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Abstract. In moderate to heavy precipitation, raindrops may deteriorate Doppler lidars’ accuracy for measuring the line-of-

sight wind velocity because their projected velocity on the beam direction differs greatly from that of air. Therefore, we propose

a method for effectively suppressing the adverse effects of rain on velocity estimation by sampling the Doppler spectra faster

than the raindrops’ beam transit time. By using a special averaging procedure, we can suppress the strong rain signal by

sampling the spectrum at 3 kHz. A proof-of-concept field measurement campaign was performed on a moderately rainy day5

with a maximum rain intensity of 4 mmh−1, using three ground-based continuous-wave Doppler lidars at the Risø campus

of the Technical University of Denmark. We demonstrate that the rain bias can effectively be removed by normalizing the

noise-flattened 3-kHz-sampled Doppler spectra with their peak values before they are averaged down to 50 Hz prior to the

determination of the speed. In comparison to the sonic anemometer measurements acquired at the same location, the wind

velocity bias at 50 Hz (20 ms) temporal resolution is reduced from up to −1.58 ms−1 of the original raw lidar data to −0.1810

ms−1 of the normalized lidar data after suppressing strong rain signals. This reduction of the bias occurs at the minute with the

highest amount of rain when the focus distance of the lidar is 103.9 m with a corresponding probe length being 9.8 m. With

the smallest probe length, 1.2 m, the rain-induced bias was only present at the period with the highest rain intensity and was

also effectively eliminated with the procedure. Thus, the proposed method for reducing the impact of rain on continuous-wave

Doppler lidar measurements of air velocity is promising, without requiring much computational effort.15

1 Introduction

Precise determination of wind flow plays an important role in reducing loads on critical turbine components and power varia-

tions, correcting commonly used models for wind energy assessment, improving the performance of wind turbine controllers,

and improving the prediction of the potential wind power extracted from the wind (Davoust et al., 2014; Jena and Rajen-

dran, 2015; Li et al., 2018; Samadianfard et al., 2020; Guo et al., 2022). Besides, wind velocity estimation is also useful for20

understanding important phenomena, i.e., atmospheric boundary layer flows and wind turbulence (Van Ulden and Holtslag,

1985; Türk and Emeis, 2010; Debnath et al., 2017). Therefore, accurate measurements of wind velocity are crucial for many

applications in meteorology and wind energy.

There are several available instruments capable of measuring wind speed, wind direction, and turbulence in wind energy,

each with advantages and disadvantages. In-situ cup and sonic anemometers installed on meteorological masts (met masts) can25
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provide only point measurements of wind velocity (Izumi and Barad, 1970). On the contrary, Doppler lidars can accurately

and remotely sense wind velocity by measuring Doppler spectra albeit with their limited ability in measuring turbulence due

to probe-length averaging effects (Sathe and Mann, 2013). For more than a decade, Doppler lidars have been widely used as a

more and more reliable, valuable, and active optical remote sensing instrument with easier and cost-effective deployment. They

have been applied to estimate wind resource both onshore (Bingöl et al., 2009) and offshore (Sempreviva et al., 2008; Peña30

et al., 2009; Viselli et al., 2019; Elshafei et al., 2021), both by scanning lidars and profiling lidars (Mann et al., 2017; Menke

et al., 2020; Gottschall et al., 2021) with good spatial and temporal resolutions (Henderson et al., 1991; Aoki et al., 2016).

Apart from the aforementioned, Doppler lidars have the potential of reducing loads on the turbine blade and tower through

lidar prevision of the incoming gusts and flow (Bossanyi et al., 2014; Bos et al., 2016), and improving wind turbine control

(Mikkelsen et al., 2013; Schlipf et al., 2015; Zhang and Yang, 2020). Doppler lidars can also be applied to study atmospheric35

turbulence along the span of a suspension bridge (Cheynet et al., 2016) and study the turbulent wind field in the near-wake

region of a tree (Angelou et al., 2022). In order to improve the measurement accuracy by lidars, Wildmann et al. (2020) reduced

the volume-averaging effect on the retrieval of the wind flow statistics with ground-based Doppler lidars (see also Sathe and

Mann, 2013). Brinkmeyer (2015) suggested the low coherence Doppler lidar approach using a pseudo-random broadband laser

source to obtain an effectively smaller sampling volume. It is self-evident that the precise determination of the wind velocity40

with Doppler lidars is paramount for many applications in wind energy.

