
Responses to reviewer’s comments

We thank the editor and the reviewers for their time and effort to review our manuscript, which
helped to further increase the quality of the paper. All comments have been addressed carefully.

Below, reviewer comments are marked in red.
Responses to the comments are marked in blue.
Cited changes that have been made in the manuscript are marked in italic .

Reviewer 1:

The MS titled, ’Uncertanity estimation for a new exponential filter-based long-term root-zone soil
moisture dataset from C3S surface observations’ by Pasik et al. describes a methodology to deduce
rootzone SM using only satellite derived surface soil moisture using a well-known exponential filter
approach with its error characterization. In general, I found this study lacking in novetly factor. The
exponential model has been around for a while now and is shown to have limited success in estimating
SM at deeper layers (>40cm) as also shown in this study. Furthermore, there are some glaring gaps
in background infromation, method descriptions etc. Therefore, despite tackling a critical issue in
sub-surface hydrology, I would recommend rejection in its current form. However, I would be more
than happy to see it re-submitted with significant revisions.

We regret to learn that the novelty in the uncertainty estimation scheme for the exponential fil-
ter (EF) is not clear. Our intention is for the uncertainty estimation method (rather than the dataset
or the EF itself) to be the main focus of the paper. To our best knowledge, this study is the first
one to provide uncertainty estimates for a global, EF-based soil moisture dataset which also accounts
for uncertainties of the EF method itself. Moreover, while the application of the EF approach at
greater soil depths yields less accurate results, we believe that there can still be merit found in such
estimates provided that the uncertainties are known (which, again, are the main focus of this study).
We will revise the manuscript to make this more clear, and address the gaps in background informa-
tion and method descriptions mentioned in the major and specific comments below.
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Major Comments Reply

1) As mentioned earlier, the exponential fil-
ters have been studied extensively (as also
acknowledged in the MS) in the past. Also
has well docmented issues such as poor per-
formance in the deeper layers, struggles with
widely different soil types between surface
and lower layers (no mention or discussion
around this in the MS), summer season de-
coupling etc. This study acknowledges and
re-affirms most of these issues but presents
no path forward in trying to solve them. Its
does not seem to be taking the scinece for-
ward either by reducing the model known
limitations, or sheding new lights on model
performance with its global implementation
or discussion. Therefore, in my opition, in
the current form, this study lack the novelty
factor and may need significant revisions.

Thank you for pointing out these previously un-
acknowledged limitations of the EF. We will men-
tion them while discussing the limitations of the
method: ”Other limitations of the method include
generally poorer performance in arid zones and
when soil texture is not homogeneous throughout
the soil column (Yang et al., 2022; Ford et al.
2014)”.
In this MS, we focus on advancing the understand-
ing of the EF method by contributing our uncer-
tainty estimation scheme to describe, rather than
reduce, the model’s known limitations. We will
make this intention clear by adding the follow-
ing sentence to conclude section 3.1 Exponen-
tial filter: ”It is precisely such limitations that we
attempt to describe with the uncertainty estima-
tion scheme developed in this study, and hence ad-
vance the understanding of the EF method’s per-
formance”.

2) I agree with the authors that their
product could be the covering the longest
period of record for observation-based
RZSM, but shoud have at least acknowl-
edged other global products such as
SMAP and SMOS L4 products in the
MS. In fact, SMOS L4 product is simi-
lar to this study, they are also using EF
(https://sextant.ifremer.fr/record/316e77af-
cb72-4312-96a3-3011cc5068d4/) whereas
SMAP L4 uses data assimialtion approach
to merge SMAP with the Catchment Land
surface Model with detailed uncertanity
analysis and published ATBDs.

