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Abstract. A three-dimensional (spatial and vertical) gridded data set of black carbon (BC) aerosols has been 

developed for the first time over the Indian mainland using data from a dense ground-based network, aircraft- 

and balloon-based measurements from multiple campaigns, and multi-satellite observations, following statistical 

assimilation techniques. The assimilated data reveals that the satellite products tend to underestimate 15 

(overestimate) the aerosol absorption at lower (higher) altitudes with possible climate implications. The regional 

maps of BC-induced atmospheric heating derived using this dataset capture the elevated aerosol heating layers 

over the Indian region along with the spatial high over the Indo-Gangetic Plains. It is shown that over most of 

the Indian region, the incorporation of realistic profiles of aerosol absorption/extinction coefficients and SSA 

into the radiative transfer calculations leads to enhanced high-altitude warming. This could strongly influence 20 

the upper tropospheric and lower stratospheric processes, including the vertical transport of BC to higher 

altitudes and thus have larger implications for atmospheric stability than what would be predicted using satellite 

observations alone. This will have larger implications for atmospheric stability than what would be predicted 

using satellite observations alone and could strongly influence the upper tropospheric and lower stratospheric 

processes, including increased vertical transport of BC to higher altitudes. The 3D assimilated BC data set will 25 

be helpful in reducing the uncertainty in aerosol radiative effects in climate model simulations over the Indian 

region. 
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1. Introduction  

Among the various atmospheric aerosol species, Black Carbon (BC), due to its wide-band absorption of 30 

solar radiation (Bond et al., 2013) and large spatial and temporal heterogeneity (Williams et al., 2022), plays an 

important role in climate forcing (Schmidt and Noack, 2000; Forbes et al., 2006; Bond et al., 2013). BC, mainly 

produced through low-temperature combustion (anthropogenic activities such as transport, open burning, 

industrial emissions etc. and natural processes such as forest fires), gets transported to higher altitudes (reaching 
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as high as the stratosphere; Torres et al., 2020; Kompalli et al., 2016; Negi et al., 2019; Arun et al., 2019; 35 

Roseline et al., 2021; Gogoi et al., 2021; Arun et al., 2021; Singh et al., 2022; Sheoran et al., 2023) and distant 

continents and polar regions (Chin et al., 2007; Gogoi et al., 2016; Sicard et al., 2019). It can influence 

atmospheric stability (Babu et al., 2011), circulation (Lau et al., 2006), and air quality (Aneberg et al., 2011). 

Though the columnar loading of aerosols, represented using the aerosol optical depth (AOD), is a good 

parameter to infer the effects of aerosols on the radiation budget, accurate estimation of the absorption potential 40 

of aerosols is essential to quantify the vertical structure of aerosol-induced atmospheric warming and its 

implications for climate. This happens because the same AOD values can lead to different radiative forcing by 

aerosols based on the single scattering albedo (SSA), lifetime, and altitude of the aerosols.  

BC has a longer lifetime in the atmosphere than other aerosol species due to its fine size range and 

chemically inert nature (Babu and Moorthy, 2002) and gets transported faraway from its sources (Ogren and 45 

Charlson, 1983; Chuang et al., 2002; Masiello, 2004). The transport of BC is controlled by meteorological 

conditions, mainly the wind speed and atmospheric boundary layer (ABL) height (Babu and Moorthy, 2001; 

Bond et al., 2013). Due to its heating effect, BC can impact the stability of the atmosphere and form stable 

layers curbing convection (Wang et al., 2007; Babu et al. 2011). Considering the adverse impact of BC on 

global climate, efforts are being made to reduce its emission and mitigate global warming (Grieshop et al., 2009; 50 

Shindell et al., 2012). Regionally, the radiative impacts of BC are higher over the Indian mainland and the 

surrounding oceans compared to the global estimates (Babu et al., 2004, Wang et al., 2007). BC is known to 

alter the precipitation patterns and this effect gains more importance over the South Asia and the Indian region 

(Menon et al., 2002; Samset et al., 2019; Williams et al., 2022), which heavily depends on the summer monsoon 

for meeting its water supply Hence an immediate requirement to identify and quantify the absorption potential 55 

of aerosols over the Indian region and delineate their seasonal as well as spatial variations emerge clearly. 

 BC over the Indian region is produced from various sources like domestic burning, vegetation 

wildfires, crop residue burning and fossil fuel combustion (vehicles, industry, etc.; Dey and Di Girolamo, 2010; 

Rehman et al., 2011; Yadav 2014; Srivastava et al., 2014; Mor et al., 2016). Though wildfires, known to emit a 

significant amount of BC, are not as frequent or intense over India (Venkataraman et al., 2006; Kharol and 60 

Badarinath, 2006; Bali et al., 2017) as in the other parts of the world, the shifting cultivation practiced in the 

northeastern part of India (Badarinath et al., 2004) contribute significantly to BC emissions. The increase in BC 

loading is shown to be partly leading to the intensification of tropical cyclones in the Arabian Sea (Evan et al., 

2011). Furthermore, there is a considerable variation in the vertical distribution of BC and its subsequent 

radiative forcing all over the Indian region (Manoj et al., 2020, Ratnam et al., 2021). It has been shown that the 65 

radiative forcing increases significantly in the presence of highly reflective clouds and hence the forcing due to 

BC critically depends on the vertical distribution of BC with respect to low-altitude clouds (Haywood and Shine 

et al., 1997; Satheesh et al., 2002; Zarzycki and Bond, 2010; Samset and Myhre, 2011). On regional scales, the 

elevated layers of BC aerosols can even reverse the scattering effect at the top of the atmosphere by reducing the 

cloud cover through the atmospheric heating induced at higher altitudes (Ackerman et al., 2000; Keil et al., 70 

2001; Babu et al., 2011; Govardhan et al., 2017).  
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However, the assessment of spatial and vertical distribution of BC over the Indian region is challenging 

due to its diverse geography, multiple emission sources, growing anthropogenic activity and seasonally varying 

meteorological features. Taking this into account, a network of ground-based observatories (ARFINET, Aerosol 

