4. Spectral diagnostics: PSD (left) and associated scores (right) of the mapped products. The intersections between the horizontal

green line (corresponding to a PSD score of 0.5) and the curves define the effective resolutions of the products.

Figure 5. Geostrophic currents mapped by the BFN-QG (left) and DUACS (right) systems on the 2 November 2019. The red cross represents

the location of one drifter at this date. The colored dots represent the expected drifter positions as predicted from the true past positions with

the mapped currents. Dots’ color indicates the prediction lead time. For example, the yellow dots are predictions initialized 9 days in the

past. Their distances to the red cross indicate the prediction errors.

5 Velocity-mapping performances175

5.1 Validation with drifter data

In this section, the Velocity-mapping performances are assessed using independent drifter data at hourly resolution, selected

from Elipot et al. (2016). The ageostrophic component of the observed velocities has not been removed in these reference

data as we assume that it should affect the performance of the DUACS and BFN-QG methods in the same way. Snapshots of

the norm of geostrophic velocities from the BFN-QG and DUACS systems are shown in Figure 5. At first sight, the currents180
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Figure 6. Geographical statistics of the Velocity-mapping performances for the ten years (from 2010 to 2019). On the left panel: independent

drifter sampling. On the right panels: RMSE of the BFN-QG (top) and the gain/loss ratio R with respect to DUACS (bottom) for the zonal

(left) and meridional (right) currents. Negative values (blue) indicate better performances for the BFN-QG method compared to DUACS.

The green contour is the 200 cm2 SSH variance contour.

Figure 7. Gain/loss ratio on the predictability of mapped surface geostrophic current for estimating Lagrangian transport, in function of the

prediction lead times. Negative values indicate better performances for the BFN-QG method compared to DUACS. In blue, all the drifter

data available in the experimental time period are considered. In orange, only the drifters located in the high energetic regions are considered.

estimated by the BFN-QG exhibit finer scale structures (filaments and small vortices) than the ones derived from DUACS.

Figure 5 is further discussed later.

A performance diagnostic of Eulerian nature is performed by comparing the estimated currents with the velocities measured

by the drifters at each location (in space and time) of the drifters. We use the same methodology as for the SLA-mapping per-
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formances: the mapped velocities (meridional and zonal components) are interpolated on the drifters’ locations and the errors185

with the drifters’ velocities are aggregated in 1° longitude x 1° latitude boxes. The RMSE and the gain/loss ratio R (equation

13) are then computed in each box. The results are reported in Figure 6. The geographical distribution of the gain/loss ratio R

shows a net improvement of the estimation of both zonal and meridional currents. This improvement is more pronounced for

the meridional component which is often harder to estimate from altimetry compared to the zonal component due to the nearly

meridional orientation of the altimetry tracks. Like the SLA-mapping, more improvements (same as before, it’s a relative com-190

parison in %) occur in high variability regions, as shown by the intensification of blue pixels in the inner domain delimited by

the green contour in Figure 6. Besides, the relative performance of the BFN-QG in low variability regions are better for the

Velocity-mapping than for the SLA-mapping. This is probably due to the fact that the low variability dynamics occur at large

scales, which have very little impact on geostrophic currents.

The second performance diagnostic is Lagrangian: simulated drifter trajectories are compared with the real ones. For one195

drifter at one time, we compute the distances between the real drifter location and the locations predicted with the evaluated

velocity fields. The predictions are initialized with the real drifter locations at earlier times ranging from 0 to 20 days, every

3 hours. As an example, Figure 5 displays the results for one drifter and one time. The BFN-QG-derived geostrophic currents

improve the prediction of short-term Lagrangian transport compared to the DUACS-derived geostrophic currents: the blue

dots, representing Lagrangian predictions with lead time up to 5 days, are much closer to the real location of the drifter for200

the BFN-QG system than for DUACS. But the red dots, representing Lagrangian predictions higher than 10 days, are as far as

the ones predicted by DUACS. To investigate the lead-time dependency of the relative performances of BFN-QG and DUACS

in this Lagrangian diagnostic, the gain/loss ratios are plotted in function of lead time in Figure 7. The BFN-QG improves

the Lagrangian prediction by more than 7% for 1–3 days lead times compared to DUACS, with an enhanced improvement

for drifters located in high variability regions. The Gain/Loss ratio becomes positive (which means better performances for205

DUACS compared to the BFN-QG) for lead times higher than 10 days. The standard deviation of the Lagrangian errors (not

shown) is higher for the BFN-QG than for DUACS, and this is accentuated for long lead times. This is qualitatively visible in

Figure 5 where the distances between the expected locations and the real location of the drifter increase almost linearly with

the lead times for DUACS while they are much more scattered for the BFN-QG (especially for lead times higher than 10 days).