Thank you for the suggestion. We will explicitly
reference SMAP L4 RZSM while discussing various
approaches to estimating RZSM in the Introduc-
tion: ”Satellite-based SSM observations can also
be assimilated into a land surface model to pro-
duce estimates of RZSM with global coverage, as
in the case of the SMAP L4 RZSM product (Re-
ichle et al., 2017).”
We will also edit the concluding sentences of
the introduction to acknowledge other EF-based
datasets (incl. SMOS L4 RZSM): ”While other
EF-based datasets exist (e.g., the SMOS L4 prod-
uct), they offer limited spatio-temporal coverage
and lack quantitative uncertainty information (Al
Bitar and Mahmoodi, 2020; Bauer-Marschallinger
et al., 2018).”
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3) Furthertmore, I think the MS could be im-
proved further with some more background
information on other rootzone SM estima-
tion techniques, currently the MS does not
talk about other methods and why EF might
be better than others, in that context an
best average correlation of 0.56 doesnt not
inspire too much confidence. The authors
simply skipped over some of the detailes of
satellite SM estiamtions like difference in
bands (X&C for AMSR-E vs L for SMAP
and SMAOS etc.), I think it would improve
MS.

In addition to the discussion on the root-zone es-
timation techniques (and the EF method in their
context) already present in L44-60 of the submit-
ted MS, we will also include specific references
to SMOS L4 and SMAP L4 RZSM products as
per the previous comment. Furthermore, in the
context of product performance, we will add the
following as the concluding sentence of section
4.2 Global RZSM product quality assessment:
”The performance of our product is similar to
that of other satellite-based RZSM products found
in other studies, especially when considering the
same regions for assessment (Xu et al. 2021, Re-
ichle et al. 2017). While the data set presented
here does not outperform other existing RZSM
products, it distinguishes itself as the only purely
observation-based global product covering such a
long time period, and the only EF-based product
that has uncertainty estimates provided with it”.
The input C3S SM dataset is a harmonized prod-
uct where the biases between bands are mitigated
by the inter-calibration of the sensors. Further-
more, each estimate is a weighted combination of
the individual sensor observations available on that
day. However, the spectral band of the sensor, via
its suitability for retrieving soil moisture informa-
tion (e.g., different sensitivity to precipitation and
evaporation), impacts the uncertainty estimates.
We will make this more clear when introducing the
C3S dataset in section 2.1 by including the fol-
lowing: ”Note that the distinctive life spans and
spectral bands of the used satellite missions (e.g.,
C and X-bands used by AMSR-E, L-band used
by SMOS and SMAP) can potentially also lead
to distinctive changes in the data quality of the
merged product via the differences in their sensitiv-
ity to precipitation or evaporation. These sudden
changes in SSM and uncertainty data are here-
inafter referred to as systemic breaks (Preimes-
berger et al., 2021). Although said breaks have
a marginal impact on the SSM signal itself due to
the inter-calibration of sensors, they are distinct
in the uncertainty estimates. As more and newer
sensors provide better retrievals, mean uncertainty
values typically decrease distinctively with every
new satellite launch in more recent periods (Gru-
ber et al., 2017)”.
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4) If I understand correctly, most of the in-
situ sites are in open fields (usually near
agricultural land). Therefore, Topt obtained
may only be able to represent (presumabely)
a particular landcover type. Is there any
analysis authors have performed to assess
the model perfromance at other locations?
While reading the MS, I could not figure out
if the model was implemented at gridded
scale or only at the ISMN sites. Perhaps,
this could be made more clearer.