Radiative Forcing over India NETwork; Moorthy et al., 2013) has been established over the Indian region. 75 

Besides other aerosol parameters, continuous measurements of near-surface BC mass concentrations are made 

from about 40 ground-based stations scattered across the mainland (Moorthy et al., 2013; Manoj et al., 2019). In 

addition to these continuous measurements, several campaign mode measurements have been conducted to 

fathom the vertical distribution of BC over India (Babu et al., 2010; 2011; 2016; Safai et al., 2012; Vaishya et 

al., 2018). These observations, though limited in the spatial and temporal coverage, have shown the persistence 80 

of elevated BC layers over different parts of India (Satheesh et al., 2008; Babu et al., 2011; Padmakumari et al., 

2013, Vaishya et al., 2018, Manoj et al., 2020). It is known that the in-situ measurements using aircraft and 

high-altitude balloon, provides a more reliable estimate of the distribution with higher accuracy (Babu et al., 

2008; 2011). Conducting periodic campaign mode measurements is not practical, and hence data from such 

campaigns are sparse, and spatially and temporally inhomogeneous.  85 

Although the existing measurements provide a good representation of the BC distribution over the 

Indian region, there are large discontinuities (both spatially and temporally) and does not provide a 

homogeneous gridded data set needed for inputting to models, which calls for the assimilation of in-situ 

measurements with satellite derived data. This has been carried out globally at regional scales, to get improved 

representations of the BC distribution (Benedetti and Fisher 2007; Kahnert et al., 2008; Morcrette et al., 2008; 90 

Benedetti et al., 2009; Rouïl et al., 2009; Schutgens et al., 2010; Pagowski et al., 2010; Liu et al., 2011; 

Pagowski and Grell 2012; Schwartz et al., 2012; Saide et al., 2013; Schwartz et al., 2014). Over the Indian 

region, Pathak et al. (2019) have constructed gridded Aerosol Absorption Optical depth (AAOD), which 

accounts for the absorption by BC and dust aerosols. However, these assimilated datasets are column-integrated 

products and lacks the vital information on their vertical distribution, which is needed to improve the accuracy 95 

of radiative forcing estimates (Clarke et al., 2004). Estimating atmospheric heating rates using column-

integrated aerosol properties and height-resolved aerosol properties are shown to differ significantly over oceans 

as well as landmass (Moorthy et al., 2009, Manoj et al., 2020).  

Unlike other aerosol optical properties, direct quantification of BC through satellite observations is not 

possible. Even the BC AAOD data sets derived recently (for e.g., Pathak et al. 2019) provides only columnar 100 

information on BC absorption, while the important information on the vertical structure is smoothed off. The 

present study attempts to fill this important gap by developing an assimilated gridded three-dimensional BC data 

for the first time over the Indian region, from multi-platform measurement data, following well-accepted 

statistical assimilation techniques. These profiles are then used to delineate the impact of BC on the thermal 

profile of the atmosphere. The data and methodology are detailed in Section 2 and the results and discussions 105 

are detailed in Section 3. The study is summarized in Section 4 and the important findings are listed out. 

2. Data and methodology 
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The primary database comprised of those from the dense ground-based network stations, airborne 

measurements (aircraft and balloon), derived data from multi-satellite observations and reanalysis data. These 

are used to generate seasonal, 3-D assimilated data set of BC absorption coefficient over the Indian region. For 110 

this, the primary data are grouped into the seasons winter (DJF; December to February), pre-monsoon (MAM; 

March to May), and post-monsoon (ON; October to November) during the assimilation process. The assimilated 

data sets are thereafter used in the radiative transfer calculations and the improvements are quantified.  

2.1. Ground-based measurements 

A network of observatories (ARFINET), dedicated for aerosol measurements (spectral AOD and near-115 

surface BC), has been set up in a phased manner in the Indian mainland and the islands surrounding it as part of 

the Aerosol Radiative Forcing over India (ARFI) project under the Geosphere-Biosphere Program (GBP) of the 

Indian Space Research Organization (ISRO). The geographical locations of the measurement sites are shown in 

Fig. 1, while the relevant details are listed in Table S1 in the supplementary section. The spatial plot of the 

elevation from United States Geological Survey Earth Resources Observation and Science (USGS EROS) 120 

Archive for Digital Elevation is shown over the land region. Near-surface BC mass concentration is obtained 

from Aethalometers (models AE31, AE33, or AE42; Magee Scientific), wherein the ambient air is aspirated 

following standard protocols and the optical attenuation brought about by the BC aerosols deposited on a quartz 

filter tape is converted to its mass concentration (Hansen et al., 1984). The Aethalometer operation and 

precautions taken during measurements is detailed in the reference section of Table. 1 for all the campaigns. A 125 

detailed description of the operation, data quality check and corrections, and error analysis may be found 

elsewhere (Babu et al., 2002; Moorthy et al., 2013; Manoj et al., 2019). 

2.2. Satellite observations 

Long-term (2007–2020) data from the spaceborne lidar Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP) onboard Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 130 

satellite over the Indian region formed the crux of the satellite data employed in this study. Level-2, day and 

night product (Version 4.20; Young et al., 2018; Liu et al., 2019) at 532 nm wavelength has been used to 

generate the aerosol extinction coefficient profiles. These profiles were cloud-screened using the Cloud-Aerosol 

Discrimination (CAD) score by rejecting data points with CAD score outside the range -100 to -80 (Liu et al., 

2009). They were further subjected to another screening using the Atmospheric Volume Description (AVD) flag 135 

to ensure that the dataset consists of signals from aerosols alone. The aerosol extinction coefficient uncertainty 

and quality control checks were performed through their respective flags. CALIOP profiles, normalized by the 

assimilated composite AOD reported by Pathak et al. (2019), formed the background data for 3D assimilation in 

this study. A rigorous description about CALIOP data screening may be found in Kala et al. (2022) and is not 

repeated here.  140 

Monthly mean, level-3 aerosol absorption optical depth from Ozone Monitoring Instrument (OMI) 

aboard the Aura satellite has been used to obtain the absorption AOD due to composite aerosols for 500 nm 

wavelength (Torres et al., 2005; Pathak et al. 2019). This absorption AOD is the result of AODs mainly due to 

BC and dust aerosols. To delineate dust absorption, we have used infrared radiance measurements within the 
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wavelength band 10.5–12.5 microns from Very High-Resolution Radiometer (VHRR) aboard Kalpana-1 and 145 

INSAT-3A satellites (Pathak et al., 2019), which is subtracted from the total absorption AOD to infer AAOD 

due to BC alone. In addition to this, spectral surface reflectance (Surface Reflectance product Daily L2G Global 

250m) values obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and 

Terra satellites have been used in the radiative transfer calculations in the present study (described in Sec 2.5).  