This can be explained by the higher spatial resolution of the BFN-QG fields.210

5.2 Validation with SST data

This section compares the positions of fronts and eddies diagnosed from our reconstructions with those diagnosed from high

resolution SST observations. To do so, we use the Fronts Derived from Remote Sensing SST Observations by SEVIRI over

Agulhas Region dataset created within the ESA World Ocean Circulation (WOC) project (DOI: 10.12770/6c776c43-425b-

4d29-9934-0822696f15d8) as ground-truth. For each point Pi =

loni
lati

 of the detected frontal structures, we compute the215

flow crossing the fronts using either BFN-QG or DUACS geostrophic currents:
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BFN-QG DUACS

Figure 8. Snapshots showing the geostrophic current streamlines computed from the BFN (left panel) and DUACS (right panel) on top of

the SEVIRI SST for which the detected frontal structures are depicted by the colored lines (in blue for small values of the crossing flow, red

for high values). These snapshots are taken from the Ocean Virtual Laboratory web portal.

Figure 9. Geographical distribution of: the frontal structure occurrences during the ten years of comparison (left), the averaged BFN-QG

currents crossing the SST fronts (middle) and the gain/loss ratio R on the computed Flow (as for Figure 3, negative/blue values indicate

better performances for the BFN-QG method compared to DUACS). The green contour is the 200 cm2 SSH variance contour.

Flow[Pi] =

∣∣∣∣ v[Pi] · δi
∥v [Pi]∥∥δi∥

∣∣∣∣= ∣∣∣cos ̂(v[Pi],δi)
∣∣∣ (15)

where v[Pi] is the velocity vector at point Pi, δi =

 lati+1 − lati−1

−(loni+1 − loni−1)cos(lati)

 is the normal vector of the front at point

Pi and ̂(v[Pi],δi) is the angle between v[Pi] and δi. The values of the flow range from 0 to 1. Assuming that SST fronts and

12
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currents are aligned, the lower the flow, the more consistent the current estimation is to the SST. For this analysis to be valid,220

the currents have to be in geostrophic balance and the advection of frontal structures must be negligible.

The Agulhas Current area is an excellent natural laboratory for this kind of analysis, with a strong geostrophic current, strong

SST gradients and relatively weak advection of the frontal structures. However, the presence of Natal pulses in the nearshore

side of the Agulhas Current core (Krug and Penven, 2011) and complicated dynamics occurring in the retroflection area (Zhu

et al., 2021) may advect significantly the frontal structures and thus limit this analysis. An illustration of the comparison of225

fronts and velocity is shown in Figure 8. The direction of the streamlines derived from the BFN-QG (left) and DUACS (right)

can be compared. One can visually see that the sharp turn of the Agulhas Current is better represented in the BFN-QG than in

DUACS.

Figure 9 shows statistics of the crossing flow computed from the geostrophic currents derived both from the BFN-QG

and DUACS techniques within the 10-years study period. As for the previous diagnostics, the statistics are aggregated in 1°230

longitude x 1° latitude boxes. The left panel of Figure 9 indicates that all pixels of the region are covered by several thousands

of SST front occurrences, hence providing reliable statistics. The number of occurrences depends on the probability to detect

frontal structures and the cloud cover.

The statistics show mixed performances of the BFN-QG compared to DUACS, with stronger geographical patterns than

with the previous diagnostics (see sections 4 and 5). In particular, the meanders of the Agulhas Current are well captured by235

the BFN-QG and the improvement in the main current is significant. On the other hand, in some regions, DUACS significantly

outperforms the BFN-QG. We note that these regions are mostly characterized by weak crossing currents as shown on the

middle panel of Figure 9. One example is the Agulhas Bank, i.e. the coastal region south of Africa characterized by very shallow

waters. In this region, the weak performances of the BFN-QG are probably due to the non representation of the bathymetry

in the QG model (whose variations strongly affect the value of the Rossby radius of deformation LD which modulates the240

potential vorticity field, through equation 1). This shows that the method needs to be improved to better perform in coastal

areas. Finally, Figure 9 also depicts weak performances of the BFN-QG (compared to DUACS) in the South-West part of the

study domain, in contradiction with the other diagnostics. This can be due to non reliable statistics because of the weaker

density of observations and/or too strong advection of the fronts by the currents that limits the validity of the analysis.

