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Abstract. Soil organic carbon storage is a wel-identified-well-identified climate change mitigation solution. The-extensive
in-situ-monitoring-An extensive quantification of the soil carbon storage in cropland for agricultural policy and offset carbon

markets is-prohibitiveusing in-situ measurements would be excessively costly, especially at intra-field-the intrafield scale. For
this reason, comprehensive Monitoring; Reporting-and-Verification-monitoring, reporting, and verification (MRV) of soil carbon
and its explanatory variables at targe-seale-needs-a large scale need to rely on remote sensing and modelling tools that pro-
vide the spatio-temperal-spatiotemporal dynamics of the carbon budget and-it’s-components-athighreselution-with-asseetated
uneertaintiescomponents with the associated uncertainties at high resolution. In this paper, we present AgriCarbon-EO v1.0.1:
an end-to-end processing chain that enables the estimation of carbon budget components of major crops and cover crops at
intra-fietd-intrafield resolution (10 m) and large scale (over 110x110 km) by assimilating remote sensing data in physically-
based radiative transfert-transfer and agronomic models. The data assimilation in AgriCarbon-EO is based on a novel Bayesian

approach that combines Nermalised-dmpeortance-Samplingnormalized importance sampling (NIS) and Leek-Up-Table-look-up
table (LUT) generation. This approach propagates the uncertainties across the processing chain from the reflectances to the

output variables. The chain eonsiders-asinputa-inputs are land cover maps, mutti-speetral-multispectral reflectance maps from
the Sentinel-2 and Landsat-8 satellites, and daily weather forcing. The-In the first step, inverse modelling of the PROSAIL

radiative transfer model is-invers afirsts ¢ was performed to obtain the green leaf area
index (GLAI). The GLAI time series are then assimilated into the SAFYE-CO2 crop model while taking into consideration their
uneertainty—The-uncertainties. After a presentation, the chain is applied over winter wheat in the south-west-southwest of France
during the cropping seasons from 2017 and-to 2019. We compare the results agaisat-against the net ecosystem exchange mea-
sured at the FR-AUR ICOS flux site (RMSE = +:69-1.68 - 2:4-2.38 gCm ™2, R? = 0.880.87 — 0.880.77), biomass(RM SE =

25011.34gm ™2, R? = 0.90.94), andcombineharvesteryieldmaps.W equanti fyyieldmapsobtainedf romcombineharvesters.Weals

—47gm~2, —39%wariability),andtheimpacto fthenumbero fremotesensingacquisitionsontheoutputs(—66%o f meanuncertaint
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1 Introduction

Agriculture and land use changes aceounts-account for 15% iei.e. (8.7 Gt CO — 2 yr—1) of human-induced-Green-House-Gas
human-induced greenhouse gas (GHG) emissions (??). On-the-other-hand;—agrieulture-Agriculture has also been identified

as a sector where-elimate-mitigation-selutions—ean-be-implemented-that can contribute to climate mitigation through several
solutions (??). Among these-solutions;seil-carbon-these, soil organic carbon (SOC) storage has the potential to remove 0.6

to 9.3 Gt CO —2 yr—!) from the atmosphere through the implementation of carbon farming practices weortdwide—2)—For
eropland;soil-earbon storage(?), Increasing the SOC implies an enhancement of the net ecosystem carbon budget (NECB)
2,2.2 )expressed in Equation ??. A positive variation of NECB can be achieved by increasing the gross primary production
(GPP) and the net ecosystem exchange (NEE) through aboveground crop residue retention (?.?), the addition of cover crops in
crop rotations (?7?), reduced-titlage(?);-and an increase of the carbon imports through the application of organic amendments
{+(?) and biochar (?). Mereever;-organic-carbon-storage-

Equation ?? also shows the importance of 1) the quantification of the effect of ecosystem respiration (Reco) which is
subdivided into autotrophic (plant) and heterotrophic (soil) respiration (Rauto and Rh), and 2) the quantification of carbon
exports that mainly correspond to yield and the fraction of biomass incorporated to the soil.

It should be noted that after the death of the vegetation, all the unharvested biomass returns to the soil. At this point, we can
approximate that NECB = DeltaSOC. The accumulation of SOC in agricultural soils, in addition to climate change mitigation,
has additional benefits in terms of Ecosystem-Seil-Serviees-ecosystem soil services (ESS)kike-, such as increasing soil fertility
(?), enhaneed-enhancing water holding capacity (?) er-higher-and increasing biodiversity (?). Seil-Organie-Carbon-(SOE)»SOC

storage could also aceount-for-provide an additional source of revenue for farmers through carbon credits and subsidies.

Following the Intergovernmental Panel on Climate Change guidelines for national GHG inventories, methodologies for
assessing SOC stock changes and-GHG-emissions-have been developed. They are based on a tiered approach with increasing
complexity involving aetivity-and-seil-data-compitation—tp-to-soil monitoring networks where SOC is directly measured and
process-based modelling where Delta SOC is modelled by taking into account the soil, climate, and mean biomass returned to

the soil (GPP-Rauto-Cexport) derived from yield at theregional scale (e.g. Yasso07 in Finland, RothC in Japan, DayCent in the
USA)tattored-to-nationat-context. The need to monitor soil carbon at Farmtevel-the farm and field levels to inform individual

farmers, and guide policies and the development of carbon markets has led to the development of Menitering-Reporting-and
Verifieation-monitoring reporting and verification (MRV) schemes based on similar apreaches-approaches employed at a higher
resolution (??). These-These approaches are mainly used in carbon farming projects following national or regional initiatives

(e.g. Label Bas Carbone in France). They often rely on a sei
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approach where the focus is the modelling of Rh, Cimports, and Cexports. In these approaches, the estimates of carbon returned
to_the soil are usually extrapolated from farm- or field-scale yield information (?). The field-scale often does not match the
spattal-resetutton-ofin-sttu-—soi-intra-field/farm variability of the soil characteristics and plant growth vartabitity22)—TFeets
MWMWMWWWW
Coupled plant/soil process-based models are
data-monitoringthat address the quality and quantity of the crop residues that return to the soil are also used to assess SOC stock
changes. These models include the main components of the cropland’s earbon-budgetplantsphotosynthesis;-and-respiration;
emission-due-to-soil-organie-matter-mineralisation—These-models-biological CO — 2 fluxes. They can also account for car-
bon imperts-through-erganiefertilisation-inputs through organic fertilization and carbon exports of biomass at harvest (2)-
State-of-the-art-agronomic-models-e-g—(Equation ??, (?). Existing agronomic models such as, DSSAT-CSM (?), soil-models