It is correctly pointed out that the reference in situ
sites used for optimizing the T-parameter do not
equally represent the variety of land cover classes.
Similarly, their geographical distribution is largely
skewed towards the Global North (as acknowledged
in L27-29 of the submitted MS). However, as other
studies have shown, optimizing the T-parameter
per, e.g., soil type, does not yield an improvement
versus using an averaged T-value (e.g., De Lange
et al. 2008, Grillakis et al. 2021). This is why
we choose to lump all the available in situ stations
together in the optimization of the T-parameter.
Even though their distribution might be skewed to-
ward particular land cover classes (i.e., grasslands
or croplands) the impact of this is probably negligi-
ble (e.g., Stefan et al. 2021). This limited sensitiv-
ity to variation in T-parameter values is discussed
in L135-141 of the submitted MS.
Indeed we evaluate our product globally at grid cell
level against ERA5-Land data. We will include
spatial correlation maps for each of the product
layers in an additional new Figure (please find it
included at the end of this document), where the
performance of the RZSM product can be seen at
every single location. Performance patterns ob-
served in these maps do not show correlation with
the distribution of the ISMN stations used for the
T-parameter optimization (i.e., Fig. A1 in the sub-
mitted MS), which too suggests that the impact of
their uneven distribution and over-representation
of certain land cover classes does not have a sub-
stantial impact.
The EF model was optimized with point-scale
ground measurements and implemented globally
at the grid scale. We will add the following text
to make this clearer throughout the MS:
1) in the opening section of the Results: ”In this
section, we first show results of the point-scale T-
parameter optimization. Next, we compare the
gridded RZSM product globally to E5L.”
2) in the opening sentence of section 4.2 Global
RZSM product quality assessment: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1.”
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5) Finally, I think the discussoin could be
further improved (especially if study is sim-
ply focused in implementing at larger scale
with its limitations intact) by talking about
if there is any regional pattern in model per-
formance (arid vs humid conditions); tropi-
cal vs sub-tropical region? Does soil types
play any role in Topt and uncertanity estima-
tions? What is the dominent landcover type
and can these different rooting systems (bar-
ren soils vs cropland vs deep rooted trees)
explain some of the issues beign faced?

Thank you for this suggestion, we will include
spatial correlation maps in a new figure (men-
tioned in our response to comment #4) and dis-
cuss the observed patterns in section 4.2 Global
RZSM product quality assessment: ”A global
SM dataset spanning the 2002–2020 period was
computed using the EF method and T-parameters
optimized at the point scale with the approach de-
scribed in section 4.1. Figures Xa–e) show cor-
relation maps of each of the RZSM product lay-
ers as well as the input C3S SSM dataset with
E5L. The spatial patterns observed in the C3S
SSM data (Figure Xa) are strikingly similar to
those in RZSM layer 1 (Figure Xb) with slight
to moderate deterioration in performance over the
high latitudes (> 60◦N). This is not surprising
given that both products differ only by a small de-
gree of smoothing applied to RZSM layer 1 and
are compared to the same E5L layer (0-7 cm).
RZSM layers 2 and 3 (Figure Xc-d) are compared
to E5L layers 7-28 and 28-100 cm, respectively,
and largely preserve good performance in regions
where the input C3S SSM product also performs
well, i.e., in Europe (bar Scandinavia), the Caspian
and Aral Sea basins, the Eastern United States, In-
dia, Southeast Asia, South America, Sub-Saharan
Africa, and Australia. At the same time, dete-
rioration of performance is observed in high lat-
itudes and in arid environments such as the Sa-
hara desert and the Arabian Peninsula where the
reduced strength of coupling between the surface
and root-zone dynamics may hinder the EF per-
formance (Yang et al., 2022). The patterns of
good and poor performance visible in RZSM lay-
ers 1-3, are not replicated in RZSM layer 4 (Fig-
ure Xe) where the agreement with the reference
E5L 100-289 cm layer is spatially very heteroge-
neous and worse overall. The few regions where
the good performance observed in shallower layers
is preserved include India, Southeast Asia, and the
Eastern United States”.
The impact of soil type or land cover on the perfor-
mance of the EF remains ambiguous (e,g., Stefan
et al. 2021). External variables could potentially
influence the uncertainty estimates, but such de-
tailed analysis is outside of the scope of this study.
We will reiterate the focus of this study through-
out the MS, e.g., as per major comment #1 and
also by adding the following concluding sentences
to the MS’ Introduction: ”The focus and novelty
of this paper lie in quantifying, rather than reduc-
ing, the EF model’s known limitations by provid-
ing a methodology for comprehensive uncertainty
estimation for the EF method. Additionally, to
our best knowledge, this dataset is, as yet, the
longest available solely observation-based, error-
characterized global RZSM product.”

5



Specific Comments Reply

1) Figure 1, there seems to be huge overlaps
between Topt for different layers (25th-75th
percentile box), how would this impact the
results? Have the authors consider perhaps
running the model woth those as upper and
lowes limits on Topt to see the impact on
performance?

