
Responses to reviewer’s comments

We thank the editor and the reviewers for their time and effort to review our manuscript. Please find
our replies to all comments below.

Reviewer comments are marked in red.
Responses to the comments are marked in blue.
Changes that will be made in the revised manuscript are marked in italic .

Reviewer 2:

The manuscript “Uncertainty estimation for a new exponential filter-based long-term root-zone soil
moisture dataset from C3S surface observations” by A. Pasik et al. describes the development of
a root-zone soil moisture (RZSM) dataset based on the C3S near-surface soil moisture using the
exponential filter method. The newly derived product contains estimates of root-zone soil moisture
for different depths, but also their uncertainty estimates considering several sources of uncertainty
and their propagation in time. The data product and the code to generate this dataset are available
online. I enjoyed reading this well written and clear paper. Please read below my comments which
hopefully will help to further improve the manuscript.

We thank the reviewer for their positive feedback and constructive comments.

Major Comments Reply
1. The root-zone soil moisture is defined
here as the water present in the top meter
of the soil column (p2, lines 38-39). How-
ever, I would argue that the root-zone soil
moisture represents the water in the sub-
surface which is accessible to the roots of
the vegetation for transpiration. The depth
thereof is highly variable and may depend on
climatic (de Boer-Euser et al., 2016; Wang-
Erlandsson et al., 2016) and topographic in-
dicators (Fan et al., 2017). Now the derived
product provides estimates of soil moisture
at different depth intervals, but not really an
integrated root-zone soil moisture estima-
tion, which depends on the rooting depth.
Would such an addition in the dataset be
feasible?

We acknowledge the observation that root-zone
soil moisture represents the water in the sub-
surface which is accessible to the roots of vegeta-
tion for transpiration. We also appreciate the po-
tential utility of the suggested integrated root-zone
dataset, especially in land surface and hydrological
modelling. We indeed plan to investigate the fea-
sibility of producing such an integrated variable in
the future, informed by a plant-rooting depth map
like the one referenced here (Fan et al. 2017). This
is however outside the scope of this study, which is
primarily tasked with developing a comprehensive
uncertainty estimation scheme for the exponential
filter method.
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2. When comparing the newly derived prod-
uct with ERA5L and local data, it would
be interesting to see plots of timeseries at
specific locations and a spatial map show-
ing where both products have high or low
correlations. This would give potential users
of the dataset some guidance on where the
product may and may not be used. Perhaps
the authors can work out some correlations
to relate skill with catchment characteristics
including climate, land use, topography and
soil types.

We will include spatial correlation maps between
the C3S SSM and RZSM products with their re-
spective ERA5-Land counterparts in an additional
new Figure (please find it included at the end of
this document). We believe this will give a spa-
tially more complete understanding of the prod-
uct’s performance than time series could. We will
discuss the observed spatial patterns: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1. Figures Xa–e) show cor-
relation maps of each of the RZSM product lay-
ers as well as the input C3S SSM dataset with
E5L. The spatial patterns observed in the C3S
SSM data (Figure Xa) are strikingly similar to
those in RZSM layer 1 (Figure Xb) with slight
to moderate deterioration in performance over the
high latitudes (> 60◦N). This is not surprising
given that both products differ only by a small de-
gree of smoothing applied to RZSM layer 1 and
are compared to the same E5L layer (0-7 cm).
RZSM layers 2 and 3 (Figure Xc-d) are compared
to E5L layers 7-28 and 28-100 cm, respectively,
and largely preserve good performance in regions
where the input C3S SSM product also performs
well, i.e., in Europe (bar Scandinavia), the Caspian
and Aral Sea basins, the Eastern United States, In-
dia, Southeast Asia, South America, Sub-Saharan
Africa, and Australia. At the same time, dete-
rioration of performance is observed in high lat-
itudes and in arid environments such as the Sa-
hara desert and the Arabian Peninsula where the
reduced strength of coupling between the surface
and root-zone dynamics may hinder the EF per-
formance (Yang et al., 2022). The patterns of
good and poor performance visible in RZSM lay-
ers 1-3, are not replicated in RZSM layer 4 (Fig-
ure Xe) where the agreement with the reference
E5L 100-289 cm layer is spatially very heteroge-
neous and worse overall. The few regions where
the good performance observed in shallower layers
is preserved include India, Southeast Asia, and the
Eastern United States”.
The impact of soil type or land cover on the perfor-
mance of the EF remains ambiguous (e,g., Stefan
et al. 2021). External variables could potentially
influence the uncertainty estimates, but such de-
tailed analysis is outside of the scope of this study.
We will reiterate the focus of this study through-
out the MS, e.g., as per major comment #1 and
also by adding the following concluding sentences
to the MS’ Introduction: ”The focus and novelty
of this paper lie in quantifying, rather than reduc-
ing, the EF model’s known limitations by provid-
ing a methodology for comprehensive uncertainty
estimation for the EF method. Additionally, to
our best knowledge, this dataset is, as yet, the
longest available solely observation-based, error-
characterized global RZSM product.”
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Minor Comments Reply

