
Responses to reviewer’s comments

We thank the editor and the reviewers for their time and effort to review our manuscript, which
helped to further increase the quality of the paper. All comments have been addressed carefully.

Below, reviewer comments are marked in red.
Responses to the comments are marked in blue.
Cited changes that have been made in the manuscript are marked in italic .

Reviewer 1:

The MS titled, ’Uncertanity estimation for a new exponential filter-based long-term root-zone soil
moisture dataset from C3S surface observations’ by Pasik et al. describes a methodology to deduce
rootzone SM using only satellite derived surface soil moisture using a well-known exponential filter
approach with its error characterization. In general, I found this study lacking in novetly factor. The
exponential model has been around for a while now and is shown to have limited success in estimating
SM at deeper layers (>40cm) as also shown in this study. Furthermore, there are some glaring gaps
in background infromation, method descriptions etc. Therefore, despite tackling a critical issue in
sub-surface hydrology, I would recommend rejection in its current form. However, I would be more
than happy to see it re-submitted with significant revisions.

We regret to learn that the novelty in the uncertainty estimation scheme for the exponential fil-
ter (EF) is not clear. Our intention is for the uncertainty estimation method (rather than the dataset
or the EF itself) to be the main focus of the paper. To our best knowledge, this study is the first
one to provide uncertainty estimates for a global, EF-based soil moisture dataset which also accounts
for uncertainties of the EF method itself. Moreover, while the application of the EF approach at
greater soil depths yields less accurate results, we believe that there can still be merit found in such
estimates provided that the uncertainties are known (which, again, are the main focus of this study).
We will revise the manuscript to make this more clear, and address the gaps in background informa-
tion and method descriptions mentioned in the major and specific comments below.
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Major Comments Reply

1) As mentioned earlier, the exponential fil-
ters have been studied extensively (as also
acknowledged in the MS) in the past. Also
has well docmented issues such as poor per-
formance in the deeper layers, struggles with
widely different soil types between surface
and lower layers (no mention or discussion
around this in the MS), summer season de-
coupling etc. This study acknowledges and
re-affirms most of these issues but presents
no path forward in trying to solve them. Its
does not seem to be taking the scinece for-
ward either by reducing the model known
limitations, or sheding new lights on model
performance with its global implementation
or discussion. Therefore, in my opition, in
the current form, this study lack the novelty
factor and may need significant revisions.

Thank you for pointing out these previously un-
acknowledged limitations of the EF. We will men-
tion them while discussing the limitations of the
method: ”Other limitations of the method include
generally poorer performance in arid zones and
when soil texture is not homogeneous throughout
the soil column (Yang et al., 2022; Ford et al.
2014)”.
In this MS, we focus on advancing the understand-
ing of the EF method by contributing our uncer-
tainty estimation scheme to describe, rather than
reduce, the model’s known limitations. We will
make this intention clear by adding the follow-
ing sentence to conclude section 3.1 Exponen-
tial filter: ”It is precisely such limitations that we
attempt to describe with the uncertainty estima-
tion scheme developed in this study, and hence ad-
vance the understanding of the EF method’s per-
formance”.

2) I agree with the authors that their
product could be the covering the longest
period of record for observation-based
RZSM, but shoud have at least acknowl-
edged other global products such as
SMAP and SMOS L4 products in the
MS. In fact, SMOS L4 product is simi-
lar to this study, they are also using EF
(https://sextant.ifremer.fr/record/316e77af-
cb72-4312-96a3-3011cc5068d4/) whereas
SMAP L4 uses data assimialtion approach
to merge SMAP with the Catchment Land
surface Model with detailed uncertanity
analysis and published ATBDs.

Thank you for the suggestion. We will explicitly
reference SMAP L4 RZSM while discussing various
approaches to estimating RZSM in the Introduc-
tion: ”Satellite-based SSM observations can also
be assimilated into a land surface model to pro-
duce estimates of RZSM with global coverage, as
in the case of the SMAP L4 RZSM product (Re-
ichle et al., 2017).”
We will also edit the concluding sentences of
the introduction to acknowledge other EF-based
datasets (incl. SMOS L4 RZSM): ”While other
EF-based datasets exist (e.g., the SMOS L4 prod-
uct), they offer limited spatio-temporal coverage
and lack quantitative uncertainty information (Al
Bitar and Mahmoodi, 2020; Bauer-Marschallinger
et al., 2018).”
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3) Furthertmore, I think the MS could be im-
proved further with some more background
information on other rootzone SM estima-
tion techniques, currently the MS does not
talk about other methods and why EF might
be better than others, in that context an
best average correlation of 0.56 doesnt not
inspire too much confidence. The authors
simply skipped over some of the detailes of
satellite SM estiamtions like difference in
bands (X&C for AMSR-E vs L for SMAP
and SMAOS etc.), I think it would improve
MS.

