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Abstract. Soil moisture is a key variable in monitoring climate and an important component of the hydrological, carbon,

and energy cycles. Satellite products ameliorate the sparsity of field measurements but are inherently limited to observing the

near-surface layer, while water available in the unobserved root zone controls critical processes like plant water uptake and

evapotranspiration. A variety of approaches exists for modelling root-zone soil moisture (RZSM), including approximating

it from surface layer observations. While the number of available RZSM datasets is growing, they usually do not contain5

estimates of their uncertainty. In this paper we derive a long-term RZSM dataset (2002–2020) from the Copernicus Climate

Change Service (C3S) surface soil moisture (SSM) COMBINED product via the exponential filter (EF) method. We identify

the optimal value of the method’s model parameter T , which controls the level of smoothing and delaying applied to the

surface observations, by maximizing the correlation of RZSM estimates with field measurements from the International Soil

Moisture Network (ISMN). Optimized T-parameter values were calculated for four soil depth layers (0–10 cm, 10–40 cm, 40–10

100 cm, and 100–200 cm) and used to calculate a global RZSM dataset. The quality of this dataset is then globally evaluated

against RZSM estimates of the ERA5-Land reanalysis. Results of the product comparison show satisfactory skill in all four

layers with median Pearson correlation ranging from 0.54 in the topmost to 0.28 in the deepest soil layer. Temporally-dynamic

product uncertainties for each of the RZSM product layers are estimated by applying standard uncertainty propagation to SSM

input data and by estimating structural uncertainties of the EF method from ISMN ground reference measurements taken at15

the surface and in varying depths. Uncertainty estimates were found to exhibit both realistic absolute magnitudes as well as

temporal variations. The product described here is, to our best knowledge, the first global, long-term, uncertainty-characterized,

and purely observation-based product for RZSM estimates up to 2 m depth.

1 Introduction

Soil moisture (SM) is an essential climate variable (ECV) crucial for understanding and modelling the Earth’s climate, and an20

important control of hydrological, energy, and carbon fluxes (GCOS, 2022; Dorigo et al., 2021a). Global monitoring of SM

is necessary for a variety of applications such as meteorological modelling (Albergel et al., 2008), monitoring drought (Tobin

et al., 2017), and modelling groundwater recharge (Bouaziz et al., 2020), runoff, and catchment response to storms (Brocca

et al., 2010).
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In situ SM measurements are considered to provide the most accurate SM data but can differ greatly in measuring equipment25

and usually lack estimates of their uncertainties (Dorigo et al., 2011). Widely distributed SM field measurements are available

from centralized platforms such as the International Soil Moisture Network (ISMN) (Dorigo et al., 2021b). While being es-

sential for satellite and model product calibration and validation, in situ measurements lack the spatial coverage necessary for

large-scale applications, especially in the Global South (see Figure A1; Dorigo et al. (2021a); Mishra et al. (2020)). Quasi-

global SM information is available from modelled and satellite products, but their spatial resolution is very coarse (usually30

tens to hundreds of square kilometers) and usually insufficient to resolve the significant spatio-temporal heterogeneity of SM,

which poses challenges to large-scale monitoring (Brocca et al., 2010). Global land surface model products provide gap-free

and long-term SM estimates at various depths and chosen time intervals, but are computationally expensive and may depend on

many auxiliary inputs that are not always available globally or in sufficient quality or resolution (Mishra et al., 2020; Albergel

et al., 2008). In contrast, remote sensing retrievals are available only at satellite overpass times and unreliable under various35

conditions including frozen ground, dense vegetation, or radio frequency interference (RFI) (Gruber et al., 2019; Dorigo et al.,

2017). Moreover, microwaves used for SM retrieval contain mainly information on water content in the surface layer, hamper-

ing their usability for studying or modelling processes in the soil root zone. Root-zone soil moisture (RZSM), often defined as

the water present in the top meter of the soil column (Mishra et al., 2020; Baldwin et al., 2017; de Lange et al., 2008), is a com-

ponent of the Global Climate Observing System (GCOS) ECV portfolio and a necessary variable for closing the water cycle40

(GCOS, 2016, 2022). RZSM also represents the water available for plant water uptake and thus affects evapotranspiration rates

(Martens et al., 2017; Ford et al., 2014; Albergel et al., 2008) and plays a critical role in agricultural productivity forecasting

(Wang et al., 2017) and drought monitoring (Vreugdenhil et al., 2022; Tobin et al., 2017).

The existing link between SM dynamics in the surface layer and the root zone (Albergel et al., 2008; Wang et al., 2017;

Ford et al., 2014; Sure and Dikshit, 2019) allows for estimating RZSM from surface SM (SSM) observations via a variety45

of hydrological models. These include relatively simple two-layer approaches approximating RZSM as a function of SSM

(Manfreda et al., 2014), compound process-based models requiring sophisticated parameter calibration (Bouaziz et al., 2020),

as well as immensely complex and computationally expensive land surface models requiring many auxiliary inputs (Muñoz

Sabater et al., 2021; Rodell et al., 2004). Satellite-based SSM observations can also be assimilated into a land surface model

to produce estimates of RZSM with global coverage, as in the case of SMAP L4 RZSM product (Reichle et al., 2017a). An50

alternative, less complex approach that approximates RZSM solely from SSM estimates—and can thus be readily applied to

satellite retrievals—is the so-called exponential filter (EF) method (Wagner et al., 1999; Albergel et al., 2008). In essence, the

EF method approximates conditions in the root zone by smoothing and delaying SSM, which is generally characterized by

greater fluctuations (Beck et al., 2009; Mahmood and Hubbard, 2007). Even though the coupling strength between the surface

and root-zone layers decreases with depth (Mahmood and Hubbard, 2007; Ford et al., 2014; Mishra et al., 2020) and the skill55

of the method in predicting RZSM has been demonstrated to deteriorate accordingly (Paulik et al., 2014; Brocca et al., 2010;

Sure and Dikshit, 2019), it is still widely used due to its relatively good performance and independence of ancillary inputs as

well as its low computational cost and overall simplicity. However, the EF method is susceptible to prolonged data gaps in
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SSM data and thus requires an adequate number of input observations within a time interval consistent with the temporal scale

of RZSM dynamics.60

Regardless of the method used to derive RZSM estimates, most products do not provide information about the magnitude of

random errors such as the standard deviation of their distribution, hereinafter referred to as uncertainties (Gruber et al., 2020).