STICS (Launay et al., 2021), DAYCENT (Parton et al., 1998) and WOFOST (?), soil models, e.g. DNDC (?), and land surface
models, e.g. ORCHIDEE-STICS +2)(?), take into account a large-wide array of environmental conditions to represent E,LQR

rowth and the components of the carbon budget

However, water and nutrient availability, local topography, pests, and historte-historical factors (e.g. former ditches, roads, field
limits) highly influence the-soil and plant processes (?). This can results-in-high-spatie-temperal-result in high spatiotemporal
variability in crop development and soil processes that can be observed even at intra-field-the intrafield scale (??). Moreover, to
operate those models, farmer activity data and crop development dynamics are required #-erder-to provide accurate estimates
of SOC stock changes. Getting hold on-of this information at a large scale is still very-challenging (??). Yet-However, it is
possible to use time series of biophysical variables such as GLAI, derived from remote sensing data, to provide information
about development dynamics to those models through data assimilation (222)(22?). These assimilated observations allew-to
provide spatially explicit erop-speeifie-crop-specific estimates of biomass and carbon restitated-returned to the soil using cou-
pled soil-plant models. Assimilation exereises-of biophysical variables are-is usually based on iterative optimization methods
such as Simplex, Monte-Carlo Markov Chain ;-Ensemble-(MCMC), ensemble Kalman filter, or variational assimilation that are

generally applied at moderate resolutions (??) or field %ea%e%e‘xl)—}H&eﬁeﬁeempm&&eﬂa}kyepfehfbmvefeﬁppbeM
Applying those methods at intra-fietd-an intrafield resolution over large areas —Fhi

a-major stepping stone-to-assess-is often computationally prohibitive. Enhancing scalability is thus key to assessing the spatial
variability of the-CO-2-flux-components=CQO — 2 flux components at a scale consistent with measurements of soil and plant
characteristics. Operating on a scale that is representative of measurements enables better diagnosis and calibration of plant
and soil processes, as well as a more robust validation and uncertainty estimation of the model outputs.

The aim of this paper is to present the newly developed AgriCarbon-EO pfeee%ﬁﬂg-ehaﬁWfor the assimi-
lation of EO-Earth Observation (EQO) data into the SAFYE-CO2 agronomic model 2?)-at large scale (100 km) and intra-field

intrafield resolution (10 m). These-spatial-resolutions-and-seales-are-achieved-This processing chain allows for the assessment
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of the carbon budget components (Equation ??). The challenge of estimating the carbon budget components at high spatial

resolution at a large scale is addressed by using the new BASALT (B
BAyesian normalized importance SAmpling via Look-up Table generation) algonthmfha% which also pr0V1des uncertainty

estimates. In Aeti

addition, the paper alse-aims-at:-evaluating
%he%eu%aeymms to provide an evaluation of the accuracy, limitations, and robustness of AgrlCarbon EO e&tpu%%fhfeugha

well-as regional-analysismethods through validation exercises and scenario simulations. We chose to make these assessments.
for wheat in Southwest France, as this area benefits from a large amount of data that has been gathered in the context of the
Observatoire Spatial Regional (OSR), and the Integrated Carbon Observation System (ICOS) network. Furthermore, Southwest
France is a major production area of wheat. This area has also been chosen because it presents a challenge for spatial crop
modelling in reproducing the diverse crop growth dynamics induced by a wide array of pedo-climatic conditions in a hilly.
landscape. The scenario simulations were designed to assess the robustness of the method with respect to the amount of
assimilated remote sensing data, and the added value in using high-resolution agronomic modelling.

In the following sections, we first present the details of the AgriCarbon-EO preeessing-chain-processing chain including the
standard inputs, the-modelsand-the-models, and BASALT assimilation scheme. We then present the numerical experimental

setup and the validation data-setsdatasets. Next, we present the validation results -and-the-spatial-anatysisresults—Finaltywe
eonclade-en-and the impact of image availability. Finally, we conclude with the benefits and the-limitations of the presented

solution for assessing the cropland carbon budget components and their associated uncertainties at high resolution over large

areas.

2 AgriCarbon-EO chain
2.1 Overview of the processing chain

AgriCarbon-EO is an end-to-end processing chain that simulates multiple relevant variables of crop development, biomass
inputs to the soil, and-CO-2 fluxes, and water at a daily timescaleand-overlarge-territories, for the assessment of carbon and

water budgets. It is specifically designed to assimilate optical remote sensing datasets at native high resolution into a simple

but generic agronomic model (SAFYE-CO?2) over large territories. AH-the-proecessing-steps-are-coneeived-in-acomprehensive

manner-(Fig-H—A-brief-point-wise-A brief description of the data flow and processing steps is presented here (Figure 1) and
detailed in the following subsections:

1. A pre-proeessing-preprocessing “Data ingestion” step allows the updating of existing data—sets—datasets through au-
tomated downloading of satellite images and weather forcing. Optical Bettom-Of-Atmosphere-bottom of atmosphere
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(BOA) reflectances are downloaded for Sentinel-2 and Landsat-8 (referred to as S2 and L8 below). Satellite data are
uncompressed and relevant spectral bands are stacked. The weather data is-are stored in time series with the associated
correspondence matrix to the high-resoetution-high-resolution grid defined by the user. This is dene-performed for the
zone defined by the input land cover pelygon-shapefile(polygons or mask raster map).

2. The biophysical variable GLAI is retrieved from the satellite reflectance images by inverting a radiative transfer model
(PROSAIL). The retrieval of GLAI is based on an adapted Bayesian importance sampling procedure (i.e. BASALT). In
this step, a spatial application of the retrieval model is done for each satellite imageindependently.

3. The crop model (SAFYE-CO2) parameters are inverted by assimilating the GLAI time series using the same-Bayesian
importance-sampling-method-(BASAET-as-in-steptwoBASALT method as in the previous step. In this case, LUTs are

generated based on the closest known weather reeordsimulation node. Only the phenological crop model parameters and

Ligth-Use-Effieieneythe light use efficiency (LUE) are inverted in this procedure.

4. A post-proeessing-postprocessing step allows the construction of the output products based on the a-pesteriori-posterior

crop model parameter distribution. Gee-referenced-Georeferenced maps of the variables of interest in each model (i.e.
PROSAIL, SAFYE-CO?2) are constructed as well as cumulative variables (e.g. NEP that-which is the cumulative NEE

over one eorpping-cropping year, number of satellite acquisitions, and soil water content;-ete-).

AgriCarbon-EO is implemented in the Python language. A maximum requirement of 5 GB per process ;—for the satellite

images needs to be considered. These-requirements-allow-meno-preeess-This will allow mono-process tests and development
on standard computers over smaller study areas, as well as farge-seale-large-scale applications (e.g. 100x100 km) with HPE

high-performance computing (HPC) resources.