As the primary data from ARFINET do not provide vertical profiles, we have inferred the vertical 150 

profiles of BC by first generating BC absorption aerosol optical depth (AAOD) at the ARFINET stations and 

then normalizing the CALIOP aerosol extinction coefficient profiles using this BC AAOD, with the implied 

assumption that the vertical variations in composite aerosols and BC are similar over long (for e.g., seasonal) 

time scales. BC AAODs at the network stations were evaluated using the Mie scattering model, Optical 

Properties of Aerosols and Clouds (OPAC; Hess et al., 1998) with the ARFINET BC mass concentration and 155 

atmospheric boundary layer (ABL) height obtained from the Modern-Era Retrospective analysis for Research 

and Applications, Version-2 (MERRA-2; Gelaro et al., 2017) reanalysis as its input. The essential details on the 

stations and the spatial variations in BC AAOD evaluated at the ARFINET stations are given in the 

supplementary section in Table S1 and Fig. S1 respectively. More details on the instrumentation and 

methodology followed in estimating BC AAOD from near-surface BC measurements may be found in Pathak et 160 

al. (2019).  

The assimilated AAOD thus obtained (Pathak et al., 2019) provides only columnar values, and no 

information on its vertical distribution, which is known to be heterogeneous with structures and elevated layers 

(for e.g., Satheesh et al., 2008; Babu et al., 2011; Kala et al., 2022). Hence, a mere extension of surface BC 

measurements to higher altitudes, assuming a constant mixing ratio within the ABL and exponentially 165 

decreasing thereafter, will not be realistic over the Indian region. As such, better realistic BC profiles at these 

locations (where BC AAOD has been evaluated) have been generated by normalizing the CALIOP aerosol 

extinction coefficient profiles using the BC AAOD shown in Fig. S1 (see Sect. 2.2 for details on CALIOP data 

analysis). Finally, the balloon and aircraft measurements along with the BC profiles generated from surface 

measurements and CALIOP are combined and gridded at 1°×1° spatial resolution and 0.5 km vertical resolution 170 

to form the observational input (kobs) to the data assimilation and are shown in Fig. 2. 

2.3. Aircraft and balloon data 

As part of various field campaigns, in-situ measurements of the vertical profiles of BC aerosols have 

been carried out at different locations and seasons over the Indian mainland and the adjoining oceans. The 

campaign details are listed in Table 1, and the location from where the aircraft/balloon observations were made 175 

are marked in Fig. 1, where the ground-based network stations are also shown. Aircraft measurements were 

conducted as part of various research campaigns such as the Integrated Campaign for Aerosols, gases and 

Radiation Budget (ICARB: Moorthy et al., 2006), Winter Integrated Campaign for Aerosols, gases and 

Radiation Budget (WICARB: Moorthy et al., 2010), multiple phases of Cloud Aerosol Interaction and 

Precipitation Enhancement (CAIPEEX: Kulkarni et al., 2012; Safai et al., 2012), and Regional Aerosol 180 

Warming Experiment (RAWEX: Babu et al., 2016). The high-altitude balloon measurements conducted from 

Hyderabad as part of RAWEX (Babu et al., 2011; Moorthy et al., 2016) have also been used. These altogether 
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offered a total of sixty-four profiles of aerosol absorption coefficient (kobs) over the study region (obtained 

during the years 2006 to 2013). However, no measurements could be made during the monsoon season (JJAS: 

June to September) due to technical issues. 185 

2.4. Three-dimensional assimilation 

Several assimilation methods are in use for combining scattered in-situ observations with the gridded 

background data, such as the successive correction methods (SCM; Kalnay, 2003; Lewis et al., 2006) and 

weighted interpolation method (WIM) which follows the Cressman method (Cressman et al., 1959). These 

assimilation methods are based on a specified radius of interest around the in-situ observation, and the variances 190 

are minimised within this radius of interest. Rain-gauge measurements (Mitra et al., 2003; 2009) and AOD data 

(Chung et al., 2005) have been assimilated using this method. But as the in-situ BC absorption coefficient 

profiles are less dense in our case (despite the number of stations being about 40), employing the above methods 

will not be produce a homogenous and continuous assimilated product, useful for inputting to model 

simulations. As such, in this study, we have used the 3D-Var (three-dimensional variational) assimilation 195 

method (Niu et al., 2008; Zhang et al., 2008), which works on the principle of least-square error minimization. It 

uses the underlying structure of the background error covariance (unlike other methods of assimilation) making 

it better suitable for our study. This method has been successfully employed in the past to assimilate AOD (Niu 

et al., 2008), dust aerosol properties (Zhang et al., 2008) and AAOD (Pathak et al., 2019). We have used it to 

generate the final assimilated data as a solution of the minimizer of the objective function J(X) which represents 200 

the deviation of assimilated data from its parent data set (kobs and kbg). 

                                               J(X) = 0.5[(X−Xb)TB−1(X−Xb) + (Z−HX)TO−1(Z−HX)]                                       (1) 

where the vectors X (n×1), Xb (n×1), Z (m×1) are respectively the assimilated product, the background data 

(kbg), and observational data (kobs), and H (m×n) is the interpolation matrix (maps the background data grid 

location to the observation data grid location; Kalnay, 2003; Lewis et al., 2006), B (n×n) is the background error 205 

covariance matrix and O (m×m) is the observation error covariance matrix. The terms within the parentheses 

represent the dimensions of the vectors/matrices as the case is.  