Doppler lidars’ measurements of wind velocity can be influenced by heavy rainfall because the projected velocity of rain-

drops on the propagation direction of the lidar beam will be different from the line-of-sight wind velocity. A synergy approach

was proposed by Träumner et al. (2010), which combined radar and vertically scanning lidar measurements to estimate the

vertical wind velocity and the raindrop size distribution during rain episodes. Later, by using a velocity-azimuth display (VAD)45

scanning technique, wind speed, and rainfall speed were simultaneously retrieved in Wei et al. (2019), by fitting the two-peak

spectrum with a two-component Gaussian model. The spectral peak close to 0 ms−1 is the Doppler signal of the vertical

wind speed, which can be easily recognized in this scenario. Aoki et al. (2016) and Wei et al. (2021) proposed an iterative

deconvolution method to retrieve raindrop size distribution during rain by using a vertically pointing coherent Doppler lidar.

However, for Doppler lidars which are not vertically pointing, the line-of-sight wind velocity is not close to zero and it50

is difficult to distinguish which part of the signal originated from raindrops or from air-following aerosols. Therefore, the

purpose of the present study is to provide a proof-of-concept experimental investigation of a method we propose to suppress

the precipitation signal from the aerosol signals, in order to reduce the rain-induced bias on the velocity estimation.

A field measurement campaign was carried out at Risø where three coherent continuous-wave (CW) Doppler lidars (Mikkelsen

et al., 2017) were deployed to point towards a common focus point very close to a mast-mounted sonic anemometer at 31 m55

height. Each lidar had different elevation angles, focus distances, and thus probe lengths. Therefore, it was possible to investi-

gate the influence of these parameters on the performance of the post-processing method. The basic idea is to sample Doppler

spectra rapidly, i.e. 3 kHz, which allows us to detect when a raindrop is in the beam. Measurements of a sonic anemometer

are used as a reference to compare with the estimated line-of-sight wind velocity by the three lidars, before and after sup-
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pressing rain Doppler signals in the Doppler spectra. The corresponding rain characteristics are retrieved from a ground-based60

disdrometer (Tilg et al., 2020) nearby the meteorological mast.

Section 2 introduces the field campaign and elaborately describes the instruments used. In Section 3, the measurement results

of the sonic anemometers and the disdrometer are presented. The principle of Doppler spectral processing to retrieve the line-

of-sight wind velocity as well as the method we propose to suppress strong rain signals are presented in detail in Section 4.

Section 5 shows the comparison of 50 Hz and 1-minute wind velocity time series between the lidar and sonic anemometer65

measurements, with and without suppressing rain signals. The most important findings of our study are summarized in the

Conclusion (Section 6).

2 Instrumentation

2.1 The WindScanner system

In order to validate the method to reduce the influence of the precipitation on the estimated wind velocity, we conducted a field70

experiment at the Risø campus of the Technical University of Denmark (DTU), as shown in Fig. 2. The surrounding terrain is

flat and agricultural. The short-range WindScanner system with three CW Doppler lidars (Fig. 1) which are developed by DTU

Wind and Energy Systems, was used to measure the wind field (Vasiljević et al., 2017; Mikkelsen et al., 2020). The three lidars

employ a dual-prism beam scanner, enabling them to orient the beam in any direction within ±61◦ of the adjustable center

axis (Sjöholm et al., 2014; Mikkelsen et al., 2008). The direction of the line-of-sight of each lidar is steered by two prism75

motors and a focus motor controls the measurement location along the beam for these lidars. For this campaign, the sampling

frequency of spectra is set to be 3 kHz. A central master computer is used to synchronize the short-range wind lidars to scan

the same pattern in space simultaneously, however, all three lidars are focused on one static point in this investigation.

The three ground-based lidars were staring at a point 1 m north of a sonic anemometer (USA-1, METEK) which was located

31 m above the ground. The lidar heads were covered with green rain barrels to avoid raindrops covering the windows of the80

lidars (Fig. 1). The intention to use three lidars is to investigate the influence of different probe lengths and different elevation

angles on the performance of the method to suppress rain signals. The full-width-at-half-maximum (FWHM) of the Lorentzian

weighting function or the probe length can be approximated as (Sathe and Mann, 2013),

FWHM = 2 · zR = 2 · λ ·R2

πa20
(1)

where zR is the Rayleigh length, defined as the distance from the focus point to where the cross-sectional area of the laser beam85

is doubled (Angelou et al., 2012b), R is the distance from the lidar to where the beam is focused, λ is the laser wavelength,

which is 1.565 µm, a0 is the e−2 intensity radius of the laser beam at the lidar telescope, which is about 33 mm. A list of

the measurement parameters of the three lidars is summarized in Table 1 and the three-dimensional view of the three lidars’

configuration is depicted in Fig. 2. Lidar #1 is placed on a slope, therefore it has a relatively bigger elevation angle of about

58◦, but has the smallest probe length of 1.2 m, compared with lidar #2 and #3. The measurement period of the three lidars90

is from 15:12 to 23:29 (UTC+1) on September 27th, 2022. All times mentioned in the paper are UTC+1.
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Figure 1. Three CW lidars pointed at a common focus point close to a sonic anemometer on a met mast at DTU Risø campus.