2.2 Input dataset

In the following subsections, the spatial datasets needed for AgriCarbon-EO are detailed with the corresponding sourcesfer-the

eurrent-stady.
2.2.1 FEandeover-Land cover map

The main driver for the data preparation is a Land-Cever-land cover (LC) map in vector shapefile-format-format (shapefile).
This file should contain the boundaries of each agricultural field for a given cropping year over a selected region of interest
(i.e. border extents of the LC shapefile). Based on the border extents of the LC shapefite-map, the remote sensing and weather
forcing data are downloaded and pre-processedpreprocessed. When the simulations are intended to cover several cash crop
cycles a multitun scenario of AgriCarbon-EO is considered for each individual crop cycle. Additionally, a standard simulation
can include a cover crop with each cash cropse-that-thefull-eropping-yearcan-be-taken-into-aceount. In this paper, AgriCarbon-
EO was applied for-the-to winter wheat crops in setth-west-of-Southwest France (on the Sentinel-2 tile referenced as 31TCJ)
over-in 2017, 2018, and 2019. The LC shapefile-map was obtained from the Registre Parcellaire Graphique (RPG) in France
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(“RPG,” 2021), which is available online in open licence v2.0. This information is produced by the Institut Geographique
National (IGN) for the Agence de Service de Paiement (ASP i.e. The French Paying Agency) in charge of the implementation,
control, and payment of the subsidies for the EU Common Agricultural Policy (CAP) in France. The-eriginalmaps-which-are-in

In this study, the original polygons in the Lambert-93 projection (EPSG:2154 - RGF93) are-reprojected-to-the-were reprojected
to a selected common grid projectionin-AgriCarbor-EO, WGS 84/UTM3 lin-this-ease.

2.2.2 BOA surface reflectances

The assimilated remote sensing data are optical surface reflectances at Boettom-Of-Atmosphere-(BOAjthe BOA, which corre-

spond to reflected energy from the top of the canopy and the soil at a given incidence angle, for a set of observed spectral bands.

Currently, AgriCarbon-EO is-cenceived-to-use-data-fromEU-Copernicusprogram-uses data from the ESA’s Sentinel-2 program
(?) and NASA’s Landsat-8 program (?), knowing that the modular interface is compatible with multi-seuree-multisource EO
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data. The Sentinel-2 data are acquired over 13 optical bands with a resolution of 10 to 60 m depending on the spectral bands
with a 5-days-5-day revisit from the constellation. Only the nine visible bands are-were considered from the Landsat-8 data.
Landsat-8 has a revisit of 16 days and a spatial resolution of 30 m in the visible range.

For this study, the data were downloaded from the Thematic eentre-for-continental-surfaces-Center for Continental Surfaces
(THEIA)that, which uses a common atmospheric correction and cloud masking algorithm for Sentinel-2 and Landsat-8 through
the MAJA processing chain (?). This enables a harmonised-harmonized Level-2A database with an efficient cloud masking
algorithm (?). The data eentains-quality-indieatorscontain guality indicators, including cloud coverage. The datasets are pre-
sented as granules (tiles) of 110x110 km ertho-images-orthoimages in the UTM projection. Prior to the processing, the remote

sensing datasets are decompressed sre-sampled-and resampled at 10 m resolution using nearest-neighbeurnearest-neighbour.

2.2.3 Weather forcing data

Daily weather data maps covering the simulation period and spatial extents are used to force the crop model. Cumulative daily
global incoming solar radiation ;- Re-in-W-ar—2(Rg in MJm ~2) and daily average air temperature at 2 m s(Ta in °C) are needed
for the vegetation growth module in SAFYE-CO2. Based on previous studies that showed the impact of diffuse radiation on
crop development and photosynthesis (??), the diffuse incoming radiation is computed based on ?. Furthermore, when-two
additional datasets are needed for the water budget module of SAFYE-CO2is-aetivated—— daily potential evapotranspiration 5
(ETO in mmd ;) and daily cumulative rainfall in-mmmd—L-are-extracted-from-the-weather-data(Rain in mmd—!). AgriCarbon-
EO supports two data sources that provide weather data: the Météo-France SAFRAN dataset (?) and the-ERAS Land (?). The
extraction of the ERAS Land data is-done-was performed via the dedicated API. SAFRAN consists i1-0f a reanalysis of climate
variables at 8 km spatial resolution and the hourly timescale over France starting 1958. In this paper, the water-module-is

deactivated-and-only-the-weather data(Rg-and-Tayis-weather data were extracted from the Météo-France SAFRAN dataset and
re-projected-reprojected over the UTM/31N at 8 km resolution.

2.3 Process-based models
2.3.1 Radiative transfer modelling using PROSAIL

Maps of geophysical variables (i.e. GLAI) are retrieved in AgriCarbon-EO by inverting the PROSAIL radiative transfer model.
PROSAIL was-has been extensively used as a radiative transfer model for vegetated areas over—(?) with a wide range of
inversion schemes (?). PROSAIL combines the PROSPECT and the-SAIL models (?). PROSPECT provides leaf spectral
properties in the 400 nm to 2500 nm band-width-wavelength (?). SAIL (Seattering-by-Arbitrary-Inclined-Leavesscattering
by arbitrary inclined leaves) is a multidirectional canopy reflectance model (?) based on the bidirectional reflectance model
(?). PROSAIL-and-its-subsequent-versions-have-been-widely-used-for remote-sensing apphications{2)- The python-A_Python
implementation of PROSAIL is-was used in AgriCarbon-EO. This version includes the coupled PROSAIL from PROSPECT-5-
D (?), 4SAIL (?), and a Simple-simple Lambertian soil reflectance model. PROSAH--parameters-are-The PROSAIL parameters
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were inverted using a Bayesian approach in order to provide GLAI and its corresponding uncertainty as input to the crop model

inversion.
2.3.2  Crop G6—2-CO2 fluxes and biomass modelling using SAFYE-CO2

SAFYE-CO?2 is a parsimonious agronomic model that runs at a daily time-step (???). The model stems from the SAFY models

(??) which eomputesDry-Abeve ground-bioMass(BAM)compute DAM, based on the Eight-Use-Efficteney-(IUE--LUE theory
of ?. In-Centrast-with-SAFY;-A full description of the SAFYE-CO2 model eomputes-the-GrossPrimaryProduction(GPP)based

—21-—-1

1o N/ A

funetion—Where-is provided in 222, The core equations of the model are detailed below. where LUE-a (CMJ~'m™~?) is the
light use efficiency for direct radiation and LUE-b is a correction coefficient for the impact of diffuse radiation en-EUERdIff
MJm>2d"") on ELUE.

In Equation ??, SR10 is-a-multipheative-factorthat takes-into-account-the-deerease-ef-accounts for the decrease in photosyn-

thetic efficiency during senescence -

others to the decrease in chlorophyll. where Cs is the parameter that controls the slope of SR10 depending on the thermal age
of the crop SMT and Sen-a refers to the thermal age at which the plant enters senescence.

aHoeation-fraction of biomass allocated bellowground PRTR is defined-computed using PRTRa, PRTRb, PRTRc, and SMTG

which arerespeetively-the-end-of-cycle biomass-allecationtoreotscorrespond to the end-of-cycle fraction of biomass allocated
below-ground, the initial biomass-aHeeation-to-rootsfraction of biomass allocated belowground, a coefficient modulating the

decrease in Biomass-biomass partition to the roots between the initial and end-ef-eyele-stateend-of-cycle states, and the sum of
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the temperature at which grain filling starts respectively. The fraction of above-ground biomass allocated to the leaves PRTL is.
computed using PRTLa and PRTLDO, respectively, the initial fraction of the above-ground biomass that is not allocated to the
leaves and a fitting parameter that modulates the rate and thus the end of allocation of above-ground biomass to the leaves.

