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Abstract. Soil organic carbon storage is a well-identified climate change mitigation solution. An extensive quantification

:::::::::::
Quantification

:
of the soil carbon storage in cropland for agricultural policy and offset carbon markets using in-situ measurements

:::::::
sampling

:
would be excessively costly, especially at the intrafield scale. For this reason, comprehensive monitoring, reporting,

and verification (MRV) of soil carbon and its explanatory variables at a large scale need to rely on
:::::
hybrid

::::::::::
approaches

::::
that

:::::::
combine remote sensing and modelling tools that provide the spatiotemporal dynamics of the

:
to

:::::::
provide

:::
the carbon budget com-

ponents with the
::::
their

:
associated uncertainties at high resolution. In this paper

::::::::
intrafield

:::::
scale.

::::
Here, we present AgriCarbon-EO

v1.0.1: an end-to-end processing chain that enables the estimation of carbon budget components of major crops
::
for

:::::
major

:
and

cover crops at intrafield resolution (10 m) and large scale (over 110x110 km
::::::
regional

::::::
extents

::::
(e.g.

:::
10

:::
000

::::
km2) by assimilating

remote sensing data in
::::
(e.g.

:::::::::
Sentinel-2

:::
and

::::::::
Landsat8)

::
in
::
a physically-based radiative transfer

::::::::::
(PROSAIL) and agronomic mod-

els
::::::::::::
(SAFYE-CO2). The data assimilation in AgriCarbon-EO is based on a novel Bayesian approach that combines normalized

importance sampling (NIS) and look-up table (LUT) generation. This approach propagates the uncertainties across the process-

ing chain from the reflectances to the output variables. The chain inputs are land cover maps, multispectral reflectance maps

from the Sentinel-2 and Landsat-8 satellites, and daily weather forcing. In the first step, inverse modelling of the PROSAIL

radiative transfer model was performed to obtain the green leaf area index (GLAI). The GLAI time series are then assimilated

into the SAFYE-CO2 crop model while taking into consideration their uncertainties. After a presentation , the chainis applied

::
of

:::
the

:::::
chain,

:::
we

::::::::::
demonstrate

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
estimates

::
of

:::::::::::::
AgriCarbon-EO

:::::::
through

::
an

::::::::::
application over winter wheat in the

southwest of France during the cropping seasons from 2017 to 2019. We compare the results against the
::::::
validate

:::
the

:::::::
outputs

::::
with

:::::::::
Flux-tower

::::
data

:::
for net ecosystem exchangemeasured at the FR-AUR ICOS flux site (

:
,
:::::::
biomass

:::::::::
destructive

:::::::
samples,

::::
and

::::::::
combined

::::::::
harvester

::::
yield

:::::
maps.

::::
Our

:::::
results

:::::
show

:::
that

:::
the

:::::::::
scalability

:::
and

::::::::::
uncertainty

::::::::
estimates

:::::::
proposed

:::
by

:::
the

:::::::
approach

:::
do

:::
not

:::::
hinder

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
estimates

::::::
(NEE: RMSE = 1.68 - 2.38 gCm−2, R2 = 0.87− 0.77), biomass(;biomass :

::::::::
RMSE =

11.34gm−2,R2 = 0.94),andyieldmapsobtainedfromcombineharvesters.

We also quantified the difference between
:::::
show

:::::::
through

:::::::
scenario

::::::
testing

::
of

:
pixel and field scale simulationsof biomass

(
:::::::::
simulations,

:::
the

::::::
added

::::
value

:::
of

:::::::
intrafield

::::::::::
simulations

:::
for

:::
the

::::::
carbon

::::::::::
components

::::::::
(biomass:

:
bias = -47 gm−2, -39 % variabil-

ity), and the impact of the number of remote sensing acquisitions on the outputs (-66 % of mean uncertainty of biomass).
::::
Our
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:::::
overall

:::::::
analysis

::::::
shows

::::::::
satisfying

::::::::
accuracy,

:::
but

::
it

::::
also

:::::
points

:::
out

:::
the

::::
need

::
to

::::::::
represent

:::::
more

:::
soil

::::::::
processes

::::
and

:::
the

::::::::
inclusion

::
of

:::::::
synthetic

:::::::
aperture

:::::
radar

:::
data

::::
that

:::::
would

::::::
enable

:
a
:::::
larger

::::::::
coverage

::
of

:::::::::::::
AgriCarbon-EO.

::::
The

::::::
paper’s

:::::::
findings

:::::::
confirm

::
the

:::::::::
suitability5

::
of

:::
the

::::::
choices

:::::
made

::
in

:::::::
building

:::::::::::::
AgriCarbon-EO

:::
as

:
a
::::::
hybrid

:::::::
solution

:::
for

::
an

:::::
MRV

::::::
scheme

::
to

::::::::
diagnose

::::::::::::::
agro-ecosystems

::::::
carbon

:::::
fluxes.

Keywords: MRV; Carbon Farming; crop modelling; Sentinel-2;
::::::
Hybrid

::::::::
approach;

:
Normalized Importance Sampling.

:

Copyright statement.

1 Introduction10

Agriculture and land use changes account for 15% i.e. (8.7 Gt CO− 2 yr−1) of human-induced greenhouse gas (GHG) emis-

sions (??). Agriculture has also been identified as a sector that can contribute to climate mitigation through several solutions

(??). Among these, soil organic carbon (SOC) storage has the potential to remove 0.6 to 9.3 Gt CO− 2 yr−1)
::::::
globally

:
from

the atmosphere through the implementation of carbon farming practices (?). Increasing the SOC implies an enhancement of

the net ecosystem carbon budget (NECB) (?,?,? ) expressed in Equation ??. A positive variation of NECB can be achieved15

by increasing the gross primary production (GPP) and the net ecosystem exchange (NEE) through aboveground
:::::::::::
above-ground

crop residue retention (?,?), the addition of cover crops in crop rotations (??), and an increase of the carbon imports through

the application of organic amendments (?) and biochar (?).

Equation ?? also shows the importance of
:::::
linkage

::::::::
between 1) the quantification of the effect of ecosystem respiration (Reco)

which is subdivided into autotrophic (plant) and heterotrophic (soil) respiration (Rauto and Rh), and 2) the quantification of20

carbon exports that mainly correspond
:::::::::
correspond

::::::
mainly

:
to yield and the fraction of biomass incorporated to the soil.

:::
All

::
the

:::::::::::
components

::
in

:::
the

::::::::
equation

:::
are

::::::::
impacted

:::
not

::::
only

:::
by

:::
the

:::::::
intrinsic

::::::::::::
characteristics

::
of

:::
the

:::::
field

:::::
(soil),

::::
and

:::
the

:::::::
weather

:::
but

:::
also

::::
and

::::
most

:::::::::::
importantly

::
by

:::
the

:::::::
farming

:::::::::
practices:

::::::
choice

::
of

:::::
crop

:::
and

:::::
cover

:::::
crop,

::::::
choice

::
of

::::::::::::
amendments,

:::
and

::::::
choice

:::
of

:::::::::::::
harvesting...The

::::::::::::
quantification

::
of

:::
the

::::::
carbon

:::::
fluxes

::::
due

::
to

::::
each

::
of
::::

the
::::::::::
components

::
is

:::
the

::::
basis

:::
of

:::
the

::::::::::
computation

:::
of

:::
the

:::
net

::::::::
ecosystem

::::::
carbon

::::::
budget

::
as

::::::
shown

::
in

::::::::
Equation

:::
??.25

It should be noted that after the death of the vegetation, all the unharvested biomass returns to the soil. At this point, we can

approximate that NECB = DeltaSOC. The accumulation of SOC in agricultural soils, in addition to climate change mitigation,

has additional benefits in terms of ecosystem soil services (ESS), such as increasing soil fertility (?), enhancing water hold-

ing capacity (?) and increasing biodiversity (?). SOC storage could also provide an additional source of revenue for farmers

through carbon credits and subsidies.30

Following the Intergovernmental Panel on Climate Change guidelines for national GHG inventories, methodologies for as-

sessing SOC stock changes have been developed. They are based on a tiered approach with increasing complexity involving

soil monitoring networks where SOC is directly measured and process-based modelling where Delta SOC is modelled by tak-
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ing into account the soil, climate, and mean biomass returned to the soil (GPP-Rauto-Cexport) derived from yield at theregional35

scale (e.g. Yasso07 in Finland, RothC in Japan, DayCent in the USA)
:::
the

:::::::
regional

::::
scale

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Del Grosso et al., 2005; Yokozawa et al., 2010; Lehtonen et al., 2016)

. The need to monitor soil carbon at the farm and field levels to inform individual farmers, and guide policies and the develop-

ment of carbon markets has led to the development of monitoring reporting and verification (MRV) schemes based on similar

approaches employed at a higher resolution (??). These approaches are mainly used in carbon farming projects following

national or regional initiatives (e.g. Label Bas Carbone in France). They often rely on a soil-centred quantification approach40

where the focus is the modelling of Rh, Cimports, and Cexports. In these approaches, the estimates of carbon returned to the

soil are usually extrapolated from farm- or field-scale yield information (?). The field-scale often does not match the intra-

field/farm variability of the soil characteristics and plant growth (??). This means that these values present limitations in terms

of accuracy and spatial representativity.