In addition to the discussion on the root-zone es-
timation techniques (and the EF method in their
context) already present in L44-60 of the submit-
ted MS, we will also include specific references
to SMOS L4 and SMAP L4 RZSM products as
per the previous comment. Furthermore, in the
context of product performance, we will add the
following as the concluding sentence of section
4.2 Global RZSM product quality assessment:
”The performance of our product is similar to
that of other satellite-based RZSM products found
in other studies, especially when considering the
same regions for assessment (Xu et al. 2021, Re-
ichle et al. 2017). While the data set presented
here does not outperform other existing RZSM
products, it distinguishes itself as the only purely
observation-based global product covering such a
long time period, and the only EF-based product
that has uncertainty estimates provided with it”.
The input C3S SM dataset is a harmonized prod-
uct where the biases between bands are mitigated
by the inter-calibration of the sensors. Further-
more, each estimate is a weighted combination of
the individual sensor observations available on that
day. However, the spectral band of the sensor, via
its suitability for retrieving soil moisture informa-
tion (e.g., different sensitivity to precipitation and
evaporation), impacts the uncertainty estimates.
We will make this more clear when introducing the
C3S dataset in section 2.1 by including the fol-
lowing: ”Note that the distinctive life spans and
spectral bands of the used satellite missions (e.g.,
C and X-bands used by AMSR-E, L-band used
by SMOS and SMAP) can potentially also lead
to distinctive changes in the data quality of the
merged product via the differences in their sensitiv-
ity to precipitation or evaporation. These sudden
changes in SSM and uncertainty data are here-
inafter referred to as systemic breaks (Preimes-
berger et al., 2021). Although said breaks have
a marginal impact on the SSM signal itself due to
the inter-calibration of sensors, they are distinct
in the uncertainty estimates. As more and newer
sensors provide better retrievals, mean uncertainty
values typically decrease distinctively with every
new satellite launch in more recent periods (Gru-
ber et al., 2017)”.
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4) If I understand correctly, most of the in-
situ sites are in open fields (usually near
agricultural land). Therefore, Topt obtained
may only be able to represent (presumabely)
a particular landcover type. Is there any
analysis authors have performed to assess
the model perfromance at other locations?
While reading the MS, I could not figure out
if the model was implemented at gridded
scale or only at the ISMN sites. Perhaps,
this could be made more clearer.

It is correctly pointed out that the reference in situ
sites used for optimizing the T-parameter do not
equally represent the variety of land cover classes.
Similarly, their geographical distribution is largely
skewed towards the Global North (as acknowledged
in L27-29 of the submitted MS). However, as other
studies have shown, optimizing the T-parameter
per, e.g., soil type, does not yield an improvement
versus using an averaged T-value (e.g., De Lange
et al. 2008, Grillakis et al. 2021). This is why
we choose to lump all the available in situ stations
together in the optimization of the T-parameter.
Even though their distribution might be skewed to-
ward particular land cover classes (i.e., grasslands
or croplands) the impact of this is probably negligi-
ble (e.g., Stefan et al. 2021). This limited sensitiv-
ity to variation in T-parameter values is discussed
in L135-141 of the submitted MS.
Indeed we evaluate our product globally at grid cell
level against ERA5-Land data. We will include
spatial correlation maps for each of the product
layers in an additional new Figure (please find it
included at the end of this document), where the
performance of the RZSM product can be seen at
every single location. Performance patterns ob-
served in these maps do not show correlation with
the distribution of the ISMN stations used for the
T-parameter optimization (i.e., Fig. A1 in the sub-
mitted MS), which too suggests that the impact of
their uneven distribution and over-representation
of certain land cover classes does not have a sub-
stantial impact.
The EF model was optimized with point-scale
ground measurements and implemented globally
at the grid scale. We will add the following text
to make this clearer throughout the MS:
1) in the opening section of the Results: ”In this
section, we first show results of the point-scale T-
parameter optimization. Next, we compare the
gridded RZSM product globally to E5L.”
2) in the opening sentence of section 4.2 Global
RZSM product quality assessment: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1.”
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5) Finally, I think the discussoin could be
further improved (especially if study is sim-
ply focused in implementing at larger scale
with its limitations intact) by talking about
if there is any regional pattern in model per-
formance (arid vs humid conditions); tropi-
cal vs sub-tropical region? Does soil types
play any role in Topt and uncertanity estima-
tions? What is the dominent landcover type
and can these different rooting systems (bar-
ren soils vs cropland vs deep rooted trees)
explain some of the issues beign faced?