Figure 2. Experiment setup at DTU Risø campus in the three-dimensional view. Blue points marked by 1, 2, and 3 are the three CW Doppler

lidars, focused at the common point 4 which is 1 m north of the sonic anemometer at a height of 31 m above the ground. Point 5 is the base

of the met mast. The black solid line indicates the met mast.
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Table 1. Summary of the measurement parameters of the three CW lidars.

Elevation angle (◦) Rayleigh length zR (m) Line-of-sight focus distance R (m) Geographic beam direction (◦)

Lidar #1 57.9 0.6 37.2 42.6

Lidar #2 34.6 1.4 54.8 172.9

Lidar #3 15.3 4.9 103.9 299.3

The backscattered light mixed and amplified by the local oscillator is sampled at a rate of 120 MHz and Doppler spectra con-

taining 512 frequency bins are calculated by Fast Fourier Transform (FFT) with a frequency resolution of (120 MHz)/512 =

234.4 kHz. The wind speed resolution is calculated from this frequency resolution and the laser wavelength λ, yielding

(1.565µm/2)·(234.4 kHz) = 0.183 ms−1. In order to determine the sign of line-of-sight velocities, the in-phase/quadrature-95

phase (IQ) detection method (Abari et al., 2014) is employed, which mixes the received signal with two local oscillator signals

phase shifted by 90◦ relative to each other. Subsequently, a block averaging of 78 spectra results in a final sampling period of

512 · 78 /(120 MHz) = 0.33 ms, corresponding to a spectrum rate of 3 kHz. Therefore, at every minute each lidar will provide

180000 spectra. Additionally, Bartlett’s method is used to obtain the power spectral density (PSD) of each spectrum (Press

et al., 1988, Chap. 13), which is the square of the absolute value of the FFT of the detector’s time series. The median method100

(Held and Mann, 2018) is employed to determine wind velocity.

The shortest beam transit time can be determined based on large raindrops’ maximum downfall speed of 9 ms−1 from

the disdrometer measurement in Fig. 6b, the beam width (twice of the beam waist w0), and the elevation angle of a lidar.

For lidar #1 with a beam width of 1.12 mm and an elevation angle of 57.9◦, the shortest beam transit time is 0.234 ms =

1.12/(9 · cos(57.9◦)), while it is 0.362 ms = 3.14/(9 · cos(15.3◦)) for lidar #3 with a beam width of 3.14 mm and an elevation105

angle of 15.3◦. Most often, however, raindrops’ transit time is longer than the aforementioned shortest time if their paths are

away from the lidar focus and if they fall slower. In this study, it is reasonable to set the spectral sampling frequency to 3 kHz

so that the sampling period for a spectrum (0.333 ms) is shorter than the beam transit of raindrops (see Jin et al., 2022, Fig.

5b). Therefore, the rare instances where a raindrop resides in the beam could be identified and suppressed based on the lidar

measurements.110

2.2 METEK sonic anemometer

The meteorological mast location is approximately 120 m northwest of the DTU V52 wind turbine and its base is 7.3 m above

the sea surface (Fig. 2). There are five sonic anemometers (USA-1, Metek) on booms facing north and five cup anemometers

(P2546A from WindSensor) on booms facing south, placed at 18 m, 31 m, 44 m, 57 m, and 70 m above the terrain (Fig. 3).

The sampling frequency of the sonic anemometers was 50 Hz. Furthermore, the mast is instrumented with a vector wind vane115

(W200P from Kintech Engineering) at 41 m, and two air temperature sensors (Pt 100, developed by DTU) mounted at 18 m and
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(a) (b)

(c)

Figure 3. Orientation calibration of sonic anemometers on the met mast. (a) A sketch of the V52 meteorological mast with the instrumen-

tation. (b) Leica Total Station (Leica Geosystems, last access: 12 March 2023.). (c) Scanned cloud points of the sonic anemometer at the

height of 31 m. The dashed line in (a) indicates the hub height of the DTU V52 wind turbine.

70 m, respectively. In order to test the consistency of the mast wind measurements, the available sonic and cup observations

at different heights are compared in the following section. The sonic anemometer at 31 m is used as a reference for further

comparison with the radial wind velocity detected by the three lidars.

In this step, it is also important to get accurate orientation of the sonic anemometer. For this purpose, the azimuth angle of the120

boom is considered as the direction offset of the sonic anemometer relative to the North. Here the Leica Total Station (Fig. 3b)

was used to scan the sonic anemometer at 31 m height, the boom at the same height, and the three lidars. The scanned results

of the sonic anemometer at 31 m high are presented in Fig. 3c and the azimuth angle of the boom to the north is 13.2◦ in the
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Figure 4. Thies Laser Precipitation Monitor(LPM) at DTU Risø campus.

