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Abstract. Soil organic carbon storage is a well-identified climate change mitigation solution. Quantification of the soil carbon

storage in cropland for agricultural policy and offset carbon markets using in-situ sampling would be excessively costly, espe-

cially at the intrafield scale. For this reason, comprehensive monitoring, reporting, and verification (MRV) of soil carbon and

its explanatory variables at a large scale need to rely on hybrid approaches that combine remote sensing and modelling tools to

provide the carbon budget components with their associated uncertainties at intrafield scale. Here, we present AgriCarbon-EO5

v1.0.1: an end-to-end processing chain that enables the estimation of carbon budget components for major and cover crops at

intrafield resolution (10 m) and regional extents (e.g. 10 000 km2) by assimilating remote sensing data (e.g. Sentinel-2 and

Landsat8) in a physically-based radiative transfer (PROSAIL) and agronomic models (SAFYE-CO2). The data assimilation

in AgriCarbon-EO is based on a novel Bayesian approach that combines normalized importance sampling and look-up table

generation. This approach propagates the uncertainties across the processing chain from the reflectances to the output variables.10

After a presentation of the chain, we demonstrate the accuracy of the estimates of AgriCarbon-EO through an application over

winter wheat in the southwest of France during the cropping seasons from 2017 to 2019. We validate the outputs with Flux-

tower data for net ecosystem exchange, biomass destructive samples, and combined harvester yield maps. Our results show that

the scalability and uncertainty estimates proposed by the approach do not hinder the accuracy of the estimates (NEE: RMSE =

1.68 - 2.38 gCm−2, R2 = 0.87 - 0.77; biomass: RMSE = 11.34 gm−2, R2 = 0.94). We also show through scenario testing of15

pixel and field simulations, the added value of intrafield simulations for the carbon components (biomass: bias = -47 gm−2, -39

% variability). Our overall analysis shows satisfying accuracy, but it also points out the need to represent more soil processes

and the inclusion of synthetic aperture radar data that would enable a larger coverage of AgriCarbon-EO. The paper’s findings

confirm the suitability of the choices made in building AgriCarbon-EO as a hybrid solution for an MRV scheme to diagnose

agro-ecosystems carbon fluxes.20
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1 Introduction

Agriculture and land use changes account for 15% i.e. (8.7 Gt CO2 yr−1) of human-induced greenhouse gas (GHG) emissions

(Pörtner et al., 2022; Skea et al., 2022). Agriculture has also been identified as a sector that can contribute to climate mitigation25

through several solutions (Porter et al., 2017; Matthews et al., 2022). Among these, soil organic carbon (SOC) storage has the

potential to remove 0.6 to 9.3 Gt CO2 yr−1) globally from the atmosphere through the implementation of carbon farming prac-

tices (Skea et al., 2022). Increasing the SOC implies an enhancement of the net ecosystem carbon budget (NECB) (Woodwell

and Whittaker (1968),Chapin et al. (2006),Smith et al. (2010) ) expressed in Equation 1. A positive variation of NECB can

be achieved by increasing the gross primary production (GPP) and the net ecosystem exchange (NEE) through above-ground30

crop residue retention (Soussana et al. (2019),Bolinder et al. (2020)), the addition of cover crops in crop rotations (Poeplau

and Don, 2015; Lugato et al., 2020), and an increase of the carbon imports through the application of organic amendments

(Bolinder et al., 2020) and biochar (Steinbeiss et al., 2009).

NECB =

NPP︷ ︸︸ ︷
NEE︷ ︸︸ ︷

GPP −Rauto−Rh︸ ︷︷ ︸
Reco

+Cimports−Cexports (1)

Equation 1 also shows the linkage between 1) the quantification of the effect of ecosystem respiration (Reco) which is35

subdivided into autotrophic (plant) and heterotrophic (soil) respiration (Rauto and Rh), and 2) the quantification of carbon

exports that correspond mainly to yield and the fraction of biomass incorporated to the soil. All the components in the equation

are impacted not only by the intrinsic characteristics of the field (soil), and the weather but also and most importantly by the

farming practices: choice of crop and cover crop, choice of amendments, and choice of harvesting...The quantification of the

carbon fluxes due to each of the components is the basis of the computation of the net ecosystem carbon budget as shown in40

Equation 1.

It should be noted that after the death of the vegetation, all the unharvested biomass returns to the soil. At this point, we can

approximate that NECB = ∆SOC. The accumulation of SOC in agricultural soils, in addition to climate change mitigation,

has additional benefits in terms of ecosystem soil services (ESS), such as increasing soil fertility (Su et al., 2006), enhancing

water holding capacity (Karhu et al., 2011) and increasing biodiversity (Wall et al., 2015). SOC storage could also provide an45

additional source of revenue for farmers through carbon credits and subsidies.

Following the Intergovernmental Panel on Climate Change guidelines for national GHG inventories, methodologies for

assessing SOC stock changes have been developed. They are based on a tiered approach with increasing complexity involving

soil monitoring networks where SOC is directly measured and process-based modelling where ∆ SOC is modelled by taking50

into account the soil, climate, and mean biomass returned to the soil (GPP -Rauto-Cexport) derived from yield at the regional

scale (Del Grosso et al., 2005; Yokozawa et al., 2010; Lehtonen et al., 2016). The need to monitor soil carbon at the farm and

field levels to inform individual farmers, and guide policies and the development of carbon markets has led to the development

of monitoring reporting and verification (MRV) schemes based on similar approaches employed at a higher resolution (Smith
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et al., 2020; Paustian et al., 2019). These approaches are mainly used in carbon farming projects following national or regional55

initiatives (e.g. Label Bas Carbone in France). They often rely on a soil-centred quantification approach where the focus is

the modelling of Rh, Cimports, and Cexports. In these approaches, the estimates of carbon returned to the soil are usually

extrapolated from farm- or field-scale yield information (Clivot et al., 2019). The field-scale often does not match the intra-

field/farm variability of the soil characteristics and plant growth (de Gruijter et al., 2016; Ellili et al., 2019). This means that

these values present limitations in terms of accuracy and spatial representativity.60

Coupled plant/soil process-based models that address the quality and quantity of the crop residues that return to the soil are

also used to assess SOC stock changes. These models include the main components of the cropland’s biological CO2 fluxes.

They can also account for carbon inputs through organic fertilization and carbon exports of biomass at harvest (Equation 1,

(Smith et al., 2010). Existing agronomic models such as, DSSAT-CSM (Porter et al., 2010), STICS (Launay et al., 2021), DAY-

CENT (Parton et al., 1998) and WOFOST (Supit et al., 1994), soil models, e.g. DNDC (Gilhespy et al., 2014), and land surface65

models, e.g. ORCHIDEE-STICS (Gervois et al., 2008), take into account a wide array of environmental conditions to represent

crop growth and the components of the carbon budget (Equation 1). However, water and nutrient availability, local topography,

pests, and historical factors (e.g. former ditches, roads, field limits) highly influence soil and plant processes (Gregory et al.,

2009). This can result in high spatiotemporal variability in crop development and soil processes that can be observed even at

the intrafield scale (Stevens et al., 2008; de Gruijter et al., 2016). Moreover, to operate those models, farmer activity data and70

crop development dynamics are required to provide accurate estimates of SOC stock changes. Getting hold of this information

at a large scale is still challenging (Seidel et al., 2018; Wattenbach et al., 2010). However, it is possible to use time series of

biophysical variables such as GLAI , derived from remote sensing data, to provide information about development dynamics

to those models through data assimilation (Huang et al., 2019; Battude et al., 2017; Pique et al., 2020a). These assimilated ob-

servations provide spatially explicit crop-specific estimates of biomass and carbon returned to the soil using coupled soil-plant75

models. Assimilation of biophysical variables is usually based on iterative optimization methods such as Simplex, Monte-Carlo

Markov Chain (MCMC), ensemble Kalman filter, or variational assimilation that are generally applied at moderate resolutions

(Kumar et al., 2019; Hararuk et al., 2014) or field scale (Trepos et al., 2020; Upreti et al., 2020). Applying those methods at

an intrafield resolution over large areas is often computationally prohibitive. Enhancing scalability is thus key to assessing the

spatial variability of CO2 flux components at a scale consistent with measurements of soil and plant characteristics. Operating80

on a scale that is representative of measurements enables better diagnosis and calibration of plant and soil processes, as well as

a more robust validation and uncertainty estimation of the model outputs.

This paper aims to present the newly developed AgriCarbon-EO processing chain for the assimilation of Earth Observation

(EO) data into the SAFYE-CO2 agronomic model at large scale (100 km) and intrafield resolution (10 m). This processing85

chain allows for the assessment of the carbon budget components (Equation 1). The challenge of estimating the carbon budget

components at high spatial resolution at a large scale is addressed by using the new BASALT (BAyesian normalized importance

SAmpling via Look-up Table generation) algorithm, which also provides uncertainty estimates. In addition, the paper aims to

provide an evaluation of the accuracy, limitations, and robustness of AgriCarbon-EO methods through validation exercises and
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scenario simulations. We chose to make these assessments for wheat in Southwest France, as this area benefits from a large90

amount of data that has been gathered in the context of the Observatoire Spatial Regional (OSR), and the Integrated Carbon

Observation System (ICOS) network. Furthermore, Southwest France is a major production area of wheat. This area has also

been chosen because it presents a challenge for spatial crop modelling in reproducing the diverse crop growth dynamics in-

duced by a wide array of pedo-climatic conditions in a hilly landscape. The scenario simulations were designed to assess the

robustness of the method with respect to the amount of assimilated remote sensing data, and the added value in using high-95

resolution agronomic modelling.