Thank you for this suggestion, we will include
spatial correlation maps in a new figure (men-
tioned in our response to comment #4) and dis-
cuss the observed patterns in section 4.2 Global
RZSM product quality assessment: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1. Figures Xa–e) show cor-
relation maps of each of the RZSM product lay-
ers as well as the input C3S SSM dataset with
E5L. The spatial patterns observed in the C3S
SSM data (Figure Xa) are strikingly similar to
those in RZSM layer 1 (Figure Xb) with slight
to moderate deterioration in performance over the
high latitudes (> 60◦N). This is not surprising
given that both products differ only by a small de-
gree of smoothing applied to RZSM layer 1 and
are compared to the same E5L layer (0-7 cm).
RZSM layers 2 and 3 (Figure Xc-d) are compared
to E5L layers 7-28 and 28-100 cm, respectively,
and largely preserve good performance in regions
where the input C3S SSM product also performs
well, i.e., in Europe (bar Scandinavia), the Caspian
and Aral Sea basins, the Eastern United States, In-
dia, Southeast Asia, South America, Sub-Saharan
Africa, and Australia. At the same time, dete-
rioration of performance is observed in high lat-
itudes and in arid environments such as the Sa-
hara desert and the Arabian Peninsula where the
reduced strength of coupling between the surface
and root-zone dynamics may hinder the EF per-
formance (Yang et al., 2022). The patterns of
good and poor performance visible in RZSM lay-
ers 1-3, are not replicated in RZSM layer 4 (Fig-
ure Xe) where the agreement with the reference
E5L 100-289 cm layer is spatially very heteroge-
neous and worse overall. The few regions where
the good performance observed in shallower layers
is preserved include India, Southeast Asia, and the
Eastern United States”.
The impact of soil type or land cover on the perfor-
mance of the EF remains ambiguous (e,g., Stefan
et al. 2021). External variables could potentially
influence the uncertainty estimates, but such de-
tailed analysis is outside of the scope of this study.
We will reiterate the focus of this study through-
out the MS, e.g., as per major comment #1 and
also by adding the following concluding sentences
to the MS’ Introduction: ”The focus and novelty
of this paper lie in quantifying, rather than reduc-
ing, the EF model’s known limitations by provid-
ing a methodology for comprehensive uncertainty
estimation for the EF method. Additionally, to
our best knowledge, this dataset is, as yet, the
longest available solely observation-based, error-
characterized global RZSM product.”
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Specific Comments Reply

1) Figure 1, there seems to be huge overlaps
between Topt for different layers (25th-75th
percentile box), how would this impact the
results? Have the authors consider perhaps
running the model woth those as upper and
lowes limits on Topt to see the impact on
performance?

The variability in Topt likely reflects the differences
in environmental conditions and sensor depths be-
tween calibration sites, resulting in large overlaps
in Topt IQR between product layers. Product com-
parison results presented in Figure 3 reaffirm the
limited sensitivity of the EF to variations in T-
parameter observed by others (Ford et al. 2014;
Grillakis et al. 2021). This is especially apparent
in case of E5L layer 7–28 cm, where the perfor-
mance of all four RZSM product layers is very sim-
ilar. Nonetheless, each of the RZSM product lay-
ers correlates best with its most-approximate E5L
counterpart in all but one case.

2) Typically EF is implemented in a nor-
maliezed SM scale (SWI either by scaling
from 0-1 using min/max or using soil char-
acteristic properties). In the MS, it’s not
mentioend which expecific method was used
(if at all).

The scaling of the input SM data between 0–1
and subsequent rescaling between the wilting point
and field capacity values is usually done when deal-
ing with datasets that express SM as the percent-
age of saturation rather than in volumetric units
(m3/m3), such as in the EUMETSAT H SAF soil
moisture data records. Given that the C3S SM
data is already in volumetric units, there is no need
for rescaling.

3) Lines 45-48, could use more detailes on
existing methods for rootzzone SM esti-
amtions and their challenges.