The biomass and yield are used to determine carbon exports in Equation ??; Equation ?? illustrates a simple way to estimate
exported biomass by taking into account only the dry above-ground biomass (DAM), the harvest index (HI), and the fraction
of carbon in the dry biomass (Cveg).

temperature(°C)since-emergence—Where-sen-a-growth conversion efficiency, GPP, and Rmaint.
Rh-1 is the sum—of-temperature(°Cjat-—senescence—and-sen-b-reference Rh rate, Rh-2 expresses the RH sensitivit

temperature, and H-waterstress is the +:

pythen-moisture.
A Python implementation of SAFYE-CO2 was developed for AgriCarbon-EO and is used in this paper. This new version is

veetorised-in-order-vectorized to provide predictions for multi-rtrs-multiple runs and build LUTs. It can also handle multiple

vegetation cycles for each run (e.g. crop and cover crop) ;-and has a modular architecture. The physical modules are restructured

to regroup soil processes, plant phenology, plant physiology, heterotroph-activityheterotrophic activity, and field management.

the-moedelln SAFYE-CQO2, the water flux computation is based on the Penman-Monteith and FAO-56 methodologies that enable



the computation of evapotranspiration and water distribution in the soil based on a bucket model (?). The coupling between the
earbon and water cycles occurs in two ways. Plant growth impacts root water uptake, and the soil water content impacts GPP
duction through a water stress coefficient. The dynamic computation of GLAI in Equation ?? provides the link between the

#gddel and the GLAI retrieved from optical EO and therefore allows us to constrain the model’s-parameters-isrepresented-by-a

A P heco call odmay Ag

28k1—Retrieval of GLAI maps from PROSAIL

When inverting PROSAIL, the main objective is to retrieve the- GLAlL and GL-Al.and-its-associated uncertainties that will be as-
similated by SAFYE-CO2. This is done by generating a-ancLUT of PROSAIL runs (size = 5000) for each remote sensing image
based on a-given-prior—Equations (22,27 and the-prior-(Table 22)-and-the selar-and-observation-an i i

are then used to evaluate the RL where j is the index of pixels in the simulated image, i #s-the index of the PROSAIL runs in the

PtfTFand o-of ;and o.s-the observed reflectances from the Sentinel-2 or Landsat-8 images. The-priorused-for the LUT generationis-shown
PROSAIL provides LAI and not GLAI, the chlorophyll content (cab) is constrained to a high interval [60,80] ugm 2. This
forces-all considered foliar surfaces to besmakes-all-simulated-surfaces-green and thus allows to inverse retrieve GLAIL A con-

10



straint is also added on-to-the relation between dry Biomass-biemass-and GLAI to reduce the parameter search space by elimi-
aating solutions with leaves that are too thin or thick. Then, the surface reflectances of the Level2-A Lewvel-2-A-BOA products
aiseonsidered to follow a normal distribution with mean-and-amean-and-a standard deviation that is considered-constant fixed at

0:02. Finallythe-a posteriori ~the-posterior.distribution is approximated with a normal distribution, using Eq-(2?)-and (2?) Equation-22 to

determine mu and sigma.

24:2—Application of BASALT to SAFYE-CO2

3at

The simulated variables, DAM, yield, GPP, eco em re 3 Recoand Reco,a
280 duration and intensity of the-crop development (?). The GLAI outputs from PROSAIL are assimilated into SAFYE-CO?2 to cor-

~are highly dependent on the

rect the naive prior vegetation dynamics. This is done by generating a-an LUT of SAFYE-CO2 runs (size = 100005000) for each
zone with the same forcing (i.e;same prior). In this case, the zoning is defined by the weather forcing data (i.e. SAFRAN at 8
km). For each zone, equations Eq-(22),(22)-and (27 ) -Bquations-22 and-22 are applied to evaluate the RL given the GLAI obser-
vations, where j is the index of pixels in the simulated area, iis-the index of forthe SAFYE-CO2 runs in the LUT, and o the ob-
285 served GLAI at different dates. The priors for LUT generation for the SAFYE-CO2 are shown in Table ??. Those priors are used
for the SAFYE-CO2 LUT generation and were reassessed in terms of statistical distribution from (?) to account for the high-
spatial heterogeneity that can be observed at regi
For each parameter; a truncated normal distribution is sampled-mﬂ;p%am@temmdepend@nﬂy&ampled@@m&d@rmg»mu sigma,
minand-max-independently,and-max-values; the only exception is PRTwhich has an exponential behaviour. For this parame-
290 ter, a logarithmic transformation is applied en-to the distribution. To aggregate the SAFYE-CO2 simulations at the field scale,

the ltikelyhoods-are-likelihood is summed over all the pixels in the field 2?-Eq—?and-Eq—~«??)-are-(Equation ??). Finall
Equation ?? is used to compute the-mean-mu and sigma for a parameter or a variable at-on a given day for a field or pixel.

3 Application for wheat in Seuth-West-Southwest Franceover-Wheat

295 3.1 Experimental setup and study area description

Several assimilation experiments were conducted to answer the specific objectives of the paper, they are summarized in Table
2?. The experiments correspond to simulations over the Sentinel-2 31TC] tile located in Seuth-West-of Franee-has-been-chosen:

In-this-zone-the-chain-is-applied-overa-the southwestern of France for winter wheat in years-2017, 2018, and 2019 (Figure 2).

300 22-They-alternate-They alternate between the use of S2 alone and the combined use of S2 and LS. Pixel-and-fieldseales-are
also-consideredThey also include pixel and field scale simulations. The ACEO-S2L8-Pixel combines Landsat-8 and Sentinel-
2 data at 10 m resolution which represents abeut-approximately 20 M pixels for our study area. It is-was used as the main

simulation for the validation experiments. The ACEO-S2L8-Field simulations correspond to averaging the 10 m GLAI from

11



PROSAIL retrieval-atretrievals at the field scale. Additionally, an averaging of the high-reselution-high-resolution simulations
305 with Sentinel-2 and Landsat-8 is-performed-at-was performed at the field scale (ACEO-S2L8-Mean).