UTM32 zone and the tilt angle of the sonic to the vertical is 1.9◦, which will be used to derive the unit vectors when projecting

the reference sonic velocity onto the directions of the three lidar beams. Consequently, the unit vectors of three lidars beams125

are [−0.36, −0.39, −0.85], [−0.10, +0.82, −0.57] and [+0.84, −0.47, −0.26], respectively.

It is evident from the sonic status information that wind velocity measurements by sonic anemometers can be affected by

raindrops. In those cases, the sonic anemometer would repeat the previous velocity value and the status would be "4". Thus,

the linear interpolation method was used in this study to eliminate repeated velocities, which represented about 60% of the 50

Hz sonic data recorded at moderate-rain minutes.130

2.3 Disdrometer measurements

The falling velocity and diameter of the raindrops were measured by a laser optical disdrometer manufactured by Thies (Laser

Precipitation Monitor, LPM), with a transmitter head emitting a horizontal laser-light plane and a receiver head detecting the

emitted laser light (Fig. 4). When a raindrop intersects the laser beam, it attenuates the power of the transmitted laser light with

a specific magnitude as a function of the falling velocity and the diameter. After the application of a proprietary algorithm, the135

measured raindrops are classified into specific velocity and diameter classes, which are outputted with a temporal resolution

of 1 minute. Here, raindrops’ diameter is given as the equi-volume sphere diameter (Angulo-Martínez et al., 2018). Some

technical details of Thies LPM disdrometer are given in Table 2. This disdrometer was about 20 m north of the met mast.
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Table 2. Technical details of the Thies Laser Precipitation Monitor (LPM) (Clima, T, last access: 2 June 2023.).

Thies LPM

Laser wavelength [nm] 786

Size of laser-light plane [mm2] 4560

Number of diameter classes 22

Min of diameter classes [mm] 0.1875

Number of velocity classes 20

Min/max of velocity classes [ms−1] 0.1/15

3 Sonic anemometer and disdrometer data

3.1 10-minute averaged sonic data140

Before analyzing the sonic and lidar data, the sonic and cup wind speed as well as the sonic and vane wind direction at different

heights were compared. In Fig. 5 a and b we show that the 10-minute averaged wind speeds by sonic and cup anemometers

are in good agreement for all heights including the height of 31 m where the lidars were measuring. The slope of a linear

regression is 1.008 with a coefficient of determination R2 equal to 0.997, which shows that wind speeds measured by the sonic

anemometers agree well with that measured by cup anemometers (with only a 1% difference). The same conclusion can be145

drawn for the wind direction in Fig. 5 c and d. Besides, the mean absolute difference of wind speed between the sonic and cup

anemometer at 31 m height is 0.11 ms−1 and that for wind direction between the sonic at 44 m and the vane at 41 m height is

1◦. However, for further comparison with the lidar data, the three unit vectors describing the direction of the line-of-sight are

used to project the wind vector measured by the sonic anemometer onto the lidar’s line-of-sight, as mentioned in Sect. 2.2.

The experiment started at 15:12 (UTC+1) and stopped after three-hour measurements. This is because the measurement150

volumes came into the wake of the Vestas V52 wind turbine. Whether a turbine wake affects the measurements is unknown but

we wanted to avoid this complication. From 15:12 to 18:11, marked by the two red vertical lines in Fig. 5, the 10-minute mean

wind speed obtained from the sonic anemometer at 31 m is in the interval [2.02 ms−1, 6.59 ms−1], while the wind direction is

in the interval [110.9◦, 164.8◦].

3.2 1-minute disdrometer data155

The 1-minute averaged rain intensity from 15:00 to 19:30 (UTC+1) measured by the Thies disdrometer is shown in Fig. 6a. It

started to rain at 15:15, reached the highest precipitation rate of about 4 mmh−1 at 15:48, and stopped after 19:00. Moderate

rain is defined as a precipitation rate between 2.6 mm and 7.6 mm per hour (Glossary of Meteorology (June 2000), last access:
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(a) (b)

(c) (d)

Figure 5. Comparison of 10-minute wind measurements with the wind vane, sonic and cup anemometers at several vertical heights. (a)

10-minute wind speed by sonic (SWsp) and cup (Wsp) anemometers. (b) 10-minute wind direction by sonic anemometers (Sdir) and the wind

vane (Wdir). (c) and (d) Linear regression of 10-minute wind speed and direction. The two red lines mark the comparison period of lidar and

sonic data from 15:12 to 18:11 (UTC+1).
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(a)

(b)

Figure 6. Rain event from 15:00 to 19:30 (UTC+1) on September 27th, 2022 measured by the Thies Laser Precipitation Monitor disdrometer.

(a) 1-minute Rain intensity. (b) Distribution of the number of measurements with specific vertical falling speeds and mass-weighted mean

diameters at the minute (15:48) with the highest rain intensity (color coded).