3. line 64: I would specify here: “does not
consider the model structural error of the EF
method”. Although this becomes clear later
in the paper, it was not directly clear to me
at this stage.

Thank you for the suggestion. We will change
L64 to: “This approach takes into account the
uncertainties of both the SSM input data and the
EF model parameter, but does not consider the
model structural uncertainty (Beven, 2005) of the
EF method.”

4. line 85: “uncertainties [..] were then
calculated from the law of propagation of
uncertainties”. Could you explain how this
was done in more detail?

It is literally applying the law of the propagation
of uncertainties to the merging equation (weighted
average), i.e., σ2

εm =
∑

iw
2
i σ

2
εi , where σ2

ε is the
error variance, m refers to the merged SSM es-
timate, and i refers to the input SSM products
that are being merged. We will make this more
clear by extending the sentence in question to:
“Uncertainties of the merged SSM estimates were
then calculated from the law for the propagation
of uncertainties (i.e., predicting the uncertainty re-
duction due to the weighted averaging, assuming
that merging weights are correct; see Gruber et al.
(2017))”
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5. section 3.2.3: could you explain the pre-
sented formulas in more detail? What are
the units and what are all parameters? E.g.
what does G represent? What does delta
represent?

Thank you for this suggestion, we believe the re-
viewer is referring to section 3.2.1. We will add
further details to this section to make the formu-
las and parameters more understandable.
”In De Santis and Biondi (2018), the standard law
for the propagation of uncertainties is applied to
the EF method, assuming the errors in the SSM
inputs and T-parameter to be normally distributed
and uncorrelated. We use this approach as a base-
line for our analyses. The recursive formulation of
this baseline method is as follows:
(equations 4–7)
σ(RZSM) and σ(T ) denote the uncertainty of the
RZSM estimates (in m3/m3) and the EF model
parameter T (a unit of time, in days), respectively.
The equation is initialized as ∆0 = σ(SSM0),
∂RZSM0 / ∂T = 0 and G0 = 0. Uncertainties
of the SSM input data are considered by the ∆
term (in m3/m3), which also takes into account
the effect of possible prolonged input data gaps
dependent on the T -value. The Jacobian term
∂RZSM/∂T assumes high values proportional to
the latest SSM input variability on a time scale
related to the T -parameter (expressed as m3/m3

over time). This is reflected in significant changes
in the RZSM value associated with wetting or dry-
ing of the soil. Finally, the term G (dimension-
less) weighs the contribution of change recorded
between the latest and penultimate RZSM esti-
mates”.

6. line 246: could you quantify with num-
bers in the text how substantial the differ-
ence is between the correlation between E5L
and RZSM versus E5L and SSM?

The correlation values for E5L/SSM/RZSM are
discussed in L242-249 of the submitted MS. We
will annotate the median lines in each box in Fig-
ure 3 (revised figure included at the end of this
document) for a better overview of differences in
correlation scores.

7. Figure 5: in the legend I read “GCOS
required uncertainty” but it is not entirely
clear to me what this threshold refers to ex-
actly, could you please elaborate?