310

ton-The study area has a mean annual
precipitation of 655 mm and a mean annual temperature close to 13 °C. It is classified as a majorly temperate oceanic climate
(Cbf) in the plainplains, and temperate continental climate (Dfb) near the Pyrénnées mountains, based on the Koppen climate
classification. In year-2017, winter was exceptionally dry and sunny, and spring was sunny with a 10 % deficit in rainfall
(?), while year-2019, had a mild winter and a sunny spring with 10 % deficit rainfall for the two seasons (?). The region has
315 an intermediary cloud coverage that allows for multi-temperal-multitemporal optical remote sensing analysis and analysis of
the impact of clouds (Figure 222.B). It is mainly occupied by agricultural fields that cover abeut-approximately 90 % of the
area, among which a majority of seasonal crops. Winter wheat covers areund-approximately 20 % of the zone and reaches 40
% in some areas. In South-West France, soft-wheat varieties are predominant, and they are usually sown in autumn around

mid to end Oectober—They-represent-of October. Soft wheat represents 75 % of the French exports of seft-wheatsoft wheat.
320 The crop typically develops slowly during the winter, and growth accelerates during spring. It is harvested from mid-June

to the end of July depending on maturation as well as climatic conditions to eptimise-grainquality from-mid-June-to-end-of
Futyoptimize grain. The harvest in 2017 was in-the-rermnormal (6 tha™! at 15 % humidity), while 2019 was an exceptionatty
sood-exceptional year with a yield of 11.5 tha™! at 15 % humidity (?). In terms of pedology, two main soil elasses-eovertypes
are present in the area of study: sttrich-silt-rich soils near the major streams, and clay soils across the hills with a variable
325 density of stones depending on erosion. The topography offers a wide range of expesitionsaspects. The region also bears the
effects of the-historical land management, specifically, the “Remembrement” policy, a political push to merge adjacent fields
from 1945 to 1980 in France (?). This leads to a wide range of soil and miero-elimatie-microclimatic conditions that cause

significant intra-field-intrafield plant growth variability.

This study area was chosen for three main reasons in light of the aims of the paper. First, it is part of the Space Regional

330  Observatory that benefits from extensive datasets regarding crop growth and crop physiology through the presence of two
certified ICOS flux sites (FR-AUR and FR-LAM), and extensive measurement campaigns operated by different public laboratories

specializing in agronomy and remote sensing as well as measurement campaigns operated by private companies and individual

farmers. These measured variables related to the ficld’s carbon budget such as NEE, GPP, Reco, DAM, and Yield (Equations

?? and ??) are monitored in different localities with different representative scales

335 and biophysical process variability, due to topography and pedo-climatic variations, is needed to assess the impact of usin
. Yield, CO — 2 fluxes).

high-resolution modelling and assimilation schemes in quantifying the carbon budget components (e.

Third, winter wheat is one of the most studied crops worldwide. This allows us to compare the quality of the results obtained
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Figure 2. Map of the simulation area and image availability from 2016 to 2019. In "A": #a-background the terrain-mapESRI World Topo Map,
tite-the 31TCJ Himts-Sentinel? tile limits (red rectangle), land cover for winter wheat fields for 2017 (blue), location of the FR-AUR flux-towers
tbtue-eirele)ICOS site, the Dry Above ground Biomass (DAM) measurements forESH-DAM-(red circles) --and the two fields monitored
with connected combine harvester (CH) (orange circles). Zeom-The zoomed maps show the FR-AUR field and the eombine-harvester-fields

monitored using combine harvesters. In "B": Chronogram of the remote sensing dataset from Sentinel-2A (S2A), Sentinel-2B (S2B) and

Landsat-8 (LL8), over the 31TCJ tile for 2016 to 2019. The bar plots represent the percentage of cloud-free pixels for each image.
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with AgriCarbon-EO against a large corpus of published studies. Furthermore, the area is a dense crop production zone. This
is especially true for wheat production, which has a large economic interest.

3.2 Validation datasetsof the AgriCarbon-EQO outputs

The validation is-based-relies on several datasets eovering-corresponding to the main output variables of AgriCarbon-EO:
CO-2 flux measurements (i.e. Net-EcosystenrExchange; INEE:-GrossPrimaryProduction; GPP;EeosystemRespirationNEE,
GPP, Reco):Dry-Aboveground-biomass, DAM measurements over Elementary Sampling Units (ESU), and yield maps. A
summary of the ID and characteristics of the aforementioned validation datasets is presented in Table ??. The validation
datasets are-were extracted from the database of the Environmental Information System the-taboratory-and-the Regional-Spatiat

i - maintained by the CESBIO laboratory (?).

3.2.1 €O-2fluxesfrom-eddyecovarianee

3.2.1 Validation against field scale CO, fluxes and DAM measurements

The FR-AUR ICOS site provides many biophysical measurements, among which variables of interest regarding the carbon
budget GPP, Reco and NEE (FR-AUR C-Flux, Table ??). These variables allow us to assess the soundness of the representation
of CO — 2 fluxes caused by physiological processes in the model, as GPP represents photosynthesis and Reco the sum of plant
and soil respiration. Furthermore, NEE allows access to the representation of the biological part of the carbon budget and DAM
is linked to carbon export (Equation ??) and NPP (Equation ??
homogeneity of the ecosystem, the measurements were considered to be representative of the field. The DAM and CO -2

flux measurements were acquired using the ICOS destructive biomass sampling protocol (?) and eddy covariance (EC) flux
tower measurements processed with EdiRe software (?)and;, following the CarboEurope-IP recommendations for data filtering,

. As one of the requirements for the ICOS certification is the

quality control, and gap filling (Table ??). The computation-is-based-on-the Eddy-Covariance(E method-for-€O
consists-in-measuring-at-20-hzEC method consists of measuring the 3D wind fluctuations using-a-high-frequeney-at 20 hz using
ahigh-frequency sonic anemometer and the €O-2-coneentration-using-an-openpath-CO — 2 concentration using a gaz analyser.

The covariance is then computed between the turbulent component of the vertical wind and the turbulent component of the
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NEE was then partitioned into gress
pfm&fy—pmdu%@%—&&éﬁ%&y%ﬁmﬁpﬁﬁm%&%@%ﬁ&li@g@vm using a formulation for croplands ¢2)-in ? adapted

from (?).

3.2.2 Vegetation-hbiomassfrom-destruetive samples

intensity of the turbulence, a fraction of the direct measurements are not representative of the plot, and those data points
were filtered out during the processing and replaced with simulated values extrapolated from the environmental conditions.
We maintained only daily data points where more than 50% of the information comes from real measurements, as gap-filling
over long periods induces high errors (?). The days when less than 50% of the information is provided by measurements are
represented in grey in Figure 2. Furthermore, it is also noticeable that the observed Reco in 2018-2019 dips to zero during
the vegetation growth period, which is related to an error in the partitioning process of NEE into GPP and Reco. This period is
also ignored for GPP and Reco and is represented in red in Figure 22,

fhux-site—In this exercise, the daily outputs from AgriCarbon-EO at 10 m resolution are-were spatially averaged over the area

15



of the FR-AUR field (Eﬁmﬁwsampled by the EC tower (a.k.a. the target area in the ICOS nomencla-
ATThose averaged values were then

eempared against FR-AUR DAM and FR-AUR C-Flux as shown in Figure ??, and the corresponding fitting statistics are shown
in-Table ??2. The statistics were computed for three specific periods, from the 1°¢ Jan to the 15t May, the 15t May to the 15¢