21 June 2023.). The selected comparison period from 15:12 to 18:11 includes no-rain, light-rain (the precipitation rate is

smaller than 2.5 mmh−1), and moderate-rain minutes, which enables the investigation of the performance of the method we160

propose to suppress rain signals during precipitation levels. During the highest rain intensity period, most of the raindrops have

mass-weighted mean diameters smaller than 2 mm and the falling velocity smaller than 6 ms−1 as shown in Fig. 6b.
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Figure 7. Processing block diagram of the rain-suppressing normalization method (the solid lines from 1⃝ to 3⃝) to estimate wind velocity

based on 3-kHz-sampled Doppler spectra. Doppler spectra at lower frequencies that do not resolve individual raindrops (like 50 Hz) are

processed according to the purple path including the dashed purple line, 2⃝, and 3⃝.

4 Suppression method of the rain bias

4.1 Lidar data processing

Doppler spectra are usually averaged to lower frequencies, ranging from 50 Hz to a few hundred Hertz. A 50-Hz-sampled165

spectrum can be processed by the following steps (the purple path marked by 2⃝ and 3⃝ in Fig. 7 along with the dashed

purple line): the spectrum is divided by the background spectrum and subtracted by its spectral threshold to flatten background

noise. Consequently, the line-of-sight velocity is retrieved based on this noise-flattened 50 Hz spectrum after applying Doppler

frequency estimation methods (Peña et al., 2015, Chap. 5).

However, from a random 3 kHz spectrum acquired during a minute (15:48, UTC+1) with moderate-rain precipitation, it is170

obvious that sometimes the spectrum has a very high, narrow peak as shown in Fig. 8b. This is caused by a raindrop falling

through the beam, the intensity of which should be compared to the ones of the more commonly occurring spectra where the

Doppler signal is caused by the aerosols (Fig. 8a). Here the width of the Doppler spectrum in Fig. 8a is relatively wider because

the aerosols within the measurement volume of the lidar have slightly different velocities and the peak value is much lower. In

contrast, the spectrum caused by the raindrop is very narrow because of the single velocity of the drop. From the histogram,175

(Fig. 8d) of the maximum values of the spectra obtained during this moderate-rain minute, the very high back-scattering events

marked by the red circle are the large raindrops passing through the center line of the laser beam close to the beam waist. These

could potentially cause a bias between the radial wind velocity measured by the lidar and by the sonic.

Therefore, based on the above observations, we propose the rain-suppressing normalization method to reduce the influence

of rain on wind velocity estimation. The detailed process is indicated by the solid lines and marked by 1⃝ to 3⃝ in Fig. 7, which180

is:

1⃝ every 3-kHz-sampled Doppler spectrum without suppressing rain signal (blue curve marked by "Raw" in Fig. 8a) is

divided with the background spectrum (red curve in Fig. 8a) to flatten the noise floor. Then, the noise-flattened 3-

kHz-sampled spectra are normalized by their own peak value. Subsequently, every 60 normalized spectra are averaged
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(a) (b)

(c) (d)

Figure 8. Examples of representative Doppler spectra measured at the moderate-rain minute (15:48, UTC+1) with the highest rain intensity.

(a) A 3-kHz-sampled spectrum containing only wind signal (blue) and the mean background spectrum (red). (b) A 3-kHz-sampled spectrum

containing rain signal (blue) and the mean background spectrum (red). (c) A noise-flattened 50-Hz-sampled spectrum and its spectral thresh-

old. (d) Histogram of the maximum spectral energy Smax of 180000 raw spectra over the duration of the same minute with a red circle

marking the strongest rain signals. The solid black line stands for the zero-Doppler shift at frequency bin 257.
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down to 50 Hz to achieve a better signal-to-noise ratio (Branlard et al., 2013) and ease the comparison with the sonic185

anemometer;

2⃝ a spectral threshold (black line in Fig. 8c) is subtracted from every 50 Hz spectrum and negative values are zeroed. The

spectral threshold is calculated based on the mean value (µ) plus multiple numbers of the standard deviation (σ) of the

power spectral density over a wind-signal-free Doppler frequency range;

3⃝ the median method is used to determine line-of-sight velocity from the final 50 Hz spectra (Fig. 8c), as it has the least190

biases for weak signals (Angelou et al., 2012a) in comparison to the maximum and centroid methods (Held and Mann,

2018).

In the first step, the background spectrum is calculated as the median power spectral density per frequency of 180000 Doppler

spectra, acquired during one minute. After that, we choose the smaller background for any pair of frequencies (−f,f), which

provides the true background noise even if the wind velocity is constant over the minute. However, this procedure will not work195

if the wind velocity is around zero, since the wind Doppler signal would be present on both sides of the zero frequency bin.

Then a real, atmospheric Doppler signal would be included in the background spectrum rather than the real background noise.