Two approaches have been proposed to characterize the time-variant quality of RZSM estimates derived with the EF method.

The first approach, reported in Bauer Marschallinger (2018) and also utilized in this study, is a quality flag that is derived from

the number of valid SSM estimates available within a specific time window preceding a specific EF-based RZSM estimate.65

The second approach, proposed by De Santis and Biondi (2018), uses the standard law of uncertainty propagation (Taylor,

1997) in order to characterize the random error variances of EF-based RZSM estimates. This approach takes into account the

uncertainties of both the SSM input data and the EF model parameter, but does not consider the model structural uncertainty

(Beven, 2005) of the EF method. The latter, due to the simplistic nature of the EF method and the limited surface–root zone

coupling, can also contribute significantly to the uncertainty budget and thus must not be neglected when characterizing product70

errors.

In this paper, we propose to estimate the model structural uncertainty of the EF using in situ measurements of surface and

root-zone SM from the ISMN. We then use these estimates together with the law for the propagation of uncertainties (similar to

De Santis and Biondi (2018)) to produce a global, fully error-characterized RZSM data set for four soil layers (0–10 cm, 10–40

cm, 40–100 cm, and 100–200 cm) between 2002 and 2020, taking C3S soil moisture as input to the model. While other EF-75

based datasets exist (e.g., the SMOS L4 product), they offer limited spatio-temporal coverage and lack quantitative uncertainty

information (??). The focus and novelty of this paper lie in quantifying, rather than reducing, the EF model’s known limitations

by providing a methodology for comprehensive uncertainty estimation for the EF method. Additionally, to our best knowledge,

this dataset is, as yet, the longest available solely observation-based, error-characterized global RZSM product.

2 Datasets and data pre-processing80

2.1 C3S surface soil moisture

Global input satellite surface observations were obtained from the Copernicus Climate Change Service (C3S) Surface Soil

Moisture COMBINED product v202012, hereinafter referred to as C3S SSM. C3S SSM is a merged product that combines

satellite SSM retrievals from four active and ten passive microwave sensors (see Figure 1) into a daily global dataset on a

regular 0.25 degree grid, expressed in volumetric units (m3/m3) (C3S, 2020). Invalid retrievals due to frozen ground, dense85

vegetation, RFI, and other factors are masked out. Although the C3S product provides SSM data from 1978 onward, their

quality and spatio-temporal coverage increases significantly in more recent periods when sensors measuring in frequency

domains better suitable for SSM retrieval are available. Therefore, only C3S SSM data for the period 2001-2020 were used in

this study. Note that data from the first year of this period was used only as the model adjustment period and not included in

later analyses.90
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The uncertainty estimates provided for the merged SSM retrievals in the C3S SSM product were computed by means

of Triple Collocation Analysis (TCA). More specifically, (stationary) uncertainties were estimated for each satellite sensor

separately and used to calculate the merging weights. Uncertainties of the merged SSM estimates were then calculated from

the law for the propagation of uncertainties (i.e., predicting the uncertainty reduction due to the weighted averaging, assuming

that merging weights are correct; see (Gruber et al., 2017)). Note that the distinctive life spans and spectral bands of the95

used satellite missions (e.g., C and X-bands used by AMSR-E, L-band used by SMOS and SMAP) can potentially also lead

to distinctive changes in the data quality of the merged product via the differences in their sensitivity to precipitation or

evaporation. These sudden changes in SSM and uncertainty data are hereinafter referred to as systemic breaks (Preimesberger

et al., 2021). Although said breaks have a marginal impact on the SSM signal itself due to the inter-calibration of sensors, they

are distinct in the uncertainty estimates. As more and newer sensors provide better retrievals, mean uncertainty values typically100

decrease distinctively with every new satellite launch in more recent periods (Gruber et al., 2017).

C3S data are readily available from the Copernicus Climate Data Store (CDS) and detailed information on the C3S dataset

and its underlying ESA CCI v5 merging algorithm can be found in the relevant documentation (C3S, 2020; Dorigo et al.,

2021c).

Figure 1. A timeline of satellite missions utilized in the C3S v202012 dataset during the period 2001-2020. Passive sensors (radiometers)

are represented by red bars, while active sensors (scatterometers) are represented by blue bars.
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2.2 Soil moisture field measurements105

Field measurements for optimizing the model parameters of the EF method and for estimating its uncertainties were obtained

from the International Soil Moisture Network (ISMN) for the period 2002-2020 (Dorigo et al., 2021b). Only data from sensors

with a measuring depth ≤ 200 cm and internally flagged as reliable (Dorigo et al., 2013) were considered. Measuring depths of

SM sensors placed vertically in a depth range, e.g., 10–40 cm, refer to their mean measuring depth. Data from multiple sensors

installed at the same location and depth were averaged. ISMN data, typically available as hourly readings, were aggregated to110

mean daily values to match the temporal sampling of satellite observations. Furthermore, we only used ISMN stations where at

least 100 data points concurrent with C3S SSM retrievals were available. Notably, approximately 80% of selected ISMN time

series originate from North America and Europe (Figure A1) and the availability of data declines with depth.

2.3 ERA5-Land soil moisture

ERA5-Land (E5L) is a multi-decadal climate reanalysis with an extensive portfolio of land variables computed by the assimi-115

lation of ERA5 atmospheric variables into the H-TESSEL land surface model (Muñoz Sabater et al., 2021). Modelled SM data

are available for four depth layers (0–7 cm, 7–28 cm, 28–100 cm, and 100–289 cm) on a regular 0.1 degree grid and accessi-

ble via the Copernicus Climate Data Store (CDS) (Muñoz Sabater, 2019, 2021). We used E5L for a product intercomparison

with the RZSM product developed in this study, carried out for the period 2002–2020 within the Quality Assurance for Soil

Moisture framework (QA4SM; https://qa4sm.eu), which automatically resamples and matches observations of the compared120

datasets and delivers a wide range of validation metrics.

