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Abstract. Machine learning (ML) models are becoming a meaningful tool for modeling air pollutant concentrations. ML

models are capable of learning and modeling complex non-linear interactions between variables, and they require less com-

putational effort than chemical transport models (CTMs). In this study, we used gradient boosted tree (GBT) and multi-layer

perceptron (MLP; neural network) algorithms to model near-surface nitrogen dioxide (NO2) and ozone (O3) concentrations

over Germany at 0.1 degree spatial resolution and daily intervals.5

We trained the ML models using TROPOMI satellite column measurements combined with information on emission sources,

air pollutant precursors and meteorology as feature variables. We found that the trained GBT model for NO2 and O3 explained

a major portion of the observed concentrations (R2 = 0.68-0.88, RMSE = 4.77-8.67 µg m-3 and R2 = 0.74-0.92, RMSE =

8.53-13.2 µg m-3, respectively). The trained MLP model performed worse than the trained GBT model for both NO2 and O3

(R2 = 0.46-0.82 and R2 = 0.42-0.9, respectively).10

Our NO2 GBT model outperforms the CAMS model, a data-assimilated CTM, but slightly under-performs for O3. However,

our NO2 and O3 ML models require less computational effort than CTM. Therefore, we can analyze people’s exposure to near-

surface NO2 and O3 with significantly less effort. During the study period (2018-04-30 and 2021-07-01), it was found that

around 36% of people lived in locations where the WHO NO2 limit was exceeded for more than 25% of the days, while 90%

of the population resided in areas where the WHO O3 limit was surpassed for over 25% of days. Although metropolitan areas15

had high NO2 concentrations, rural areas, particularly in southern Germany, had high O3 concentrations.

Furthermore, our ML models can be used to evaluate the effectiveness of mitigation policies. Near-surface NO2 and O3

concentrations changes during the 2020 COVID-19 lockdown period over Germany were indeed reproduced by the GBT

model, with meteorology-accounted for near-surface NO2 significantly decreased (by 23±5.3%) and meteorology-accounted

for near-surface O3 slightly increased (by 1±4.6%) over ten major German metropolitan areas, compared to 2019. Finally, our20

O3 GBT model is highly transferable to other countries, at least to neighboring countries and locations where no measurements

are available (R2 = 0.87-0.94), whereas our NO2 GBT model is moderately transferable (R2 = 0.32-0.64).
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1 Introduction

Air pollution is a major threat to human health and impacts ecosystems (Bell et al., 2011; Lelieveld et al., 2015; Zhang et al.,

2019; Xie et al., 2019). Based on the source, air pollutants are classified as primary (directly emitted from anthropogenic/-25

natural sources) or secondary (formed through complex atmospheric chemical reactions). Near-surface nitrogen oxide (NOX=

NO+NO2) is a primary air pollutant emitted largely by fossil-fuel-consuming sectors such as vehicles, industries, power plants,

etc., but there are also natural sources such as lightning, soil emissions, and biomass burning. Near-surface ozone (O3) is a

secondary air pollutant produced solely by the photolysis of NO2 (nitrogen dioxide) in the presence of sunlight (Crutzen, 1988;

Council et al., 1992).30

Tropospheric NOX and O3 are chemically strongly coupled via complex atmospheric chemical reactions (Jacob, 1999). The

majority of NOX , from primary sources such as fossil-fuel combustion, is emitted in the form of nitric oxide (NO), which

rapidly converts to NO2 by reacting with O3. In turn, O3 and NO are generated again by photolysis of NO2, forming a null

cycle. Therefore, the amount of sunlight present and the total concentration of NOX determine ozone production via this

NOX null cycle. However, the oxidation of volatile organic compounds (VOCs) via the hydroxyl (OH) radical results in the35

formation of hydro-peroxy radicals (HO2) and organic-peroxy radicals (RO2), which can alter the NO/NO2 ratio. The presence

of hydroxyl radical initiates the VOC oxidation process, followed by the formation of hydro- and organic peroxy radicals,

which convert the NO to NO2, which can form additional O3, as well as converting HO2 back to OH thus forming a catalytic

cycle (HOX catalytic cycle). However, ozone production is non-linear in relation to its precursors (NOX and VOC) due to

termination reactions that occur within the catalytic cycle (Lin et al., 1988; Nussbaumer and Cohen, 2020; Pusede and Cohen,40

2012; Pusede et al., 2014). To that end, the response of ozone production is categorized into three regimes: NOX -saturated

(high NOX with low VOC), NOX -limited (low NOX with high VOC), and transitional (Sillman et al., 1990; Sillman, 1999). In

the NOX -saturated regime (typically urban areas), ozone production is inversely proportional to NOX concentration, whereas

ozone production is directly proportional to VOC concentration. However, in NOX -limited regimes (typically rural areas),

ozone production is directly proportional to NOX concentration, whereas VOCs have little effect on ozone production. This45

complex ozone production vs. precursor emission response is also evident in real-time observations, such as urban weekend

ozone levels being higher than weekday levels (Sicard et al., 2020) and high ozone levels during public holidays and national

shutdowns (e.g., the COVID-19 lockdown) due to low NOX emissions (Balamurugan et al., 2021, 2022b).