In the following sections, we first present the details of the AgriCarbon-EO processing chain including the standard inputs,

models, and BASALT assimilation scheme. We then present the numerical experimental setup and the validation datasets. Next,

we present the validation results and the impact of image availability. Finally, we conclude with the benefits and limitations of100

the presented solution for assessing the cropland carbon budget components and their associated uncertainties at high resolution

over large areas.

2 AgriCarbon-EO chain

2.1 Overview of the processing chain

AgriCarbon-EO is an end-to-end processing chain that simulates multiple relevant variables of crop development, biomass105

inputs to the soil, CO2 fluxes, and water fluxes at a daily timescale, for the assessment of carbon and water budgets. It is

specifically designed to assimilate optical remote sensing datasets at native high resolution into a parsimonious agronomic

model (SAFYE-CO2) over large regions. A brief description of the data flow and processing steps is presented here (Figure 1)

and detailed in the following subsections:

1. A preprocessing “Data ingestion” step allows the updating of existing datasets through automated downloading and110

stacking of satellite images and weather forcing. Optical Bottom Of Atmosphere (BOA) reflectances are downloaded for

Sentinel-2 and Landsat-8 (referred to as S2 and L8 below). The weather data are stored in time series with the associated

correspondence matrix to the high-resolution grid defined by the user. This is performed for the zone defined by the input

land cover (polygons or mask raster map).

2. The biophysical variable GLAI is retrieved from the satellite reflectance images by inverting a radiative transfer model115

(PROSAIL). The retrieval of GLAI is based on an adapted Bayesian importance sampling procedure (i.e. BASALT).

3. The crop model (SAFYE-CO2) parameters are inverted by assimilating theGLAI time series using the BASALT method

as in the previous step. In this case, LUTs are generated based on the closest known weather simulation node. Only the

phenological crop model parameters and the light use efficiency (LUE) are inverted in this procedure.
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4. A postprocessing step allows the construction of the output products based on the posterior crop model parameter dis-120

tribution. Georeferenced maps of the variables of interest in each model (i.e. PROSAIL, SAFYE-CO2) are constructed

as well as cumulative variables (e.g. NEP which is the cumulative NEE over one cropping year, number of satellite

acquisitions, and soil water content).

AgriCarbon-EO is implemented in the Python language. A maximum requirement of 5 GB per process for the satellite images

needs to be considered. This will allow mono-process tests and development on standard computers over smaller study areas,125

as well as large-scale applications (e.g. 100× 100 km) with high-performance computing (HPC) resources.

Figure 1. Overview of the AgriCarbon-EO data flow and main processing steps that include the data ingestion, BASALT spatial retrieval,

BASALT temporal retrieval, and mapping of the variables of interest.

2.2 Input dataset

In the following subsections, the spatial datasets needed for AgriCarbon-EO are detailed.
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2.2.1 Land cover map

The main driver for the data preparation is a land cover (LC) map in vector or raster format. This file contains the boundaries of130

each agricultural field for a given cropping year over a selected region of interest or a raster-based mask. Based on the border

extents of the LC map, the remote sensing and weather-forcing data are downloaded and preprocessed. When the simulations

are intended to cover several cash crop cycles a run scenario of AgriCarbon-EO is considered for each individual crop cycle.

Additionally, a standard simulation can include a cover crop with each cash crop. In this paper, AgriCarbon-EO was applied to

winter wheat crops in Southwest France (on the Sentinel-2 tile referenced as 31TCJ) in 2017, 2018, and 2019. The LC map was135

obtained from the Registre Parcellaire Graphique (RPG) in France (“RPG,” 2021), which is available online in open licence

v2.0. This information is produced by the Institut Geographique National (IGN) for the Agence de Service de Paiement (ASP

i.e. The French Paying Agency) in charge of the implementation, control, and payment of the subsidies for the EU Common

Agricultural Policy (CAP) in France. In this study, the original polygons in the Lambert-93 projection (EPSG:2154 - RGF93)

were reprojected to a selected common grid projection: WGS 84/UTM31.140

2.2.2 BOA surface reflectances

The assimilated remote sensing data are optical multi-spectral surface reflectances at the BOA, which correspond to reflected

energy from the top of the canopy and the soil at a given incidence angle. Currently, AgriCarbon-EO uses data from the ESA’s

Sentinel-2 program (Drusch et al., 2012) and NASA’s Landsat-8 program (Roy et al., 2014), knowing that the modular interface

is compatible with multisource EO data. The Sentinel-2 data are acquired over 13 optical bands with a resolution of 10 to 60 m145

depending on the spectral bands with a 5-day revisit from the constellation. Only the nine visible bands were considered from

the Landsat-8 data. Landsat-8 has a revisit of 16 days and a spatial resolution of 30 m in the visible range.

For this study, the data were downloaded from the Thematic Center for Continental Surfaces (THEIA), which uses a com-

mon atmospheric correction and cloud masking algorithm for Sentinel-2 and Landsat-8 through the MAJA processing chain

(Hagolle et al., 2021). This enables a harmonized Level-2A database with an efficient cloud masking algorithm (Baetens et al.,150

2019). The data contain quality indicators, including cloud coverage. The dataset is presented as granules (tiles) of 110× 110

km orthoimages in the UTM projection. Prior to the processing, the remote sensing datasets are decompressed and resampled

at 10 m resolution using nearest-neighbour.

2.2.3 Weather forcing data

Daily weather data maps covering the simulation period and spatial extents are used to force the crop model. Cumulative155

daily global incoming solar radiation (Rg in MJm−2) and daily average air temperature at 2 m (Ta in °C) are needed for

the vegetation growth module in SAFYE-CO2. Based on previous studies that showed the impact of diffuse radiation on crop

development and photosynthesis (Béziat, 2009; Roderick et al., 2001), the diffuse incoming radiation is computed based on

De Jong (1980). Two additional forcings are needed for the water budget module of SAFYE-CO2: daily potential evapotran-

spiration (ET0 in mmd−1) and daily cumulative rainfall (Rain in mmd−1). AgriCarbon-EO supports two data sources that160
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provide weather data: the Météo-France SAFRAN dataset (Vidal et al., 2010) and ERA5 Land (Muñoz-Sabater et al., 2021).

The extraction of the ERA5 Land data was performed via the dedicated API. SAFRAN consists of a reanalysis of climate

variables at 8 km spatial resolution and the hourly timescale over France starting in 1958. In this paper, the weather data were

extracted from the Météo-France SAFRAN dataset and reprojected over the UTM/31N at 8 km resolution.

2.3 Process-based models165

2.3.1 Radiative transfer modelling using PROSAIL

Maps of geophysical variables (i.e.GLAI) are retrieved in AgriCarbon-EO by inverting the PROSAIL radiative transfer model.

PROSAIL has been extensively used as a radiative transfer model for vegetated areas (Jacquemoud et al., 2009) with a wide

range of inversion schemes (Wang et al., 2022). PROSAIL combines the PROSPECT and SAIL models (Baret et al., 1992).

PROSPECT provides leaf spectral properties in the 400 nm to 2500 nm wavelength (Jacquemoud and Baret, 1990). SAIL (scat-170

tering by arbitrary inclined leaves) is a multidirectional canopy reflectance model (Verhoef, 1984) based on the bidirectional

reflectance model (Suits, 1971). A Python implementation of PROSAIL was used in AgriCarbon-EO. This version includes

the coupled PROSAIL from PROSPECT-5-D (Féret et al., 2017), 4SAIL (Verhoef et al., 2007), and a simple Lambertian soil

reflectance model. The PROSAIL parameters were inverted using a Bayesian approach to provideGLAI and its corresponding

uncertainty as input to the crop model inversion.175

2.3.2 Crop CO2 fluxes and biomass modelling using SAFYE-CO2

SAFYE-CO2 is a parsimonious agronomic model that runs at a daily time-step (Veloso, 2014; Pique et al., 2020a, b). The model

stems from the SAFY models (Duchemin et al., 2008; Battude et al., 2017) which computeDAM , based on the LUE theory of

Monteith et al. (1977). A full description of the SAFYE-CO2 model is provided in Veloso (2014); Pique et al. (2020a, b). The

core equations of the model are detailed below. In SAFYE-CO2, NEE is computed based on Rh and NPP (gCm−2), which180

in turn is computed from GPP (gCm−2) by subtracting autotrophic respiration Rauto (gCm−2), as presented in Equation1.

The CO2 fluxes caused by the plant, GPP , and Rauto are computed using Equations 2 and 10, respectively.

GPP =Rg · εcfT (Ta) · fw(WC) ·ELUE ·APAR ·SR10 (2)

where Rg is the incoming global radiation (MJm−2d−1), fT (Ta) is the temperature stress function that depends on Ta the

mean air temperature at 2 m (°C), fw(WC) is the water stress function where WC is the soil water content (m−3m−3). In185

this study, the water budget is computed but the water stress function is deactivated (i.e.,fw(WC) = 1). In Equation 2, ELUE

(gCMJ−1 m−2) is the effective light use efficiency (Equation 3).