Therefore, in the case of lidar #1 where the line-of-sight velocity fluctuates around zero (the vertical line at frequency bin 257

corresponding to the zero-Doppler shift in Fig. 8), a background spectrum is calculated for a period where the line-of-sight

speed is away from zero.200

After obtaining 50 Hz spectra in the third step, it is vital to determine a correct spectral threshold to define the signal caused

by the wind in a Doppler spectrum. This is because a too-high spectral threshold would result in the unexpected removal of the

useful Doppler signal and cause false 0 ms−1 wind velocity, while a too-low spectral threshold would leave a lot of noise in

the spectrum, deteriorating the accuracy of the wind velocity estimation. As concluded in Angelou et al. (2012a), the optimum

number of standard deviations to define the threshold is not the same for different data sets. After calculating velocity difference205

with sonic data over a short period of time, a number of 2.5 has been chosen for the three lidars in this study.

4.2 Lidar spectra with and without rain-suppressing normalization

It is important to point out that during the measurement time from 15:12 to 18:11 (UTC+1), lidar #2 was facing the wind

almost all the time and we speculate that rainwater was covering the entrance window of the lidar telescope, despite our

attempt to shield the window with a green rain barrel (Fig. 1). The water caused a very weak Doppler spectrum even at the210

minute with the highest rain intensity. Therefore, for further analysis and comparison, only the measurement data by lidar #1

and #3 are used.

It is worth noting that the wind direction at the minute with the highest rain intensity (15:48, UTC+1) is from 160◦ by the

10-minute averaged sonic data, and the two lidars’ geographic beam directions are 42.6◦ and 299.3◦ (Fig. 2). Therefore, the

wind is moving away from both lidars’ laser beams at this minute, causing negative line-of-sight velocity. Consequently, the215

projection of the resultant velocity of raindrops, in the measuring configuration used here, is smaller than that of the horizontal

wind speed in the beam direction. In Fig. 9, it is very obvious that after normalization by the spectral peak, the narrow Doppler
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(a) (b)

(c) (d)

Figure 9. Comparison of Doppler spectra containing both wind and rain Doppler signals, with (marked by "Norm" short for normalization)

and without (marked by "Raw") suppressing rain signals for two lidars at the moderate-rain minute (15:48, UTC+1). (a) and (b) 50-Hz-

sampled spectra for lidar #1 and #3. (c) and (d) 1-Hz-sampled spectra for lidar #1 and #3. The red and blue dashed lines represent the

median frequency bin of the raw and the normalized Doppler spectra, which are used to derive line-of-sight wind velocity. The green dashed

line indicates the sonic wind velocity and the solid black line stands for the zero-Doppler shift at frequency bin 257.

signal caused by the raindrops (red arrows) is effectively suppressed and the bias between the reference sonic wind velocity

and that of the lidars is reduced as can also be seen in Table 3, for example, from −1.56 to −0.18 ms−1 at 50 Hz for lidar #3.

This indicates that normalization by the spectral peak value can help to reduce the influence of the raindrops since the narrow220

peak closer to the center zero frequency (the solid black line at frequency bin 257) is strongly suppressed.

In the section below, we compare the radial wind velocity detected by lidars and the sonic anemometer at 31 m height in

detail in light of the promising results about the effective suppression of rain Doppler signals at one moderate-rain minute
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Table 3. The estimated wind velocity by lidar data with (Vnorm) and without (Vraw) normalization, and by the sonic anemometer (Vsonic)

from 50 Hz and 1 Hz spectra at the moderate-rain minute (15:48, UTC+1).

Vsonic (ms−1) Vraw (ms−1) Vnorm (ms−1)

50 Hz of #1 -1.67 -1.06 -1.62

50 Hz of #3 -4.58 -3.02 -4.40

1 Hz of #1 -1.14 -0.50 -1.10

1 Hz of #3 -4.72 -4.29 -4.59

(15:48, UTC+1). The outcomes are elaborated to verify this rain-suppressing normalization method under no-rain, light-rain,

and moderate-rain conditions.225

5 Comparison between lidar and sonic wind velocity

5.1 50Hz wind velocity comparison

The reference 50 Hz sonic data at 31 m height was synchronized with the lidar measurements before the comparison. In Fig. 10,

the 50 Hz radial wind velocity time series of the normalized lidar data (blue curves) matches well with the synchronized sonic

data (green curves) at the no-rain, light-rain (Irain = 1 mmh−1) and moderate-rain (Irain = 4 mmh−1) minutes. It is very clear230

that the fluctuation of the wind velocity caused by the raindrops is effectively suppressed, especially during the moderate-rain

period for lidar #1 with a shorter focus distance 37.2 m in Fig. 10e, or during the rainy period for lidar #3 with a longer focus

distance 103.9 m in Fig. 10d and f. This can also be found from R2 values, indicating less dispersion of the lidar wind velocity

after rain-suppressing normalization.