Jul, and the 15 Oct to the 15* Oct. These periods correspond to the growing and senescence of the wheat crop and the whole
eropping year respectively. The GLAI fitting statistics computed over the growing season show a good fit (

—Figure ?? shows the scatter plot between the simulated and observed DAM a

The comparison shows a good fit when considering together-all DAM measurements with a-R

flow sensor and of the grain moisture content sensor can experience significant sensor drift within the field,-2)- Moreover, CH

yield data processing requires a range of parameters such as lag time settings and distance travelled via GPS measurements,

header position, and cut width, all of which contribute to the uncertainty in the measurements (?). In.this study,yield CH data were providec

420 he simulated yield maps are-obtained from-AgriCarbon-EO simulation ID: were obtained-from the ACEO-S2L8-Pixel simulation by

multiplying the final DAM by the Harvest Index-(HI- HL (Equation.2?). We analyse-analysed the results in terms of reproduction-the retrieva
the spatial patterns.as shown.in Figure 5. These maps shows-show the comparison between the CH yield data and the AgriCarbon-

EO yield estimates at the pixel level in tha~" as well as the spatial yield anomaly.

—Overall the observed yields show a larger variability than the simulations and a clear saturation effect is observed in the simula-
#2ssfor the NAT-plt6 field. The AgriCarbon-EO and the CH anomaly maps show high-h
spatial patterns. Yet- Howewer, the spatial patterns are more pronounced over the NAT-PIt3 field than over NAT-P1t6. An RMSE, biasRMSEs
and R? of 0.66tha=1 038 tha—! valuesof0.12 and 0.7 tha=! 040 tha=!_0.250.29 are observed for NAT-PIt3 and

NAT-PIt6, respectively. The performances of the yield simulations vary strongly between the two fields. A relatively low RMSE

and bias indicate a quite good mean representation of the plots. However, the correlation coefficient is quite low and indicates
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480 not all the spatial variability in yield can be captured using this approach. The Low correlation as well as the difficulties small R2 can hs
reproducing the range of yield observed variations ofin.yield values may be caused by the simple representation of grain
biomass allocation through the use of a-an HI which does not take into account potential variations of-harvestindex-in the Hl due

to-nutrient availability or crop cycle duration (?).

plot3 plot6
simulation observation simulation observation
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v oo <o
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imulated by AgriCarbon-EO and

Figure 5. Values Yield maps-and spatial
i combine harvester over the Natais sites-site. (NAT-P1t3 and NAT-PIt6) for the- 2017 and 2019.

In this section, the results from the ACEO-S2L8-Pixel in 2017 are illustrated and analysed. The RPG shapefile (2017 land cover map forwir
wheat fields), the SAFRAN weather data, and the THEIA S2 and L8 EO data were used as input along with the parametriza-

tion files for PROSAIL and SAFYE-CO2. The AgriCarbon-EO processing chain was run in parallel computation-over a single

server rack with 2 computation nodes and with 36 thread-threads max. The memory requirement was the highest for the PRO-

&40l retrievalsreaching 20-, reaching 5.Gb per process (image inversion) considering S000- LUT sizefor.a LUT size of S5000. For
SAFYE-CO?2 the requirements were 5 Gb per process with one process per node of the weather grid considering a 5000 LUT size A full ck
over the 110 x 110 km area of study at 10 m resolution requires-required 4 -hours of computation time per year of simulation.

The chain produce i i i i i

The AgriCarbon-EO simulations (Table ??) were compared at different scales (i.e. pixel vs. field) and for different satellite im-
age temporal densities-are-compared-to investigate the benefit of assimilating-high resolution multi-mission-high-resolution multimission d
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GLAI into SAFYE-CO2. The impact of the spatial scale of the GLAI assimilation is illustrated by Figure 8 (a), which shows
the histogram of (DAM-ACEO-S2L8-Pixel - DAM-ACEO-S2L8-Field). An average negative bias of -47 gm~? is observed for

450DAM with a spread between -210 gm™~2 and +120 gm~2 for the [-sigma,+sigma] intervalwhen comparing the pixel scale

Note that the same bias value is obtained for Figure 8 (b)thatrepresents representing the difference between the averaged
pixel at field scale and the field scale simulations: (DAM-ACEO-S2L8-Mean - DAM-ACEOQO-S2L8-Field). This is mathemati-
4aBy expected as DAM-ACEO-S2L8-Mean is obtained by averaging the DAM-ACEO-S2L8-Pixel simulations. However, when
comparing the RMSE values between Figure 8 (a) and (b) a noticeable change in RMSE of -68 gm 2 is-depictedobserved. This
result shows that the variability of simulated biomass will decrease by 39 % when considering field scale field-scale modelling.
The variability is directly influenced by the retrieved parameters of the crop model between the-intra-field-and field scale-intrafield and field

simulation to the field scale simulation. This result is interpreted as the

be avoided by applying

the same crop cycle; resulting in a different iori istributionposterior parameter distribution, as shown in the

4é€rion above. Figure 8 (c) shows the difference between a simulation using only S2 and using S2 + L8. Adding L8 images
tends to slightly increase dry biomass, with a bias of 30 gm ™2 and-a-an RMSE of 94 gm™2. This difference is caused by the

additional samples added at the start and end of the vegetation cycle that result in a change in the length of the vegetation cycle.

1le5 . . 10 40 _195 . . 10 35 1le5 ; . 10
(a) ! y==- Bias = -47.0 (b) ! ! <=-- Bias = -47.0 (c) ! y7==- Bias = 30.0
2.0 | | === RMSE = 172.0 3514 1 --- RMSE = 104.0 3.04 1 I =-- RMSE =94.0
! ! Fo.8 ! A ro.s > ! ! 0.8
0 1 1 3.01 1 1 254 1 1
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Figure 8. Histogram (left y-axis) and cumulative density function (right y-axis) of the bias of biomass at harvest (y-axis). (a) corresponds
to (DAM-ACEO-S2L8-Pixel - DAM-ACEO-S2L8-Field), (b) (DAM-ACEO-S2L8-Mean - DAM-ACEO-S2L8-Field) and (c) (DAM-ACEO-
S2L8-Pixel - DAM-ACEO-S2-Pixel).

the DAM outputs from ACEO-S2L8-Pixel-are were analysed in terms of the number of images over each pixel. Figure ??