3 Methods

3.1 Exponential filter

The EF method (Wagner et al., 1999) relies on a simple two-layer water balance model where the only considered exchange

between the surface layer and the reservoir below it is infiltration. The method assumes that the fluxes from the surface to the125

sub-surface layers are proportionate to the difference in SM content between both layers. In this study, we utilize the recursive

formulation of the method (Albergel et al., 2008):

RZSM(tn) = RZSM(tn−1)+Kn · (SSM(tn)−RZSM(tn−1)) (1)

tn and tn−1 denote timestamps (in days) of the current and previous SSM observations, respectively. Conditions in the root

zone are approximated by a weighted combination of the new input SSM observation and past model estimates, with more130

recent estimates receiving higher weights on a time scale defined by the method’s only parameter T (temporal length, typically

in days). Weights are controlled by the gain term K, which ranges from 0 to 1 and is calculated as follows:

5

https://qa4sm.eu


Kn =
Kn−1

Kn−1 + e−
tn−tn−1

T

(2)

At initialization, when no preceding estimates are available, the EF calculation is started with K0 = 1 and RZSM(t0) =

SSM(t0).135

Temporal variability in the root zone is generally smaller than at the surface, hence the T-value and its associated level of

smoothing applied to the SSM data increase with depth (Wagner et al., 1999; Paulik et al., 2014; Wang et al., 2017; Beck et al.,

2009; Mahmood and Hubbard, 2007). The optimal T-value (Topt, the value that leads to the best possible representation of

RZSM at a certain location using the EF), has been related to differences in utilized SSM sensors (Bouaziz et al., 2020; Sure

and Dikshit, 2019), SSM sampling frequency (Brocca et al., 2010; Pellarin et al., 2006), and land surface features (Albergel140

et al., 2008; de Lange et al., 2008). In particular, T acts as a conglomerate proxy for various environmental factors assumed

to rule the infiltration process (e.g., soil texture, evapotranspiration, and climate), but past research on the importance of the

exact driving factors is inconclusive and even contradictory (Wang et al., 2017; Bouaziz et al., 2020). To optimize the T-

parameter, numerous control factors have been tested (Bouaziz et al., 2020; Mishra et al., 2020; Stefan et al., 2021) and ever

more sophisticated methods been employed, including machine learning approaches (Grillakis et al., 2021). Other limitations145

of the method include generally poorer performance in arid zones and when soil texture is not homogeneous throughout the

soil column (Yang et al., 2022; Ford et al., 2014).

Due to the high spatio-temporal heterogeneity of SM (Famiglietti et al., 2008) and its surface–root zone coupling—and hence

the difficulty in properly estimating the T-parameter accurately—an uncalibrated value of T=20 has sometimes been used to

describe all of the water content in the first 100 cm of the soil column (Wagner et al., 1999; de Lange et al., 2008). Results150

obtained by using a constant value T=20 were similar to those obtained with T-values calibrated for soil texture (de Lange

et al., 2008). Limited sensitivity of the EF to T due to different environmental factors was also observed by other studies,

which supports choosing a single value for Topt to represent a particular depth for large areas or even globally (Albergel et al.,

2008; Brocca et al., 2010, 2011; Grillakis et al., 2021). It is precisely such limitations that we attempt to describe with the

uncertainty estimation scheme developed in this study, and hence advance the understanding of the EF method’s performance.155

3.1.1 RZSM quality flags

Prolonged temporal data gaps will cause K to increase and may cause the EF to put excessive weight on new SSM input. In

the extreme case, a very long data gap (whose duration depends on the chosen T-value) can reset the EF to the initial state of

Kn = 1 and RZSM(tn) = SSM(tn) (see above). We run a one-year adjustment period (2001) for K to reach an equilibrium state,

and utilize the EF quality flag (qflag) described in Bauer Marschallinger (2018) to avoid such re-initializations due to frequent160

and/or persistent data gaps. The qflag is recursively calculated for each RZSM estimate and reflects the availability of SSM

input data in the preceding time period.
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qflag(tn) =

1+ qflag(tn−1) · e−
tn−tn−1

T , if SSM at tn is available

qflag(tn−1) · e−
tn−tn−1

T , if SSM at tn is unavailable
(3)

The quality flag calculation is initialized with qflag(tn) = 1. A normalization factor of
∑∞

j=0 e−
j
T is used to express the

calculated flag values in percentages with higher values indicating a greater density of SSM data available for calculation.165

If the quality flag falls below a T-specific threshold, RZSM estimates are masked out. The thresholds used here have been

interpolated from those empirically determined by Bauer Marschallinger (2022) for a set of discrete T-values (35%, 40%, 45%,

50%, 55%, 60%, 65%, and 70% for the T-values 2, 5, 10, 15, 20, 40, 60, and 100, respectively). If input data is unavailable but

satisfactory data density has been achieved in preceding days, the latest RZSM estimate is propagated forward until new input

data becomes available or the quality flag drops below its respective threshold. In the latter case, the output value is masked170

out. Importantly, even if new SSM input becomes available to the EF after prolonged data gaps, RZSM estimates derived from

it remain masked until the qflag exceeds the aforementioned threshold again.

3.1.2 T-parameter optimization

We optimize T for a particular depth of the soil column by maximizing the correlation between the satellite-based RZSM

estimates and the in situ measurements (Paulik et al., 2014; Grillakis et al., 2021). Satellite and in situ data are matched in175

space by means of the nearest neighbour method. The impact of the spatial mismatch error between the large footprint of

the satellite-based product and point-scale field measurement is mitigated by excluding time series that exhibit a correlation

coefficient (Pearson’s r) lower than 0.5 (Grillakis et al., 2021) or are not statistically significant (p≥ 0.05).