Error covariance provides the weights for kbg and kobs during the assimilation and dictates the 

assimilation pattern in the final product through its covariance structure. Hence, construction of the error 

covariance matrix forms the base for the patterns formed in the final assimilated product. The error covariance 210 

matrices are symmetric and positive definite matrices. The diagonal terms are the variance for each element of 

the background and observational data, and the off-diagonal elements provide the covariance. To filter the 

outliers in Xb (kbg), values greater than (X̅b+ 3σ) are removed, where X̅b and σ are respectively the mean and 

standard deviation of Xb. In the observational error covariance matrix, the diagonal elements alone were 

considered, as the observational data are spatially inhomogeneous, largely separated and hence can be 215 

considered uncorrelated (Niu et al., 2008; Zhang et al., 2008; Singh et al., 2017; Pathak et al., 2019). Hence the 

covariance (off-diagonal elements) in the observational error matrix is zero and the variance (diagonal elements) 

associated uncertainties for constructing the observational error covariance matrix is set as the instrument 

uncertainty, which in the case of Aethalometers is within 2% to 5% (Hansen and Novakov, 1990; Babu et 

https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx39
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx39
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx48
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx48
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx61
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx61
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx90
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx90
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx76
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx76
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx24
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx24
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx3
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al., 2004; Dumka et al., 2010). Now that the observational error covariance is diagonal, the final assimilated data 220 

is completely dependent on the background error covariance for their spatial pattern in the final assimilated 

product and makes it a vital part of the assimilation process. The background error covariance matrix is 

constructed using long-term data of BC absorption coefficient profiles, as detailed in Sect. 2.3. It is ideal to 

evaluate the background error covariance matrix with the long-term data to ensure a realistic error covariance 

matrix. Monthly mean background data (Xb) is joined for all the years, for instance, if there are ‘k’ time steps, 225 

then the monthly mean background data matrix ‘D’ will have a dimension of n×k. The climatology of the matrix 

D would have a dimension of n×1 and is referred to as C. Then the anomaly matrix will be the difference 

between the time series matrix D and the climatology matrix C as shown below. 

                                       A (i, j) = D (i, j) – C (i,1)  (2) 

The index ‘i’ refers to the spatial location and index ‘j’ refers to the time step. The final background error 230 

covariance matrix is constructed using:  

                                        B = (I/(k-1)) (A AT)  (3) 

Here, ‘I’ is an identity matrix of size n×n. The background error covariance matrix is evaluated 

separately for DJF, MAM, and ON seasons to evade the bias introduced due to the seasonality in loading of 

different aerosol species, along with the changes in the meteorological parameters. However, the background 235 

covariance matrix would still be deficit and singular. Hence, to make it a full rank matrix, a small value of the 

order of 10-14 (rank deficient) is added to the diagonal elements of the background covariance matrix, which is 

known as the Tikhonov regularisation method (Lewis et al., 2006). This will not change the structure or variance 

of the final assimilated product. The final equation for estimating the assimilated BC absorption coefficient, 

which is the minimizer for the objective function, was obtained by solving Eq. 1: 240 

                               [B-1 + HTO-1H] X = [B-1 Xb + HTO-1Z]  (4) 

The assimilated product evaluated using 3D-Var is known to have lesser estimates of variance compared to the 

background or observational data (Kalnay, 2003; Lewis et al., 2006), also leading to smaller uncertainties in the 

assimilated product. Since the 3D-var is not a constrained model, the final assimilated product may contain 

negative values of assimilated absorption coefficient (kasm), in which case, those specific grids alone would be 245 

replaced by the corresponding kbg values. More details on the 3D-Var method for assimilation can be found in 

Kalnay (2003), Lewis et al. (2006) and Pathak et al. (2019). The essence of the analyses described above are 

explained below and summarized in the flowchart in Fig. 3.  

An assimilated AAOD product (Pathak et al., 2019) was first generated using OMI composite AAOD, 

BC AAOD at the ARFINET stations, and dust AAOD [calculated within the spectral band 10.5 – 12.5 μm and 250 

estimated using the Infrared Difference Dust Index (IDDI; Legrand et al., 2001)]. Dust AAOD was subtracted 

from this assimilated AAOD to deduce BC AAOD, which served as the background data. The merits of this 

assimilated AAOD data are that it contains the positive features from in-situ observations (realistic 

https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx3
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx3
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx21
https://acp.copernicus.org/articles/19/11865/2019/#bib1.bibx21


8 
 

measurements) and satellite observations (wider spatial coverage). Spatial variations in this assimilated BC 

AAOD over the Indian region for DJF, MAM, ON seasons are shown in Fig. 4.  255 

It can be observed from Fig. 4 that the BC AAOD values are the highest in the IGP region, moderate in central 

India, and low in the peninsular, northwest, and eastern regions. This is in good agreement with the spatial 

pattern of BC over the Indian region reported by Beegum et al. (2009). Previous studies have attributed the high 

aerosol loading over IGP to both natural and anthropogenic emissions (for e.g., Lawrence and Lelieveld, 2010; 

Kumar et al., 2020). These anthropogenic BC emissions arise mainly from coal-based thermal power plants 260 

(Prasad et al., 2006), vehicular emissions, small-scale industrial emissions, burning of litter, and biofuel burning 

for domestic cooking (Reddy and Venkataraman, 2002; Girolamo et al., 2004). During MAM, the IGP region is 

influenced by BC produced from agricultural residue burning and forest fires and the continental inflow of 

polluted aerosols to this region (Singh et al., 2019) whereas the crop residue burning has also been cited as a 

contributing cause during ON (Badarinath et al., 2006; Jain et al., 2014; Kaskaoutis et al., 2014).  265 

2.5. Radiative transfer calculations 

The radiative transfer calculations have been carried out using Santa Barbara DISORT Atmospheric 

Radiative Transfer (SBDART; Ricchiazzi et al., 1998) model for a plane-parallel and vertically inhomogeneous 

atmosphere using discrete ordinate method (Stamnes et al., 1988). SBDART calculations were carried out for 

eight radiation streams and considering an atmosphere having a vertical resolution of 0.5 km from the surface to 270 