The variability in Topt likely reflects the differences
in environmental conditions and sensor depths be-
tween calibration sites, resulting in large overlaps
in Topt IQR between product layers. Product com-
parison results presented in Figure 3 reaffirm the
limited sensitivity of the EF to variations in T-
parameter observed by others (Ford et al. 2014;
Grillakis et al. 2021). This is especially apparent
in case of E5L layer 7–28 cm, where the perfor-
mance of all four RZSM product layers is very sim-
ilar. Nonetheless, each of the RZSM product lay-
ers correlates best with its most-approximate E5L
counterpart in all but one case.

2) Typically EF is implemented in a nor-
maliezed SM scale (SWI either by scaling
from 0-1 using min/max or using soil char-
acteristic properties). In the MS, it’s not
mentioend which expecific method was used
(if at all).

The scaling of the input SM data between 0–1
and subsequent rescaling between the wilting point
and field capacity values is usually done when deal-
ing with datasets that express SM as the percent-
age of saturation rather than in volumetric units
(m3/m3), such as in the EUMETSAT H SAF soil
moisture data records. Given that the C3S SM
data is already in volumetric units, there is no need
for rescaling.

3) Lines 45-48, could use more detailes on
existing methods for rootzzone SM esti-
amtions and their challenges.

We will revise these lines to include more detail:
”The existing link between SM dynamics in the
surface layer and the root zone (Albergel et al.,
2008; Wang et al., 2017; Ford et al., 2014; Sure
and Dikshit, 2019) allows for estimating RZSM
from surface SM (SSM) observations via a vari-
ety of hydrological models. These include rela-
tively simple two-layer approaches approximating
RZSM as a function of SSM (Manfreda et al.,
2014), compound process-based models requiring
sophisticated parameter calibration (Bouaziz et al.,
2020), as well as complex and computationally ex-
pensive land surface models requiring many auxil-
iary inputs (Muñoz Sabater et al., 2021; Rodell et
al., 2004). Satellite-based SSM observations can
also be assimilated into land surface models to im-
prove the model simulations of RZSM with global
and temporally-complete coverage, as in the case
of the SMAP L4 RZSM product (Reichle et al.,
2017).”
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4)Line 69, EF typically is used to estimate
SM at specific layer depth not a composites
like 0-10 or 0-40. It’s either 0 or 10 or 40
cm (± few cms)

Both approaches are common practice. For exam-
ple, in the aforementioned SMOS L4 product, the
EF is used to represent a 5–40 cm soil layer (Al
Bitar and Mahmoodi, 2020). Other studies have
used 0–100 cm (Wagner et al. 1999, De Lange et
al. 2008); 0–25, 50–100, and 0–100 cm (Cebal-
los et al. 2005); or 25–60 cm (Ford et al. 2014).
Moreover, we believe that, given the large vari-
ations in land cover and soil texture within single
satellite grid cells, it is impossible to assign a single
specific depth to the EF-based RZSM estimates.
Other practical considerations were also taken into
account here, e.g., binning of the very limited num-
ber of in situ sensors operating at greater depths
is necessary to obtain a reasonable sample against
which to calibrate the T-parameter. Therefore, we
think that a depth range accompanied by rigorous
uncertainty estimates (which are the main goal of
the study) provide a more realistic description of
the product.

5) Section 2.1, I would suggest to include a
table showsing the timeline of various satel-
lite SM products being part of C3S with
band information that would help under-
standing the dataset better. Also, I would
liked to see some examples of mentioned
structural breaks either as timeseries.