Coupled plant/soil process-based models that address the quality and quantity of the crop residues that return to the soil45

are also used to assess SOC stock changes. These models include the main components of the cropland’s biological CO− 2

fluxes. They can also account for carbon inputs through organic fertilization and carbon exports of biomass at harvest (Equa-

tion ??, (?). Existing agronomic models such as, DSSAT-CSM (?), STICS (Launay et al., 2021), DAYCENT (Parton et al.,

1998) and WOFOST (?), soil models, e.g. DNDC (?), and land surface models, e.g. ORCHIDEE-STICS (?), take into account

a wide array of environmental conditions to represent crop growth and the components of the carbon budget (Equation ??).50

However, water and nutrient availability, local topography, pests, and historical factors (e.g. former ditches, roads, field limits)

highly influence soil and plant processes (?). This can result in high spatiotemporal variability in crop development and soil

processes that can be observed even at the intrafield scale (??). Moreover, to operate those models, farmer activity data and

crop development dynamics are required to provide accurate estimates of SOC stock changes. Getting hold of this information

at a large scale is still challenging (??). However, it is possible to use time series of biophysical variables such as GLAI, de-55

rived from remote sensing data, to provide information about development dynamics to those models through data assimilation

(???). These assimilated observations provide spatially explicit crop-specific estimates of biomass and carbon returned to the

soil using coupled soil-plant models. Assimilation of biophysical variables is usually based on iterative optimization methods

such as Simplex, Monte-Carlo Markov Chain (MCMC), ensemble Kalman filter, or variational assimilation that are generally

applied at moderate resolutions (??) or field scale (??). Applying those methods at an intrafield resolution over large areas is60

often computationally prohibitive. Enhancing scalability is thus key to assessing the spatial variability of CO− 2 flux com-

ponents at a scale consistent with measurements of soil and plant characteristics. Operating on a scale that is representative

of measurements enables better diagnosis and calibration of plant and soil processes, as well as a more robust validation and

uncertainty estimation of the model outputs.

65

The aim of this paper is
:::
This

:::::
paper

::::
aims

:
to present the newly developed AgriCarbon-EO processing chain for the assimila-

tion of Earth Observation (EO) data into the SAFYE-CO2 agronomic model at large scale (100 km) and intrafield resolution

(10 m). This processing chain allows for the assessment of the carbon budget components (Equation ??). The challenge of

estimating the carbon budget components at high spatial resolution at a large scale is addressed by using the new BASALT
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(BAyesian normalized importance SAmpling via Look-up Table generation) algorithm, which also provides uncertainty es-70

timates. In addition, the paper aims to provide an evaluation of the accuracy, limitations, and robustness of AgriCarbon-EO

methods through validation exercises and scenario simulations. We chose to make these assessments for wheat in Southwest

France, as this area benefits from a large amount of data that has been gathered in the context of the Observatoire Spatial

Regional (OSR), and the Integrated Carbon Observation System (ICOS) network. Furthermore, Southwest France is a major

production area of wheat. This area has also been chosen because it presents a challenge for spatial crop modelling in reproduc-75

ing the diverse crop growth dynamics induced by a wide array of pedo-climatic conditions in a hilly landscape. The scenario

simulations were designed to assess the robustness of the method with respect to the amount of assimilated remote sensing

data, and the added value in using high-resolution agronomic modelling.

In the following sections, we first present the details of the AgriCarbon-EO processing chain including the standard inputs,80

models, and BASALT assimilation scheme. We then present the numerical experimental setup and the validation datasets. Next,

we present the validation results and the impact of image availability. Finally, we conclude with the benefits and limitations of

the presented solution for assessing the cropland carbon budget components and their associated uncertainties at high resolution

over large areas.

2 AgriCarbon-EO chain85

2.1 Overview of the processing chain

AgriCarbon-EO is an end-to-end processing chain that simulates multiple relevant variables of crop development, biomass in-

puts to the soil, CO-2 fluxes, and water
::::
fluxes

:
at a daily timescale, for the assessment of carbon and water budgets. It is specif-

ically designed to assimilate optical remote sensing datasets at native high resolution into a simple but generic
:::::::::::
parsimonious

agronomic model (SAFYE-CO2) over large territories
:::::
regions. A brief description of the data flow and processing steps is90

presented here (Figure 1) and detailed in the following subsections:

1. A preprocessing “Data ingestion” step allows the updating of existing datasets through automated downloading
:::
and

:::::::
stacking of satellite images and weather forcing. Optical bottom of atmosphere

::::::
Bottom

:::
Of

::::::::::
Atmosphere

:
(BOA) re-

flectances are downloaded for Sentinel-2 and Landsat-8 (referred to as S2 and L8 below). Satellite data are uncompressed

and relevant spectral bands are stacked. The weather data are stored in time series with the associated correspondence95

matrix to the high-resolution grid defined by the user. This is performed for the zone defined by the input land cover

(polygons or mask raster map).

2. The biophysical variable GLAI is retrieved from the satellite reflectance images by inverting a radiative transfer model

(PROSAIL). The retrieval of GLAI is based on an adapted Bayesian importance sampling procedure (i.e. BASALT). In

this step, a spatial application of the retrieval model is done for each satellite image.100
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3. The crop model (SAFYE-CO2) parameters are inverted by assimilating the GLAI time series using the BASALT method

as in the previous step. In this case, LUTs are generated based on the closest known weather simulation node. Only the

phenological crop model parameters and the light use efficiency (LUE) are inverted in this procedure.

4. A postprocessing step allows the construction of the output products based on the posterior crop model parameter dis-

tribution. Georeferenced maps of the variables of interest in each model (i.e. PROSAIL, SAFYE-CO2) are constructed105

as well as cumulative variables (e.g. NEP which is the cumulative NEE over one cropping year, number of satellite

acquisitions, and soil water content).

AgriCarbon-EO is implemented in the Python language. A maximum requirement of 5 GB per process for the satellite images

needs to be considered. This will allow mono-process tests and development on standard computers over smaller study areas,

as well as large-scale applications (e.g. 100x100 km) with high-performance computing (HPC) resources.110

Figure 1. Overview of the AgriCarbon-EO data flow and main processing steps that include the data ingestion, BASALT spatial retrieval,

BASALT temporal retrieval, and mapping of the variables of interest.
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2.2 Input dataset

In the following subsections, the spatial datasets needed for AgriCarbon-EO are detailedwith the corresponding sources.

2.2.1 Land cover map

The main driver for the data preparation is a land cover (LC) map in vector format (shapefile)
:
or
:::::
raster

::::::
format. This file should

contain
:::::::
contains the boundaries of each agricultural field for a given cropping year over a selected region of interest (i.e. border115

extents of the LC shapefile)
::
or

:
a
::::::::::
raster-based

:::::
mask. Based on the border extents of the LC map, the remote sensing and weather

forcing
:::::::::::::
weather-forcing

:
data are downloaded and preprocessed. When the simulations are intended to cover several cash crop

cycles a run scenario of AgriCarbon-EO is considered for each individual crop cycle. Additionally, a standard simulation can

include a cover crop with each cash crop. In this paper, AgriCarbon-EO was applied to winter wheat crops in Southwest France

(on the Sentinel-2 tile referenced as 31TCJ) in 2017, 2018, and 2019. The LC map was obtained from the Registre Parcellaire120

Graphique (RPG) in France (“RPG,” 2021), which is available online in open licence v2.0. This information is produced by the

Institut Geographique National (IGN) for the Agence de Service de Paiement (ASP i.e. The French Paying Agency) in charge

of the implementation, control, and payment of the subsidies for the EU Common Agricultural Policy (CAP) in France. In this

study, the original polygons in the Lambert-93 projection (EPSG:2154 - RGF93) were reprojected to a selected common grid

projection,
:
: WGS 84/UTM31.125

2.2.2 BOA surface reflectances

The assimilated remote sensing data are optical
:::::::::::
multi-spectral surface reflectances at the BOA, which correspond to reflected

energy from the top of the canopy and the soil at a given incidence angle, for a set of observed spectral bands. Currently,

AgriCarbon-EO uses data from the ESA’s Sentinel-2 program (?) and NASA’s Landsat-8 program (?), knowing that the modular

interface is compatible with multisource EO data. The Sentinel-2 data are acquired over 13 optical bands with a resolution of130

10 to 60 m depending on the spectral bands with a 5-day revisit from the constellation. Only the nine visible bands were

considered from the Landsat-8 data. Landsat-8 has a revisit of 16 days and a spatial resolution of 30 m in the visible range.

For this study, the data were downloaded from the Thematic Center for Continental Surfaces (THEIA), which uses a common

atmospheric correction and cloud masking algorithm for Sentinel-2 and Landsat-8 through the MAJA processing chain (?). This

enables a harmonized Level-2A database with an efficient cloud masking algorithm (?). The data contain quality indicators,135

including cloud coverage. The datasets are
::::::
dataset

::
is

:
presented as granules (tiles) of 110x110 km orthoimages in the UTM

projection. Prior to the processing, the remote sensing datasets are decompressed and resampled at 10 m resolution using

nearest-neighbour.

2.2.3 Weather forcing data

Daily weather data maps covering the simulation period and spatial extents are used to force the crop model. Cumulative140

daily global incoming solar radiation (Rg in MJm−2) and daily average air temperature at 2 m (Ta in °C) are needed for the
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vegetation growth module in SAFYE-CO2. Based on previous studies that showed the impact of diffuse radiation on crop

development and photosynthesis (??), the diffuse incoming radiation is computed based on ?. Furthermore, two additional

datasets
:::
Two

:::::::::
additional

:::::::
forcings

:
are needed for the water budget module of SAFYE-CO2: daily potential evapotranspiration

(ET0 in mmd−1) and daily cumulative rainfall (Rain in mmd−1). AgriCarbon-EO supports two data sources that provide145

weather data: the Météo-France SAFRAN dataset (?) and ERA5 Land (?). The extraction of the ERA5 Land data was per-

formed via the dedicated API. SAFRAN consists of a reanalysis of climate variables at 8 km spatial resolution and the hourly

timescale over France starting
::
in 1958. In this paper, the weather data were extracted from the Météo-France SAFRAN dataset

and reprojected over the UTM/31N at 8 km resolution.