EF calculations are repeated for T-values 1–100 and Topt is selected for each of the available ISMN time series based on

the highest correlation coefficient. We then group Topt values based on the measurement depth of the respective in situ sensor180

into four bins corresponding to the RZSM target layers. These depth layers, chosen to be 0–10 cm, 10–40 cm, 40–100 cm,

and 100–200 cm, were defined to reflect those in common model-based RZSM products (Rodell et al., 2004; Muñoz Sabater

et al., 2021). Finally, the median value of Topt from each bin is chosen to compute a global RZSM product from the C3S SSM

dataset.

A cross-validation is carried out to verify that Topt values were not over-fitted to the local ISMN site conditions. Therefore,185

the sample set is randomly divided into 5 subsets of equal size (per bin), then each of the subsets was used once to validate the

method fit to the remaining 4 bins.
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3.2 Uncertainty estimation

3.2.1 Baseline method

In De Santis and Biondi (2018), the standard law for the propagation of uncertainties is applied to the EF method, assuming190

the errors in the SSM inputs and T -parameter to be normally distributed and uncorrelated. We use this approach as a baseline

for our analyses. The recursive formulation of this baseline method is as follows:

σ(RZSMn) =

√
∆2

n +

(
∂RZSMn

∂T

)2

σ2(T ) (4)

where:

∆2
n =K2

nσ
2(SSMn)+ (1−Kn)

2∆2
n−1 (5)195

and:

∂RZSMn

∂T
=

Kn

T

[
Gn(RZSMn−1 −RZSMn)+ e−

tn−tn−1
T

T

Kn−1

∂RZSMn−1

∂T

]
(6)

with Gn defined as:

Gn = e−
tn−tn−1

T

(
Gn−1 +

1

Kn−1

tn − tn−1

T

)
(7)

σ(RZSM) and σ(T ) denote the uncertainty of the RZSM estimates (in m3/m3) and the EF model parameter T (a unit of200

time, in days), respectively. The equation is initialized as ∆0 = σ(SSM0), ∂RZSM0 / ∂T = 0 and G0 = 0. Uncertainties of the

SSM input data are considered by the ∆ term (in m3/m3), which also takes into account the effect of possible prolonged input

data gaps dependent on the T -value. The Jacobian term ∂RZSM/∂T assumes high values proportional to the latest SSM input

variability on a time scale related to the T -parameter (expressed as m3/m3 over time). This is reflected in significant changes

in the RZSM value associated with wetting or drying of the soil. Finally, the term G (dimensionless) weighs the contribution205

of change recorded between the latest and penultimate RZSM estimates.

3.2.2 T -parameter uncertainty

De Santis and Biondi (2018) used an arbitrary value of σ(T ) equal to 10% of locally calibrated Topt. This is in line with other

studies on SM uncertainty propagation (Parinussa et al., 2011; Pathe et al., 2009), who used this uncertainty percentage for

parameters without well-defined accuracy. In our study, we determine Topt values based on a limited number of available in210

situ time series and apply these values to estimate RZSM globally. Consequently, σ(T ) is likely to be greater due to a variety

of environmental conditions not accounted for or underrepresented in the available in situ sample. We therefore propose the

median absolute deviation (MAD) of Topt (Section 3.1.2) as a more appropriate proxy for σ(T ). In this case, the MAD is

preferred over the variance because the sampling distribution of Topt is both non-Gaussian and bounded (Leys et al., 2013).
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3.2.3 EF model structural uncertainty215

Recall that the standard law for the propagation of uncertainty (which is used in the baseline method) does not account for

model structural uncertainty in the EF, which, due to the simplistic nature of the method and the limited surface–root zone

coupling, can account for a significant portion of the overall uncertainty budget.

We propose to estimate model structural uncertainty (σ(EF )) from in situ data using stations that operate sensors both at the

surface and in the root zone. At these stations, we derive RZSM estimates from the SSM measurements using the EF method220

and then compare them to actual RZSM station measurements. For this analysis, the T -value was optimized for each station

and depth individually to minimize its influence on the estimation of σ(EF ). This provides direct estimates for σ(EF ) as:

σ(EF ) = ubRMSD(RZSMEF ,RZSMISMN ) (8)

where ubRMSD denotes the unbiased root-mean-square difference. Note that ‘unbiased’, in this case, does not only refer to

a correction for bias in the mean (as is most commonly done) but also to a correction for bias in variance, which also constitutes225

an unintended systematic component in the RMSE (Gupta et al., 2009). Only sites with measurements from more than a single

depth and at least one sensor within the surface layer (≤ 10 cm) were selected. Time series with negative correlation between

EF-based RZSM estimates and in situ RZSM measurements were disregarded. As a result, a total of 1509 in situ sites were

considered. Note that the EF model structural uncertainty computed at the point scale is assumed to be representative for the

coarse scale as well.230

Finally, the EF structural uncertainties obtained from Eq. (8) add to the propagated RZSM uncertainty budget (Eq. (4)) as:

σ(RZSMn) =

√
∆2

n +

(
∂RZSMn

∂T

)2

σ2(T )+σ2(EF ) (9)

4 Results and discussion

In this section, we first show results of the point-scale T -parameter optimization. Next, we compare the gridded RZSM prod-

uct globally to E5L. We then discuss the estimates for EF model structural uncertainties. Finally, we compare our RZSM235

uncertainty estimates with those obtained with the baseline method.

4.1 T -parameter optimization

After filtering out unreliable data (see Section 2.2), 3901 ISMN time series from 67 different measuring depths between 0

and 200 cm were available for the T -optimization process. Figure 2 shows the distribution of Topt values binned into our four

chosen RZSM layers (0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm). The median Topt values for these layers were 6, 15,240

48 and 70 days, increasing with soil depth as expected (Paulik et al., 2014; Wang et al., 2017). These median Topt values were

then used to compute RZSM globally.
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Figure 2. Topt values calibrated on 3901 in situ time series and binned per RZSM layers 1–4. Median values (represented by orange lines)

from each bin were used to compute a global RZSM product. Median absolute deviations (MAD(Topt)) were used in estimating RZSM

uncertainties.