GCOS outlines target accuracy requirements for
ECV data products that are determined by the
scientific community. These requirements can
be found in the so-called “GCOS Implementation
Needs” (GCOS, 2022). We will add a clarify-
ing statement to the manuscript: “The dashed
grey line indicates the uncertainty level defined by
GCOS (2022) as an accuracy goal for RZSM prod-
ucts.”
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8. line 280: could you elaborate more on
why we expect uncertainties to be amplified
during transitions between wet and dry con-
ditions? Which processes play a role which
are not well represented in the EF method?
Now you briefly refer to Fig6, but it does
not provide a clear explanation on why this
is expected.

Essentially, the EF method operates by smooth-
ing the variations in the SSM signal, therefore the
sudden changes are attenuated and delayed while
in reality they can be more significantly transmit-
ted to the deeper layers. This simplistic nature of
the model results in its limited ability to capture
the wetting/drying accurately and, for that reason,
in larger uncertainties. We will further clarify this
by adding a sentence following the one referred to
here. Together, this will read: ”Compared to the
baseline (Figure 5a), this yields an increased over-
all magnitude of the uncertainties, a more realistic
increase in (temporal average) uncertainties with
depth, and an amplified temporal variability in all
layers during transitions between dry and wet con-
ditions (see Figure 6). The latter effect is caused
by the simplistic nature of the model, which essen-
tially operates as a smoother and therefore atten-
uates sudden variations in the SSM signal which in
reality may be transmitted into the deeper layers in
a more significant manner. The reduced accuracy
of the EF method during soil wetting and drying
phases was also observed by others (Ford et al.
2014).”

9. line 292 “and highlighting 20% of data
with the highest uncertainty”. At this stage,
this reads a bit confusing as the previous
paragraph describes masking out data with
the highest uncertainty and here (if I un-
derstood correctly) you are instead plotting
data with high uncertainty. Perhaps good
to clarify what you mean with “highlighting
20% of data with the highest uncertainty”.

We will edit the referenced sentence (L303-304)
to read: Figure 6a) and d) indicate (in magenta
shading) 20% of RZSM layer 2 data with the high-
est uncertainties masked out in the experiment
described above based on uncertainties estimated
with the baseline (b), and our method (d), respec-
tively.

10. line 299: the described difference in
uncertainty from 0.008 m3/m3 to 0.004
m3/m3 is very hard to see in the Figure us-
ing the applied scale.

Figure 6 will be redesigned for more clarity by re-
moving the not relevant in situ signal and plac-
ing uncertainties on independent scales where their
temporal dynamics are better visible (please see its
revised version at the end of the document).
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11. line 302: why are the uncertainties re-
lated to structural breaks not clearly seen
in the MAD Topt approach. Can you re-
flect (here or later in the discussion) a lit-
tle bit more on this result. It seems to me
that the change in uncertainty related to a
change in sensor is an important change that
you would also want to see in the improved
methodology for uncertainty estimation.

Thank you for this comment. Indeed, the uncer-
tainties of the input data are an important element
here and their sudden shifts should be reflected in
the propagated values. We observe that in this
particular aspect, the difference between the base-
line and our methods is driven solely by the value
assumed by the σ(T ). A higher value of σ(T )
places more weight on the impact of significant
changes in RZSM values (represented by the Jaco-
bian term ∂RZSM0 / ∂T ), while lower σ(T ) favors
the impact of the input uncertainty values (∆).
The former better reflects the sudden changes in
input uncertainty due to sensor changes, while the
latter is more suited to resolving day-to-day uncer-
tainty variations. This seems to be somewhat of a
trade-off with this approach as it cannot do both
at the same time. We will extend the discussion
of this result in Section 5 Summary and Conclu-
sions by adding the following sentences to the ex-
isting comparison of the used σ(T ) values (L335-
340 of the submitted MS): ”A higher value as-
sumed by σ(T ) (in this case MAD(Topt)) places
more weight on short-term significant variations in
RZSM values (accounted for by the Jacobian term
∂RZSM/∂T ) and overshadows the contribution of
the input uncertainties (∆) to the overall uncer-
tainty budget. This approach results in higher
uncertainty outputs paralleling significant changes
in RZSM signal (e.g., soil wetting/drying events)
and is generally better suited to describe day-to-
day uncertainty variations. Meanwhile, lower value
of σ(T ) (here Topt/10) favors the impact of the
input uncertainties and appears to be more skill-
ful in detecting sudden shifts in the magnitude of
the input uncertainties due to C3S SSM sensor
changes. While both the significant variations in
RZSM values and the magnitude shifts in the in-
put uncertainties are crucial elements of the overall
uncertainty budget, there appears to be a trade-off
in favoring the impact of one or the other based
on the value assumed by σ(T )”.
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12. line 314-320: here, it is not clear to
me why using Topt/10 as T parameter un-
certainty yields more realistic estimates of
temporal uncertainty variations than using
MAD Topt in the case of using the time se-
ries which includes a structural break (and
the opposite in case a shorter time series is
used). Which aspects in figure 7 suggest
these findings?