2.3 Process-based models150

2.3.1 Radiative transfer modelling using PROSAIL

Maps of geophysical variables (i.e. GLAI) are retrieved in AgriCarbon-EO by inverting the PROSAIL radiative transfer model.

PROSAIL has been extensively used as a radiative transfer model for vegetated areas (?) with a wide range of inversion schemes

(?). PROSAIL combines the PROSPECT and SAIL models (?). PROSPECT provides leaf spectral properties in the 400 nm

to 2500 nm wavelength (?). SAIL (scattering by arbitrary inclined leaves) is a multidirectional canopy reflectance model (?)155

based on the bidirectional reflectance model (?). A Python implementation of PROSAIL was used in AgriCarbon-EO. This

version includes the coupled PROSAIL from PROSPECT-5-D (?), 4SAIL (?), and a simple Lambertian soil reflectance model.

The PROSAIL parameters were inverted using a Bayesian approach in order to provide GLAI and its corresponding uncertainty

as input to the crop model inversion.

2.3.2 Crop CO2 fluxes and biomass modelling using SAFYE-CO2160

SAFYE-CO2 is a parsimonious agronomic model that runs at a daily time-step (???). The model stems from the SAFY models

(??) which compute DAM, based on the LUE theory of ?. A full description of the SAFYE-CO2 model is provided in ???. The

core equations of the model are detailed below. where LUE-a (gCMJ−1m−2) is the light use efficiency for direct radiation

and LUE-b is a correction coefficient for the impact of diffuse radiation Rdiff (MJm−2d−1) on ELUE.

In Equation ??, SR10 accounts for the decrease in photosynthetic efficiency during senescence linked among others to the165

decrease in chlorophyll. where Cs is the parameter that controls the slope of SR10 depending on the thermal age of the crop

SMT and Sen-a refers to the thermal age at which the plant enters senescence.

The fraction of biomass allocated bellowground
:::::::::::
below-ground PRTR is computed using PRTRa, PRTRb, PRTRc, and SMT-

G which correspond to the end-of-cycle fraction of biomass allocated below-ground, the initial fraction of biomass allocated

belowground
:::::::::::
below-ground, a coefficient modulating the decrease in biomass partition to the roots between the initial and end-170

of-cycle states, and the sum of the temperature at which grain filling starts respectively. The fraction of above-ground biomass

allocated to the leaves PRTL is computed using PRTLa and PRTLb0, respectively, the initial fraction of the above-ground
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biomass that is not allocated to the leaves and a fitting parameter that modulates the rate and thus the end of allocation of

above-ground biomass to the leaves.

The biomass and yield are used to determine carbon exports in Equation ??. Equation ?? illustrates a simple way to estimate175

exported biomass by taking into account only the dry above-ground biomass (DAM), the harvest index (HI), and the fraction

of carbon in the dry biomass (Cveg).

The growth respiration is computed from the growth conversion efficiency, GPP, and Rmaint.

Rh-1 is the reference Rh rate, Rh-2 expresses the RH sensitivity to temperature, and H-waterstress is the effect of soil

moisture on soil carbon decomposition. In H-waterstress, RhH1 and RhH2 provide the form of the water stress function and180

RSM1 the relative soil moisture.

A Python implementation of SAFYE-CO2 was developed for AgriCarbon-EO and is used in this paper. This new version

is vectorized to provide predictions for multiple runs and build LUTs. It can also handle multiple vegetation cycles for each

run (e.g. crop and cover crop) and has a modular architecture. The physical modules are restructured to regroup soil processes,

plant phenology, plant physiology, heterotrophic activity, and field management.185

In SAFYE-CO2, the water flux computation is based on the Penman-Monteith and FAO-56 methodologies that enable the

computation of evapotranspiration and water distribution in the soil based on a bucket model (?). The coupling between the

carbon and water cycles occurs in two ways. Plant growth impacts root water uptake, and the soil water content impacts GPP

production through a water stress coefficient. The dynamic computation of GLAI in Equation ?? provides the link between

the model and the GLAI retrieved from optical EO and therefore allows us to constrain the model’s phenological and light use190

efficiency parameters (emerg, PRTLa, PRTLb, SLA, sena, senb, Harv, LUEa) using EO data assimilation. The assimilation of

GLAI allows implicit accounting of soil stress impacts (e.g., nutrients and water) on vegetation development. Therefore, the

water stress effect on GPP and plant development is implicitly accounted for through the model’s parameters, resulting mainly

in lower values of LUE for a field experiencing water stress. Assimilating GLAI also enhances the estimation of NEE and the

export of specific organs and the resulting NECB (Equations ?? and ??) by considering the effect of the crop growth dynamic.195

In data assimilation, the relative parsimony of SAFYE-CO2 compared to models such as STICS (?) or DSSAT (?) entails a

limited number of free parameters controlling the vegetation dynamics. This, allows the use of scalable assimilation algorithms

such as "BASALT" presented below that can only be applied to relatively low dimensional optimization problems (?).

2.4 Bayesian normalized importance SAmpling using Look out Table - BASALT

where v is the simulation value, mu and sigma are the mean and standard deviation of the observation, j is the index for entities,200

o is the index of the independent observations, and i is the index for the model run in the LUT. where mu-w is the weighted

mean, v-x is the vector given by the LUT for a parameter or variable, x is the number of samples and sigma-w is the weighted

standard deviation.

8



2.4.1 Retrieval of GLAI maps from PROSAIL

When inverting PROSAIL, the main objective is to retrieve GLAI and its associated uncertainties that will be assimilated by205

SAFYE-CO2. This is done by generating an LUT of PROSAIL runs (size = 5000) for each remote sensing image based on

the prior (Table ??), and the solar and observation angles provided by Sentinel-2 and Landsat-8 products. Equations (??) are

then used to evaluate the RL where j is the index of pixels in the simulated image, i is the index of the PROSAIL runs in the

LUT, and o is the observed reflectances from the Sentinel-2 or Landsat-8 images. As PROSAIL provides LAI and not GLAI,

the chlorophyll content (cab) is constrained to a high interval [60,80] ugm−2. This makes all simulated surfaces green and210

thus allows to retrieve GLAI. A constraint is also added to the relation between dry biomass and GLAI to reduce the parameter

search space by eliminating solutions with leaves that are too thin or thick. Then, the surface reflectances of the Level 2-A

BOA products are considered to follow a normal distribution with a mean and a standard deviation that is fixed at 0.02. Finally,

the posterior distribution is approximated with a normal distribution, using Equation ?? to determine mu and sigma.

2.4.2 Application of BASALT to SAFYE-CO2215

The simulated variables, DAM, yield, GPP, Reco, and NEE, are highly dependent on the duration and intensity of crop de-

velopment (?). The GLAI outputs from PROSAIL are assimilated into SAFYE-CO2 to correct the prior vegetation dynamics.

This is done by generating an
:
a LUT of SAFYE-CO2 runs (size = 5000) for each zone with the same forcing (i.e., same prior).

In this case, the zoning is defined by the weather forcing data (i.e. SAFRAN at 8 km). For each zone, Equations ?? and ?? are

applied to evaluate the RL given the GLAI observations, where j is the index of pixels in the simulated area, i is the index of220

the SAFYE-CO2 runs in the LUT, and o the observed GLAI at different dates. The priors for LUT generation for SAFYE-CO2

are shown in Table ??. Those priors are used for the SAFYE-CO2 LUT generation and were reassessed in terms of statistical

distribution from (?) to account for the high-spatial heterogeneity that can be observed at a regional scale and the vegetation

cycles that are more contrasted at the pixel level than at the field level due to the regression to the mean. For each parameter,

a truncated normal distribution is independently sampled considering mu, sigma, min, and max values; the only exception is225

PRTLb, which has an exponential behaviour. For this parameter, a logarithmic transformation is applied to the distribution. To

aggregate the SAFYE-CO2 simulations at the field scale, the likelihood is summed over all the pixels in the field (Equation

??). Finally, Equation ?? is used to compute mu and sigma for a parameter or a variable on a given day for a field or pixel.

3 Application for wheat in Southwest France

3.1 Experimental setup and study area description230

Several assimilation experiments were conducted to answer the specific objectives of the paper, they are summarized in Table

??. The experiments correspond to simulations over the Sentinel-2 31TCJ tile located in the southwestern of
:::::::::::
southwestern

France for winter wheat in 2017, 2018, and 2019 (Figure 2). They alternate between the use of S2 alone and the combined use

of S2 and L8. They also include pixel and field scale simulations. The ACEO-S2L8-Pixel combines Landsat-8 and Sentinel-2
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data at 10 m resolution which represents approximately 20 M pixels for our study area. It was used as the main simulation235

for the validation experiments. The ACEO-S2L8-Field simulations correspond to averaging the 10 m GLAI from PROSAIL

retrievals at the field scale. Additionally, an averaging of the high-resolution simulations with Sentinel-2 and Landsat-8 was

performed at the field scale (ACEO-S2L8-Mean).

The study area has a mean annual precipitation of 655 mm and a mean annual temperature close to 13 °C. It is classified as a

majorly temperate oceanic climate (Cbf) in the plains, and temperate continental climate (Dfb) near the Pyrénnées mountains,240

based on the Koppen climate classification. In 2017, winter was exceptionally dry and sunny, and spring was sunny with a 10

% deficit in rainfall (?), while 2019, had a mild winter and a sunny spring with 10 % deficit rainfall for the two seasons (?). The

region has an intermediary cloud coverage that allows for multitemporal optical remote sensing analysis and analysis of the

impact of clouds (Figure 2.B). It is mainly occupied by agricultural fields that cover approximately 90 % of the area, among

which a majority of seasonal crops. Winter wheat covers approximately 20 % of the zone and reaches 40 % in some areas. In245

South-West France, soft-wheat varieties are predominant, and they are usually sown in autumn around mid to end of October.