We will revise these lines to include more detail:
”The existing link between SM dynamics in the
surface layer and the root zone (Albergel et al.,
2008; Wang et al., 2017; Ford et al., 2014; Sure
and Dikshit, 2019) allows for estimating RZSM
from surface SM (SSM) observations via a vari-
ety of hydrological models. These include rela-
tively simple two-layer approaches approximating
RZSM as a function of SSM (Manfreda et al.,
2014), compound process-based models requiring
sophisticated parameter calibration (Bouaziz et al.,
2020), as well as complex and computationally ex-
pensive land surface models requiring many auxil-
iary inputs (Muñoz Sabater et al., 2021; Rodell et
al., 2004). Satellite-based SSM observations can
also be assimilated into land surface models to im-
prove the model simulations of RZSM with global
and temporally-complete coverage, as in the case
of the SMAP L4 RZSM product (Reichle et al.,
2017).”
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4)Line 69, EF typically is used to estimate
SM at specific layer depth not a composites
like 0-10 or 0-40. It’s either 0 or 10 or 40
cm (± few cms)

Both approaches are common practice. For exam-
ple, in the aforementioned SMOS L4 product, the
EF is used to represent a 5–40 cm soil layer (Al
Bitar and Mahmoodi, 2020). Other studies have
used 0–100 cm (Wagner et al. 1999, De Lange et
al. 2008); 0–25, 50–100, and 0–100 cm (Cebal-
los et al. 2005); or 25–60 cm (Ford et al. 2014).
Moreover, we believe that, given the large vari-
ations in land cover and soil texture within single
satellite grid cells, it is impossible to assign a single
specific depth to the EF-based RZSM estimates.
Other practical considerations were also taken into
account here, e.g., binning of the very limited num-
ber of in situ sensors operating at greater depths
is necessary to obtain a reasonable sample against
which to calibrate the T-parameter. Therefore, we
think that a depth range accompanied by rigorous
uncertainty estimates (which are the main goal of
the study) provide a more realistic description of
the product.

5) Section 2.1, I would suggest to include a
table showsing the timeline of various satel-
lite SM products being part of C3S with
band information that would help under-
standing the dataset better. Also, I would
liked to see some examples of mentioned
structural breaks either as timeseries.

Individual sensor data are intercalibrated within the
input C3S SM dataset and the breaks in the SSM
signal occurring at sensor changes were demon-
strated by Preimesberger et al. (2021) to be
marginal. However, the structural breaks—in the
new manuscript referred to as systemic breaks, see
above—are distinct in the C3S product uncertain-
ties. We will include a sensor timeline table in sec-
tion 2.1 C3S surface soil moisture. We will also
clarify this in the MS (see our response to major
comment #3). A time series example of a sys-
temic break in C3S is shown in Figure 6. We will
redesign Figure 6 to accommodate specific com-
ment #9 and also to make the systemic breaks in
C3S uncertainty time series clearly visible (revised
Figure 6 is included at the end of this document).

7



6) Figure 3, I dont think there is any need
to compare all the layers at each depth. For
instance, deeper layers should not be com-
pared with 0-7 cm modeled SM. They are
not the same thing to be comapared and
does not add any value to the MS. Similarly,
at 100-200 cm depth, surface SM correla-
tions and their discussions (Lines 241-250)
could be avoided.

Regarding Figure 3, the reason for comparing all
of the RZSM product layers as well as the input
C3S SSM layer against E5L is to demonstrate that
our approach to T-optimization works and that the
sensitivity of the EF method to variations in Topt

is limited, as discussed in the MS earlier. The for-
mer is reflected in the best performance of each
RZSM layer being achieved again at the depth of
the E5L product we intended it to; the latter is ap-
parent in the very similar performance of all RZSM
product layers against E5L reference (regardless of
significant differences in Topt between them). For
these reasons we believe this figure provides more
information in its current form and we would like
to keep it. We will also annotate the median lines
in every box for an easier comparison of the re-
sults (revised Figure 3 is included at the end of
this document).

7) Line 259, the structural uncertanity men-
tioned here is it same as the structural
breaks (Line 87)? if not, perhaps use some
other terminology to differentiate is further.

Model structural uncertainty refers to an error in-
herent in the EF method and is introduced and
explained much earlier in L64-66 of the submit-
ted MS (although in first instance referred to as
model structural error, which we will change also
to model structural uncertainty for consistency).
Subsections 3.2.3 (in methods) and 4.3 (in results)
discussing the model structural uncertainty were
both given the same name to make it clear what
is being referred to. Structural breaks are sud-
den changes in the input uncertainty data and are
described when introducing C3S dataset (L87 of
the submitted MS). We will use the term systemic
breaks instead to better distinguish the two terms.
Further clarification regarding the difference be-
tween the systemic breaks in the SSM signal and
those in the uncertainty data will be provided as
per our response to major comment #3.