Individual sensor data are intercalibrated within the
input C3S SM dataset and the breaks in the SSM
signal occurring at sensor changes were demon-
strated by Preimesberger et al. (2021) to be
marginal. However, the structural breaks—in the
new manuscript referred to as systemic breaks, see
above—are distinct in the C3S product uncertain-
ties. We will include a sensor timeline table in sec-
tion 2.1 C3S surface soil moisture. We will also
clarify this in the MS (see our response to major
comment #3). A time series example of a sys-
temic break in C3S is shown in Figure 6. We will
redesign Figure 6 to accommodate specific com-
ment #9 and also to make the systemic breaks in
C3S uncertainty time series clearly visible (revised
Figure 6 is included at the end of this document).
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6) Figure 3, I dont think there is any need
to compare all the layers at each depth. For
instance, deeper layers should not be com-
pared with 0-7 cm modeled SM. They are
not the same thing to be comapared and
does not add any value to the MS. Similarly,
at 100-200 cm depth, surface SM correla-
tions and their discussions (Lines 241-250)
could be avoided.

Regarding Figure 3, the reason for comparing all
of the RZSM product layers as well as the input
C3S SSM layer against E5L is to demonstrate that
our approach to T-optimization works and that the
sensitivity of the EF method to variations in Topt

is limited, as discussed in the MS earlier. The for-
mer is reflected in the best performance of each
RZSM layer being achieved again at the depth of
the E5L product we intended it to; the latter is ap-
parent in the very similar performance of all RZSM
product layers against E5L reference (regardless of
significant differences in Topt between them). For
these reasons we believe this figure provides more
information in its current form and we would like
to keep it. We will also annotate the median lines
in every box for an easier comparison of the re-
sults (revised Figure 3 is included at the end of
this document).

7) Line 259, the structural uncertanity men-
tioned here is it same as the structural
breaks (Line 87)? if not, perhaps use some
other terminology to differentiate is further.

Model structural uncertainty refers to an error in-
herent in the EF method and is introduced and
explained much earlier in L64-66 of the submit-
ted MS (although in first instance referred to as
model structural error, which we will change also
to model structural uncertainty for consistency).
Subsections 3.2.3 (in methods) and 4.3 (in results)
discussing the model structural uncertainty were
both given the same name to make it clear what
is being referred to. Structural breaks are sud-
den changes in the input uncertainty data and are
described when introducing C3S dataset (L87 of
the submitted MS). We will use the term systemic
breaks instead to better distinguish the two terms.
Further clarification regarding the difference be-
tween the systemic breaks in the SSM signal and
those in the uncertainty data will be provided as
per our response to major comment #3.

8) Line 268, please add exact location of the
data.

Thank you for spotting the missing location. We
will revise the caption to: Figure 5a shows a time
series of RZSM uncertainties from the baseline
method at an arbitrary example location in Benin
(9.875N, 1,625E).

9) Figure 6, very busy plot. Hard to read.

Thank you for the suggestion. We will redesign
Figure 6 for more clarity by removing the not rele-
vant in situ signal and placing uncertainties in sep-
arate panes with independent scales to make their
temporal dynamics better visible (find the revised
version at the end of this document).
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10) Figure 7, how is the sample size in the
subset bigger than the whole dataset (Fig d
vs h).

Thank you for pointing this out. The time series
selected for this analysis were filtered for a mini-
mum Pearson’s r (r ≥ 0.5) to mitigate the impact
of the spatial mismatch between point-scale in situ
measurements and the large footprint of the satel-
lite observations (as described and referenced in
L162-164 of the submitted MS). In this experi-
ment, several time series that did not satisfy this
minimum correlation criteria in the 2002-2020 pe-
riod (7d) reached the r ≥ 0.5 threshold in 2015-
2020 (7h). This is due to the latter part of the
time series being based on more modern satellite
sensors providing more accurate SM retrievals. We
will reprocess Figure 7 using the exact same sam-
ple, i.e., only sites where r ≥ 0.5 in both periods.
We do not expect this to impact the overall result
in a significant way, though.
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Figure 3: Product intercomparison of the C3S SSM and RZSM products against E5L SM.
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Spatial correlation maps of the C3S SSM (a) and RZSM products (b-e) with E5L layer 0–7 cm (a-b),
7–28 cm (c), 28–100 cm (d) and 100–289 cm (e).
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Figure 6: Differences in uncertainty variations of the baseline (a-b) and our proposed uncertainty
estimation approach (c-d). Illustrated on the example of RZSM layer 2 at an arbitrary location in
Benin (9.875N, 1,625E).

14