Soft wheat represents 75 % of the French exports of soft wheat. The crop typically develops slowly during the winter, and

growth accelerates during spring. It is harvested from mid-June to the end of July depending on maturation as well as climatic

conditions to optimize grain. The harvest in 2017 was normal (6 tha−1 at 15 % humidity), while 2019 was an exceptional year

with a yield of 11.5 tha−1 at 15 % humidity (?). In terms of pedology, two main soil types are present in the area of study:250

silt-rich soils near the major streams, and clay soils across the hills with a variable density of stones depending on erosion. The

topography offers a wide range of aspects. The region also bears the effects of historical land management, specifically, the

“Remembrement” policy, a political push to merge adjacent fields from 1945 to 1980 in France (?). This leads to a wide range

of soil and microclimatic conditions that cause significant intrafield plant growth variability.

This study area was chosen for three main reasons in light of the aims of the paper. First, it is part of the Space Regional255

Observatory that benefits from extensive datasets regarding crop growth and crop physiology through the presence of two

certified ICOS flux sites (FR-AUR and FR-LAM), and extensive measurement campaigns operated by different public labo-

ratories specializing in agronomy and remote sensing as well as measurement campaigns operated by private companies and

individual farmers. These measured variables related to the field’s carbon budget such as NEE, GPP, Reco, DAM, and Yield

(Equations ?? and ??) are monitored in different localities with different representative scales (Table 3.2). Second, the crop260

growth and biophysical process variability, due to topography and pedo-climatic variations, is needed to assess the impact of

using high-resolution modelling and assimilation schemes in quantifying the carbon budget components (e.g. Yield, CO− 2

fluxes). Third, winter wheat is one of the most studied crops worldwide. This allows us to compare the quality of the results

obtained with AgriCarbon-EO against a large corpus of published studies. Furthermore, the area is a dense crop production

zone. This is especially true for wheat production, which has a large economic interest.265

3.2 Validation of the AgriCarbon-EO outputs

The validation relies on several datasets corresponding to the main output variables of AgriCarbon-EO: CO-2 flux measure-

ments (i.e. NEE, GPP, Reco), DAM measurements over Elementary Sampling Units (ESU), and yield maps. A summary of the
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Figure 2. Map of the simulation area and image availability from 2016 to 2019. In "A": background the ESRI World Topo Map, the 31TCJ

Sentinel2 tile limits (red rectangle), land cover for winter wheat fields for 2017 (blue), location of the FR-AUR ICOS site, the Dry Above

ground Biomass (DAM) measurements (red circles) and the two fields monitored with connected combine harvester (CH) (orange circles).

The zoomed maps show the FR-AUR field and the fields monitored using combine harvesters. In "B": Chronogram of the remote sensing

dataset from Sentinel-2A (S2A), Sentinel-2B (S2B) and Landsat-8 (L8), over the 31TCJ tile for 2016 to 2019. The bar plots represent the

percentage of cloud-free pixels for each image.
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ID and characteristics of the aforementioned validation datasets is presented in Table ??. The validation datasets were extracted

from the database of the Environmental Information System maintained by the CESBIO laboratory (?).270

3.2.1 Validation against field scale CO2 fluxes and DAM measurements

The FR-AUR ICOS site provides many biophysical measurements, among which variables of interest regarding the carbon

budget GPP, Reco and NEE (FR-AUR C-Flux, Table ??). These variables allow us to assess the soundness of the representation

of CO− 2 fluxes caused by physiological processes in the model, as GPP represents photosynthesis and Reco
:
, the sum of plant

and soil respiration. Furthermore, NEE allows access to the representation of the biological part of the carbon budgetand275

:
.
:::::::::::
Furthermore, DAM is linked to carbon export (Equation ??) and NPP (Equation ??). As one of the requirements for the

ICOS certification is the homogeneity of the ecosystem, the measurements were considered to be representative of the field.

The DAM and CO− 2 flux measurements were acquired using the ICOS destructive biomass sampling protocol (?) and eddy

covariance (EC) flux tower measurements processed with EdiRe software (?), following the CarboEurope-IP recommendations

for data filtering, quality control, and gap filling (Table ??). The EC method consists of measuring the 3D wind fluctuations at280

20 hz using a high-frequency sonic anemometer and the CO− 2 concentration using a gaz
:::
gas analyser. The covariance is then

computed between the turbulent component of the vertical wind and the turbulent component of the CO− 2 concentrations (?).

The NEE was then partitioned into GPP and Reco using a formulation for croplands in ? adapted from (?). Depending on wind

speed and the intensity of the turbulence, a fraction of the direct measurements are not representative of the plot, and those

data points were filtered out during the processing and replaced with simulated values extrapolated from the environmental285

conditions. We maintained only daily data points where more than 50% of the information comes from real measurements,

as gap-filling over long periods induces high errors (?). The days when less than 50% of the information is provided by

measurements are represented in grey in Figure 3. Furthermore, it is also noticeable that the observed Reco in 2018-2019 dips

to zero during the vegetation growth period, which is related to an error in the partitioning process of NEE into GPP and Reco.

This period is also ignored for GPP and Reco and is represented in red in Figure 3.290

In this exercise, the daily outputs from AgriCarbon-EO at 10 m resolution were spatially averaged over the area of the FR-

AUR field (Equation ??) sampled by the EC tower (a.k.a. the target area in the ICOS nomenclature). Those averaged values

were then compared against FR-AUR DAM and FR-AUR C-Flux as shown in Figure 3, and the corresponding fitting statistics

are shown in Table ??. The statistics were computed for three specific periods, from the 1st Jan to the 1st May, the 1st May

to the 1st Jul, and the 1st Oct to the 1st Oct. These periods correspond to the growing and senescence of the wheat crop and295

the whole cropping year respectively. The GLAI fitting statistics computed over the growing season show a good fit (R2 =

0.95) in 2016-2017 with a slightly lower fit in 2018-2019 (R2 = 0.91). From mid-November 2018 until the end of January

2019, spontaneous regrowth of the previous crop (i.e., rapeseed) was observed in the field. The model does not reproduce this

GLAI dynamic, as this increase does not correspond to the wheat crop cycle. The GLAI for
::
the

:
2018-2019 senescence period

is underestimated by the model.300

Regarding observed as well as simulated DAM, end-of-cycle values are higher for the 2019 cropping year than in 2017,

which is consistent with regional yield statistics (?). additionally, the modeled aboveground
:::::::
modelled

::::::::::::
above-ground biomass
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Figure 3. Time series of GLAI, DAM, NEE, GPP and Reco. The blue line and surface represent the mean and standard deviation of the

posterior distribution. The orange points with error bars represent the GLAI derived from the satellite observations and the DAM, NEE, GPP,

and Reco at the FR-AUR site for two cropping years (2016-2017 and 2018-2019). In the case of the CO− 2 fluxes, the grey areas represent

the days during which more than 50% of the data are gap-filled, and the red area represents the periods during which a partitioning error has

been identified.

13



dynamics are consistent with the observed dynamics, apart from an overestimation of the simulation at the beginning of the

vegetation cycle in 2017. Note that replicates in 2016-2017 and 2018-2019 present a noticeable spread. In 2017, the dynamics

of the CO− 2 fluxes are well represented with most of the observed values in the uncertainty margin of the model with R2305

values of 0.87, 0.91, and 0.76 for NEE, GPP, and Reco, respectively. The model’s daily flux variations are slightly higher

than the observations in 2017. In 2019, the CO− 2 flux dynamics are less well reproduced, nevertheless with acceptable R2

values (above 0.7) over the full year. For the cropping year R2 was 0.77, 0.79, and 0.70 for NEE, GPP, and Reco respectively.

The modelled GPP values are significantly higher than the observed values during the growing period (bias = 3.31 gCm−2),

while the differences between the model and observations are less pronounced at the end of the vegetation cycle (bias = -0.87310

gCm−2).

3.2.2 Validation against spatialised DAM measurements

The ESU protocol allows the assessment of variables at decametric scales. Among those variables,
:
DAM is especially of interest

as it can be used as a proxy for NPP (Equation ??). Moreover, the exported yield can be computed using end-of-cycle biomass.

(Equation ??). To measure DAM with the ESU protocol, the above-ground vegetation is sampled at five points following a315

cross pattern inscribed in a 10 x 10 m square; each sample corresponds to one linear meter of the crop row. The five samples

are weighed fresh in the field. In the laboratory, one of the five samples is dried to retrieve the canopy water content, which is

then applied to the five fresh weight measurements to obtain dry above-ground biomass. The mean and standard deviation are

computed to obtain a representative DAM (gm−2) for the ESU. Eight fields were sampled using the ESU protocol in 2018 and

simulations were performed for each ESU (Supplemental Materials).320

Figure 4 shows the scatter plot between the simulated and observed DAM colored
:::::::
coloured with respect to the month

of acquisition for 8 fields with up to four revisits. The statistics corresponding to this figure are recorded in Table ??. The

comparison shows a good fit when considering all DAM measurements with an R2 of 0.94, an RMSE of 211.34 gm2 and a

mean overestimation of the model of 129 gm−2. These statistics represent the spatiotemporal fitting of the model.

When analysing the statistics per month, it is noticeable that most of the total bias is present at the early growth stages325

(in April) and the bias decreases over the growing season. The final DAM values linked to yield and carbon exports in July

have low bias, and we canexplain
:::
can

::::::
explain

:
61 % of the variability. In addition, a weaker correlation is present when the

data are split per month compared to the full dataset (Table ??). The variability in a given month is mainly due to the spatial

variability. Splitting the data thus enables us to assess the variability in the spatial and temporal components that are simulated

by AgriCarbon-EO. Given the small sample size, these monthly results should be interpreted with caution.330

3.2.3 Comparison with high resolution combine harvester yield maps

Yield maps are of high interest for the evaluation of high-resolution crop models in the context of carbon and precision farming.