ELUE = LUEa + e(
Rdiff

Rg ·LUEb) (3)

where LUEa (gCMJ−1 m−2) is the light use efficiency for direct radiation and LUEb is a correction coefficient for the impact

of diffuse radiation Rdiff (MJm−2d−1) on ELUE.190
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In Equation 2, SR10 accounts for the decrease in photosynthetic efficiency during senescence linked among others to the

decrease in chlorophyll.

SR10 =
GLAI

GLAI_max×Cs
if SMT > Sena. else SR10 = 1 (4)

where Cs is the parameter that controls the slope of SR10 depending on the thermal age of the crop SMT and Sena refers

to the thermal age at which the plant enters senescence. Finally, FAPAR is the fraction of absorbed photosynthetically active195

radiation and is computed in SAFYE-CO2 (Equation 5).

FAPAR= εc · 1− eKex∗GLAI (5)

where εc is the parameter that quantifies the fraction of photosynthetically active radiation in Rg.

SAFYE-CO2 derives GLAI (Equation 6) and other phenotypic traits using allometric coefficients and the plant’s organ

biomass values such as DAM , Dry Leaf bioMass DLM , and Dry Belowground bioMass DBM (Equation7). To compute200

these biomass values, the model relies on partition coefficients that dispatch the carbon and resulting biomass in different

organs depending on the thermal age of the crop (Equation 8, Baret et al. (1992)). ∆GLAI+ =DLM ·SLA
∆GLAI− =GLAI · (SMT −Sena) ·Senb−1

(6)

where SLA (m2 g−1) is the specific leaf area and Senb is the rate of functional leaf loss depending on thermal age.
∆DAM = NPP

Cveg · (1−PRT_R)

∆DLM = ∆DAM · (PRT_L)

∆DBM = NPP
Cveg · (PRT_R)

(7)205

where Cveg is the average fraction of carbon in plant biomass. PRT_R= PRT_Rb+ (PRT_Ra−PRT_Rb) · e(−PRT _Rc· SMT
SMT _G ) if PRT_R> 0 else PRT_R= 0

PRT_L= 1−PRT_La · ePRT _Lb·SMT if PRT_L > 0 else PRT_L= 0
(8)

The fraction of biomass allocated below-ground PRT_R is computed using PRT_Ra, PRT_Rb, PRT_Rc, and SMT_G

which correspond to the end-of-cycle fraction of biomass allocated below-ground, the initial fraction of biomass allocated

below-ground, a coefficient modulating the decrease in biomass partition to the roots between the initial and end-of-cycle states,210

and the sum of the temperature at which grain filling starts respectively. The fraction of above-ground biomass allocated to

the leaves PRT_L is computed using PRT_La and PRT_Lb0, respectively, the initial fraction of the above-ground biomass

that is not allocated to the leaves and a fitting parameter that modulates the rate and thus the end of allocation of above-ground

biomass to the leaves.
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The biomass and yield are used to determine carbon exports in Equation 1. Equation 9 illustrates a simple way to estimate215

exported biomass by taking into account only the dry above-ground biomass (DAM), the harvest index (HI), and the fraction

of carbon in the dry biomass (Cveg).

Cexports =

dry Yield︷ ︸︸ ︷
DAM ×HI×Cveg (9)

The other component of NPP , Rauto, is divided into vegetation maintenance respiration Rmaint (Amthor, 2000) and

vegetation growth respiration Rgrow (Choudhury, 2000) as described in Equation 10.220 
Rauto=Rmaint+Rgrow where :

Rmaint=R10 ·Q10−0.1·(T−10) ·SR10 and,

Rgrow = (1−Y g) · (GPP −Rmaint)

(10)

Rmaint depends on two parameters: the basal plant respiration at 10 °C (R10), the temperature sensitivity of plant respiration

(Q10), and the temperature T and SR10 to represent an increase in relative maintenance cost during senescence. The growth

respiration is computed from the growth conversion efficiency, GPP , and Rmaint.

The final term in NEE, Rh (gCm−2) is computed using the empirical model in (Delogu et al., 2017) that depends on soil225

moisture and temperature. Rh=Rh1 · e(Rh2·Tsoil) ·Hwater−stress where :

Hwater−stress = (1 +Rh1 · e(Rh2·RSM1))
−1 (11)

Rh1 is the reference Rh rate, Rh2 expresses the RH sensitivity to temperature, and Hwater_stress is the effect of soil moisture

on soil carbon decomposition. InHwater_stress,Rh_H1 andRh_H2 provide the form of the water stress function andRSM1

the relative soil moisture.230

A Python implementation of SAFYE-CO2 was developed for AgriCarbon-EO and is used in this paper. This new version

is vectorized to provide predictions for multiple runs and build LUTs. It can also handle multiple vegetation cycles for each

run (e.g. crop and cover crop) and has a modular architecture. The physical modules are restructured to regroup soil processes,

plant phenology, plant physiology, heterotrophic activity, and field management.

In SAFYE-CO2, the water flux computation is based on the Penman-Monteith and FAO-56 methodologies that enable235

the computation of evapotranspiration and water distribution in the soil based on a bucket model (Allen et al., 1998). The

coupling between the carbon and water cycles occurs in two ways. Plant growth impacts root water uptake, and the soil

water content impacts GPP production through a water stress coefficient. The dynamic computation of GLAI in Equation 6

provides the link between the model and the GLAI retrieved from optical EO and therefore allows us to constrain the model’s

phenological and light use efficiency parameters (emerg, PRT_La, PRT_Lb, SLA, sena, senb, Harv, LUEa) using EO240

data assimilation. The assimilation of GLAI allows implicit accounting of soil stress impacts (e.g., nutrients and water) on

vegetation development. Therefore, the water stress effect on GPP and plant development is implicitly accounted for through
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the model’s parameters, resulting mainly in lower values of LUE for a field experiencing water stress. Assimilating GLAI

also enhances the estimation of NEE and the export of specific organs and the resulting NECB (Equations 9 and 1) by

considering the effect of the crop growth dynamic. In data assimilation, the relative parsimony of SAFYE-CO2 compared245

to models such as STICS (Dumont et al., 2014) or DSSAT (Porter et al., 2010) entails a limited number of free parameters

controlling the vegetation dynamics. This, allows the use of scalable assimilation algorithms such as "BASALT" presented

below that can only be applied to relatively low dimensional optimization problems (Bellman, 2015).

2.4 Bayesian normalized importance SAmpling using Look out Table - BASALT

To provide large-scale high-resolution assimilation, a tailored inversion method was developed. The new approach, BASALT,250

relies on the Bayesian normalised importance sampling (NIS) approach to address the need for uncertainty propagation across

the processing chain. Also, the generation of look-up tables (LUT) provides computational gain by reducing the total num-

ber of model simulations. In a Bayesian framework, the initial knowledge about the model’s parameters is represented by a

probability distribution P (Θ), the prior distribution. The knowledge brought by the observations x is expressed by the condi-

tional probability distribution P (Θ|x) of the model parameters knowing the observations x; the so-called posterior distribution.255

The goal is to evaluate this posterior distribution using Bayes theorem that connects P (Θ|x), P (Θ), and P (x|Θ) called the

likelihood (Equation 12)

P (Θ|x) =
P (x|Θ)P (Θ)

P (x)
(12)

P (x) is the probability of observation (marginal distribution). Bayesian methods are at the root of popular inversion algorithms

such as MCMC or Dream (Vrugt, 2016). Such algorithms have often been applied to agronomic modelling (Dumont et al.,260

2014), ecosystem modelling (Ma et al., 2022), and radiative transfer modelling (Zhang et al., 2005).

In BASALT, random samples are generated for the model according to the probability distribution that best represents the

user’s prior knowledge of the model’s parameters. The model output variables are calculated for each of those samples, given

forcing and fixed parameters specific to a spatial and/or temporal range. The sampled parameters and resulting variables are

treated as an LUT containing the prior state of the model for the range where the forcing is valid. Following LUT creation,265

the different LUT entries are compared against observations with known uncertainty. Using a normal error model for the

observation allows computing log-likelihoods as presented in Equation 13. Following this step, the relative likelihoods (RL)

of each LUT entry can be computed as presented in Equation 14. In AgriCarbon-EO, this can be done for different scales, i.e.,

the entity scales or the scale of a group of entities. Finally, the posterior distribution is computed based on the underlying error

model with a normal distribution by computing a weighted mean and standard deviation (Equation 15).270

logLi,j =
∑

(−1

2
log(2π(σo,i,j)

2))−
(vo,i,j −µ2

o,i,j)

2σo,i,j
(13)

where v is the simulation value, µ and σ are the mean and standard deviation of the observation, j is the index for entities, o is

the index of the independent observations, and i is the index for the model run in the LUT.

RLi =
elogLi∑
i e

logLi
; RLfieldi =

∑
kRLi,k∑

i

∑
kRLi,k

(14)
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where RLi is the relative likelihood at the entity scale, k are the entities in the same field, and RLfieldi is the relative275

likelihood at the field scale assuming an equal contribution of each pixel in the field.

µw(vi,RLi) =

∑
i viRLi∑
iRLi

; σw(vi,RLi,µw) =

∑
i(vi−µw)2 ·RLi∑

iRLi
(15)

where µw is the weighted mean, vx is the vector given by the LUT for a parameter or variable, x is the number of samples and

σwis the weighted standard deviation.