10 km altitude and a lower resolution thereafter. Vertical structure of atmospheric thermodynamics pertaining to 

tropical atmospheric conditions were inputted to SBDART. The spectral surface reflectance values within the 

visible and near-infra red wavelengths for all the seasons, corresponding to all the grid points were obtained 

from MODIS (see Sect. 2.2). Accuracy of critical inputs such as the aerosol scattering phase function and SSA, 

is important in improving the accuracy of the estimated aerosol radiative effects. Since we did not have a 275 

species-segregated composition of aerosols over the entire study region, aerosol scattering phase function values 

were obtained from the Mie scattering model OPAC (Hess et al., 1998). SBDART calculations were made at 

every 5° solar zenith angle intervals and clear-sky conditions for two cases: “without aerosols” and “with 

aerosols” over the shortwave radiation spectrum. The difference in the layer-wise net radiative forcing between 

these two cases provide the aerosol radiative forcing (ΔF), which has been used to estimate the aerosol-induced 280 

atmospheric heating rate (∂T/∂t; Liou, 2002). 

∂T

∂t
=

g

Cp

ΔF

ΔP
       (5) 

where ‘g’ is the acceleration due to gravity, Cp is the specific heat capacity of air under constant pressure, and P 

is the atmospheric pressure. Further details on the estimation of ΔF and ∂T/∂t using SBDART may be found in 

Kala et al. (2022).  285 

3. Results and discussion 

3.1. Vertical profiles of BC from background data 
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As absorption coefficients and its vertical structure are not directly available from satellite observations, 

we have used a hybrid method employing multi-satellite and ground-based measurements to generate a 

background data set of BC absorption coefficient profiles. While most of the earlier studies reported high near-290 

surface BC mass concentration during DJF as compared to MAM, we have seen (Fig. 4) that the BC AAOD 

values in MAM are comparable to or higher than that observed in DJF. Similar observations were made by Nair 

et al. (2016) who reported a difference in the seasonal variation of surface BC mass concentrations and the 

vertically varying aerosol absorption coefficients during spring (MAM). The shallow ABL during DJF (see Fig. 

S2) confines the aerosols closer to the surface, leading to large surface concentrations, but the consequent partial 295 

shielding of vertical mixing leads to a lower load in the free troposphere. CALIOP aerosol extinction coefficient 

profiles were normalized with assimilated BC AAOD to create background profiles of 3D distribution of BC 

absorption (kbg) over the Indian region. These profiles have been used as the background data set for 3D 

assimilation of BC absorption coefficient over the Indian region, along with the observational profiles described 

in Sect. 2.3. The resulting 3D distributions of BC absorption coefficient, shown in Fig. 5 for DJF, MAM, and 300 

ON seasons, clearly  show that at higher altitudes, BC is present in larger concentration during MAM (middle 

panel), as compared to DJF for almost the entire study region. 

The vertical profiles of kobs, generated by combining aircraft- and ground-based measurements for DJF, 

MAM, and ON seasons and shown in Fig. 2, lend support to the above features. In general, the values of kobs are 

higher close to the surface and reduces with increasing altitude. Despite this general trend, high values of kobs 305 

are seen at higher altitudes (>5 km) over various locations; especially over central, northern, and eastern parts of 

the mainland, consistent with the multiple earlier observations of elevated BC layers (Moorthy et al., 2004; 

Babu et al., 2010; Safai et al., 2012; Vaishya et al., 2018; Manoj et al., 2020). During MAM, the prevalence of 

these elevated, high values of kobs is more frequent while the whole pattern gradually descends during ON. The 

vertical extent of BC is higher over the IGP and central India, as compared to the coastal regions and peninsular 310 

India. This is evident from the high values of kobs, at higher altitudes in IGP and central India. The interplay of 

surface temperatures and the ABL heights create ideal conditions for the vertical lifting of aerosols in the IGP 

and central India. 

Aircraft measurements during ICARB (Babu et al., 2010) have revealed the presence of highly 

absorbing aerosol layers above Chennai, a coastal location in peninsular India, at an altitude of ~1.5 km. Similar 315 

observations of elevated BC layers were also reported by Babu et al. (2011) and Rahul et al. (2014) over 

Hyderabad in central India and Guwahati in northeast India, respectively. Previous studies (Gautam et al., 2011; 

Manoj et al., 2020) showed low SSA over central IGP, the magnitude of which increases towards eastern and 

western IGP. The seasonal variations in the 3D distribution of background data set (kbg) corresponding to the 

seasons DJF, MAM and ON are shown in Fig. 5. The vertical extents and magnitudes of kbg vary spatially, with 320 

the highest over the IGP region followed by central India and least over coastal peninsular India, irrespective of 

the season, and closely resemble the variations in kobs. While the features of kobs are in general similar to those of 

kbg, the vertical extents and magnitudes are lower in kbg as compared to kobs, which will have a large impact on 

the radiative transfer calculations. 

3.2. Vertical profiles of BC from 3D-Var assimilation 325 
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Following the procedures detailed in Sect 2.4, kobs and kbg were used as inputs to generate an assimilated 

3D distribution of BC absorption coefficient (kasm) over the study domain. The resulting spatially homogenous 

(1°×1° gridded) maps for the three seasons are shown in Fig. 6. While the broad seasonal features of kobs, kbg, 

and kasm are similar (such as the highest vertical extent occurring during MAM and the highest BC absorption 

coefficient occurring over the IGP), the assimilation of aircraft and balloon data has resulted in features in the 330 

assimilated product differing significantly from its parents. These include:  

(i) the spring-time enhancement in aerosol absorption coefficient over the high-altitude locations in the 