They provide information on the grain yield that often represents the bulk of the carbon that is exported from the field. CH

are also the only readily available spatial and direct high-resolution crop organ monitoring tools. Nevertheless, they have

drawbacks because the mass flow sensor and the grain moisture content sensor can experience significant sensor drift within335
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Figure 4. Scatter plot of the simulated winter wheat dry aboveground
::::::::::
above-ground

:
biomass (DAM) versus the observed biomass in the

fields in 2018.

the field. Moreover, CH yield data processing requires a range of parameters such as lag time settings and distance travelled

via GPS measurements, header position, and cut width, all of which contribute to the uncertainty in the measurements (?).

In this study, yield CH data were provided by a farmer located in the Gers département. Data from two fields NAT-Plt3 and

NAT-Plt6 (Table ??), were collected by a CH that measures the incoming flow of grain, its humidity, and its position at a fixed

frequency with a GPS. These measurements were integrated between two points of the trajectory taking into account harvesting340

width to compute the grain production (yield) per surface area. The grain humidity content enabled the computation of the dry

yield mass (gm−2). The point yield data is then converted into a harvest map over the simulation grids by summing the points
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inside each pixel. A Gaussian smoothing filter with sigma = 12 m was then applied over these maps to reduce the aliasing

effects. The spatial anomaly (i.e. (value-mu)/sigma) maps were also computed. To complete the processing, the colocalization

error between observations and AgriCarbon-EO yield estimates was minimized through the detection of the maximum spatial345

correlation in a 10 m lateral shift range.

The simulated yield maps were obtained from the ACEO-S2L8-Pixel simulation by multiplying the final DAM by HI (Equa-

tion ??). We analysed the results in terms of the retrieval of the spatial patterns as shown in Figure 5. These maps show the

comparison between the CH yield data and the AgriCarbon-EO yield estimates at the pixel level in tha−1 as well as the spa-

tial yield anomaly. Overall the observed yields show a larger variability than the simulations and a clear saturation effect is350

observed in the simulations for the NAT-plt6 field. The AgriCarbon-EO and CH anomaly maps show clear spatial patterns.

However, the spatial patterns are more pronounced over the NAT-Plt3 field than over NAT-Plt6. RMSEs of 0.70 and 0.68

tha−1, biases of 0.42 and 0.41 , and R2 values of 0.12 and 0.29 are observed for NAT-Plt3 and NAT-Plt6, respectively. The

performances of the yield simulations vary strongly between the two fields. A relatively low RMSE and bias indicate a quite

good mean representation of the plots. However, the correlation coefficient is quite low and indicates that not all the spatial355

variability in yield can be captured using this approach. The small R2 can however be explained by the range of variation in

wheat yield that is smaller at
:::
the

:
intra-field scale than regional scale. In fact, maximum R2 values of

::::::::
Maximum

:::
R2

::::::
values

::
for

:::::
these

:::::::
datasets

:::
are

:::::
found

::
to

::
be

:::::::::::
respectively 0.32 and 0.22 are found when assuming an observation measurement error of 1

tha−1 (Supplemental Materials). Furthermore, if we compare these simulations to standard fieldwise simulations that do not

explain spatial variability, the explained spatial variance illustrated here is a net gain. Difficulties in reproducing the range of360

yield observed variations in yield values may be caused by the simple representation of grain biomass allocation through the

use of an HI which does not take into account potential variations in the HI due to nutrient availability or crop cycle duration

(?).

Figure 5. Yield maps and spatial anomalies simulated by AgriCarbon-EO and collected using a combine harvester over the Nataïs site

(NAT-Plt3 and NAT-Plt6) for 2017 and 2019.
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3.3 Large scale simulation outputs

In this section, the results from the ACEO-S2L8-Pixel in 2017 are illustrated and analysed. The RPG land cover map for winter

wheat fields, the SAFRAN weather data, and the THEIA S2 and L8 EO data were used as input along with the parametrization

files for PROSAIL and SAFYE-CO2. The AgriCarbon-EO processing chain was run in parallel over a single server rack with

2 computation nodes and with 36 threads max. The memory requirement was the highest for the PROSAIL retrievals, reaching

5 Gb per process (image inversion) for a LUT size of 5000. For SAFYE-CO2 the requirements were 5 Gb per process with one

process per node of the weather grid with a LUT size of 5000. A SAFYE-CO2 run over the 110 x 110 km area of study at 10 m

resolution required 4 hours of computation time per year of simulation. The chain was able to produce maps of all parameters

and variables estimated by SAFYE-CO2. With the carbon budget being our main priority here, we chose to focus on NEP, DAM

at the end of the vegetation cycle, Cexport (Equation ??), and NECB (Equation ??). The NEP was computed by summing NEE

over one cropping year from 1stOct2016to30thSep2017.MapsofNEP,Cexport,andNECBatnativeresolution(10m)areshowninFigure??(A)asanillustrationoftypicaloutputsfromthechain.ThehistogramsofthesamevariablesandtheiruncertaintyareshowninFigure??(B).Notethat, inthesefigures,wepresentedNEPandNECBinthesoil−

orientedconvention(i.e.,positivevaluesmeannetCO− 2fixationandsoilorganiccarbonstorage,respectively)tobeabletocomparethevaluesofNEP,Cexport,andNECB.

High levels of heterogeneity with regional patterns can be seen in the retrieved simulations. The northwestern and south-365

eastern corners are characterized by higher CO2 fixation and thus growth, yield, and lower NECB. The variability of NEP is

mostly comprised between 300 and 700 gCm−2, which is consistent with eddy covariance measurements for wheat across

Europe (?). Furthermore, the dry yield varies between 6.6 tha−1 (i.e 300 gCm−2) and 10 tha−1 (i.e., 450 gCm−2), which

is also coherent with regional statistics (?). In Figure ?? negative values of NEP and NECB correspond to pixels where wheat

did notdevelop
::
not

:::::::
develop. In those cases, Rh dominates during the cropping year, leading to a net carbon loss in the soil.370

The uncertainty, (i.e. standard deviation of the posterior distribution) has mean values of 55, 25, and 38 gCm−2 for NEP,

Cexport, and NECB, respectively. The spatial variability (i.e. standard deviation of the mean pixel values ) is equal to 131, 50

and 82 gCm−2 for those same variables. The fact that the uncertainty is lower than the retrieved spatial variability indicates

that this method has enough resolution to discriminate and ordinate values of NEP, Cexport, and NECB based on the update

of priors using remote sensing-based GLAI. However, the fact that those values are on the same order of magnitude stresses375

that uncertainty assessments should always be provided with these analyses. The maps and distributions, given their scale and

resolution, do not showcase the full range of crop variability that can be observed in the study area. To illustrate individual

solutions and anomalies encountered in the simulations selected pixels of interest (POIs, located in Figure 2) are presented in

Figure 7 .

These pixels are selected to illustrate intrafield heterogeneity and specific anomalies. Figure 7 (a-e) shows in green the380

GLAI inverted using PROSAIL with their respective uncertainties, and the simulated GLAI time series in red with a higher

transparency for the solutions with the lowest contribution (likelihood). For instance, the results in Figure 7 (a) POI-00 and (b)

POI-01 show the fitting of the model over two pixels in the same field. It is clear from the observed and the GLAI between the

two POIs that the vegetation phenology is different, with early emergence and higher maximum GLAI in the case of POI-00

(a) and later emergence and lower maximum GLAI in the case of POI-01 (b). Additionally, Figure 7 (c) POI-02 and (d) POI-385

03 are adjacent pixels in the same field, but each is on a different side of a cloud mask in May 2017. The input GLAI from
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Figure 7. Time series of GLAI, and radar plots containing the free parameters of SAFYE-CO2. Simulations are represented in red with a

transparency proportional to their relative likelihood and the maximum likelihood simulation is represented in blue dashed lines. POI-00 (a)

and POI-01 (b) are located in the same field. POI-02 (c) and POI-03 (d) are adjacent pixels where a cloud date is not filtered in (d). POI-04

(e) illustrates either an error in the CAP declaration or a failed wheat crop followed by a summer crop .

PROSAIL on this date is associated with very low uncertainty, which impacts the retrieval of the SAFYE-CO2 model. The

low uncertainty will result in a high level of false information for this date, which In turn will negatively impact the Bayesian

inversion and reduce the SAFYE-CO2 model performances, thereby pushing the model to better fit this unrealistic inversion

of GLAI. Finally, Figure 7 (e) POI-04 corresponds to a pixel in a field where the observed GLAI is not consistent with winter390

wheat; in fact, this GLAI dynamic fits better to a summer crop such as sunflower. Mislabeling in the land cover such as this

one can result in “no fitting”. Mislabeled winter crops could, however, be fitted and not stand out in the spatialized simulation.