Furthermore, Tables 4 and 5 compare the minute-averaged radial wind velocity of the three data sets (sonic, original raw235

lidar data without rain-suppressing normalization, and rain-suppressing normalized lidar data) as well as the bias between

the sonic and lidar estimations. In the case of small probe lengths (lidar #1), only at the moderate-rain minute, the bias is

effectively reduced from −0.15 to −0.04 ms−1 after normalization, whereas the bias is almost the same at the no-rain and

light-rain minutes. However, precise wind velocity is obtained after normalization of lidar #3 data in the presence of light rain

and moderate rain, with the bias correspondingly reduced from −0.21 to −0.01 ms−1 and from −0.33 to −0.08 ms−1. In light240

of this, it follows that when the probe length is small and it rains more heavily than lightly, rain-suppressing normalization by

the spectral peak value can suppress the rain signals effectively. However, when the probe length is larger (up to 10 m) with a

broader Lorentzian weighting function, normalization performs very well when rain falls (whether light or heavy) because of

the sensitivity of the lidar to rain signals.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Comparison of 50 Hz radial wind measurements by sonic (green) and lidar (red and blue) at the no-rain, light-rain, and moderate-

rain minutes from top to bottom. (a), (c), and (e) Lidar #1 (probe length of 1.2 m). (b), (d), and (f) lidar #3 (probe length of 9.8 m). The

raw and normalized lidar data are marked in red and blue.
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Table 4. 1-minute averaged wind velocity based on 50 Hz data and the corresponding bias between the sonic anemometer and lidar #1

(probe length of 1.2 m) at three minutes, with (norm) and without (raw) normalization. Rain intensity at the light-rain and moderate-rain

minutes are 1 mmh−1 and 4 mmh−1.

Vsonic (ms−1) Vraw (ms−1) Vsonic −Vraw

(ms−1)
Vnorm (ms−1) Vsonic −Vnorm

(ms−1)

No-rain minute 15:13:20+1min -1.01 -1.07 0.06 -1.08 0.07

Light-rain minute 16:36:20+1min -0.38 -0.39 0.01 -0.39 0.01

Moderate-rain minute 15:48:20+1min -0.64 -0.49 -0.15 -0.60 -0.04

Table 5. 1-minute averaged wind velocity based on 50 Hz data and the corresponding bias between the sonic anemometer and lidar #3

(probe length of 9.8 m) at three minutes, with (norm) and without (raw) normalization. Rain intensity at the light-rain and moderate-rain

minutes are 1 mmh−1 and 4 mmh−1.

Vsonic (ms−1) Vraw (ms−1) Vsonic −Vraw

(ms−1)
Vnorm (ms−1) Vsonic −Vnorm

(ms−1)

No-rain minute 15:13:20+1min -5.42 -5.41 -0.01 -5.45 0.03

Light-rain minute 16:36:20+1min -3.37 -3.16 -0.21 -3.36 -0.01

Moderate-rain minute 15:48:20+1min -3.62 -3.29 -0.33 -3.54 -0.08

In addition, the same conclusions can be drawn by comparing the probability density function (PDF) calculated for the radial245

wind velocity estimated based on the 1-minute averaged lidar spectra and the 50 Hz sonic data at three minutes, as shown in

Fig. 11. The improvement by normalization for lidar #1 with a smaller probe length is observed only during the moderate rain

period (Fig. 11e), as the calculated integral of the absolute difference of the PDF is reduced from 3.04 to 1.08 in Fig. 12. For

lidar #3 with a larger probe length, normalization performs very well not only at the moderate-rain minute in Fig. 11f but also

at the light-rain minute in Fig. 11d with the reduction of the integral of the absolute difference of the PDF from 1.68 to 0.57.250

In the comparison of the integral of the absolute difference of the PDF alone, normalization performs very well during rain

periods when the probe length is large, or during moderate rain when the probe length is smaller, which is consistent with the

conclusions discussed above.

At every minute, R2 of lidar #3 is smaller than that of lidar #1 when comparing R2 of the original raw lidar data in Fig. 10.

We are uncertain about why rain seems to deteriorate the wind signal of lidar #3 more than that of lidar #1. It could have to255

do with the larger sample volume of #3 or the different elevation angles, but it could also have to do with a different amount

of raindrops on the entrance windows of the telescope. The understanding of these sensitivities awaits more experimentation.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Probability density function (PDF) of radial wind velocity by 1-minute lidar spectra (red and blue) and 1-minute sonic data

(green) at the no-rain (top row), light-rain (second row), and moderate-rain (bottom row) minutes. (a), (c), and (e) Lidar #1. (b), (d), and (f)

Lidar #3. The raw and normalized lidar data are marked in red and blue.
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(a) (b)

Figure 12. Comparison of the integral value of the PDF’s absolute difference between the sonic and the lidar data with (SonicToNorm)

and without (SonicToRaw) rain-suppressing normalization at no-rain, light-rain (Irain = 1 mmh−1), and moderate-rain (Irain = 4 mmh−1)

minutes. (a) Lidar #1. (b) Lidar #3.