4B&ws the impact of the number of GLAI observations per pixel on mu and sigma of the DAM. sigma of DAM decreases by
-aboutapproximately 66 % with the number of observations (146-

18



(b) POI-01

TuLtoz
oT/L10Z
60/L10C
80/L10Z
L0/L10Z
90/L10T
S0/L10Z
v0/L10T
€0/L10Z
zo/L10z
To/L10T
zu9toT

6

(a) POI-00

(

-

Loz

ot/L10Z

60/L102
[- 80/L10C
[ LO/LT0Z
[ 90/L10Z
[ So/L10Z
[ v0/L10Z
[ €0/L10Z
[ 2o/L10Z
[ 10/L10Z
 Z1/910Z

6

(

-

w

03

(d) POI

02

(c) POI

©

(-w

(-w

2W) V19

< o~
ZW) IV19

LuLLOC
0T/L10Z
60/L10Z
80/L10Z
L0/L102
90/L10Z
S0/L10Z
0/L10Z
€0/L10C
20/L10Z
To0/L102
z1/9102

1ULL0C
01/L10Z
60/L10Z
80/L10C
L£0/LT0Z
90/L10Z
S0/L102
0/L10Z
€0/L10C
zo/L102
To/L102
z1/910z

(e) POI-04

-

LULLOC
0t/L10Z
60/L10Z
80/L10T
L0/L10Z
90/L10Z
S0/L10T
¥0/L10T
€0/L10Z
zo/L10T
To/L10T
zZu9t0T

Figure 7. Time series of GLAI, and radar plots containing the free parameters of SAFYE-CO2. Simulations are represented in red with a transparency pr
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the-raw-carbon budget component retrieval To contextualize the performance of the retrieval of the carbon budget components
480  simulated by AgriCarbon-EQ, we compare the results obtained in our study against recent and relevant studies that evaluate
at least one of the components that are showcased in this study. Concerning the evaluated variables, the performances are in
the range of the scores observed in previous validation exercises with SAFYE-CO2 at the field scale (2). When compared to
other models, ? constrained the WOFOST agronomic model with 25 km resolution yield and sowing date data, over 3 ICOS
sites comparable to FR-AUR, across Europe. This dataset represents 10 mrresolution-anssmoothed-images givesus-the Joeat

O ary: ao d = < a a vartatoO d O pona—+to d C—ahid C—variao y- oY

485

Toulouse)site-year combinations in total. They obtained R? values ranging from 0.64 to 0,74, and RMSE values ranging from
2.33 t0 2.67 gm 2 for NEE over wheat fields. The values we retrieved for FR-AUR (Table 2?) are higher regarding R? and

490 on the low end of values obtained for RMSE, indicating the potential added value of high-resolution agronomic diagnostics.
In the a i i et N : . i

study, GPP was also evaluated and R? and RMSE values going from 0.82 to 0.87 and 2.33 to 2.83 gm ™ 2were found. The R?
retrieved from AgriCarbon-EO et i erns—Fisure h hat-the-winter-whe
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515 region-are-mainly-oriented-South-West RMSE was in the same range for 2019 and lower for 2017. The GPP was also analysed
using WOFOST at 25 km resolution by assimilating GPP values derived from the MODIS satellite’s observations in ?. In this

study, the GPP values were evaluated over 2 years against a flux tower measurement site in Oklahoma (USA). They obtained
R? values of 0.87 and N : Hpt : : . ioma

520

525

values of 2.26 and 3.25 gm " in 2015 and 2016, respectively. These values are in the same range as the GPP retrieved by
AgriCarbon-EQ. The Reco is rarely evaluated by models, as it implies simulating plant and soil processes simultaneously. ?
retrieved Reco with R? values ranging from 0.76 to 0.83 and RMSE values ranging from 0.98 to 1.29 gm >, The R? obtained
with AgriCarbon-EQ is slightly lower and the RMSE slightly higher than in (?) for Reco. 2, cited before, also evaluated
BBSM time series measured at the same flux tower site with RMSE= 121 and 81 gm~? and R? =0.94 and 0.93. These statistics
concern the whole cropping cycle and can thus be compared against Table ?? for the "all” item and the DAM statistics regarding.
ER-AUR 2017. AgriCarbon-EO shows a similar variation as in ?. In 2, in-situ LALis assimilated into the LINTULS crop model
using NIS. The estimations of DAM obtained at maturity (BBCH 99) were compared against field measurements collected on
14 plots located in the Netherlands, northern France, and Germany (from 40 to 60 in-situ sampling points representative of 1
540), showingameanRM S Eof246gm~2andameanbiasof58gm ™2 Theseresultscanbecomparedtotheend — of — cyclebiomassm

4.1 Multi-mission Multimission data, cloud cover, and limitations

The retrieval of SAFYE-CO2 parameters and of the carbon budget components in AgriCarbon-EO relies on the accuracy and
availability of EO datathat,; which is hampered by -the-errors in image -co-location, the colocation, atmospheric corrections,

84%5 presence of clouds, and-thecloud shadow correction. Many studies show that these effects have an important impact
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%owrlflgricultural remote sensing applications Jj‘keﬁﬂﬁllf‘i yield estimation (?), land cover (?)),or, 3\1/1\(1 superficial soil car-

bon content mapping (?). In our study, we show that these effects are mitigated through the use of a Bayesian approach in a
%@W context because the uncertainty@&&eﬁ%&%%%ﬂgecounted

for in the assimilation process. Our approach shows that increasing the number of observations does not strongly impact the

f5&hn DAM values, but increases its uncertainty byabeu;amw 66 %. Nevertheless, unfiltered clouds or the lack of im-

ages significantly impact the simulations locally (Figure 7 (c)).m
of additional data from Landsat-8 enhanced tgwesimulation quality for our region of interest.Addi&gnaLFiI%ﬂk)rmh)ptical

or even-SAR-biophysical variables retrieved from synthetic aperture radar (SAR) satellite data could mitigate the loss of data

8686 to cloud cover in northern and coastal regions (2?).

4.2 Importance Impact of-high remote sensing and input spatial-resolution

lnna;ﬁeld—lwgtvrggglvq heterogeneity is awelLestablishede issue in agricultural applications (????),—bukvligvvvveXS&it

has not been thoroughly treated in terms of CO-2 fluxes andmmimie&ummmates. In this paper, we argue that reli-

able and accurate estimates of DAM and CO-2 fluxes in support of carbon budget@empm;en;%n@nit@@gpeqummﬂﬁe@cmm
estimates. Our results show that by assimilatingmeanﬁeld-rgsgg—vfivvdi level GLAI products in SAFYE-CO2 a bias of -47 gm 2

and an artificial relative uncertainty decrease of 39 % 9% will be induced compared to assimilatinghiglmsoluﬂonhm GL
and calculating the mean@nf)Nf the model’s output.S&highxesgluﬁgnHM allows more accurate estimates of

the mean DAM values atﬂﬁeld—sealewhichg}mm%?nables more accurateﬁeld—sealeﬁm estimates

of SOC changes by soil modelsi i itori

small or elongated fieldslike for instance-in-, W India (?). The other input data products thatarerdmngd\fiV\\/E the
spatial resolution of the AgriCarbon-EO outputs are the land cover and the weather data. While El}\eN land cover is available at an
adequate resolution (i.e. field sale), it is error-prone, either because of enoneousdee@a@nsﬂ%@k@kcm @

or because of classification errors whenEQJgased—Em land cover maps are used (?). Interestingly, our results show that
when a mismatch occurs, the fields in question exhibit high anomalies in retrieved parameters and are thus detectable. For the
weather forcing, the current application was based on the Météo-France 8 km resolution Safran data,wwhich provides reasonable
accuracy over France (?). Currently, ECMWF provides ERA5-Land at-9 km-0.1° resolution globally (?), and NOAA provides
HRW at 3 km over Lhﬁ US (2). In the future, 5}/1& coverage and resolutions ofwea&hepfo;emwm data

are expected to increase (i.e. ERA6 at 2.5 km). Increasing the resolution of the weather forcing in AgriCarbon-EO would pro-

vide better spatial information--but would also increase the computational demand by a factor of yasthe LUT forSAFY E —
COQﬂisgeneratedovertheweathergrid(&Equation??) W hereT LUTistheprocessingtime forthegenerationo f LUT and@ist]
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4.3 Limitations of the Bayesian and physically based approach