18



3.4 Impact of the spatial resolution and temporal sampling of assimilated GLAI

The AgriCarbon-EO simulations (Table ??) were compared at different scales (i.e. pixel vs. field) and for different satellite

image temporal densities to investigate the benefit of assimilating high-resolution multimission derived GLAI into SAFYE-395

CO2. The impact of the spatial scale of the GLAI assimilation is illustrated by Figure 8 (a), which shows the histogram of

(DAM-ACEO-S2L8-Pixel - DAM-ACEO-S2L8-Field). An average negative bias of -47 gm−2 is observed for DAM with a

spread between -210 gm−2 and +120 gm−2 for the [-sigma,+sigma] interval when comparing the pixel scale simulation to

the field scale simulation. This result is interpreted as the bias error that can be avoided by applying an intrafield assimilation

scheme in the crop model in contradiction to the more generally applied field scale. Note that the same bias value is obtained400

for Figure 8 (b), representing the difference between the averaged pixel at field scale and the field scale simulations: (DAM-

ACEO-S2L8-Mean - DAM-ACEO-S2L8-Field). This is mathematically expected as DAM-ACEO-S2L8-Mean is obtained by

averaging the DAM-ACEO-S2L8-Pixel simulations. However, when comparing the RMSE values between Figure 8 (a) and

(b) a noticeable change in RMSE of -68 gm−2 is observed. This result shows that the variability of simulated biomass will

decrease by 39 % when considering field-scale modelling. The variability is directly influenced by the retrieved parameters405

of the crop model between the intrafield and field scales for the same crop cycle; resulting in a different posterior parameter

distribution, as shown in the section above. Figure 8 (c) shows the difference between a simulation using only S2 and using

S2 + L8. Adding L8 images tends to slightly increase dry biomass, with a bias of 30 gm−2 and an RMSE of 94 gm−2. This

difference is caused by the additional samples added at the start and end of the vegetation cycle that result in a change in the

length of the vegetation cycle.410

Figure 8. Histogram (left y-axis) and cumulative density function (right y-axis) of the bias of biomass at harvest (y-axis). (a) corresponds

to (DAM-ACEO-S2L8-Pixel - DAM-ACEO-S2L8-Field), (b) (DAM-ACEO-S2L8-Mean - DAM-ACEO-S2L8-Field) and (c) (DAM-ACEO-

S2L8-Pixel - DAM-ACEO-S2-Pixel).

To assess the robustness of the assimilation approach given a variable
::::
with

::::::
respect

::
to

:::
the number of assimilated images, the

DAM outputs from ACEO-S2L8-Pixel were analysed in terms of the number of images over each pixel. Figure 9 shows the

impact of the number of GLAI observations per pixel on mu and sigma of the DAM. sigma of DAM decreases by approxi-

mately 66 % with the number of observations (146 gm−2 for 11 images to 48 gm−2 for 28 images) while the mu DAM values
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remain stable. This illustrates the stability of mu values given the range of variation of observed images. However, the decrease415

in sigma also illustrates the contribution of the number of images to the constraining of solutions and increased accuracy.

Figure 9. Violin-plots of the number of images used for the inversion over each pixel on the x-axis and the mean (mu) DAM on the right

y-axis and the standard deviation (sigma) of DAM on the left y-axis.

4 Discussion

4.1 Quality
:::::::::
Accuracy of carbon budget component retrieval

To contextualize the performance of the retrieval

:::
The

::::::::::::
performances

::
of

:::
our

::::::::
retrievals of the carbon budget components simulated by AgriCarbon-EO, we compare the results

obtained in our study against recent and relevant studiesthat evaluate at least one of the components that are showcased in

this study. Concerning the evaluated variables, the performances are in the range of the scores observed in previous validation

exercises
::
are

:::::
here

:::
put

::
in

:::
the

:::::::
context

::
of

:::::::
relevant

:::::::
studies.

:::
In

:::
the

:::::::
previous

:::::::::::
applications

::
of

::::::::::::
SAFYE-CO2,

::::
(?)

::::::::::
implemented

:::
an

::::::
iterative

::::::::
retrieval

::::::::
algorithm

::
at
::::

the
::::
field

:::::
scale.

::::
This

:::::::::
algorithm

::
is

:::
not

:::::::
scalable

:::
for

::::::::
intrafield

::::::::::
simulations

:::
at

:::
the

:::::::
regional

:::::
scale

:::
and

::
it

::::
does

:::
not

:::::::
provide

::
an

::::::::
estimate

::
of

:::
the

:::::::::
associated

::::::::::
uncertainty.

:::::
Their

:::::::::
validation

::::::::
exercises

:::
for

:::::
wheat

:
with SAFYE-CO2 at

the field scale (?). When compared to other models,
::::
over

:::
the

::::::::
FR-AUR

:::::::::
flux-tower

:::::::
showed

:::
an

:::
R2

::::::
ranges

::
of

:
[
:::
0.78

:
,
:::::

0.90]
:
,

[
:::
0.82

:
,
:::::

0.94]
:
,
:::
and

:
[
:::
0.58

::
,
::::
0.84]

::
for

::::::
NEE,

::::
GPP,

::::
and

:::::
Reco,

:::::::::::
respectively.

::::
The

::::::
results

::::
from

::::
our

:::::
study

:::
are

::
in

:::
the

:::::
same

:::::::
ranges,

:::::::::
considering

:::
the

::::
two

::::::
studies

::::::
address

::::::::
different

::::
years

::::
and

:::::::
different

:::
EO

::::
data:

:
[
::::
0.77,

:::
0.87]

:
, [

:::
0.82

:
,
::::
0.87],

:
[
::
0.7

:
,
::::
0.76]

::
for

:::::
NEE,

:::::
GPP,

:::
and

:::::
Reco,

::::::::::
respectively.

::::
The

:::::::::::::
implementation

::
of

:::
the

::::::::
BASALT

::::::::
algorithm

:::::
while

::::::::
enabling

:::::::::
uncertainty

::::::::
estimates

:::
for

::::::::::::
regional-scale

::::::::::
applications,

::::
does

:::
not

:::::
come

::
at

:::
the

:::::::
expense

::
of

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
retrievals.

:::::
Other

::::::
studies

:::::::::
addressed

:::
the

::::::::
estimates

::
of

::::
NEE

::::
and

::::
GPP.

:
? constrained the WOFOST agronomic model with

:
at
:

25 km resolution
::::
using

:
yield and sowing date data

::::
dates, over 3

ICOS sites comparable to FR-AUR, across Europe. This dataset represents
:::
and 10 site-year combinations in total

::
site

:::::
years.
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They obtained R2 values ranging from [0.64 to
:
, 0.74], and RMSE values ranging from

::
of [2.33 to ,

:
2.67] gm−2 for NEE over

wheat fields. The values we retrieved for FR-AUR (Table ??) are higher regarding R2 and on the low end of values obtained

for RMSE
::
are

:::::
better

::::::::
regarding

:::
R2

:
[
::::
0.77 , indicating the potential added value of high-resolution agronomic diagnostics. In the

same study, GPP was also evaluated and
:::
0.87]

:::
and

::::::
RMSE

:
[
::::
1.68

:
,
::::
2.36]

:
.
:::
(?),

::::
also

:::::::
obtained

:::
an R2 and RMSE values going from

[0.82 to ,
:

0.87and ]
:::
and

:
[2.33 to ,

:
2.83 gm−2were found]

:::::
gm−2

:::
for

::::
GPP,

::::::::::
respectively. The R2 retrieved from AgriCarbon-

EO is slightly higher [
::::
0.82

:
,
::::
0.87], and the RMSE was in the same range for 2019 and lower for 2017. The GPP was also

analysed using WOFOST at 25 km resolution by assimilating GPP values derived from the MODIS satellite’s observations

in ?. In this study, the GPP values were evaluated over 2 years against a flux tower measurement site in Oklahoma (USA).

They obtained R2 values of 0.87 and 0.67 and RMSE values of 2.26 and 3.25 gm−2 in 2015 and 2016, respectively. These

values are in the same range as the GPP retrieved by AgriCarbon-EO. The Reco is rarely evaluated by models
::::
Reco

::
is
::::

not

:::::::::::
systematically

:::::::::
addressed

::
in

:::
the

::::::::
modeling

::::::::
exercises, as it implies simulating

:::::::
requires

:::::::::
simulating

:::
the plant and soil processes

simultaneously. ? retrieved Reco with R2 values ranging from
:
of
:

[0.76 to
:
, 0.83] and RMSE values ranging from

::
of

:
[0.98

to
:
, 1.29] gm−2. The R2 obtained with AgriCarbon-EO is slightly lower [

:::
0.70

:
,
:::::

0.76]
:
, and the RMSE slightly higher [

::::
1.13

:
,
::::
1.29]

::::::
gm−2)

:
than in (?) for Reco. ?, cited before, also evaluated DAM time series measured at the same flux tower site

with RMSE= 121 and 81 gm−2 and R2 =0.94 and 0.93. These statistics concern the whole cropping cycle and can thus

be compared against Table ?? for the “all” item and the DAM statistics regarding FR-AUR 2017. AgriCarbon-EO shows a

similar variation as in ?. In ?,
:::
The

::::
Reco

:::::::::
estimates

::::::
depend

:::
on

::
Rh

::::
and

::::::
Rauto.

:::
We

::::::::::
recommend

::::
that

:::
Rh

:::::
should

:::
be

::::::::
enhanced

:::
by

::::
using

::
a
:::::
more

::::::::
complete

:::
soil

:::::::
module.

::::
This

:::::
point

::
is

:::::::::
addressed

::::
later

::
in

:::
this

::::::::::
discussion.

::
In

:::::::
addition

:::
to

:::::
NEE,

::::
GPP

:::
and

::::::
Reco,

:::
the

::::
other

::::::::::
components

:::
of

:::
the

::::::
carbon

::::::
budget

:::::::
involve

:::
the

:::::::
biomass

::::
and

::::
yield

:::::::::
estimates

:::
that

:::
are

::::::
either

:::::::
exported

::::
out

::
of

:::
the

::::
field

:::
or

::::::::
integrated

::::
into

:::
the

::::
soil.

:::
(?)