6 Discussion and conclusions245

In this study, we follow on the analysis presented in Le Guillou et al. (2021a) for assessing the performances of the BFN-QG to

map altimetry data. The BFN-QG is a non-common data assimilation technique that can be used to dynamically map altimetry

data. This dynamical mapping technique shares similarities with the DOI experimental mapping technique (Ubelmann et al.,

2016; Ballarotta et al., 2020). The major advantage of the BFN-QG technique over the DOI technique is the very limited

number of parameters to tune and its relatively low numerical cost. Le Guillou et al. (2021a) considered simulated observations250

for testing the impact of the SWOT mission on the mapping capabilities. Here, the BFN-QG is tested to map real along-track

altimetry data in a region covering the highly energetic Agulhas Current. The performances are assessed by comparing the
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mapped products, from BFN-QG and from the operational reference DUACS, with independent datasets. We have carried out

diagnostics on mapped SLA (using independent altimetric data) and mapped velocity (using independent drifters and high

resolution SST data).255

The BFN-QG improves the mapping of short, energetic mesoscale structures both in space and time in comparison with

the DUACS system. The BFN-QG is able to reconstruct finer coherent structures that are in phase with observations from

independent datasets. The spatial effective resolution is improved by a factor of 20% compared to DUACS. The prediction of

Lagrangian transport by the BFN-QG-derived geostrophic currents is improved for lead times up to 10 days in comparison

with the DUACS-derived geostrophic currents260

The performances of the BFN-QG are not uniform for all temporal and spatial scales. The method fails to improve the

mapping of large mesoscale structures (>300km) in comparison with DUACS. This is corroborated by the poor performances

of the BFN-QG-derived currents to estimate the Lagrangian transport for lead times larger than 10 days. Future works should

investigate the implementation of a multi-scale nudging whose parameters vary with the space and time scales of the dynamics

(Stauffer and Seaman, 1994). This would prevent departure from large scale circulation while maintaining the accuracy of the265

mapping of small scales.

Another issue with the BFN-QG lies in its poor performances in mapping low energetic dynamics. This disagrees with the

previous study of Le Guillou et al. (2021a) which showed similar performances in low and high variability regions. One dif-

ference here is that the study region exhibits strong variations in bathymetry, limiting the validity of the Quasi-Geostrophic

assumption. Another difference is that the observations contain measurement noise that may become important in low vari-270

ability region, given the fact that the OI allows better representation of measurement noise (through the observation covariance

matrix) than the BFN-QG does (that has only one tunable scalar factor, K). Finally, the observations can contain the signature

of non-geostrophic dynamics, such as internal tides, which can be strong in low variability regions (Qiu et al., 2018)). A nat-

ural perspective would be to test the method presented in Le Guillou et al. (2021b) to jointly map internal tides and balanced

motions from real altimetric observations.275

With the advent of swath altimetry through the just-launched SWOT mission, future works should investigate the estimation

of geostrophic dynamics of baroclinic modes higher than the first one. In this study, we have assimilated the SSH observations

in a simple 1.5-layer QG model (which simulates the dynamics of the first baroclinic mode) to ensure its good controllability

with sparse along-track altimetric data. Indeed, we deeply think that the performances of the assimilation procedure rely on

the balance between the density of observations and the complexity of the dynamical model. The very high density of SSH280

observations from SWOT mission might enable the use of multiple layers QG models to improve the reconstruction of the

geostrophic dynamics.

Finally, this study approach might be further strengthen by exploiting synergies between altimetry and other space-borne

data to improve the reconstruction of small-scale ocean surface dynamics. First, as performed in this paper for validation

purposes, altimetry can be combined to observations of surface tracers such as SST and chlorophyll concentration to estimate285

the ocean surface currents. Similar to potential vorticity, which is advected by geostrophic currents, tracers are advected by

total (geostrophic+ageostrophic) currents (Rio and Santoleri, 2018; Ciani et al., 2021) . To extend our present data assimilation
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strategy, the tracer observations could be assimilated in simple tracer advection-diffusion models. Second, data acquired by

the Sentinel-1 Interferometric Wide mode can be processed to extract (radial) ocean surface velocities (Moiseev et al., 2020)

that might complement the altimetric sampling, especially in coastal areas where this mode is active. Third, preparatory works290

should investigate the best strategies to integrate data from future Doppler satellite missions, like the NASA/CNES ODYSEA

(Ocean DYnamics and Surface Exchange with the Atmosphere) mission (Villas Bôas et al., 2019; Rodríguez et al., 2019), to

reconstruct the ocean surface dynamics at small scales.

Code and data availability. The along-track SLA (level 3), DUACS gridded SLA and geostrophic currents (level 4) products used in this

study are freely available on the CMEMS portal (http://marine.copernicus.eu/). The BFN-QG geostrophic currents and the SST frontal295

structures are freely available on the WOC portal (https://www.worldoceancirculation.org/). The code of the BFN-QG is available on the

Github repository MASSH (https://github.com/leguillf/MASSH).
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