A five-fold cross-validation was performed to verify the robustness of this approach. The variability in median Topt values

per soil layer is increasing with depth but remains negligibly small in all layers, with 6, 15–16, 47–50 and 67–72 for soil

layers 1–4, respectively (Figure 3a). Subsequently, the five median Topt values derived from the training subsets were used to245

estimate RZSM for the different layers of the respective validation sets (Figure 3c) and resulted in Pearson’s r of 0.64–0.67,

0.64–0.65, 0.57–0.6, and 0.48–0.6 for soil layers 1–4, respectively. When evaluating each training set directly, correlations

were 0.65–0.66, 0.65, 0.58–0.59, and 0.53–0.56 for soil layers 1–4, respectively (Figure 3b).
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Figure 3. Cross validation results showing the spread in Topt values (a), and agreement of the training (b) and validation (c) sets with in situ

data.

The little variability between the validation and training sets suggests that Topt values are not over-fitted to ISMN site

conditions and can be used robustly in other regions as well. Notably, the spread in median Topt values increases with soil250

depth while the correlation scores decrease. This indicates reduced reliability of the method in deeper soil layers, which is in

line with the assumption that the coupling between the surface and root-zone SM decreases with depth. Note, however, that

results for deeper layers are also affected by the smaller sample sizes at greater depths.

4.2 Global RZSM product quality assessment

A global SM dataset spanning the 2002–2020 period was computed using the EF method and T-parameters optimized at point255

scale with the approach described in section 4.1. Figures 4a–e) show correlation maps of each of the RZSM product layers as

well as the input C3S SSM dataset with E5L. The spatial patterns observed in the C3S SSM data (Figure 4a) are strikingly

similar to those in RZSM layer 1 (Figure 4b) with slight to moderate deterioration in performance over the high latitudes

(> 60◦N ). This is not surprising given that both products differ only by a small degree of smoothing applied to RZSM layer 1

and are compared to the same E5L layer (0-7 cm). RZSM layers 2 and 3 (Figure 4c-d) are compared to E5L layers 7-28 and260

28-100 cm, respectively, and largely preserve good performance in regions where the input C3S SSM product also performs

well, i.e., in Europe (bar Scandinavia), the Caspian and Aral Sea basins, the Eastern United States, India, Southeast Asia, South

America, Sub-Saharan Africa, and Australia. At the same time, deterioration of performance is observed in high latitudes and

in arid environments such as the Sahara desert and the Arabian Peninsula where the reduced strength of coupling between the

surface and root-zone dynamics may hinder the EF performance (Yang et al., 2022). The patterns of good and poor performance265

visible in RZSM layers 1-3, are not replicated in RZSM layer 4 (Figure 4e) where the agreement with the reference E5L 100-

289 cm layer is spatially very heterogeneous and worse overall. The few regions where the good performance observed in

shallower layers is preserved include India, Southeast Asia, and the Eastern United States.
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Figure 4. Spatial correlation maps of the C3S SSM (a) and RZSM products (b-e) with E5L layer 0–7 cm (a-b), 7–28 cm (c), 28–100 cm (d)

and 100–289 cm (e).

Figure 5 shows a comparison between all of the RZSM product layers as well as the input C3S SSM dataset with E5L. RZSM

product layers agree best with the (approximately) matching E5L depth layers in all but one case. The highest median Pearson270

correlations with the E5L reference layers (0–7 cm, 7–28 cm, 28–100 cm, and 100–289 cm) were obtained by C3S SSM (0.55),

RZSM layer 1 (0.49), RZSM layer 3 (0.41), and RZSM layer 4 (0.28), respectively. Even though C3S SSM correlates best with

the E5L surface layer, the correlation score for RZSM layer 1 (0–10 cm) is only insignificantly smaller (0.54). Similarly, the
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second E5L layer (7–28 cm) best agrees with RZSM layer 1 (r=0.49) but the layer most congruent in depth (RZSM 2) is a close

second (r=0.47). In the remaining depth layers, correlations between C3S SSM and E5L are substantially lower than for the275

RZSM product, which proves the ability of our EF approach to approximate SM below the surface layer. While RZSM layer

1 (0–10 cm) shows the best agreement with E5L layer 2 (7–28 cm; r=0.49) RZSM layer 2 (10–40 cm) correlates only slightly

less with that layer (r=0.47).

Figure 5. Product intercomparison of the C3S SSM and RZSM products against E5L SM.

Results are also consistent with the assumption of the EF model that SM dynamics decrease with depth and that Topt ought

to increase accordingly, as was also found by other studies (Wagner et al., 1999; Paulik et al., 2014; Wang et al., 2017; Beck280

et al., 2009; Mahmood and Hubbard, 2007). At the same time, the maximum correlation values decrease with depth confirming

the diminishing coupling between the surface and root-zone layers, as also found at in situ station level 3 and demonstrated

by others (Paulik et al., 2014; Brocca et al., 2010; Sure and Dikshit, 2019). The performance of our product is similar to that

of other satellite-based RZSM products found in other studies, especially when considering the same regions for assessment

(Reichle et al., 2017b; Xu et al., 2021). While the data set presented here does not outperform other existing RZSM products, it285

distinguishes itself as the only purely observation-based global product covering such a long time period, and the only EF-based

product that has uncertainty estimates provided with it.
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4.3 EF model structural uncertainty

Figure 6 shows estimates for the model structural uncertainties (Section 3.2.3) obtained at all available in situ sites, binned

into the four RZSM product layers. Their median values (represented by orange lines and annotated) were used as estimates290

for σ(EF ). Note that in situ measurement errors were assumed to be negligible and thus not influencing ubRMSD estimates,

which likely causes model structural uncertainties to be overestimated. Also, structural uncertainties are assumed to be constant

in time.

Figure 6. The ubRMSD between propagated RZSM from in situ SSM using the EF model and measurements of RZSM at the same location

and in the same depth, calculated at 1509 different sites. The median ubRMSD value for each bin (represented by orange lines and annotated)

represents σ(EF ) for the according Topt.