2.4.1 Retrieval of GLAI maps from PROSAIL280

When inverting PROSAIL, the main objective is to retrieve GLAI and its associated uncertainties that will be assimilated by

SAFYE-CO2. This is done by generating an LUT of PROSAIL runs (size = 5000) for each remote sensing image based on the

prior (Table 1), and the solar and observation angles provided by Sentinel-2 and Landsat-8 products. Equations (14) are then

used to evaluate the RL where j is the index of pixels in the simulated image, i is the index of the PROSAIL runs in the LUT,

and o is the observed reflectances from the Sentinel-2 or Landsat-8 images. As PROSAIL provides LAI and not GLAI , the285

chlorophyll content (cab) is constrained to a high interval [60,80] ugm−2. This makes all simulated surfaces green and thus

allows to retrieve GLAI . A constraint is also added to the relation between dry biomass and GLAI to reduce the parameter

search space by eliminating solutions with leaves that are too thin or thick. Then, the surface reflectances of the Level 2-A

BOA products are considered to follow a normal distribution with a mean and a standard deviation that is fixed at 0.02. Finally,

the posterior distribution is approximated with a normal distribution, using Equation 15 to determine µ and σ.290

Table 1. Priors configuration for PROSAIL parameters used in the Bayesian inversion.

Name description Unit Prior (uniform [min, max])

N Leaf structure parameter . [1,2]

cab Chlorophyll a+b concentration µg m−2 [60,80]

car Carotenoid concentration µg m−2 [5,20]

cm Leaf thickness g cm−2 [-0.02,0.02] + LAI·0.004

LAI Leaf area index m2 m−2 [0,5]

psoil Soil moisture index . [0,1]

2.4.2 Application of BASALT to SAFYE-CO2

The simulated variables, DAM , yield, GPP , Reco, and NEE, are highly dependent on the duration and intensity of crop

development (Ceschia et al., 2010). The GLAI outputs from PROSAIL are assimilated into SAFYE-CO2 to correct the prior

vegetation dynamics. This is done by generating a LUT of SAFYE-CO2 runs (size = 5000) for each zone with the same

forcing (i.e., same prior). In this case, the zoning is defined by the weather forcing data (i.e. SAFRAN at 8 km). For each295
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zone, Equations 13 and 14 are applied to evaluate the RL given the GLAI observations, where j is the index of pixels in the

simulated area, i is the index of the SAFYE-CO2 runs in the LUT, and o the observed GLAI at different dates. The priors for

LUT generation for SAFYE-CO2 are shown in Table 2. Those priors are used for the SAFYE-CO2 LUT generation and were

reassessed in terms of statistical distribution from (Pique et al., 2020a) to account for the high-spatial heterogeneity that can

be observed at a regional scale and the vegetation cycles that are more contrasted at the pixel level than at the field level due300

to the regression to the mean. For each parameter, a truncated normal distribution is independently sampled considering µ, σ,

min, and max values; the only exception is PRT_Lb, which has an exponential behaviour. For this parameter, a logarithmic

transformation is applied to the distribution. To aggregate the SAFYE-CO2 simulations at the field scale, the likelihood is

summed over all the pixels in the field (Equation 14). Finally, Equation 15 is used to compute µ and σ for a parameter or a

variable on a given day for a field or pixel.305

Table 2. Priors configuration for SAFYE-CO2 parameters used in the Bayesian inversion.

Name Description Unit Prior [µ,σ,min,max]

emerg Day of year of vegetation emergence DOY [335,15,200,400]

harv Day of year of vegetation harvest DOY [200,0,160,200]

LUEa Light use efficiency gC MJ−1 [1.05,0.05,0.8,1.5]

SLA Specific Leaf Area m2 g−1 [0.01,0.002,0.004,0.05]

PRT_La Initial fraction of biomass that is not allocated to the leaves g g−1 [0.325,0.15,0.01,0.5]

PRT_Lb Decrease rate of the fraction of biomass allocated to the leaves. g g−1 °C−1 [1.01,0.005,1,1.02]

sena Sum of temperature at which senescence starts °C [1350,200,1000,2000]

senb Rate of senescence °C m2 m−2 [12000,3000,0,20000]

HI Harvest Index gg−1 [0.45,0,0.45,0.45]

3 Application for wheat in Southwest France

3.1 Experimental setup and study area description

Several assimilation experiments were conducted to answer the specific objectives of the paper, they are summarized in Table

3. The experiments correspond to simulations over the Sentinel-2 31TCJ tile located in southwestern France for winter wheat

in 2017, 2018, and 2019 (Figure 2). They alternate between the use of S2 alone and the combined use of S2 and L8. They also310

include pixel and field scale simulations. The ACEO-S2L8-Pixel combines Landsat-8 and Sentinel-2 data at 10 m resolution

which represents approximately 20 M pixels for our study area. It was used as the main simulation for the validation exper-

iments. The ACEO-S2L8-Field simulations correspond to averaging the 10 m GLAI from PROSAIL retrievals at the field
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scale. Additionally, an averaging of the high-resolution simulations with Sentinel-2 and Landsat-8 was performed at the field

scale (ACEO-S2L8-Mean).315

Table 3. Name, aim, and inputs details of the assimilation experiment.

Name Aim RS Data Spatial resolution Years

ACEO-S2-Pixel - Determine the impact of revisits. S2 Pixels (10m) 2017

ACEO-S2L8-Pixel - Validate the model outputs. S2 & L8 Pixels (10m) 2017,18,19

ACEO-S2L8-Field - Quantify the impact of spatial resolution. S2 & L8 Fields* 2017

ACEO-S2L8-Mean - Quantify the spatial variability. S2 & L8 Fields** 2017

* for ACEO-S2L8-Field the GLAI from PROSAIL inversion is averaged prior to the SAFYE-CO2.

** for ACEO-S2L8-Mean the outputs at 10m from SAFYE-CO2 are averaged at field scale.

The study area has a mean annual precipitation of 655 mm and a mean annual temperature close to 13 °C. It is classified as a

majorly temperate oceanic climate (Cbf) in the plains, and temperate continental climate (Dfb) near the Pyrénnées mountains,

based on the Koppen climate classification. In 2017, winter was exceptionally dry and sunny, and spring was sunny with a 10

% deficit in rainfall (Météo-France, 2019), while 2019, had a mild winter and a sunny spring with 10 % deficit rainfall for

the two seasons (Météo-France, 2021). The region has an intermediary cloud coverage that allows for multitemporal optical320

remote sensing analysis and analysis of the impact of clouds (Figure 2.B). It is mainly occupied by agricultural fields that

cover approximately 90 % of the area, among which a majority of seasonal crops. Winter wheat covers approximately 20 %

of the zone and reaches 40 % in some areas. In South-West France, soft-wheat varieties are predominant, and they are usually

sown in autumn around mid to end of October. Soft wheat represents 75 % of the French exports of soft wheat. The crop

typically develops slowly during the winter, and growth accelerates during spring. It is harvested from mid-June to the end of325

July depending on maturation as well as climatic conditions to optimize grain. The harvest in 2017 was normal (6 tha−1 at 15

% humidity), while 2019 was an exceptional year with a yield of 11.5 tha−1 at 15 % humidity (ARVALIS, 2019). In terms of

pedology, two main soil types are present in the area of study: silt-rich soils near the major streams, and clay soils across the

hills with a variable density of stones depending on erosion. The topography offers a wide range of aspects. The region also

bears the effects of historical land management, specifically, the “Remembrement” policy, a political push to merge adjacent330

fields from 1945 to 1980 in France (Baker, 1961). This leads to a wide range of soil and microclimatic conditions that cause

significant intrafield plant growth variability.

This study area was chosen for three main reasons in light of the aims of the paper. First, it is part of the Space Regional

Observatory that benefits from extensive datasets regarding crop growth and crop physiology through the presence of two certi-

fied ICOS flux sites (FR-AUR and FR-LAM), and extensive measurement campaigns operated by different public laboratories335

specializing in agronomy and remote sensing as well as measurement campaigns operated by private companies and individual

farmers. These measured variables related to the field’s carbon budget such as NEE, GPP , Reco, DAM , and Y ield (Equa-
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Figure 2. Map of the simulation area and image availability from 2016 to 2019. In "A": background the ESRI World Topo Map, the 31TCJ

Sentinel2 tile limits (red rectangle), land cover for winter wheat fields for 2017 (blue), location of the FR-AUR ICOS site, the Dry Above

ground Biomass (DAM ) measurements (red circles) and the two fields monitored with connected combine harvester (CH) (orange circles).

The zoomed maps show the FR-AUR field and the fields monitored using combine harvesters. In "B": Chronogram of the remote sensing

dataset from Sentinel-2A (S2A), Sentinel-2B (S2B) and Landsat-8 (L8), over the 31TCJ tile for 2016 to 2019. The bar plots represent the

percentage of cloud-free pixels for each image.
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tions 1 and 9) are monitored in different localities with different representative scales (Table 3.2). Second, the crop growth

and biophysical process variability, due to topography and pedo-climatic variations, is needed to assess the impact of using

high-resolution modelling and assimilation schemes in quantifying the carbon budget components (e.g. Y ield, CO2 fluxes).340

Third, winter wheat is one of the most studied crops worldwide. This allows us to compare the quality of the results obtained

with AgriCarbon-EO against a large corpus of published studies. Furthermore, the area is a dense crop production zone. This

is especially true for wheat production, which has a large economic interest.