Himalayan foothills  

(ii) higher absorption coefficient over central IGP compared to its eastern and western parts, prior to the onset 

of the Indian monsoon 335 

(iii) higher concentration of BC (leading to higher values of the absorption coefficient) and its vertical extent 

during the pre-monsoon season 

While these are in general conformity to earlier reported features of the vertical variation of BC (for 

example, Nair et al 2016; Babu et al., 2016; Vaishya et al., 2018) over different parts of India, are not 

conspicuous in the background data. 340 

A close examination of Fig. 6 reveals that the BC absorption is significant mostly below 4 km altitude 

during DJF and ON over most of the, if not the entire, Indian mainland, with the highest values between the 

ground to about 1 km. This is attributed mainly to the reduced vertical mixing of BC, being suppressed by the 

shallow ABL conditions, characteristic to these seasons, driven by the low to very low surface temperature and 

calm wind conditions prevailing over the landmass, especially over the northern latitudes (central and northern 345 

Indian mainland where the temperatures drop to near zero and sub-zero values during winter). However, during 

the pre-monsoon/ summer season (MAM), the increased heating of land surface by the increasing solar 

insolation (as the sun moves to the northern hemisphere) and the resulting strong thermal convection produces 

enhanced vertical mixing and consequently aerosols are lofted to altitudes as high as 5 – 6 km, with the 

maximum extent over the inland regions of Central India (Kala et al., 2022). It may be noted that during MAM, 350 

the land surface temperature goes well above 40 °C over most of the mainland. Nevertheless, the absorption 

coefficient values are the highest in the IGP region and is attributed to the larger concentration of absorbing BC 

and dust aerosols here. Signatures of high-altitude absorbing aerosol layers can be observed in the western 

region, which is arid/semi-arid and closer to the Thar desert, persistently under the influence of transported dust 

(Moorthy et al., 1997; Chinnam et al., 2006; Banerjee et al. 2019) during all the seasons, particularly during 355 

MAM. 

3.3. Quality enhanced BC data over the Indian region 

The major outcome of the assimilation is that the assimilated products (kasm) show higher values in the 

free troposphere than the satellite products (background data kbg), which tend to limit the absorption to lower 

altitudes (see Figs. 5 and 6). This is demonstrated in Fig. 7, where the spatial variations in kasm are shown at two 360 

altitudes, one sliced closer to the surface (1 km) and the other at a higher altitude (3.5 km). For ease of 

explanation, the two altitudes (1 and 3.5 km) are hereafter referred to as the ‘low’ and ‘high’ altitudes 
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respectively. The spatial variations in kasm at the low altitude during DJF, MAM, and ON are shown in Fig. 7 

a,b,c and the same at the high altitude in Fig. 7 g,h,i.      

To enunciate this, the difference in BC absorption coefficients between the assimilated and background 365 

data sets (δk = kasm - kbg) are shown in Fig. 7 d,e,f for the low altitude and in Fig. 7 j,k,l for the high altitude. 

Most of the regions over the mainland show positive δk values at the high altitude. This underlines the 

improvement in the spatial and vertical distribution of aerosol absorption brought-in by the assimilation of 

ground-based measurement data with satellite retrieved data. The high difference between kasm and kbg observed 

at grid locations even far away from the kobs grid locations, especially at higher altitudes, reveals the advantage 370 

of using 3D-Var assimilation, which is not merely confined to a radius of influence around the kobs grid points. 

The seasonally highest difference between kasm and kbg is observed during ON, as compared to DJF and MAM. 

The band of negative δk at the high altitude in IGP during MAM points to the vertical extent and concentration 

of BC being much higher than that captured by the background data in pre-monsoon summer. On the other 

hand, at the low altitude (1 km), δk is observed to be negative over the IGP and close to zero or positive in the 375 

central and peninsular regions, implying the overestimation of aerosol absorption at the low altitudes, when only 

satellite-retrieved background data (kbg) is used, especially during winter and post-monsoon seasons, for any 

climate impact assessment. 

To bring out these features clearly over the entire domain, the 3D distribution of δk for different seasons 

are shown in the supplementary section (Fig. S3). The overestimation of BC at lower altitudes and 380 

underestimation at higher altitudes (above the ABL) during all the seasons are clearly visible from the figure. δk 

is positive at the high altitudes during all the seasons over the entire Indian region. The reason for the negative 

δk band observed in IGP region in Fig. 7k emerges out clearly in Fig. S3b. δk shifts to positive values at 

altitudes above 4 km during MAM which are mainly due to the increased convective lofting of near-surface 

emissions over the region during summer (Kala et al., 2022). In addition to this, the envelope separating the 385 

positive and negative values of δk have seasonal and spatial variations and is observed to be the highest in the 

inland regions and lower close to both sides. This is in line with the observation of the seasonally invariant 

maximum vertical extent of the aerosols over the inland Indian regions (Kala et al., 2022). 

To further quantify the quality-enhancement in BC distribution brought about by 3D assimilation, least-

square linear regression fits aree constructed for all the seasons between kobs and kbg and between kobs and kasm, 390 

and are shown in Fig. 8. It clearly emerges out from the figure that kasm offers an improved and near-realistic 

distribution of BC aerosols over the Indian region, as can be seen from its closeness to the observational data. 

There is an improvement in the correlation coefficients from kobs v/s kbg to kobs v/s kasm scatter plots by 31%, 

16%, and 35% respectively during DJF, MAM, and ON seasons. The linear regression coefficients have almost 

doubled during DJF and ON and increased by about 50% during MAM. It can be observed that the seasons with 395 

lesser ABL height (DJF and ON) are marked with larger quality enhancement. 

3.4. Climate implications 

The radiative effects of BC aerosols depend not only on its concentration, but on its SSA, altitude 

distribution, and the reflectance of the underlying surface (Satheesh et al., 2008; Babu et al., 2011) as well. 
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Same concentration of BC aerosols at higher altitudes will produce higher atmosphere warming as compared to 400 

when it is at a lower altitude, owing to the decreasing atmospheric density with increasing altitude. As such, the 

underestimation (overestimation) of BC absorption in the background data at high (low) altitudes will have large 

climate implications. The climate impacts of BC depend largely on its SSA, whose realistic measurements, 

though crucial, are sparse over the Indian region. While the SSA measurements provided by satellite sensors 

such as OMI capture the spatial variations in aerosol absorption to a large extent, their magnitudes have been 405 

associated with large uncertainties over the Indian region (Eswaran et al., 2019), which is partly attributed to the 

assumption of aerosol layer heights (Satheesh et al., 2009; 2010).     