As anticipated, an increase in σ(EF ) corresponds to the growing distance between the surface and the root-zone measure-

ments, demonstrating the decreasing coupling strength between both layers. Note that σ(EF ) shows significant variability295

within RZSM layers which is likely, at least to some degree, related to variations in local conditions. However, as with the T -

parameter optimization, we estimate structural uncertainties based only on a limited number of in situ stations and, therefore,

use the median to extrapolate globally.
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4.4 RZSM uncertainty budget calculation

Figure 7 compares RZSM uncertainty estimates obtained from the baseline method (De Santis and Biondi, 2018) with those300

from the approach proposed here. Figure 7a shows a time series of RZSM uncertainties from the baseline method at an arbitrary

location in Benin (9.875N, 1,625E). Figure 7b shows the effect of changing σ(T ) from 10% of Topt to the median absolute

deviation of Topt, which is an amplified temporal variability. Simultaneously, mean uncertainty values increase and get closer

to the magnitudes of the input SSM dataset. Moreover, they no longer diminish with increasing T -values (i.e., depth) as is the

case in the baseline formulation. This is presumably more realistic since the progressive decoupling between the surface and305

deeper soil layers can be expected to cause uncertainties to increase rather than to decrease.

Figure 7c shows the impact of accounting for σ(EF ) in the total uncertainty budget when using 10% of Topt as T -parameter

uncertainty (σ(T )). Considering this term substantially increases the magnitude of the propagated uncertainties and leads them

to increase with depth (as does σ(EF )). However, the uncertainties’ temporal variability is reduced substantially as the effect

of σ(T ) is overshadowed by that of σ(EF ). Finally, Figure 7d shows the combined effect of using the MAD of Topt as its310

parameter noise σ(T ) and accounting for model structural uncertainty σ(EF ). Compared to the baseline (Figure 7a), this

yields an increased overall magnitude of the uncertainties, a more realistic increase in (temporal average) uncertainties with

depth, and an amplified temporal variability in all layers during transitions between dry and wet conditions (see Figure 8). The

latter effect is caused by the simplistic nature of the model, which essentially operates as a smoother and therefore attenuates

sudden variations in the SSM signal which in reality may be transmitted into the deeper layers in a more significant manner.315

The reduced accuracy of the EF method during soil wetting and drying phases was also observed by others (Ford et al., 2014).

4.5 Assessment of uncertainty estimates

Similar as in De Santis and Biondi (2018), we assess the use of the proposed MAD estimates for σ(T ) by computing Pearson’s

r and root-mean-square differences (RMSD) with respect to in situ data before and after removing a fixed percentage of the data

(5, 10, 15, and 20%) with highest uncertainty estimates. In case of effective correspondence between high values of both the320

estimated RZSM uncertainties and the observed RZSM deviations from reference in situ measurements, it is expected that the

skill metrics will improve due to the masking. This hypothesized correspondence holds well as long as the difference between

in situ and satellite-based RZSM values is mainly due to the random errors of the latter. Note that this analysis is only sensitive

to the impact of using different values for σ2(T ) ((Topt/10)
2 versus MAD(Topt)

2) since the estimated structural uncertainty

σ(EF ) is constant in time and therefore cannot change the ranking of the total uncertainties.325

Figures 8a) and d) indicate (in magenta shading) 20% of RZSM layer 2 data with the highest uncertainties masked out

in the experiment described above based on uncertainties estimated with the baseline (b), and our method (d), respectively.

Overall, despite the differences in magnitude and amplitude, both our and the baseline method assign the highest uncertainty

values to timestamps corresponding to significant soil wetting or drying events. However, in the baseline method the average

magnitude of SSM input uncertainty appears to have a greater influence on the calculated RZSM uncertainty estimates. This is330

most evident when comparing values before and after the inclusion of Metop-A ASCAT into the C3S product in January 2007
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Figure 7. Evaluation of the impact of changes to the baseline method illustrated on an example 2020 time series from 9.875N, 1,625E. C3S

SSM uncertainties were propagated with the baseline scheme in a), while b) and c) show the individual impacts of increasing the noise of

T from 10% of Topt to MAD(Topt) and adding the term σ2(EF ), respectively. Combined effects of both changes are shown in d). The

dashed grey line indicates the uncertainty level defined by GCOS (2022) as an accuracy goal for RZSM products.

(indicated by the dashed vertical line in Figure 8), which substantially improved data quality thereafter. Specifically, mean

C3S SSM uncertainty dropped from 0.029 m3/m3 to 0.018 m3/m3. Such a clear shift is also visible in the uncertainty values

propagated with the baseline method (from 0.008 m3/m3 before to 0.004 m3/m3 after the introduction of Metop-A ASCAT).

This causes the baseline method to predict the majority of the 20% most uncertain SM values to occur in the pre-ASCAT period.335

In contrast, in our approach, average uncertainties remain stable (at 0.036 m3/m3) over the entire time period. This suggests

that the use of MAD(Topt)
2 as an estimate for T -parameter uncertainty reduces the sensitivity to systemic breaks, i.e., large

variations between the uncertainties of the C3S SSM input sensors, and improves the method’s capability to predict day-to-

day uncertainty variations. Lastly, after the introduction of ASCAT, both schemes consistently assign higher uncertainties to

timestamps characterized by large SM changes. Taken together, while the use of Topt/10 as T parameter uncertainty seems to340

yield realistic estimates for uncertainty variations due to the use of different C3S SSM input sensors, using MAD(Topt) as T

parameter uncertainty seems to better predict day-to-day uncertainty variations in the RZSM estimates.

Figure 9 shows the results of the data removal experiment described above, summarized for all considered ISMN stations. To

compare the performance with and without the effect of C3S systemic breaks on the uncertainty values (see above), results are

shown for both the full product period (2002–2020; Figure 9a–d) and a sub-period without breaks, i.e., from the inclusion of345

16



Figure 8. Differences in uncertainty variations of the baseline (a-b) and our proposed uncertainty estimation approach (c-d). Illustrated on

the example of RZSM layer 2 at an arbitrary location in Benin (9.875N, 1,625E).