8) Line 268, please add exact location of the
data.

Thank you for spotting the missing location. We
will revise the caption to: Figure 5a shows a time
series of RZSM uncertainties from the baseline
method at an arbitrary example location in Benin
(9.875N, 1,625E).

9) Figure 6, very busy plot. Hard to read.

Thank you for the suggestion. We will redesign
Figure 6 for more clarity by removing the not rele-
vant in situ signal and placing uncertainties in sep-
arate panes with independent scales to make their
temporal dynamics better visible (find the revised
version at the end of this document).
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10) Figure 7, how is the sample size in the
subset bigger than the whole dataset (Fig d
vs h).

Thank you for pointing this out. The time series
selected for this analysis were filtered for a mini-
mum Pearson’s r (r ≥ 0.5) to mitigate the impact
of the spatial mismatch between point-scale in situ
measurements and the large footprint of the satel-
lite observations (as described and referenced in
L162-164 of the submitted MS). In this experi-
ment, several time series that did not satisfy this
minimum correlation criteria in the 2002-2020 pe-
riod (7d) reached the r ≥ 0.5 threshold in 2015-
2020 (7h). This is due to the latter part of the
time series being based on more modern satellite
sensors providing more accurate SM retrievals. We
will reprocess Figure 7 using the exact same sam-
ple, i.e., only sites where r ≥ 0.5 in both periods.
We do not expect this to impact the overall result
in a significant way, though.
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Figure 3: Product intercomparison of the C3S SSM and RZSM products against E5L SM.
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Spatial correlation maps of the C3S SSM (a) and RZSM products (b-e) with E5L layer 0–7 cm (a-b),
7–28 cm (c), 28–100 cm (d) and 100–289 cm (e).
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Figure 6: Differences in uncertainty variations of the baseline (a-b) and our proposed uncertainty
estimation approach (c-d). Illustrated on the example of RZSM layer 2 at an arbitrary location in
Benin (9.875N, 1,625E).
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Responses to reviewer’s comments

We thank the editor and the reviewers for their time and effort to review our manuscript. Please find
our replies to all comments below.

Reviewer comments are marked in red.
Responses to the comments are marked in blue.
Changes that will be made in the revised manuscript are marked in italic .

Reviewer 2:

The manuscript “Uncertainty estimation for a new exponential filter-based long-term root-zone soil
moisture dataset from C3S surface observations” by A. Pasik et al. describes the development of
a root-zone soil moisture (RZSM) dataset based on the C3S near-surface soil moisture using the
exponential filter method. The newly derived product contains estimates of root-zone soil moisture
for different depths, but also their uncertainty estimates considering several sources of uncertainty
and their propagation in time. The data product and the code to generate this dataset are available
online. I enjoyed reading this well written and clear paper. Please read below my comments which
hopefully will help to further improve the manuscript.

We thank the reviewer for their positive feedback and constructive comments.

Major Comments Reply
1. The root-zone soil moisture is defined
here as the water present in the top meter
of the soil column (p2, lines 38-39). How-
ever, I would argue that the root-zone soil
moisture represents the water in the sub-
surface which is accessible to the roots of
the vegetation for transpiration. The depth
thereof is highly variable and may depend on
climatic (de Boer-Euser et al., 2016; Wang-
Erlandsson et al., 2016) and topographic in-
dicators (Fan et al., 2017). Now the derived
product provides estimates of soil moisture
at different depth intervals, but not really an
integrated root-zone soil moisture estima-
tion, which depends on the rooting depth.
Would such an addition in the dataset be
feasible?

We acknowledge the observation that root-zone
soil moisture represents the water in the sub-
surface which is accessible to the roots of vegeta-
tion for transpiration. We also appreciate the po-
tential utility of the suggested integrated root-zone
dataset, especially in land surface and hydrological
modelling. We indeed plan to investigate the fea-
sibility of producing such an integrated variable in
the future, informed by a plant-rooting depth map
like the one referenced here (Fan et al. 2017). This
is however outside the scope of this study, which is
primarily tasked with developing a comprehensive
uncertainty estimation scheme for the exponential
filter method.
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2. When comparing the newly derived prod-
uct with ERA5L and local data, it would
be interesting to see plots of timeseries at
specific locations and a spatial map show-
ing where both products have high or low
correlations. This would give potential users
of the dataset some guidance on where the
product may and may not be used. Perhaps
the authors can work out some correlations
to relate skill with catchment characteristics
including climate, land use, topography and
soil types.