A few ground-based measurements, though offer more accurate columnar SSA estimates, are limited and 

rather provide point values alone. As such, we have constructed 3D maps of aerosol-induced atmospheric 

heating rate (∂T/∂t) over the domain using two different sets of data: (i) the background aerosol absorption data 410 

(kbg) along with vertically invariant (columnar) SSA derived from OMI, and (ii) the assimilated aerosol data 

(kasm) along with vertically varying SSA, constructed by using the CALIOP aerosol extinction coefficient 

profiles and the assimilated absorption (kasm) discussed above (and shown in Fig. 9). The ∂T/∂t profiles for 

different seasons, obtained using the first data set, are shown in Fig. 10, and that using the second data set is 

shown in Fig. 11. The root mean square value of heating rate uncertainties for the second data set for all the 415 

seasons is found to be ~17%. 

It can be observed from both Fig. 10 and Fig. 11 that in addition to increasingly capturing the high-

altitude heating induced by aerosols, the vertical extent and the height of maximum ∂T/∂t occurs about 0.5–1 km 

higher when altitude-resolved SSA profiles, rather than the columnar values, are used in the radiative transfer 

calculations. Seasonally, the highest ∂T/∂t occurs during MAM, followed by ON and DJF. The high values of 420 

∂T/∂t at higher altitudes are associated with the high-altitude kasm values, which, though are lower than the near-

surface values at the same location, produce comparable (to near-surface values) ∂T/∂t values at higher altitudes. 

Such higher heating rates, despite with lower values of kasm at higher altitudes, arise mainly due to the rarer 

atmosphere there. The difference in ∂T/∂t between the two cases are shown in Fig. 12. It emerges out clearly 

from the figure that the incorporation of altitude-resolved absorption/extinction coefficients and SSA data into 425 

the radiative transfer computations has resulted in higher warming above the ABL (especially during DJF and 

ON seasons) over most of the Indian mainland. This will have significant implications for the atmospheric 

stability and other boundary layer processes than what would be predicted using satellite data alone or even 

when columnar SSA is added to the satellite observations.  

The transport of boundary layer BC aerosols over the IGP, Himalayas, and BoB into the free atmosphere 430 

and upper troposphere and lower stratosphere (UTLS) as part of the monsoon circulation, and its consequent 

impacts have been extensively studied in the past (for e.g., Pusechel et al., 1992; Fadnavis et al., 2017; 2022; 

Singh et al., 2020; Maloney et al., 2022; Lau and Kim 2022). It could also lead to increased cloud activities in 

the higher atmosphere as BC (aged) can act as cloud condensation nuclei and influence the aerosol-cloud 

interactions (for e.g., Ackerman et al., 2000; Rosenfeld, 2000; Chuang et al., 2002; Penner et al., 2004; Kaufman 435 

et al., 2005; Lin et al., 2018; Zanatta et al., 2023). The high-altitude excess BC (compared to satellite 

observations) found in our results are hence likely to be reflected as an excess transport of BC to UTLS and 
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thereby influence the monsoon and Indian climate. It could also lead to increased cloud activities in the higher 

atmosphere as aged BC can act as cloud condensation nuclei. The excess BC (and warming) in the higher 

altitudes in the North, when lifted to UTLS, especially during MAM, are likely to warm the Tibetan Plateau and 440 

thereby increase the Indian summer monsoon rainfall. The excess BC observed in our assimilated data set 

(compared to satellite data) may possibly amplify the mid-tropospheric warm anomalies and the tropopause cold 

anomalies (Fadnavis et al., 2017). 

Self-lofting of upper atmospheric absorbing aerosols through the ‘solar escalator process’ has been 

reported by de Laat et al. (2012) and its possible implications for stratospheric ozone are discussed by Satheesh 445 

et al. (2013). Our observations from the 3D assimilated data set, showing the warming anomalies at different 

heights should be seen in conjunction with these, thereby making it all the more important. Self-lofting alone 

can take the smoke plumes in the middle/upper troposphere to the UTLS at rates as high as 1 km per day, even 

in the absence of pyrocumulus convection (Ohneiser et al., 2022). Even though Ohneiser et al. (2022) argued 

that high values of tropospheric AOD may be involved in such conditions, they also highlighted that wildfire 450 

emissions (often associated with self-lofting) are not always necessary for self-lofting to occur.  

BC aerosols in the stratosphere will modify the radiation budgets locally by modifying the stratospheric 

temperatures and winds (Doglioni et al., 2022). The radiative heating and the consequent self-lofting of BC 

plumes can also contribute to the formation, expansion and compression of stratospheric circulations. The 

concentration and radiative properties (particularly the SSA) of the aerosols determine whether they can be 455 

sustained in the model simulations. Doglioni et al. (2022) underestimated the radiative impacts of BC and hence 

got a shorter lifetime for the plumes. They pointed out that if realistic BC data (vertical profiles and radiative 

properties) are provided as input, the models would be able to capture it realistically. Diabatic heating by 

aerosols can contribute to enhanced pressure (and thus a pressure gradient force) in the centre of the smoke 

plumes, which helps to maintain the circulation. 460 

During the daytime, absorption of solar radiation by BC aerosols leads to the expansion and vertical 

motion of the plume. During the nighttime, radiative cooling of the plume leads to its downward motion, which 

though is lesser compared to the upward motion during the daytime, leads to a net ascent of the plume over the 

course of a few days time. Khaykin et al. (2020) showed that accurately capturing the aerosol-radiation 

interactions and its dynamics are crucial in simulating the lofting of such aerosol plumes in model simulations. 465 

Maloney et al. (2022) showed that the stratospheric temperatures are sensitive to even a slight increase in BC 

aerosols. A resulting shift in the stratospheric dynamics can further modify the concentration of Ozone in the 

stratosphere. The findings from the present study on the increased free-atmospheric BC concentration 

(compared to satellite observations) and the possibility of them getting lofted to UTLS will hence have 

implications to future climate predictions. Dedicated modelling studies using this 3D-assimilated BC data set are 470 

reqired to closely examine the climate implications. 