In fact, both approaches yield realistic temporal
variations as they mostly assign highest uncer-
tainty values to the same RZSM estimates (this
is evident in Figure 6). In the context of Figure 7,
we describe the uncertainties which yielded better
results in improving R with the in situ reference as
”more realistic estimates of temporal uncertainty
variations”. Indeed in reference to Figure 7 this
sentence could be more clear. We will rephrase it:
“In case of the full product period (Figure 7a–d),
using σ(T ) = Topt/10 as T parameter uncertainty
seems to yield more consistent improvements in
correlation with the in situ reference after remov-
ing a percentage of the most uncertain data, than
using σ(T ) = MAD(Topt).”
The so called structural breaks are sudden shifts
in the magnitude of the input uncertainties and
the value assumed by σ(T ) either increases or de-
creases the weight of their contribution to the total
uncertainty budget. Please see our response to the
previous comment (#11).

13. line 320-324: Again, could you elabo-
rate why the uncertainty estimations of tem-
poral uncertainty variations are no longer ac-
curate for deeper layers?

Thank you for the comment, we will elaborate on
the challenges of capturing the temporal uncer-
tainty variations in deeper layers by including the
following sentences at the end of section 3.5 As-
sessment of uncertainty estimates: ”At greater
depths, the contribution of the model structural
uncertainty on the total uncertainty budget has
been shown to increase. In the circumstances
where the EF model appears to be inadequate,
for example due to poor coupling between the
root zone in consideration and the surface layer,
it can be assumed that the model structural un-
certainty is so predominant as to make the tempo-
ral patterns of the other uncertainty components
marginal in practice. However, in circumstances
where the magnitude of the real uncertainty is
such as to make the EF-based RZSM so unreli-
able, the lack of ability to reproduce the temporal
variations of the estimated uncertainty becomes
less relevant.”

14. line 351: here, you forgot to add the
units of the mentioned uncertainties.

Thank you for pointing this out, we will add the
missing units.
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15. In addition, I also downloaded the
netcdf files and checked the github page.
The nc files contain all the necessary meta
data. However, the github page does not
include extensive documentation on how to
use the different methods within the pack-
age. Would it be feasible to elaborate on
this further?

We appreciate the thoroughness. While the pack-
age includes basic examples of the application of
the package, we agree that a more extensive doc-
umentation would be beneficial and intend to ex-
pand it in the future. We made the code package
public also in hopes that it will attract contribu-
tions from the user community.
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Figure 3: Product intercomparison of the C3S SSM and RZSM products against E5L SM.
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Spatial correlation maps of the C3S SSM (a) and RZSM products (b-e) with E5L layer 0–7 cm (a-b),
7–28 cm (c), 28–100 cm (d) and 100–289 cm (e).

11



Figure 6: Differences in uncertainty variations of the baseline (a-b) and our proposed uncertainty
estimation approach (c-d). Illustrated on the example of RZSM layer 2 at an arbitrary location in
Benin (9.875N, 1,625E).
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