We will include spatial correlation maps between
the C3S SSM and RZSM products with their re-
spective ERA5-Land counterparts in an additional
new Figure (please find it included at the end of
this document). We believe this will give a spa-
tially more complete understanding of the prod-
uct’s performance than time series could. We will
discuss the observed spatial patterns: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1. Figures Xa–e) show cor-
relation maps of each of the RZSM product lay-
ers as well as the input C3S SSM dataset with
E5L. The spatial patterns observed in the C3S
SSM data (Figure Xa) are strikingly similar to
those in RZSM layer 1 (Figure Xb) with slight
to moderate deterioration in performance over the
high latitudes (> 60◦N). This is not surprising
given that both products differ only by a small de-
gree of smoothing applied to RZSM layer 1 and
are compared to the same E5L layer (0-7 cm).
RZSM layers 2 and 3 (Figure Xc-d) are compared
to E5L layers 7-28 and 28-100 cm, respectively,
and largely preserve good performance in regions
where the input C3S SSM product also performs
well, i.e., in Europe (bar Scandinavia), the Caspian
and Aral Sea basins, the Eastern United States, In-
dia, Southeast Asia, South America, Sub-Saharan
Africa, and Australia. At the same time, dete-
rioration of performance is observed in high lat-
itudes and in arid environments such as the Sa-
hara desert and the Arabian Peninsula where the
reduced strength of coupling between the surface
and root-zone dynamics may hinder the EF per-
formance (Yang et al., 2022). The patterns of
good and poor performance visible in RZSM lay-
ers 1-3, are not replicated in RZSM layer 4 (Fig-
ure Xe) where the agreement with the reference
E5L 100-289 cm layer is spatially very heteroge-
neous and worse overall. The few regions where
the good performance observed in shallower layers
is preserved include India, Southeast Asia, and the
Eastern United States”.
The impact of soil type or land cover on the perfor-
mance of the EF remains ambiguous (e,g., Stefan
et al. 2021). External variables could potentially
influence the uncertainty estimates, but such de-
tailed analysis is outside of the scope of this study.
We will reiterate the focus of this study through-
out the MS, e.g., as per major comment #1 and
also by adding the following concluding sentences
to the MS’ Introduction: ”The focus and novelty
of this paper lie in quantifying, rather than reduc-
ing, the EF model’s known limitations by provid-
ing a methodology for comprehensive uncertainty
estimation for the EF method. Additionally, to
our best knowledge, this dataset is, as yet, the
longest available solely observation-based, error-
characterized global RZSM product.”
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Minor Comments Reply

3. line 64: I would specify here: “does not
consider the model structural error of the EF
method”. Although this becomes clear later
in the paper, it was not directly clear to me
at this stage.

Thank you for the suggestion. We will change
L64 to: “This approach takes into account the
uncertainties of both the SSM input data and the
EF model parameter, but does not consider the
model structural uncertainty (Beven, 2005) of the
EF method.”

4. line 85: “uncertainties [..] were then
calculated from the law of propagation of
uncertainties”. Could you explain how this
was done in more detail?

It is literally applying the law of the propagation
of uncertainties to the merging equation (weighted
average), i.e., σ2

εm =
∑

iw
2
i σ

2
εi , where σ2

ε is the
error variance, m refers to the merged SSM es-
timate, and i refers to the input SSM products
that are being merged. We will make this more
clear by extending the sentence in question to:
“Uncertainties of the merged SSM estimates were
then calculated from the law for the propagation
of uncertainties (i.e., predicting the uncertainty re-
duction due to the weighted averaging, assuming
that merging weights are correct; see Gruber et al.
(2017))”
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5. section 3.2.3: could you explain the pre-
sented formulas in more detail? What are
the units and what are all parameters? E.g.
what does G represent? What does delta
represent?

Thank you for this suggestion, we believe the re-
viewer is referring to section 3.2.1. We will add
further details to this section to make the formu-
las and parameters more understandable.
”In De Santis and Biondi (2018), the standard law
for the propagation of uncertainties is applied to
the EF method, assuming the errors in the SSM
inputs and T-parameter to be normally distributed
and uncorrelated. We use this approach as a base-
line for our analyses. The recursive formulation of
this baseline method is as follows:
(equations 4–7)
σ(RZSM) and σ(T ) denote the uncertainty of the
RZSM estimates (in m3/m3) and the EF model
parameter T (a unit of time, in days), respectively.
The equation is initialized as ∆0 = σ(SSM0),
∂RZSM0 / ∂T = 0 and G0 = 0. Uncertainties
of the SSM input data are considered by the ∆
term (in m3/m3), which also takes into account
the effect of possible prolonged input data gaps
dependent on the T -value. The Jacobian term
∂RZSM/∂T assumes high values proportional to
the latest SSM input variability on a time scale
related to the T -parameter (expressed as m3/m3

over time). This is reflected in significant changes
in the RZSM value associated with wetting or dry-
ing of the soil. Finally, the term G (dimension-
less) weighs the contribution of change recorded
between the latest and penultimate RZSM esti-
mates”.