:::::::::
assimilated

:
in-situ LAI is assimilated into the LINTUL5 crop model using NIS. The estimations

of DAM obtained
::::
Their

:::::
DAM

:
at maturity (BBCH 99) were compared against field measurements collected on 14 plots

located in the Netherlands, northern France, and Germany (from 40 to 60 in-situ sampling points representative of
:::::
points

::::
over

1 m2),showingameanRMSEof246gm−2andameanbiasof58gm−2.TheseresultscanbecomparedtotheThe
:::

end−of−

cyclebiomassmeasurementsretrievedusingAgriCarbon−EOthatyieldsimilarperformancesshowssimilarperformances(RMSE = 222gm−2andBias= 17gm−2)while
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

usingGLAIderivedfromsatellitemeasurementsinTable??.Regardingyield,whichisoftenthemainfocusofstudiesonagronomicmodelling,morereferencesareavailable.Amongthese,?, retrievesameanRMSE = 170gm−2,Bias=−27gm−2and? (seeTable??).(?)
::::::::::::::

presentsameta−
analysisof76studiesusingtheAPSIMmodel, thatwhich

:::::
isbroadlyusedforwheatyieldsimulationsforwhichtheconclude.Theyfind

:::::::::
thatanRMSE =

100gm−2isexpectedforapplicationsofthismodel
::::::::::::::::::::::::

.TheRMSEretrievedbyAgriCarbon−EOisinthesamerangeorder
::::

asthesestudies.However,foramoreaccurateevaluationofwheatyieldperformance,alargernumberofyieldmapswithalargerrangeofvariationshouldbeanalysed,andbettermodellingofyieldneedstobeintegratedasthecurrentversionisbasedonasimplemultiplicativeharvestindex.

To summarize, the AgriCarbon-EO processing chain allows the retrieval of the carbon budget components with performances420

that are close to or better than existing state-of-the-art evaluations. Nevertheless, the performance of AgriCarbon-EO should be

evaluated in other pedo-climatic conditions by taking advantage in particular of the data provided through the regional Fluxnet,

ICOS, and Ameriflux networks to confirm this statement.

Furthermore, not needing input data such as crop calendars, cropping practices, or variety-specific information for simulating

the biomass and
:
(
:::::::
RMSE=

:::::
60-70

:::::::
gm−2).

::::::
While

:::
the

::::::::
estimates

:::
are

::::::::::
reasonable,

:::
we

::::::::
consider

:::
that

::::
the

:::
use

::
of

::
a
:::::
direct

:::::::
harvest425

::::
index

:::
to

::::::::
determine

:::::
yield

::::
may

::::::
present

:::::
some

:::::::::
limitations

:::::
more

:::
so

::
in the CO− 2 fluxes makes this approach unique. However

to calculate the NECB, farmer data relative to organic amendments and straw harvesting are needed. It is also notable that

most
:::::::
presence

::
of

:::::::
extreme

::::::
events

:::::
during

:::
the

:::::
grain

::::::
filling.

::::
Our

:::::::::::::
bibliographical

:::::::
research

::::::
yielded

:::
no

:::::
other

::::::
studies

::::
that

:::::::
perform
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::::
crop

::::::
growth

:::::::::
simulations

::::
and

:::::::::
estimation

::
of

:::
the

::::::
carbon

::::::
budget

::::::::::
components

::
at

:
a
:::::::::
decametric

:::::::::
resolution

:::::
while

:::::::
covering

::::
very

:::::
large

:::::
areas.

::::
Most

:
of the studies cited here perform low-resolution analysis in plains, where the spatial variability is expected to be430

low. The same approaches may be penalized when applied to areas with high spatial variability, such as the hilly countryside

in southwestern France. Our bibliographical research yielded no other studiesthat perform simulations that are specific to crop

growth at a decametric resolution using agronomic models of the previously mentioned variables while covering large areas

in the 100 by 100 km range
:::::
When

:::::::::
compared

::
to

:::::::
existing

::::::
studies,

:::
we

::::
find

::::
that

:::::::::::::
AgriCarbon-EO

::::::
allows

:::
the

:::::::
retrieval

::
of

:::
the

:::::
main

:::::
carbon

::::::
budget

::::::::::
components

::::
with

::::::::::::
performances

:::
that

:::
are

:::::::
close-to

::
or

:::::
better

::::
than

:::::::
existing

::::::::::::
state-of-the-art

::::::::::
evaluations.

:::
An

::::::::
extended435

:::::::::
application

::
of

:::::::::::::
AgriCarbon-EO

::::
over

::
a

::::::
variety

::
of

:::::::::::
pedo-climatic

:::::::::
conditions

::
by

::::::
taking

::::::::
advantage

::
in

::::::::
particular

:::
of

::
the

::::
data

::::::::
provided

::::::
through

:::
the

:::::::
regional

:::::::
Fluxnet,

::::::
ICOS,

:::
and

:::::::::
Ameriflux

::::::::
networks

:::
will

::::
help

::
in
::::::::::
confirming

:::
this

::::::::
statement.

4.2 Multimission
::::::::::::
Multi-mission

:
data, cloud cover, and limitations

The retrieval of SAFYE-CO2 parameters and of the carbon budget components in AgriCarbon-EO relies on the accuracy

and availability of EO data, which is
:::
can

::
be

:
hampered by errors in image colocation

:::::::::
co-location, atmospheric corrections, the440

presence of clouds, and cloud shadow correction. Many studies show that these effects have an important impact on agricultural

remote sensing applications such as yield estimation (?), land cover (?), and superficial soil carbon content mapping (?). In

our study, we show
:::::
While

:::
we

:::
find

:
that these effects are

::
in

:::
the

::::
large

::::::::
majority mitigated through the use of a Bayesian approach

in a multitemporal context because the uncertainty in the EO-derived GLAI is accounted for in the assimilation process. Our

approach shows that increasing the number of observations does not strongly impact the mean DAM values, but increases445

its uncertainty by approximately 66 %. Nevertheless, unfiltered
::
for

:::
the

:::::
GLAI

:::::::::::
assimilation,

:::
we

::::::::
identified

::::::::
examples

::::::
where

:::
the

:::::::
retrieval

::
of

:::::
GLAI

::
is
:::::::::

associated
::::
with

::
a
::::
low

:::::::::
uncertainty

:::::
when

::::::
clouds

:::
or

:::::
cloud

:::::::
shadows

:::::::
persist.

::::::::
Unfiltered

:
clouds or the lack

of images
::
can

:
significantly impact the simulations locally (Figure 7 (c)). This means that improvements in cloud detection

algorithms will highly benefit our approach (?). The
::::::::::::
Consequently,

:::
the analysis of GLAI time series to detect anomalous

variations (Figure 7 (d)) could also be an option to filter clouds. Furthermore, the
:
or
::::::::::::
improvements

::
in

:::::
cloud

::::::::
detection

:::::::::
algorithms450

:::
like

::
in

::
?
:::::
would

::::::::
improve

:::::
GLAI

:::::::::
inversions

::
in

::::::::::::::
AgriCarbon-EO.

::::
The

:
use of additional data from Landsat-8

::
L8

:::::
with

:
a
:::::::
coarser

:::::
spatial

:::::::::
resolution

::::
than

:::
S2 enhanced the simulation quality for our region of interest. Finally, additional optical or even

:::
The

::::
most

::::::
notable

::::::
impact

::::
was

:::
the

::::::::
reduction

::
of

:::::::::
uncertainty

::::
due

::
to

:::
the

::::::::
increased

::::::::::
constrained

::
by

:::
the

:::::::::
additional

::::::
images.

:::
An

:::::::::
additional

:::::
option

::::::
would

::
be

:::
the

:::
use

::
of
:::::

daily
:::::::::::::
high-resolution

::::::
optical

::::
data

::::
from

::::::
Planet

::::
Labs

::
at

:::::
<5m.

::::
Still,

:::::
there

::
is

:
a
::::
limit

::
to
:::
the

::::::::
addition

::
of

:::::
optical

:::::::
images

:::::
when

:::::
clouds

:::
are

::::::::
persistent

::::
over

:::::
long

:::::::
periods,

:::::
which

:::
are

::::
most

::::::::
frequent

::
in

::::::
tropical

:::::
areas.

:::
In

::::
these

::::::
cases,

:::
the

:::
use455

::
of biophysical variables retrieved from synthetic aperture radar

::::::::
Synthetic

::::::::
Aperture

:::::
Radar

:
(SAR) satellite data could mitigate

the loss of data due to cloud cover in northern and coastal regions (??).
:::
(??).

::::
This

::::
can

::
be

:::::::
achieved

:::::::
through

:::
the

:::::::
relation

:::::::
between

::
the

::::::::::::
above-ground

:::::::
biomass

::
of

:::::
crops

::::
and

:::
the

:::::
Radar

::::::::::
polarization

::::
ratio

::
or

:::::::::
Vegetation

:::::
Index

::::::
(RVI).

::::
This

::::::
would

:::::
imply

:::
the

:::
use

::
of

::
a

:::::::::::
multi-variable

::::::::::
assimilation

:::::::
scheme

:::
that

::::::::
considers

::::::
GLAI

::::
from

::::::
optical

:::
and

:::::
DAM

:::::
from

:::::
SAR.