SMAP data onward (April 1st 2015–2020; Figure 9e–h). In both cases, correlation coefficients obtained for the complete time

series were compared to those obtained after removing 5, 10, 15, and 20 % of data with the highest associated uncertainties.

In case of the full product period (Figure 9a–d), using σ(T ) = Topt/10 as T -parameter uncertainty seems to yield more

consistent improvements in correlation with the in situ reference after removing a percentage of the most uncertain data, than

using σ(T ) =MAD(Topt). This is true for all four soil layers. Masking out more uncertain data indicated by either method350

consistently improves agreement with in situ reference data in the first two product layers. This improvement increases the

more data are masked out, as is expected. In the absence of such breaks (Figure 9e–h) RZSM uncertainty variations seem to

be better predicted when using σ(T ) =MAD(Topt) as T parameter uncertainty in almost all cases. Notably, in layers 3 and 4,

data removal according to either method degraded the agreement with field measurements.

At greater depths, the contribution of the model structural uncertainty to the total uncertainty budget has been shown to355

increase. In the circumstances where the EF model appears to be inadequate, for example due to poor coupling between the

root zone in consideration and the surface layer, it can be assumed that the model structural uncertainty is so predominant as

to make the temporal patters of the other uncertainty components marginal in practice. However, in circumstances where the
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Figure 9. Correlations with in situ measurements (y-axis) before and after removing a fixed percentage of data with the highest uncertainty

(x-axis) for the period 2002–2020 (a–d) and 2015–2020 (e–h). Uncertainties were calculated using either σ(T ) = Topt/10 (olive colors) or

σ(T ) =MAD(Topt) (orchid colors).

magnitude of the real uncertainty is such as to make the EF-based RZSM so unreliable, the lack of ability to reproduce the

temporal variations of the estimated uncertainty becomes less relevant.360

In summary, the propagation of C3S SSM input uncertainties yields accurate predictions of temporal uncertainty variations

of RZSM estimates obtained with the EF method for the first two layers (0–10 cm and 10–40 cm). This is no longer the case

for deeper layers (40–100 cm and 100-200 cm). Note, however, that the RZSM estimates in these layers themselves still exhibit

reasonable skill when evaluated against E5L (see Figure 5).

5 Summary and Conclusions365

In this study, we computed root-zone soil moisture (RZSM) globally in four depth layers (0–10 cm, 10–40 cm, 40–100 cm, and

100-200 cm) from merged satellite surface soil moisture (SSM) retrievals of the Copernicus Climate Change Service (C3S)

COMBINED product v202012 using the exponential filter (EF) method. The EF model parameter T has been optimized at

point scale by maximizing the correlation against globally-distributed in situ SM measurements from the International Soil
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Moisture Network (ISMN). The median of the optimized T values at each layer have been used to compute the global product.370

A global product intercomparison with ERA5-Land (E5L) reanalysis SM data has shown a satisfactory level of agreement in

all layers (global median correlations of the four above-mentioned product layers against E5L reference layers 0–7 cm, 7–28

cm, 28-100 cm, and 100-289 cm were 0.54, 0.47, 0.41, and 0.28, respectively).

Uncertainties in the RZSM estimates obtained with the EF method were calculated using the law for the propagation of

uncertainties. Uncertainties of the input SSM data were available in the C3S product and have been calculated by the data375

producers using Triple Collocation Analysis (TCA). We tested the use of the median absolute deviation of optimized T param-

eters at the available ISMN locations (MAD(Topt)) as a proxy for T parameter noise. Results obtained using MAD(Topt)

in uncertainty propagation were compared with results obtained using 10% of the optimized T parameter itself (Topt/10)

used in earlier studies. While the use of Topt/10 as T parameter uncertainty seems to yield realistic estimates for uncertainty

variations due to the use of different C3S SSM input sensors, using MAD(Topt) as T parameter uncertainty seems to better380

predict day-to-day uncertainty variations in the RZSM estimates. A higher value assumed by σ(T ) (in this case MAD(Topt))

places more weight on short-term significant variations in RZSM values (accounted for by the Jacobian term ∂RZSM/∂T ) and

overshadows the contribution of the input uncertainties (∆) to the overall uncertainty budget. This approach results in higher

uncertainty outputs paralleling significant changes in RZSM signal (e.g., soil wetting/drying events) and is generally better

suited to describe day-to-day uncertainty variations. Meanwhile, lower value of σ(T ) (here Topt/10) favors the impact of385

the input uncertainties and appears to be more skillful in detecting sudden shifts in the magnitude of the input uncertainties

due to C3S SSM sensor changes. While both the significant variations in RZSM values and the magnitude shifts in the input

uncertainties are crucial elements of the overall uncertainty budget, there appears to be a trade-off in favoring the impact of

one or the other based on the value assumed by σ(T ).

Even though propagating SSM input and model parameter uncertainties yields credible predictions of temporal uncertainty390

variations, absolute uncertainty magnitudes appear unrealistically small (below 0.01 m3/m3). This is because the propagation

of uncertainty only accounts for uncertainties in the data and parameters input to the EF method, but not for limitations of

the EF method itself (e.g., the progressive inability of the method to model deeper-layer RZSM due to vanishing surface–root

zone coupling). We proposed to estimate these EF model structural uncertainties as the unbiased root-mean-square differences

between RZSM estimates for each of our four product depth layers obtained by applying the EF method to in situ SSM mea-395

surements, and actual in situ RZSM measurements taken at the same location and depth. This was done at all available ISMN

sites and the median of these estimates used as a global proxy of EF structural uncertainty for each of the four product depth

layers, respectively. Combined, propagated SSM input and model parameter uncertainties and EF structural uncertainties were

considered to yield realistic estimates of the total RZSM product uncertainty budget in all layers (global mean uncertainties of

the four product layers are 0.031, 0.035, 0.04, and 0.04 m3/m3). Note, however, that a quantitative validation of uncertainty400

magnitudes is still pending due to the lack of reliable uncertainty reference data on a global scale and for different RZSM depth

layers.