5.2 1-minute wind velocity comparison

The bias between the 1-minute sonic wind velocity and the lidar wind velocity, along with the rain intensity, are presented in

Fig. 13. From the figure, we can draw similar conclusions as described previously. In the case of the lidar #1 with a smaller260

probe length in Fig. 13a, after normalization with the spectral peak, the large bias of the red curve around the rain intensity

peak is effectively reduced from −0.15 to −0.03 ms−1. This is a result of suppressing the low and negative velocities caused

by raindrops. For other minutes, the estimated wind velocity after normalization is almost the same as the raw data, which

aligns with the conclusions from 50 Hz data in Sect. 5.1.

For lidar #3, the improvement of wind velocity estimation by normalization is highly effective as presented in Fig. 13b,265

from when it started to rain at 15:29 until 16:48 (UTC+1). Afterward, at some minutes, the wind velocity time series after

normalization overlaps with that of the raw lidar data, especially when the rain intensity is below 0.2 mmh−1 after 17:00. For

most of the three-hour comparison period, the wind velocity calculated by the raw lidar data is underestimated, as shown in

Fig. 13b. This is because of the small projection of the raindrop velocity, which counteracts the aerosol projection and adversely

affects the estimated wind velocity. As well, the red curve shows a radial velocity difference of over 0.5 ms−1.270

In Fig. 14c, the 1-minute lidar wind velocity after the rain-suppressing normalization matches well with that of the sonic

measurement for lidar #3 with a larger probe length, as the normalized lidar data (blue dots) are in a closer agreement with

the sonic measurements compared with the raw lidar data (red dots). For lidar #1 in Fig. 14a, there is no obvious improvement

after normalization by the spectral peak. However, the averaged bias in Fig. 14b and d demonstrate the performance of rain-

suppressing normalization. It is clearly indicated by the red and blue fitted curves that the suppression becomes effective not275

only for lidar #3 when it rains, but also for lidar #1 with a short focus distance when the rain intensity is large. Due to the
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(a)

(b)

Figure 13. Difference of 1-minute averaged wind velocity between lidar and sonic measurements together with the rain intensity (the solid

black curve) from 15:12 to 18:11 (UTC+1). (a) Lidar #1 with the probe length of 1.2 m. (b) Lidar #3 with the probe length of 9.8 m. The

raw and normalized lidar data are marked in red and blue.
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(a) (b)

(c) (d)

Figure 14. 1-minute wind velocity comparison between the lidar and sonic measurements from 15:12 to 18:11 (UTC+1) for lidar #1 (top

row) and #3 (bottom row). (a) and (c) Scatter plot of 1-minute wind velocity. (b) and (d)) Averaged bias and its fitted function as a function

of the rain intensity. The raw and normalized lidar data are marked in red and blue.

rare occurrence of raindrops passing through the laser beam with a condensed probe length, this method does not have a large

impact on velocity determinations by lidar #1 during light rain, since at moderate rain there are only 0.05 raindrops remaining

in the probe volume. These lead to the same conclusions discussed previously that rain-suppressing normalization performs

well for the large probe length when it rains as well as for the small probe length when it rains more heavily than lightly.280
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6 Conclusions

In this paper, we have shown an experimental proof-of-concept demonstration of a method to reduce the bias caused by

precipitation on continuous-wave Doppler lidar measurements of wind speed. This is accomplished by sampling Doppler

spectra faster than most raindrops’ beam transit time, which in the current case was at 3 kHz. Subsequently, the 3 kHz spectra

are normalized with their peak values to suppress strong backscatter signals from raindrops before being averaged down to 50285

Hz from which the radial wind velocity is determined.

Results from lidar beams with different elevation angles and focus distances were studied under different rain intensities

measured by a disdrometer. The derived wind velocities were compared with a sonic anemometer reference. From the compar-

ison, we find that the rain-suppressing normalization has the most significant impact on reducing bias when the probe volume

(growing with the fourth power of the focus distance) is the largest. However, when the probe volume is small (shorter fo-290

cus distances), the impact of rain is limited. Rain-induced bias also varies according to elevation angle but to a lesser extent.

However, the exact nature of these relations remains to be further verified and understood.

The tendency is that the more it rains, the stronger the bias and the more the rain-suppressing normalization is reducing

the bias. For moderate rain intensity (we do not have a heavy rain period in our data), the range of the bias is reduced from

the interval 0.1 to 0.4 ms−1 to 0.0 to 0.1 ms−1. The suggested method in this study could also be investigated for rain events295

(containing heavy rain) on several days and also for pulsed Doppler lidars even though their measurement volume is quite

larger than that of the continuous-wave lidars. Further investigations could also attempt to retrieve the falling velocity and the

size distribution of raindrops using the fast Doppler spectra.
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