While the components of AgriCarbon-EO have been tailored to the requirements mentioned in the introduction (large scale,
Bégh resolution, uncertainty estimates, and biophysical processes), weshgwed—hMimits for each of them. For in-
%ncew&sh@wthaﬁ the BASALT Bayesian approach can be sensitive to an erroneous observation associated with-alow un-
certainty (Figure 7 d). A trade-off-has-to-must be made between the variability of the generated solutions, and the number of

LUT entries to maintain computational efficiency. A solution could be to consider a joint distribution for prior parameters
to propose a better ratio of appropriate solutions-(Figure??),(?). On the one hand,-the radiative radiative transfer modelling is
66bstrained by the spectral library database (?), which may not reflect ground conditions-like-such as the presence of weeds

impacting GLAI retrievals. On the other hand, the crop model predictions will depend on fixed and prior parameters of a given

Alternatively, we could have reverted to machine learning approaches that have gained-in-popularity recently popularity for pre-
cision agriculture and soil carbon farming-application (). Butapplications (?). However, while they are powerful toolsto-extract the most-of
64& into accountchanging climatic conditions and management practices-. i

In the current state, it is reasonable to consider that an MRV platform for SOC carbon stock changes-shall include ensemble-approaches (dir
varying levels of complexity-and-invelving a diverse array of stakeholders (?)(e.g. Tier 1,2 and 3) (") similar to what has been
fmplemented in the IPCC approaches (?). WAgnCarhon -EO is designed with-the objective to-implement some of these sol

4.4 _From AgriCarbon-EO to-carbon SOC budget

The present approach prov1de&h4gh4esoluugnhlgh -resolution estimates of key carbon budget components-using a soil respiration module,
SAFYE-CO?2 crop modelmmmmﬁm
This methodology is adapted for%&an%@s@al&a&@ssm@»@ﬁm&smcarbon budgets (typically

6800 one year) (?) m&w soil processes that affectsoﬂ@xg&n&maﬁemu&e%saugn%l@ngemm&seal

not accounted for here. The inclusion of a soil carbon decomposition module asin ?, thatd

soil carbon contentand

One way of achieving this is to take advantage of the rapidly developing Farm’s Management Information Systems (FMIS) and
enhanced soilmmmm%%&mwm (DSM). Even though
-B8BLS farmer activity data are not easily accessible, it is expected that this limitation will be reduced with the development of
soil carbon farming policies (like-such as the Label Basmwm auditing schemes (?). Such
data exchangewﬂl—wwgglvq have a dual positive effectpmmdingm that adequate soil sampling protocols are applied.
The SOC data-will-augment the datacollection would increase the size of existing datasets available for validation and verifi-

cation of tools like AgriCarbon-EO, and at the same time, approaches such as AgriCarbon-EO may provide optimal sampling

§8ategies for the estimation of SOC stock changes for carbon auditing.
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5 __Conclusionand outlook-

This paper presents The main aim of the paper is to present the AgriCarbon-EO processing chain that assimilates remote sens-
ing data into the PROSAIL radiative transfer model and the SAFYE-CO2 crop model to estimate some-of the key carbon budget
components of crop fields at high resolution and regional scale. AgriCarbon-EO was designed to cover essential features to

66mply with the monitoring component of the MRV systems for cropland carbon budget (??):

___The paper details the mathematical concepts and the algorithm behind the AgriCarbon-EO processing chain. The use of a noniterative I

flux tower measurements, we find that the new inversion approach (BASALT) produces reliable estimates of Co—=2fluxesC W
B880while providingmmmm Our estimates ford;yabgvegpequ—biQmaSS—DAMwe{)m c
to the observations while the validation exercise for yieldwas4’s less conclusive due to the irrwllrzmgeonyWWM uncertainty

of thercembm&hawesLepCH’s data and processing, and/or the use of aHawesLIndeLHI to estimate yleld that may notallow-the-account-of=

drivers of yield.- Whe

analysis of the impact of the number of remote sensing acquisitions-shew-shows a reduction in uncertainty of 66 % when full S2
608 L8 datais-availableare available, while the median retrieved NEE and DAM remained the same.-Also, we-assessed-the importance-of th
find that the assimilation of field scale GLAI products induces a bias on the DAM-of from -120 to 210 gm ™2 and a reduction
Qﬂ%—DAM—H%@Lﬁ@IdAW variability of about 39 % compared to pixel scale assimilation. Based on thls we
argue that aruntraﬁ@ld-mtraﬁeld scale quantification of the DAM 2
budget componentsanmsg(;stecl@dmge&ammmls resolution prov1des 1)-acoherent spatial infor-

@idion with soil samples. 2) the means to provide better sampling strategie

remote sensmg datase

AgriCarbon-EO can also pr0V1de variables related to the water cycle such as soil moisture, evaporation, transpiration,drainage as-well-asso

acoherentand multi

carbon, phenology and water use.and water fluxes.

ionagronomic decision support tool for yield, phenology.

TW and AA proposed the methodology. TW, AA, and LA developed the chain code. TW and AA conducted the simulations and the visue

The contact authors declare that neither they nor their coauthors have any competing interests.
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The source of datasets and codes is given hereafter. Datasets:

Code availability:

620 AgriCarbon-EO is implemented in python3. AgriCarbon-EO requires the PROSAILVS python package and the SAFYE-
CO2 v2.0.5 python implementation. AgriCarbon-EO v1.0.1 is available free of charge for research and evaluation purposes
(non-commercial) upon signature of a licence agreement with the Toulouse Technology Transfer (TTT) office of Université
Toulouse 3.

For this, the user contacts the TTT at "contact@toulouse-tech-transfer.com" providing contact information, affiliation, and

625 objective of use. Upon validation of the license, the code is provided by the team at CESBIO. SAFYE-CO?2 v2.0.5 is provided
with AgriCarbon-EO v1.0.1 in this same procedure. Note that for this paper, and in compliance with the journal requirements,
an anonymous procedure was put in place to grant access to the reviewers. PROSAIL: python bindings v2.0.3 for PROSAILS
is hosted at https://github.com/jgomezdans/prosail and archived under https://zenodo.org/record/2574925#.Y-IIVK3MI2w by

Dr.José Gémez-Dans.
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