3.2 Validation of the AgriCarbon-EO outputs

The validation relies on several datasets corresponding to the main output variables of AgriCarbon-EO: CO2 flux measurements345

(i.e. NEE, GPP , Reco), DAM measurements over Elementary Sampling Units (ESU), and yield maps. A summary of the

ID and characteristics of the aforementioned validation datasets is presented in Table 4. The validation datasets were extracted

Table 4. Description of the validation data sets.

ID Source Type Sampling Scale Frequency

FR-AUR C-Flux ICOS GPP, Reco, NEE Eddy covariance FR-AUR field Daily

FR-AUR DAM ICOS DAM FR-AUR field 10 m During and at end of cycle *

ESU-DAM RSO DAM 8 ESU 10 m 1 to 4 dates during the cycle *

NAT-HA farmer Yield 2 CH at two fields 30 cm At end of cycle

* The list of dates is provided in supplemental materials.

from the database of the Environmental Information System maintained by the CESBIO laboratory (SIE, 2022).

3.2.1 Validation against field scale CO2 fluxes and DAM measurements

The FR-AUR ICOS site provides many biophysical measurements, among which variables of interest regarding the carbon350

budget GPP , Reco and NEE (FR-AUR C-Flux, Table 4). These variables allow us to assess the soundness of the representa-

tion of CO2 fluxes caused by physiological processes in the model, as GPP represents photosynthesis and Reco, the sum of

plant and soil respiration. NEE allows access to the representation of the biological part of the carbon budget. Furthermore,

DAM is linked to carbon export (Equation 9) and NPP (Equation 1). As one of the requirements for the ICOS certification

is the homogeneity of the ecosystem, the measurements were considered to be representative of the field. The DAM and355

CO2 flux measurements were acquired using the ICOS destructive biomass sampling protocol (Gielen et al., 2018) and eddy

covariance (EC) flux tower measurements processed with EdiRe software (Clement, 2008), following the CarboEurope-IP

recommendations for data filtering, quality control, and gap filling (Table 4). The EC method consists of measuring the 3D

wind fluctuations at 20 hz using a high-frequency sonic anemometer and the CO2 concentration using a gas analyser. The

covariance is then computed between the turbulent component of the vertical wind and the turbulent component of the CO2360
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concentrations (Baldocchi, 2003). The NEE was then partitioned into GPP and Reco using a formulation for croplands in

Béziat (2009) adapted from (Reichstein et al., 2005). Depending on wind speed and the intensity of the turbulence, a fraction

of the direct measurements are not representative of the plot, and those data points were filtered out during the processing and

replaced with simulated values extrapolated from the environmental conditions. We maintained only daily data points where

more than 50% of the information comes from real measurements, as gap-filling over long periods induces high errors (Béziat,365

2009). The days when less than 50% of the information is provided by measurements are represented in grey in Figure 3.

Furthermore, it is also noticeable that the observed Reco in 2018-2019 dips to zero during the vegetation growth period, which

is related to an error in the partitioning process of NEE into GPP and Reco. This period is also ignored for GPP and Reco

and is represented in red in Figure 3.

In this exercise, the daily outputs from AgriCarbon-EO at 10 m resolution were spatially averaged over the area of the FR-370

AUR field (Equation 14) sampled by the EC tower (a.k.a. the target area in the ICOS nomenclature). Those averaged values

were then compared against FR-AURDAM and FR-AUR C-Flux as shown in Figure 3, and the corresponding fitting statistics

are shown in Table 5. The statistics were computed for three specific periods, from the 1st Jan to the 1st May, the 1st May to

the 1st Jul, and the 1st Oct to the 1st Oct. These periods correspond to the growing and senescence of the wheat crop and the

whole cropping year respectively. The GLAI fitting statistics computed over the growing season show a good fit (R2 = 0.95)375

in 2016-2017 with a slightly lower fit in 2018-2019 (R2 = 0.91). From mid-November 2018 until the end of January 2019,

spontaneous regrowth of the previous crop (i.e., rapeseed) was observed in the field. The model does not reproduce this GLAI

dynamic, as this increase does not correspond to the wheat crop cycle. The GLAI for the 2018-2019 senescence period is

underestimated by the model.

Regarding observed as well as simulated DAM, end-of-cycle values are higher for the 2019 cropping year than in 2017,380

which is consistent with regional yield statistics (ARVALIS, 2019). additionally, the modelled above-ground biomass dynamics

are consistent with the observed dynamics, apart from an overestimation of the simulation at the beginning of the vegetation

cycle in 2017. Note that replicates in 2016-2017 and 2018-2019 present a noticeable spread. In 2017, the dynamics of the

CO2 fluxes are well represented with most of the observed values in the uncertainty margin of the model with R2 values

of 0.87, 0.91, and 0.76 for NEE, GPP , and Reco, respectively. The model’s daily flux variations are slightly higher than385

the observations in 2017. In 2019, the CO2 flux dynamics are less well reproduced, nevertheless with acceptable R2 values

(above 0.7) over the full year. For the cropping year R2 was 0.77, 0.79, and 0.70 for NEE, GPP , and Reco respectively.

The modelled GPP values are significantly higher than the observed values during the growing period (bias = 3.31 gCm−2),

while the differences between the model and observations are less pronounced at the end of the vegetation cycle (bias = -0.87

gCm−2).390

3.2.2 Validation against spatialised DAM measurements

The ESU protocol allows the assessment of variables at decametric scales. Among those variables, DAM is especially of

interest as it can be used as a proxy for NPP (Equation 7). Moreover, the exported yield can be computed using end-of-

cycle biomass. (Equation 9). To measure DAM with the ESU protocol, the above-ground vegetation is sampled at five points
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Figure 3. Time series of GLAI , DAM , NEE, GPP and Reco. The blue line and surface represent the mean and standard deviation of the

posterior distribution. The orange points with error bars represent the GLAI derived from the satellite observations and the DAM , NEE,

GPP , and Reco at the FR-AUR site for two cropping years (2016-2017 and 2018-2019). In the case of the CO2 fluxes, the grey areas

represent the days during which more than 50% of the data are gap-filled, and the red area represents the periods during which a partitioning

error has been identified.

following a cross pattern inscribed in a 10 × 10 m square; each sample corresponds to one linear meter of the crop row. The395

five samples are weighed fresh in the field. In the laboratory, one of the five samples is dried to retrieve the canopy water

content, which is then applied to the five fresh weight measurements to obtain dry above-ground biomass. The mean and

standard deviation are computed to obtain a representative DAM (gm−2) for the ESU. Eight fields were sampled using the

ESU protocol in 2018 and simulations were performed for each ESU (Supplemental Materials).

Figure 4 shows the scatter plot between the simulated and observed DAM coloured with respect to the month of acquisition400

for 8 fields with up to four revisits. The statistics corresponding to this figure are recorded in Table 6. The comparison shows a
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Table 5. Bias, R2 and RMSE statistics for GLAI , DAM , GPP , Reco and NEE variables in FR-AUR site over years 2017 and 2019 for

the growth and senescence and cropping year.

Variable Statistic 2017 2019

Growth Senescence All Growth Senescence All

Bias 0.36 0.19 0.27 0.21 0.44 0.35

GLAI RMSE 0.63 0.39 0.45 0.51 0.71 0.56

(m2m−2) R2 0.92 0.95 0.95 0.96 0.87 0.91

Bias - - -6.46 - - 4.78

DAM RMSE - - 172.34 - - 380.62

(gm−2) R2 - - 0.97 - - -

Bias 0.43 0.13 0.28 2.39 -0.86 0.62

NEE RMSE 1.52 2.04 1.68 3.42 1.90 2.38

(gm−2) R2 0.86 0.87 0.87 0.64 0.87 0.77

Bias 0.78 -0.53 0.03 3.31 -0.87 0.67

GPP RMSE 1.87 2.06 1.82 4.67 2.26 3.00

(gm−2) R2 0.92 0.91 0.91 0.75 0.87 0.79

Bias -0.35 0.66 0.25 -0.91 0.01 -0.12

Reco RMSE 0.80 1.38 1.13 1.32 1.40 1.29

(gm−2) R2 0.88 0.69 0.76 0.84 0.50 0.70

good fit when considering all DAM measurements with an R2 of 0.94, an RMSE of 211.34 gm2 and a mean overestimation

of the model of 129 gm−2. These statistics represent the spatiotemporal fitting of the model.

When analysing the statistics per month, it is noticeable that most of the total bias is present at the early growth stages (in

April) and the bias decreases over the growing season. The final DAM values linked to yield and carbon exports in July have405

low bias, and we can explain 61 % of the variability. In addition, a weaker correlation is present when the data are split per

month compared to the full dataset (Table 6). The variability in a given month is mainly due to the spatial variability. Splitting

the data thus enables us to assess the variability in the spatial and temporal components that are simulated by AgriCarbon-EO.

Given the small sample size, these monthly results should be interpreted with caution.

3.2.3 Comparison with high resolution combine harvester yield maps410

Yield maps are of high interest for the evaluation of high-resolution crop models in the context of carbon and precision farming.