The EF parameter uncertainty was estimated on a global scale and can be expected to differ for smaller scales, especially

where the variability in environmental conditions is lower. Similarly, estimates of the EF model structural uncertainty are likely
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to differ on local to regional scales. Also, the structural uncertainty of the EF, here assumed to be constant in time, could in fact405

vary on a sub-seasonal scale given the phenomena that regulate the process of water transfer in the soil. Moreover, random errors

of the in situ measurements were assumed to be negligible and were not accounted for in estimating the structural uncertainty

of the model. Nonetheless, it is plausible that the EF structural uncertainty is much greater than the random uncertainty of the

in situ sensors. Estimates of the random uncertainty of in situ sensors could allow for a more accurate estimation of the EF

structural uncertainty in the future.410

Further insights could also be gained by evaluating the behaviour of the proposed method in propagating uncertainties of dif-

ferent SSM input data, i.e., single-sensor products without systemic breaks and non-static input SSM uncertainties obtained by

different means than TCA. Nonetheless, this study is an important step towards understanding and describing the uncertainties

of EF-based RZSM products.

6 Code and data availability415

Python package used in the computation of the root-zone soil moisture data and its associated uncertainties from surface soil

moisture observations by means of exponential filter: https://github.com/TUW-GEO/pyswi

Global root-zone soil moisture data produced and utilized in this study, available for 2002-2020 period as daily image files in

netCDF4 format: https://doi.org/10.48436/9gsg6-nn854
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Appendix A: ISMN references420

Table A1: ISMN networks used in this study.

Network Time series used for T -

parameter optimization

Time series used for EF

model structural uncer-

tainty estimation

Reference

AMMA-CATCH 31 27 Mougin et al. (2009); Cappelaere

et al. (2009); de Rosnay et al.

(2009); Lebel et al. (2009); Galle

et al. (2015)

ARM 90 113 Cook (2016a, b, 2018)

AWDN 112 148 -

BIEBRZA_S-1 15 18 Musial et al. (2016)

BNZ-LTER 7 22 Van Cleve et al. (2015)

CALABRIA 12 - Brocca et al. (2011)

CAMPANIA 1 - Brocca et al. (2011)

COSMOS 65 2 Zreda et al. (2008, 2012)

CTP-SMTMN 147 167 Yang et al. (2013)

DAHRA 4 4 Tagesson et al. (2015)

FLUXNET-

AMERIFLUX

22 16 -

FMI 16 37 Ikonen et al. (2016, 2018)

FR_Aqui 28 23 Al-Yaari et al. (2018); Wigneron

et al. (2018)

GROW 118 - Xaver et al. (2020); Zappa et al.

(2019, 2020)

GTK - 24 -

https://www.overleaf.com/project/6194e50984e1f0b1f43a008b

HiWATER_EHWSN

- 1 Kang et al. (2014); Jin et al. (2014)

HOAL 90 97 Blöschl et al. (2016); Vreugdenhil

et al. (2013)

HOBE 64 60 Jensen and Refsgaard (2018);

Bircher et al. (2012)
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HSC_SEOLMACHEON 1 - -

HYDROL-

NET_PERUGIA

4 6 Flammini et al. (2018a, b); Mor-

bidelli et al. (2011, 2014, 2017)

ICN - 24 Hollinger and Isard (1994)

IIT_KANPUR - 3 -

IMA_CAN1 9 - Biddoccu et al. (2016); Raffelli

et al. (2017); Capello et al. (2019)

IPE 1 - Alday et al. (2020)

iRON 5 16 Osenga et al. (2019, 2021)

KIHS_CMC 54 38 -

KIHS_SMC 51 32 -

LAB-net 2 1 Mattar et al. (2014, 2016)

MAQU 53 62 Su et al. (2011); Dente et al. (2012)

MOL-RAO 9 10 Beyrich and Adam (2007)

MySMNet 15 11 Kang et al. (2019)

NAQU 5 31 Su et al. (2011); Dente et al. (2012)

NGARI 5 84 Su et al. (2011); Dente et al. (2012)

NVE - 10 -

ORACLE 24 32 -

OZNET 101 105 Young et al. (2008); Smith et al.

(2012)

PBO_H2O 115 - Larson et al. (2008)

PTSMN 80 60 Hajdu et al. (2019)

REMEDHUS 22 - González-Zamora et al. (2019)

RISMA 51 62 Canisius (2011); L’Heureux (2011);

Ojo et al. (2015)

RSMN 13 - -

SASMAS 27 13 Rüdiger et al. (2007)

SCAN 575 806 Schaefer et al. (2007)

SKKU 56 42 Nguyen et al. (2017)

SMN-SDR 76 127 Zhao et al. (2020); Zheng et al.

(2022)

SMOSMANIA 79 66 Calvet et al. (2007); Albergel et al.

(2008); Calvet et al. (2016)

SNOTEL 788 942 Leavesley et al. (2008)
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SOILSCAPE 385 247 Moghaddam et al. (2010, 2016);

Shuman et al. (2010)

SWEX_POLAND 6 17 Marczewski et al. (2010)

TAHMO 68 10 -

TERENO 14 10 Zacharias et al. (2011); Bogena

et al. (2012, 2018); Bogena (2016)

UDC_SMOS 16 11 Loew et al. (2009); Schlenz et al.

(2012)

UMBRIA 37 28 Brocca et al. (2008, 2009, 2011)

UMSUOL 4 6 -

USCRN 309 358 Bell et al. (2013)

USDA-ARS 4 - Jackson et al. (2010)

VAS 1 - -

VDS 12 8 -

WEGENERNET 1 - Kirchengast et al. (2014); Fuchs-

berger et al. (2021)

WSMN 1 - Petropoulos and McCalmont

(2017)
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Figure A1. Location map of the ISMN in situ stations used in this study and listed in TableA1.
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