::::
This

:
is
:::::::
feasible

:::::
using

:::
the

::::::::
BASALT

::::::
scheme

::
in

:::::::::::::
AgriCarbon-EO

:::
as

:::
the

:::::::
Bayesian

:::::::::::
assimilation

::::::::
algorithm

:::
can

::
be

::::::
easily

::::::
adapted

:::
for

::::::::::::
multi-variable

:::::::::::
assimilation.460
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4.3 Impact of remote sensing and input spatial-resolution

Intrafield heterogeneity is a well-established issue in agricultural applications (????). However, it has not been thoroughly

treated in terms of CO-2 fluxes and uncertainty estimates. In this paper, we argue that reliable and accurate estimates of DAM

and CO-2 fluxes in support of carbon budget component monitoring require intrafield scale estimates. Our results show that by

assimilating mean-field level GLAI products in SAFYE-CO2 a bias of -47 gm−2 and an artificial relative uncertainty decrease

of 39 % on DAM will be induced compared to assimilating high-resolution GLAI and calculating the mean of the model’s

output. High
:::
The

::::
high

:::::
spatial

:
resolution thus allows more accurate estimates of the mean DAM values at the field scale, which

in turn also enables more accurate field-scale estimates of SOC changes by soil models. Nevertheless, the use of even higher-

resolution remote sensing data may be relevant to address carbon budget components at very small or elongated fields, such

as those in rural India (?).
:::
For

::::::::
example,

::::::
current

::::
data

::
at

::::
<5m

::::::
spatial

:::::::::
resolution

::::
from

::::::
Planet

::::
labs,

:::::::::
mentioned

::::::
above,

::
or

::::::
future

:::
data

:::::
from

:::::::::::::
next-generation

::::::::
Sentinel-2

::::
NG

::::::::::
constellation

::::
can

:::::
extend

:::
the

:::::::::::
applicability

::
of

:::::::::
approaches

::::
like

:::::::::::::
AgriCarbon-EO

::
to

:::::
small

:::::
fields. The other input data products that drive the spatial resolution of the AgriCarbon-EO outputs are the land cover and the

weather data. While the land cover is available at an adequate resolution (i.e. field sale), it is error-prone, either because of

erroneous CAP declarations (?) or because of classification errors when EO-based land cover maps are used (?). Interestingly,

our results show that when a mismatch occurs, the fields in question exhibit high anomalies in retrieved parameters and are

thus detectable. For the weather forcing, the current application was based on the Météo-France 8 km resolution Safran data,

which provides reasonable accuracy over France (?). Currently, ECMWF provides ERA5-Land at 0.1° resolution globally (?),

and NOAA provides weather reanalysis at 3 km over the US (?). In the future, the coverage and resolutions of weather-forcing

data are expected to increase (i.e. ERA6 at 2.5 km). Increasing the resolution of the weather forcing in AgriCarbon-EO would

provide better spatial information but would also increase the computational demand by a factor of γastheLUTforSAFY E−
CO2isgeneratedovertheweathergrid(Equation??).TLUTistheprocessingtimeforthegenerationofLUTandθistheweathergridresolutioninkm.

4.4 Limitations of the Bayesian and physically based approach

While the components of AgriCarbon-EO have been tailored to the requirements mentioned in the introduction (large scale,

high resolution, uncertainty estimates, and biophysical processes), we have shown limits for each of them. For instance, the

BASALT Bayesian approach can be sensitive to an erroneous observation associated with low uncertainty (Figure 7 d). A465

trade-off must be made between the variability of
::::
range

:::::::
covered

:::
by the generated solutions , and the number of LUT entries

::
in

::::
order

:
to maintain computational efficiency. A solution could be to consider a joint distribution for prior parameters to propose

a better ratio of appropriate solutions (?). On the one hand,
:::::::
Another

::::
point

::
is
::::
that

:::
the radiative transfer modelling is constrained

by the spectral library database (?), which may not reflect ground conditions such as the presence of weeds impacting GLAI

retrievals. On the other hand,
::::::
Another

:::::::::
limitation

::
is

::::
that the crop model predictions will depend on

::::::
require

:::::::::::::
crop-dependent470

fixed and prior parametersof a given crop. Alternatively, we
:
.
:::
As

::
an

:::::::::
alternative

:::::::
solution

::
to

::::::
bypass

:::::
some

:::::::::
limitations,

::::
one could

have reverted to machine learning approaches that have gained popularity for precision agriculture and soil carbon farming

applications (?). However, while they are powerful tools, they need a large amount of training data to take into account climatic
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conditions and management practices and need to be updated regularly as we encounter unprecedented weather conditions.

Hybrid solutions such as AgriCarbon-EO that combine parsimonious process-based modeling
:::::::::
modelling and remote sensing475

approaches are thus needed. In the current state, it is reasonable to consider that an MRV platform for SOC carbon stock

changes should include an ensemble of approaches with varying levels of complexity (e.g. Tier 1,2 and 3) (?), similar to what

has been implemented in the IPCC approaches (?). In this framework, AgriCarbon-EO is designed to be a Tier 3 MRV approach

for crop carbon farming.

4.5 From AgriCarbon-EO to SOC budget480

The present approach provides high-resolution estimates of key carbon budget components and estimation
:::::::::
estimations

:
of

NECB and SOC variations. To achieve this, the SAFYE-CO2 crop model currently uses a simplified soil respiration module

that simulates Rh without modelling
:::
that

:::::::
doesn’t

::::::
include

:::
the

::::::::
modelling

:::
of

::
the

:::::::::
processes

::
in the different carbon pools in the soil

(
:::
e.g.

:::::::::::
humification,

:::::::::::::
mineralisation)

:
(Equation ??). This methodology is adapted for short-term assessment of carbon budgets

(typically up to one year) (?). This means that stock-dependent soil processes that affect SOC mineralization
::::::::::::
mineralisation485

and litter humification that may cause priming effects are not accounted for here. The inclusion of a soil carbon decomposition

module, as in ?, that includes such processes would allow a better representation of soil respiration and account for the effect

of amendments with different decomposition dynamics. Such an exercise, would however increase the number of parameters

and create the need for the addition of in situ or spatial map datasets
:::::
in-situ

:::
or

::::::
spatial

::::
maps

:
to provide initial soil carbon

content, soil chemical characteristics, and organic amendment information. Procurement at a large scale of such information490

with sufficient accuracy is still challenging for large-scale applications. One way of achieving this is to take advantage of the

rapidly developing Farm’s Management Information Systems (FMIS) and enhanced soil property maps through digital soil

mapping (DSM). Even though farmer activity data are not easily accessible, it is expected that this limitation will be reduced

with the development of soil carbon farming policies (such as the Label Bas Carbone in France) and auditing schemes (?).

Such data exchange would have a dual positive effect, provided that adequate soil sampling protocols are applied. The SOC495

data would increase the size of existing datasets available for validation and verification of tools like AgriCarbon-EO, and at

the same time, approaches such as AgriCarbon-EO may provide optimal sampling strategies for the estimation of SOC stock

changes for carbon auditing.

5 Conclusion

The main aim of the paper is to present the AgriCarbon-EO processing chain that assimilates remote sensing data into the500

PROSAIL radiative transfer model and the SAFYE-CO2 crop model to estimate key carbon budget components of crop fields

at high resolution and regional scale. AgriCarbon-EO was designed to cover essential features to comply with the monitoring

component of the MRV systems for cropland carbon budget (??):
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1. Provide a scalable solution, which is of major specification in the design of AgriCarbon-EO. The proposed assimilation

scheme has been constructed to prevent the time-related drawbacks of iterative methods while enabling easy integration505

of additional information.

2. Provide the component of the carbon budget (biomass and carbon fluxes) with their associated uncertainties. The uncer-

tainty of the model’s variables is estimated using an innovative Bayesian approach labelled
::::::
labeled BASALT.

3. Estimate the carbon budget at intrafield resolution. High-resolution modelling is enabled by the assimilation of EO data

at a 10 m resolution, which is a coherent resolution with verification data and provides the means to determine optimal510

in-situ soil and vegetation sampling.

4. Propose a preoperational
:::::::::::::::
readily-operational

:
tool, that uses and facilitates access to

:::::::::
seamlessly

::::::::
integrates remote sensing,

weather, and ancillary data in an end-to-end processing chain.

The paper details the mathematical concepts and the algorithm behind the AgriCarbon-EO processing chain. The use of a

noniterative
::::::::::::
implementation

:::
of

::::::::
BASALT,

:
a
:::::::::::
non-iterative Bayesian NIS methodology(BASALT) in ,

::::::
within AgriCarbon-EOhas515

enabled to overcome high computational needs,
::::::
allows

::
to

:::::::
address

:::
the

:::::::::::
considerable

::::::::::::
computational

:::::::::::
requirements

:::::::::
effectively.

Validation and analysis have been performed using an application over winter wheat crop in South-West France. Our results

show that when validating the simulations against flux tower measurements, we find that the new inversion approach (BASALT)

produces reliable estimates of CO− 2 fluxes (NEE, GPP, and Reco) and performs similarly to SAFYE-CO2 in previous studies

while providing uncertainty estimates. Our estimates for DAM are close to the observations while the validation exercise for520

yield is less conclusive due to the small range of yield values, the uncertainty of the CH’s data and processing, and/or the use

of a HI to estimate yield that may not account for essential drivers of yield. Our analysis of the impact of the number of remote

sensing acquisitions shows a reduction in uncertainty of 66 % when full S2 and L8 data are available, while the median retrieved

NEE and DAM remained the same. This points to the stability of the method in this range of satellite observation availability.

Furthermore, we find that the assimilation of field scale GLAI products induces a bias on the DAM from -120 to 210 gm−2 and525

a reduction in the DAM interfield
::::::::
inter-field

:
variability of about 39 % compared to pixel scale assimilation. Based on this, we

argue that an intrafield scale quantification of the carbon budget components NECB is preferable as this resolution provides 1)

coherent spatial information with soil samples. 2) the means to provide better sampling strategies for soil and plant monitoring

approaches. Further applications of AgriCarbon-EO will enable the extension of such analysis to other crops, cover crops, and

climatic conditions. Several limitations were identified in the discussion about AgriCarbon-EO. Primary enhancement should530

concern the addition of a soil carbon pool model into the soil module to take into account long-term changes in the carbon

stock, the integration of information from farm management databases (FMIS) to better account for organic amendments and

to configure the carbon exports, and finally enhancing the accuracy of the assimilation scheme by integrating additional remote

sensing data such as SAR. Finally, from the broader perspective of agronomic modelling, it should be noted that AgriCarbon-

EO can also provide variables related to the water cycle such as soil moisture, evaporation, transpiration, and drainage. It can535

thus be envisioned as a coherent agronomic decision support tool for yield, phenology, carbon, and water fluxes.
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