They provide information on the grain yield that often represents the bulk of the carbon that is exported from the field. CH

are also the only readily available spatial and direct high-resolution crop organ monitoring tools. Nevertheless, they have
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Figure 4. Scatter plot of the simulated winter wheat dry above-ground biomass (DAM ) versus the observed biomass in the fields in 2018.

Table 6. Values of RMSE, MAE, Bias and R2 between the simulated and observed Dry Above ground bioMass (DAM ).

Dataset Bias (gm−2) RMSE (gm−2) R2

April -281.80 286.19 0.65

May -76.18 116.46 0.89

July 17.37 222.43 0.61

all -129.44 211.34 0.94

drawbacks because the mass flow sensor and the grain moisture content sensor can experience significant sensor drift within

the field. Moreover, CH yield data processing requires a range of parameters such as lag time settings and distance travelled via415

GPS measurements, header position, and cut width, all of which contribute to the uncertainty in the measurements (D. Grisso

et al., 2002). In this study, yield CH data were provided by a farmer located in the Gers département. Data from two fields

NAT-Plt3 and NAT-Plt6 (Table 4), were collected by a CH that measures the incoming flow of grain, its humidity, and its

position at a fixed frequency with a GPS. These measurements were integrated between two points of the trajectory taking

into account harvesting width to compute the grain production (yield) per surface area. The grain humidity content enabled the420

computation of the dry yield mass (gm−2). The point yield data is then converted into a harvest map over the simulation grids

by summing the points inside each pixel. A Gaussian smoothing filter with sigma = 12 m was then applied over these maps to

reduce the aliasing effects. The spatial anomaly (i.e. (value−µ)/σ) maps were also computed. To complete the processing,

the colocalization error between observations and AgriCarbon-EO yield estimates was minimized through the detection of the

maximum spatial correlation in a 10 m lateral shift range.425
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The simulated yield maps were obtained from the ACEO-S2L8-Pixel simulation by multiplying the final DAM by HI

(Equation 9). We analysed the results in terms of the retrieval of the spatial patterns as shown in Figure 5. These maps show

the comparison between the CH yield data and the AgriCarbon-EO yield estimates at the pixel level in tha−1 as well as the

spatial yield anomaly. Overall the observed yields show a larger variability than the simulations and a clear saturation effect

is observed in the simulations for the NAT-plt6 field. The AgriCarbon-EO and CH anomaly maps show clear spatial patterns.430

However, the spatial patterns are more pronounced over the NAT-Plt3 field than over NAT-Plt6. RMSEs of 0.70 and 0.68

tha−1, biases of 0.42 and 0.41 , and R2 values of 0.12 and 0.29 are observed for NAT-Plt3 and NAT-Plt6, respectively. The

performances of the yield simulations vary strongly between the two fields. A relatively low RMSE and bias indicate a quite

good mean representation of the plots. However, the correlation coefficient is quite low and indicates that not all the spatial

variability in yield can be captured using this approach. The small R2 can however be explained by the range of variation435

in wheat yield that is smaller at the intra-field scale than regional scale. Maximum R2 values for these datasets are found

to be respectively 0.32 and 0.22 when assuming an observation measurement error of 1 tha−1 (Supplemental Materials).

Furthermore, if we compare these simulations to standard fieldwise simulations that do not explain spatial variability, the

explained spatial variance illustrated here is a net gain. Difficulties in reproducing the range of yield observed variations in

yield values may be caused by the simple representation of grain biomass allocation through the use of an HI which does not440

take into account potential variations in the HI due to nutrient availability or crop cycle duration (Dai et al., 2016).

Figure 5. Yield maps and spatial anomalies simulated by AgriCarbon-EO and collected using a combine harvester over the Nataïs site

(NAT-Plt3 and NAT-Plt6) for 2017 and 2019.

3.3 Large scale simulation outputs

In this section, the results from the ACEO-S2L8-Pixel in 2017 are illustrated and analysed. The RPG land cover map for winter

wheat fields, the SAFRAN weather data, and the THEIA S2 and L8 EO data were used as input along with the parametrization

files for PROSAIL and SAFYE-CO2. The AgriCarbon-EO processing chain was run in parallel over a single server rack with445
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2 computation nodes and with 36 threads max. The memory requirement was the highest for the PROSAIL retrievals, reaching

5 Gb per process (image inversion) for a LUT size of 5000. For SAFYE-CO2 the requirements were 5 Gb per process with

one process per node of the weather grid with a LUT size of 5000. A SAFYE-CO2 run over the 110 × 110 km area of study

at 10 m resolution required 4 hours of computation time per year of simulation. The chain was able to produce maps of all

parameters and variables estimated by SAFYE-CO2. With the carbon budget being our main priority here, we chose to focus on450

NEP , DAM at the end of the vegetation cycle, Cexport (Equation 9), and NECB (Equation 1). The NEP was computed

by summing NEE over one cropping year from 1st Oct 2016 to 30th Sep 2017. Maps of NEP , Cexport, and NECB at

native resolution (10 m) are shown in Figure 6(A) as an illustration of typical outputs from the chain. The histograms of the

same variables and their uncertainty are shown in Figure 6 (B). Note that, in these figures, we presented NEP and NECB

in the soil-oriented convention (i.e., positive values mean net CO2fixation and soil organic carbon storage, respectively) to be455

able to compare the values of NEP , Cexport, and NECB.

High levels of heterogeneity with regional patterns can be seen in the retrieved simulations. The northwestern and south-

eastern corners are characterized by higher CO2 fixation and thus growth, yield, and lower NECB. The variability of NEP

is mostly comprised between 300 and 700 gCm−2, which is consistent with eddy covariance measurements for wheat across

Europe (Ceschia et al., 2010). Furthermore, the dry yield varies between 6.6 tha−1 (i.e 300 gCm−2) and 10 tha−1 (i.e., 450460

gCm−2), which is also coherent with regional statistics (ARVALIS, 2019). In Figure 6 negative values of NEP and NECB

correspond to pixels where wheat did not develop. In those cases, Rh dominates during the cropping year, leading to a net

carbon loss in the soil.

The uncertainty, (i.e. standard deviation of the posterior distribution) has mean values of 55, 25, and 38 gCm−2 for NEP ,

Cexport, and NECB, respectively. The spatial variability (i.e. standard deviation of the mean pixel values ) is equal to 131,465

50 and 82 gCm−2 for those same variables. The fact that the uncertainty is lower than the retrieved spatial variability indicates

that this method has enough resolution to discriminate and ordinate values of NEP , Cexport, and NECB based on the

update of priors using remote sensing-based GLAI . However, the fact that those values are on the same order of magnitude

stresses that uncertainty assessments should always be provided with these analyses. The maps and distributions, given their

scale and resolution, do not showcase the full range of crop variability that can be observed in the study area. To illustrate470

individual solutions and anomalies encountered in the simulations selected pixels of interest (POIs, located in Figure 2) are

presented in Figure 7 .

These pixels are selected to illustrate intrafield heterogeneity and specific anomalies. Figure 7 (a-e) shows in green the

GLAI inverted using PROSAIL with their respective uncertainties, and the simulated GLAI time series in red with higher

transparency for the solutions with the lowest contribution (likelihood). For instance, the results in Figure 7 (a) POI-00 and (b)475

POI-01 show the fitting of the model over two pixels in the same field. It is clear from the observed and the GLAI between the

two POIs that the vegetation phenology is different, with early emergence and higher maximum GLAI in the case of POI-00

(a) and later emergence and lower maximum GLAI in the case of POI-01 (b). Additionally, Figure 7 (c) POI-02 and (d) POI-

03 are adjacent pixels in the same field, but each is on a different side of a cloud mask in May 2017. The input GLAI from

PROSAIL on this date is associated with very low uncertainty, which impacts the retrieval of the SAFYE-CO2 model. The480
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Figure 6. Regional scale carbon budget outputs from AgriCarbon-EO assimilation using S2 and L8. In "A": From left to right, NEP ,

Cexport (yield), and NECB for the winter wheat fields for the 2016-2017 cropping season. In "B": the histogram of the posterior mean

and standard deviation of the same variables on top and bottom, respectively. Note that NEP and NECB are presented in the soil-oriented

convention. Positive values of NEP and NECB thus correspond to net annual CO2 sinks and soil organic carbon storage, respectively.

low uncertainty will result in a high level of false information for this date, which In turn will negatively impact the Bayesian

inversion and reduce the SAFYE-CO2 model performances, thereby pushing the model to better fit this unrealistic inversion of

GLAI . Finally, Figure 7 (e) POI-04 corresponds to a pixel in a field where the observed GLAI is not consistent with winter

wheat; in fact, this GLAI dynamic fits better to a summer crop such as sunflower. Mislabeling in the land cover such as this

one can result in “no fitting”. Mislabeled winter crops could, however, be fitted and not stand out in the spatialized simulation.485
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Figure 7. Time series of GLAI , and radar plots containing the free parameters of SAFYE-CO2. Simulations are represented in red with a

transparency proportional to their relative likelihood and the maximum likelihood simulation is represented in blue dashed lines. POI-00 (a)

and POI-01 (b) are located in the same field. POI-02 (c) and POI-03 (d) are adjacent pixels where a cloud date is not filtered in (d). POI-04

(e) illustrates either an error in the CAP declaration or a failed wheat crop followed by a summer crop .
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3.4 Impact of the spatial resolution and temporal sampling of assimilated GLAI