4. Conclusions 

A gridded, homogeneous (spatially and vertically), seasonal data of aerosol absorption over the Indian 

mainland has been constructed, for the first time, by assimilating (employing 3D-Var assimilation technique) 

dense and continuous near-surface measurements, using multi-campaign in-situ measurements from aircraft and 475 
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high-altitude balloons, space-borne lidar measurements and assimilated BC AAOD data. The assimilated dataset 

offers BC absorption coefficient profiles at a horizontal resolution of 1˚×1˚ and a vertical resolution of 0.5 km 

for three seasons: winter (DJF), pre-monsoon summer (MAM) and post-monsoon (ON). The resulting 3D 

variation of the radiative effects of BC aerosols is evaluated in terms of aerosol-induced atmospheric heating 

rates. It is observed from the assimilated BC data set that the satellite measurements tend to underestimate 480 

(overestimate) the aerosol absorption at lower (higher) altitudes. Our findings demonstrate that incorporating 

altitude-resolved aerosol absorption/extinction coefficients and SSA data into the radiative transfer 

computations results in higher warming in the free-troposphere (especially during DJF and ON seasons) over 

most of the Indian region. This enhanced warming at higher altitudes will have large implications for the 

atmospheric stability, other boundary layer processes and upper troposphere and lower stratosphere (UTLS) 485 

transport, than what would be predicted using satellite data alone or even when columnar SSA is added to the 

satellite observations. The above findings clearly reveal that the assimilated data set (kasm) will help reduce the 

uncertainty in aerosol radiative effects in climate model simulations over the Indian region. 
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Figure 1. Map showing the locations of surface (red markers) and aerial (aircraft and balloon) measurements. The 895 

colour scheme in the background shows the elevation data. The aircraft and balloon symbols respectively mark the 

aircraft and high-altitude balloon measurement locations. The station codes for the ARFI measurement sites are 

given in Table 1 and S1.  
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Figure 2. Vertical variation of kobs during (a) DJF, (b) MAM, and (c) ON seasons. 900 

 

 

Figure 3. Flowchart describing the various data sets and steps involved in the data assimilation. kobs, kbg, and kasm 

respectively represent the observational, background and assimilated aerosol absorption coefficients. 
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Figure 4. Assimilated BC AAOD over the Indian region during (a) DJF, (b) MAM, and (c) ON seasons 

 

Figure 5. The spatial variations in the background BC absorption are represented by the variations in kbg profiles 

during (a) DJF, (b) MAM, and (c) ON seasons. 910 
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Figure 6. Spatial variation of kasm profiles generated by assimilating kbg profiles (Fig. 5) and kobs profiles (Fig. 2) for 

(a) DJF, (b) MAM, and (c) ON seasons. 
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Figure 7. Spatial variation of kasm and δk at two altitudes (1 km and 3.5 km) for DJF (left panels), MAM (middle 

panels), and ON (right panels) seasons. 
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Figure 8. Scatter plots between kobs and kbg (top panels) and between kobs and kasm (bottom panels) for DJF (left 

panels), MAM (middle panels), and ON (right panels) seasons. The red line denotes the linear fit, the dashed blue line 

denotes the 1:1 line, and the scatter points are shown in gray. The equation of fit, correlation coefficient (R), R2, and 

the number of scatter points (n) are shown in each sub plots. 925 
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Figure 9. SSA profiles for (a) DJF, (b) MAM, and (c) ON seasons generated using CALIOP aerosol extinction 

coefficient profiles (weighted with assimilated AOD) and assimilated BC absorption coefficient (kasm) profiles. 

 



32 
 

 930 

Figure 10. Diurnally averaged aerosol-         t    h     h  t      t  (∂T/∂t)              ( )  J , ( )    ,     

(c) ON seasons using background data (CALIOP extinction + columnar SSA). 
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Figure 11. Diurnally averaged aerosol-         t    h     h  t      t  (∂T/∂t)              ( )  J , ( )    ,     

(c) ON seasons estimated using assimilated data (CALIOP extinction + realistic SSA profiles). 935 



34 
 

 

Figure 12. Difference in aerosol-         t    h     h  t      t : δ(∂T/∂t) = [(∂T/∂t)asm – (∂T/∂t)bg] for (a) DJF, (b) 

MAM, and (c) ON seasons. The results reveal the realistic scenario over the Indian region of increased atmospheric 

warming due to BC aerosols at higher altitudes, as compared to the calculations carried out using satellite 

observations alone. 940 

Table 1. Essential details of the aircraft and balloon measurements used in the present study. The station 

codes are written in parenthesis alongside each base station. 

Campaign Mode Year Month Base station Reference 

ICARB Aircraft 2006 

March Bhubaneswar (BBR) 

Babu et al. (2008); 

Moorthy et al. (2006; 

2009) 

April 
Chennai (CHN) 

Thiruvananthapuram (TVM) 

May Goa (GOA) 

WICARB Aircraft 2009 January 

Hyderabad (HDN) 

Vishakhapatnam (VSK) 

Mangalore (MGL) 

Moorthy et al., 2010 

RAWEX 

High 

altitude 

balloon 

2010 March 

Hyderabad (HDN) Babu et al., 2011 

2011 
January 

April 

CAIPEEX-II Aircraft 2010 October Hyderabad (HDN) Safai et al., 2012 
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2011 
October 

November 

RAWEX Aircraft 

2012 

December 

Ranchi (RNC) 

Jodhpur (JDP) 

Jaipur (JPR) 

Lucknow (LUK) 

Dehradun (DDN) 

Nagpur (NGP) 

Babu et al., 2011; 

2016; Moorthy et al., 

2016 

November 

December 
Hyderabad (HDN) 

2013 

April Hyderabad (HDN) 

April 

May 
Nagpur (NGP) 

May 

Patna (PTN) 

Lucknow (LUK) 

Jaipur (JPR) 

Jodhpur (JDP) 

Dehradun (DDN) 

 