6. line 246: could you quantify with num-
bers in the text how substantial the differ-
ence is between the correlation between E5L
and RZSM versus E5L and SSM?

The correlation values for E5L/SSM/RZSM are
discussed in L242-249 of the submitted MS. We
will annotate the median lines in each box in Fig-
ure 3 (revised figure included at the end of this
document) for a better overview of differences in
correlation scores.

7. Figure 5: in the legend I read “GCOS
required uncertainty” but it is not entirely
clear to me what this threshold refers to ex-
actly, could you please elaborate?

GCOS outlines target accuracy requirements for
ECV data products that are determined by the
scientific community. These requirements can
be found in the so-called “GCOS Implementation
Needs” (GCOS, 2022). We will add a clarify-
ing statement to the manuscript: “The dashed
grey line indicates the uncertainty level defined by
GCOS (2022) as an accuracy goal for RZSM prod-
ucts.”
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8. line 280: could you elaborate more on
why we expect uncertainties to be amplified
during transitions between wet and dry con-
ditions? Which processes play a role which
are not well represented in the EF method?
Now you briefly refer to Fig6, but it does
not provide a clear explanation on why this
is expected.

Essentially, the EF method operates by smooth-
ing the variations in the SSM signal, therefore the
sudden changes are attenuated and delayed while
in reality they can be more significantly transmit-
ted to the deeper layers. This simplistic nature of
the model results in its limited ability to capture
the wetting/drying accurately and, for that reason,
in larger uncertainties. We will further clarify this
by adding a sentence following the one referred to
here. Together, this will read: ”Compared to the
baseline (Figure 5a), this yields an increased over-
all magnitude of the uncertainties, a more realistic
increase in (temporal average) uncertainties with
depth, and an amplified temporal variability in all
layers during transitions between dry and wet con-
ditions (see Figure 6). The latter effect is caused
by the simplistic nature of the model, which essen-
tially operates as a smoother and therefore atten-
uates sudden variations in the SSM signal which in
reality may be transmitted into the deeper layers in
a more significant manner. The reduced accuracy
of the EF method during soil wetting and drying
phases was also observed by others (Ford et al.
2014).”

9. line 292 “and highlighting 20% of data
with the highest uncertainty”. At this stage,
this reads a bit confusing as the previous
paragraph describes masking out data with
the highest uncertainty and here (if I un-
derstood correctly) you are instead plotting
data with high uncertainty. Perhaps good
to clarify what you mean with “highlighting
20% of data with the highest uncertainty”.

We will edit the referenced sentence (L303-304)
to read: Figure 6a) and d) indicate (in magenta
shading) 20% of RZSM layer 2 data with the high-
est uncertainties masked out in the experiment
described above based on uncertainties estimated
with the baseline (b), and our method (d), respec-
tively.

10. line 299: the described difference in
uncertainty from 0.008 m3/m3 to 0.004
m3/m3 is very hard to see in the Figure us-
ing the applied scale.

Figure 6 will be redesigned for more clarity by re-
moving the not relevant in situ signal and plac-
ing uncertainties on independent scales where their
temporal dynamics are better visible (please see its
revised version at the end of the document).
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11. line 302: why are the uncertainties re-
lated to structural breaks not clearly seen
in the MAD Topt approach. Can you re-
flect (here or later in the discussion) a lit-
tle bit more on this result. It seems to me
that the change in uncertainty related to a
change in sensor is an important change that
you would also want to see in the improved
methodology for uncertainty estimation.