The AgriCarbon-EO simulations (Table 3) were compared at different scales (i.e. pixel vs. field) and for different satellite

image temporal densities to investigate the benefit of assimilating high-resolution multimission derived GLAI into SAFYE-

CO2. The impact of the spatial scale of the GLAI assimilation is illustrated by Figure 8 (a), which shows the histogram

of (DAMACEO−S2L8−Pixel - DAMACEO−S2L8−Field). An average negative bias of -47 gm−2 is observed for DAM with490

a spread between -210 gm−2 and +120 gm−2 for the [−σ,+σ] interval when comparing the pixel scale simulation to the

field scale simulation. This result is interpreted as the bias error that can be avoided by applying an intrafield assimilation

scheme in the crop model in contradiction to the more generally applied field scale. Note that the same bias value is ob-

tained for Figure 8 (b), representing the difference between the averaged pixel at field scale and the field scale simulations:

(DAMACEO−S2L8−Mean - DAMACEO−S2L8−Field). This is mathematically expected as DAMACEO−S2L8−Mean is obtained495

by averaging the DAMACEO−S2L8−Pixel simulations. However, when comparing the RMSE values between Figure 8 (a) and

(b) a noticeable change in RMSE of -68 gm−2 is observed. This result shows that the variability of simulated biomass will

decrease by 39 % when considering field-scale modelling. The variability is directly influenced by the retrieved parameters

of the crop model between the intrafield and field scales for the same crop cycle; resulting in a different posterior parameter

distribution, as shown in the section above. Figure 8 (c) shows the difference between a simulation using only S2 and using500

S2 + L8. Adding L8 images tends to slightly increase dry biomass, with a bias of 30 gm−2 and an RMSE of 94 gm−2. This

difference is caused by the additional samples added at the start and end of the vegetation cycle that result in a change in the

length of the vegetation cycle.

Figure 8. Histogram (left y-axis) and cumulative density function (right y-axis) of the bias of biomass at harvest (y-axis). (a) cor-

responds to (DAMACEO−S2L8−Pixel - DAMACEO−S2L8−Field), (b) (DAMACEO−S2L8−Mean - DAMACEO−S2L8−Field) and (c)

(DAMACEO−S2L8−Pixel - DAMACEO−S2−Pixel).

To assess the robustness of the assimilation approach with respect to the number of assimilated images, the DAM outputs

from ACEO-S2L8-Pixel were analysed in terms of the number of images over each pixel. Figure 9 shows the impact of the505

number of GLAI observations per pixel on µ and σ of the DAM. σ of DAM decreases by approximately 66 % with the

number of observations (146 gm−2 for 11 images to 48 gm−2 for 28 images) while the µ DAM values remain stable. This
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illustrates the stability of µ values given the range of variation of observed images. However, the decrease in σ also illustrates

the contribution of the number of images to the constraining of solutions and increased accuracy.

Figure 9. Violin-plots of the number of images used for the inversion over each pixel on the x-axis and the mean (µ) DAM on the right

y-axis and the standard deviation (σ) of DAM on the left y-axis.

4 Discussion510

4.1 Accuracy of carbon budget component retrieval

The performances of our retrievals of the carbon budget components are here put in the context of relevant studies. In the

previous applications of SAFYE-CO2, (Pique et al., 2020a) implemented an iterative retrieval algorithm at the field scale. This

algorithm is not scalable for intrafield simulations at the regional scale and it does not provide an estimate of the associated

uncertainty. Their validation exercises for wheat with SAFYE-CO2 over the FR-AUR flux-tower showed an R2 ranges of [0.78515

, 0.90], [0.82 , 0.94], and [0.58 , 0.84] for NEE, GPP , and Reco, respectively. The results from our study are in the same

ranges, considering the two studies address different years and different EO data: [0.77, 0.87], [0.82 , 0.87], [0.7 , 0.76] for

NEE, GPP , and Reco, respectively. The implementation of the BASALT algorithm while enabling uncertainty estimates

for regional-scale applications, does not come at the expense of the accuracy of the retrievals. Other studies addressed the

estimates of NEE and GPP . Combe et al. (2017) constrained the WOFOST agronomic model at 25 km resolution using520

yield and sowing dates, over 3 ICOS sites and 10 site years. They obtained R2 values [0.64 , 0.74], and RMSE values of [2.33 ,

2.67] gm−2 for NEE over wheat fields. The values we retrieved for FR-AUR are better regarding R2 [0.77 , 0.87] and RMSE

[1.68 , 2.36]. (Combe et al., 2017), also obtained an R2 and RMSE values [0.82 , 0.87] and [2.33 , 2.83 ] gm−2 for GPP ,

respectively. The R2 retrieved from AgriCarbon-EO is slightly higher [ 0.82 , 0.87], and the RMSE was in the same range for

2019 and lower for 2017.Reco is not systematically addressed in the modeling exercises, as it requires simulating the plant and525
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soil processes simultaneously. Combe et al. (2017) retrieved Reco with R2 values of [0.76 , 0.83] and RMSE values of [0.98 ,

1.29] gm−2. The R2 obtained with AgriCarbon-EO is slightly lower [0.70 , 0.76], and the RMSE slightly higher [1.13 , 1.29]

gm−2) than in (Combe et al., 2017) for Reco. The Reco estimates depend on Rh and Rauto. We recommend that Rh should

be enhanced by using a more complete soil module. This point is addressed later in this discussion. In addition to NEE, GPP

and Reco, the other components of the carbon budget involve the biomass and yield estimates that are either exported out of530

the field or integrated into the soil. (Tewes et al., 2020) assimilated in-situ LAI into the LINTUL5 crop model using NIS. Their

DAM at maturity (BBCH 99) were compared against field measurements collected on 14 plots in the Netherlands, northern

France, and Germany (from 40 to 60 in-situ points over 1 m2), showing a mean RMSE of 246 gm−2 and a mean bias of 58

gm−2. The end-of-cycle biomass retrieved using AgriCarbon-EO shows similar performances (RMSE=222 gm−2 and Bias

=17 gm−2 ) while using GLAI derived from satellite measurements (see Table 6). (Hao et al., 2021) presents a meta-analysis535

of 76 studies using the APSIM model, which is broadly used for wheat yield simulations. They find that an RMSE = 100

gm−2 is expected for applications of this model. The RMSE retrieved by AgriCarbon-EO is in the same order as these studies(

RMSE= 60-70 gm−2). While the estimates are reasonable, we consider that the use of a direct harvest index to determine yield

may present some limitations more so in the presence of extreme events during the grain filling. Our bibliographical research

yielded no other studies that perform crop growth simulations and estimation of the carbon budget components at a decametric540

resolution while covering very large areas. Most of the studies perform low-resolution analysis in plains, where the spatial

variability is expected to be low. The same approaches may be penalized when applied to areas with high spatial variability,

such as the hilly countryside in southwestern France. When compared to existing studies, we find that AgriCarbon-EO allows

the retrieval of the main carbon budget components with performances that are close-to or better than existing state-of-the-

art evaluations. An extended application of AgriCarbon-EO over a variety of pedo-climatic conditions by taking advantage545

in particular of the data provided through the regional Fluxnet, ICOS, and Ameriflux networks will help in confirming this

statement.

4.2 Multi-mission data, cloud cover, and limitations

The retrieval of SAFYE-CO2 parameters and the carbon budget components in AgriCarbon-EO relies on the accuracy and

availability of EO data, which can be hampered by errors in image co-location, atmospheric corrections, the presence of550

clouds, and cloud shadow correction. Many studies show that these effects have an important impact on agricultural remote

sensing applications such as yield estimation (Soriano-González et al., 2022), land cover (Song et al., 2021), and superficial soil

carbon content mapping (Vaudour et al., 2019). While we find that these effects are in the large majority mitigated through the

use of a Bayesian approach for the GLAI assimilation, we identified examples where the retrieval of GLAI is associated with

a low uncertainty when clouds or cloud shadows persist. Unfiltered clouds or the lack of images can significantly impact the555

simulations locally (Figure 7 (c)). Consequently, the analysis ofGLAI time series to detect anomalous variations (Figure 7 (d))

or improvements in cloud detection algorithms like in Skakun et al. (2022) would improve GLAI inversions in AgriCarbon-

EO. The use of additional data from L8 with a coarser spatial resolution than S2 enhanced the simulation quality for our

region of interest. The most notable impact was the reduction of uncertainty due to the increased constrained by the additional
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images. An additional option would be the use of daily high-resolution optical data from Planet Labs at <5m. Still, there is a560

limit to the addition of optical images when clouds are persistent over long periods, which are most frequent in tropical areas.

In these cases, the use of biophysical variables retrieved from Synthetic Aperture Radar (SAR) satellite data could mitigate

the loss of data (Veloso et al., 2017; Fieuzal et al., 2017). This can be achieved through the relation between the above-ground

biomass of crops and the Radar polarization ratio or Vegetation Index (RVI). This would imply the use of a multi-variable

assimilation scheme that considers GLAI from optical and DAM from SAR. This is feasible using the BASALT scheme in565

AgriCarbon-EO as the Bayesian assimilation algorithm can be easily adapted for multi-variable assimilation.

4.3 Impact of remote sensing and input spatial-resolution

Intrafield heterogeneity is a well-established issue in agricultural applications (Weiss et al., 2020; Blackmore et al., 2003;

Grieve et al., 2019; Nowak, 2021). However, it has not been thoroughly treated in terms of CO2 fluxes and uncertainty es-

timates. In this paper, we argue that reliable and accurate estimates of DAM and CO2 fluxes in support of carbon budget570

component monitoring require intrafield scale estimates. Our results show that by assimilating mean-field level GLAI prod-

ucts in SAFYE-CO2 a bias of -47 gm−2 and an artificial relative uncertainty decrease of 39 % on DAM will be induced

compared to assimilating high-resolution GLAI and calculating the mean of the model’s output. The high spatial resolution

thus allows more accurate estimates of the mean DAM values at the field scale, which in turn also enables more accurate

field-scale estimates of SOC changes by soil models. Nevertheless, the use of even higher-resolution remote sensing data may575

be relevant to address carbon budget components at very small or elongated fields, such as those in rural India (Deininger

et al., 2017). For example, current data at <5m spatial resolution from Planet labs, mentioned above, or future data from next-

generation Sentinel-2 NG constellation can extend the applicability of approaches like AgriCarbon-EO to small fields. The

other input data products that drive the spatial resolution of the AgriCarbon-EO outputs are the land cover and the weather

data. While the land cover is available at an adequate resolution (i.e. field sale), it is error-prone, either because of erroneous580

CAP declarations (Magnin, 2019) or because of classification errors when EO-based land cover maps are used (Liu et al.,

2022). Interestingly, our results show that when a mismatch occurs, the fields in question exhibit high anomalies in retrieved

parameters and are thus detectable. For the weather forcing, the current application was based on the Météo-France 8 km

resolution Safran data, which provides reasonable accuracy over France (Garrigues et al., 2015). Currently, ECMWF provides

ERA5-Land at 0.1° resolution globally (Muñoz-Sabater et al., 2021), and NOAA provides weather reanalysis at 3 km over585

the US (Dowell et al., 2022). In the future, the coverage and resolutions of weather-forcing data are expected to increase (i.e.

ERA6 at 2.5 km). Increasing the resolution of the weather forcing in AgriCarbon-EO would provide better spatial information

but would also increase the computational demand by a factor of γ as the LUT for SAFYE-CO2 is generated over the weather

grid (Equation 16).

γ =
TLUT × 82

θ2
(16)590

TLUT is the processing time for the generation of LUT and θ is the weather grid resolution in km.
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4.4 Limitations of the Bayesian and physically based approach

While the components of AgriCarbon-EO have been tailored to the requirements mentioned in the introduction (large scale,

high resolution, uncertainty estimates, and biophysical processes), we have shown limits for each of them. For instance, the

BASALT Bayesian approach can be sensitive to an erroneous observation associated with low uncertainty (Figure 7 d). A trade-595

off must be made between the range covered by the generated solutions and the number of LUT entries in order to maintain

computational efficiency. A solution could be to consider a joint distribution for prior parameters to propose a better ratio of

appropriate solutions (Wang et al., 2022). Another point is that the radiative transfer modelling is constrained by the spectral

library database (Verhoef et al., 2007), which may not reflect ground conditions such as the presence of weeds impacting

GLAI retrievals. Another limitation is that the crop model predictions require crop-dependent fixed and prior parameters.600

As an alternative solution to bypass some limitations, one could have reverted to machine learning approaches that have

gained popularity for precision agriculture and soil carbon farming applications (Sharma et al., 2021). However, while they are

powerful tools, they need a large amount of training data to take into account climatic conditions and management practices

and need to be updated regularly as we encounter unprecedented weather conditions. Hybrid solutions such as AgriCarbon-EO

that combine parsimonious process-based modelling and remote sensing approaches are thus needed. In the current state, it605

is reasonable to consider that an MRV platform for SOC carbon stock changes should include an ensemble of approaches

with varying levels of complexity (e.g. Tier 1,2 and 3) (Nevalainen et al., 2022), similar to what has been implemented in the

IPCC approaches (Parker, 2013). In this framework, AgriCarbon-EO is designed to be a Tier 3 MRV approach for crop carbon

farming.

4.5 From AgriCarbon-EO to SOC budget610

The present approach provides high-resolution estimates of key carbon budget components and estimations of NECB and

SOC variations. To achieve this, the SAFYE-CO2 crop model currently uses a simplified soil respiration module that sim-

ulates Rh that doesn’t include the modelling of the processes in the different carbon pools in the soil (e.g. humification,

mineralisation) (Equation 11). This methodology is adapted for short-term assessment of carbon budgets (typically up to one

year) (Pique et al., 2020a). This means that stock-dependent soil processes that affect SOC mineralisation and litter humi-615

fication that may cause priming effects are not accounted for here. The inclusion of a soil carbon decomposition module, as

in Guenet et al. (2016), that includes such processes would allow a better representation of soil respiration and account for

the effect of amendments with different decomposition dynamics. Such an exercise, would however increase the number of

parameters and create the need for the addition of in-situ or spatial maps to provide initial soil carbon content, soil chemical

characteristics, and organic amendment information. Procurement at a large scale of such information with sufficient accuracy620

is still challenging for large-scale applications. One way of achieving this is to take advantage of the rapidly developing Farm’s

Management Information Systems (FMIS) and enhanced soil property maps through digital soil mapping (DSM). Even though

farmer activity data are not easily accessible, it is expected that this limitation will be reduced with the development of soil

carbon farming policies (such as the Label Bas Carbone in France) and auditing schemes (de Gruijter et al., 2016). Such data
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exchange would have a dual positive effect, provided that adequate soil sampling protocols are applied. The SOC data would625

increase the size of existing datasets available for validation and verification of tools like AgriCarbon-EO, and at the same

time, approaches such as AgriCarbon-EO may provide optimal sampling strategies for the estimation of SOC stock changes

for carbon auditing.

5 Conclusion

The main aim of the paper is to present the AgriCarbon-EO processing chain that assimilates remote sensing data into the630

PROSAIL radiative transfer model and the SAFYE-CO2 crop model to estimate key carbon budget components of crop fields

at high resolution and regional scale. AgriCarbon-EO was designed to cover essential features to comply with the monitoring

component of the MRV systems for cropland carbon budget (Smith et al., 2020; Paustian et al., 2019):

1. Provide a scalable solution, which is of major specification in the design of AgriCarbon-EO. The proposed assimilation

scheme has been constructed to prevent the time-related drawbacks of iterative methods while enabling easy integration635

of additional information.

2. Provide the component of the carbon budget (biomass and carbon fluxes) with their associated uncertainties. The uncer-

tainty of the model’s variables is estimated using an innovative Bayesian approach labeled BASALT.

3. Estimate the carbon budget at intrafield resolution. High-resolution modelling is enabled by the assimilation of EO data

at a 10 m resolution, which is a coherent resolution with verification data and provides the means to determine optimal640

in-situ soil and vegetation sampling.

4. Propose a readily-operational tool, that seamlessly integrates remote sensing, weather, and ancillary data in an end-to-end

processing chain.

The paper details the mathematical concepts and the algorithm behind the AgriCarbon-EO processing chain. The imple-

mentation of BASALT, a non-iterative Bayesian NIS methodology, within AgriCarbon-EO, allows to address the considerable645

computational requirements effectively. Validation and analysis have been performed using an application over winter wheat

crop in South-West France. Our results show that when validating the simulations against flux tower measurements, we find

that the new inversion approach (BASALT) produces reliable estimates of CO2 fluxes (NEE, GPP , and Reco) and performs

similarly to SAFYE-CO2 in previous studies while providing uncertainty estimates. Our estimates for DAM are close to the

observations while the validation exercise for yield is less conclusive due to the small range of yield values, the uncertainty650

of the CH’s data and processing, and/or the use of a HI to estimate yield that may not account for essential drivers of yield.

Our analysis of the impact of the number of remote sensing acquisitions shows a reduction in uncertainty of 66 % when full

S2 and L8 data are available, while the median retrieved NEE and DAM remained the same. This points to the stability of

the method in this range of satellite observation availability. Furthermore, we find that the assimilation of field scale GLAI

products induces a bias on the DAM from -120 to 210 gm−2 and a reduction in the DAM inter-field variability of about 39655
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% compared to pixel scale assimilation. Based on this, we argue that an intrafield scale quantification of the carbon budget

components NECB is preferable as this resolution provides 1) coherent spatial information with soil samples. 2) the means

to provide better sampling strategies for soil and plant monitoring approaches. Further applications of AgriCarbon-EO will

enable the extension of such analysis to other crops, cover crops, and climatic conditions. Several limitations were identified

in the discussion about AgriCarbon-EO. Primary enhancement should concern the addition of a soil carbon pool model into660

the soil module to take into account long-term changes in the carbon stock, the integration of information from farm man-

agement databases (FMIS) to better account for organic amendments and configure the carbon exports, and finally enhancing

the accuracy of the assimilation scheme by integrating additional remote sensing data such as SAR. Finally, from the broader

perspective of agronomic modelling, it should be noted that AgriCarbon-EO can also provide variables related to the water cy-

cle such as soil moisture, evaporation, transpiration, and drainage. It can thus be envisioned as a coherent agronomic decision665

support tool for yield, phenology, carbon, and water fluxes.
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