Thank you for this comment. Indeed, the uncer-
tainties of the input data are an important element
here and their sudden shifts should be reflected in
the propagated values. We observe that in this
particular aspect, the difference between the base-
line and our methods is driven solely by the value
assumed by the σ(T ). A higher value of σ(T )
places more weight on the impact of significant
changes in RZSM values (represented by the Jaco-
bian term ∂RZSM0 / ∂T ), while lower σ(T ) favors
the impact of the input uncertainty values (∆).
The former better reflects the sudden changes in
input uncertainty due to sensor changes, while the
latter is more suited to resolving day-to-day uncer-
tainty variations. This seems to be somewhat of a
trade-off with this approach as it cannot do both
at the same time. We will extend the discussion
of this result in Section 5 Summary and Conclu-
sions by adding the following sentences to the ex-
isting comparison of the used σ(T ) values (L335-
340 of the submitted MS): ”A higher value as-
sumed by σ(T ) (in this case MAD(Topt)) places
more weight on short-term significant variations in
RZSM values (accounted for by the Jacobian term
∂RZSM/∂T ) and overshadows the contribution of
the input uncertainties (∆) to the overall uncer-
tainty budget. This approach results in higher
uncertainty outputs paralleling significant changes
in RZSM signal (e.g., soil wetting/drying events)
and is generally better suited to describe day-to-
day uncertainty variations. Meanwhile, lower value
of σ(T ) (here Topt/10) favors the impact of the
input uncertainties and appears to be more skill-
ful in detecting sudden shifts in the magnitude of
the input uncertainties due to C3S SSM sensor
changes. While both the significant variations in
RZSM values and the magnitude shifts in the in-
put uncertainties are crucial elements of the overall
uncertainty budget, there appears to be a trade-off
in favoring the impact of one or the other based
on the value assumed by σ(T )”.
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12. line 314-320: here, it is not clear to
me why using Topt/10 as T parameter un-
certainty yields more realistic estimates of
temporal uncertainty variations than using
MAD Topt in the case of using the time se-
ries which includes a structural break (and
the opposite in case a shorter time series is
used). Which aspects in figure 7 suggest
these findings?

In fact, both approaches yield realistic temporal
variations as they mostly assign highest uncer-
tainty values to the same RZSM estimates (this
is evident in Figure 6). In the context of Figure 7,
we describe the uncertainties which yielded better
results in improving R with the in situ reference as
”more realistic estimates of temporal uncertainty
variations”. Indeed in reference to Figure 7 this
sentence could be more clear. We will rephrase it:
“In case of the full product period (Figure 7a–d),
using σ(T ) = Topt/10 as T parameter uncertainty
seems to yield more consistent improvements in
correlation with the in situ reference after remov-
ing a percentage of the most uncertain data, than
using σ(T ) = MAD(Topt).”
The so called structural breaks are sudden shifts
in the magnitude of the input uncertainties and
the value assumed by σ(T ) either increases or de-
creases the weight of their contribution to the total
uncertainty budget. Please see our response to the
previous comment (#11).

13. line 320-324: Again, could you elabo-
rate why the uncertainty estimations of tem-
poral uncertainty variations are no longer ac-
curate for deeper layers?

Thank you for the comment, we will elaborate on
the challenges of capturing the temporal uncer-
tainty variations in deeper layers by including the
following sentences at the end of section 3.5 As-
sessment of uncertainty estimates: ”At greater
depths, the contribution of the model structural
uncertainty on the total uncertainty budget has
been shown to increase. In the circumstances
where the EF model appears to be inadequate,
for example due to poor coupling between the
root zone in consideration and the surface layer,
it can be assumed that the model structural un-
certainty is so predominant as to make the tempo-
ral patterns of the other uncertainty components
marginal in practice. However, in circumstances
where the magnitude of the real uncertainty is
such as to make the EF-based RZSM so unreli-
able, the lack of ability to reproduce the temporal
variations of the estimated uncertainty becomes
less relevant.”

14. line 351: here, you forgot to add the
units of the mentioned uncertainties.

Thank you for pointing this out, we will add the
missing units.

7



15. In addition, I also downloaded the
netcdf files and checked the github page.
The nc files contain all the necessary meta
data. However, the github page does not
include extensive documentation on how to
use the different methods within the pack-
age. Would it be feasible to elaborate on
this further?

We appreciate the thoroughness. While the pack-
age includes basic examples of the application of
the package, we agree that a more extensive doc-
umentation would be beneficial and intend to ex-
pand it in the future. We made the code package
public also in hopes that it will attract contribu-
tions from the user community.
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Figure 3: Product intercomparison of the C3S SSM and RZSM products against E5L SM.
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Spatial correlation maps of the C3S SSM (a) and RZSM products (b-e) with E5L layer 0–7 cm (a-b),
7–28 cm (c), 28–100 cm (d) and 100–289 cm (e).
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Figure 6: Differences in uncertainty variations of the baseline (a-b) and our proposed uncertainty
estimation approach (c-d). Illustrated on the example of RZSM layer 2 at an arbitrary location in
Benin (9.875N, 1,625E).
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