Chemical transport models (CTMs) are commonly used to study air pollution and its drivers (Hu et al., 2016; Lou et al.,

2015), but these models are dependent on emissions as represented in emission inventories (Pisoni et al., 2018). Emission50

inventories are typically developed using the bottom-up method, based on data such as economic activity, fuel consumption,

traffic density, etc (McDuffie et al., 2020; Osses et al., 2022). However, bottom-up emission inventories can be highly uncertain

due to inaccuracies in the data used in the bottom-up method, especially from unaccounted sources (Chen et al., 2020; Crippa

et al., 2019; Trombetti et al., 2018). Because of the significant computational effort and storage space requirements, CTMs

often perform at coarse spatial resolution, making it unable to solve fine transport and chemical mechanisms, particularly over55

complex topography (Singh et al., 2021). Machine learning (ML) models have been shown to be an effective complement to
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these computationally expensive CTMs (Vlasenko et al., 2021). The performance of machine learning models for modeling air

pollutants is promising (Balamurugan et al., 2022a; Cheng et al., 2022; Lee et al., 2020; Li et al., 2022; Liang et al., 2020; Liu

et al., 2022; Zaini et al., 2022; Zhao et al., 2023). Meteorological variables such as solar radiation and temperature have been

shown to be important parameters in near-surface ozone modeling using machine learning (Diao et al., 2021; Hu et al., 2021).60

Meteorological conditions influence the concentration of O3 both directly and indirectly. Solar UV radiation is responsible

for the photolysis of O3 precursors (NO2 and VOCs). Temperature directly influences the photochemical reaction rate. Fur-

thermore, meteorology influences biogenic and fuel-leak-related VOC emissions (exponentially proportional to temperature),

which account for a significant portion of total VOC emissions (Guenther et al., 1993). In addition to meteorology, when emis-

sion source information is included, ML models predict near-surface NO2 very well (Ghahremanloo et al., 2021; De Hoogh65

et al., 2019).

In-situ air quality measurements are sparse and concentrated primarily in urban areas. Recent advancements in satellite

remote sensing allow us to analyze urban and non-urban air quality with adequate spatial and temporal coverage; however, they

typically only measure the total or tropospheric column of specific air quality species, making it difficult to interpret people’s

exposure to near-surface air pollutants concentration. Therefore, in this study, we trained two ML models for near-surface NO270

and O3 concentrations over Germany using available information on proxies for near-surface air pollutants (satellite column

measurements) and emission sources, precursors of air pollutants, as well as meteorology. Many recent studies, similar to ours,

have attempted to model near-surface NO2 and O3 concentrations at national/regional spans (De Hoogh et al., 2019; Kang et al.,

2021; Kim et al., 2021; Li et al., 2020; Zhu et al., 2022); there are, however, very few attempts over Germany. To the best of the

authors’ knowledge, only one study (Chan et al., 2021) used TROPOMI satellite NO2 tropospheric column measurements and75

other auxiliary information (e.g., meteorology) to model near-surface NO2 concentrations over Germany using a MLP model.

Furthermore, previous studies have focused on a single pollutant (e.g., NO2), whereas in this study, we model and analyze the

spatio-temporal variations in both NO2 and O3, which are chemically strongly coupled. In terms of anthropogenic emissions,

we also evaluate the ML model performance of NO2 and O3 during the 2020 COVID-19 lockdown period, which serves as a

natural experiment period with significantly lower primary anthropogenic emissions (Gensheimer et al., 2021).80

2 Study region, Data sets, Model, and Method

All data sets used in this study, as well as their spatial and temporal resolutions, are summarized in Table 1.

2.1 Study region and near-surface NO2 and O3 measurements

We focused on the spatial domain of 5-15◦E and 47-55.5◦N, particularly over Germany. Near-surface NO2 and O3 data from

measurement stations across Germany were used in this study. However, not all measuring stations collect data on both pol-85

lutants; there are less stations measuring O3 than those measuring NO2. There were also temporal gaps in the measurement

data. Therefore, we only considered stations that had more than 80% data coverage during the study period. In the end, we
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Figure 1. Locations of near-surface NO2 (a) and O3 (b) measurement stations considered in this study. The color bar depicts the mean of

near-surface NO2 and O3 for each measurement station during the study period.

considered 321 stations for modeling NO2 and 256 stations for modeling O3. The selected measurement stations are located

throughout the entire country and are situated in high-traffic, industrial, and background locations (Fig. 1 & Table A1).

2.2 Predictor variables of ML model90

Predictor variables or input features for the ML models include satellite column measurements of air pollutants, meteorology

and auxiliary data containing information on the area of interest.

2.2.1 Satellite column measurements

Tropospheric column NO2, total column O3, and troposheric column HCHO data are used, which are level-2 retrieval prod-

ucts from TROPOMI (TROPOspheric Monitoring Instrument) aboard the Sentinel-5P satellite. Sentinel-5P overpasses the95

study area between 13:00 and 14:00 local standard time. The spatial resolution of TROPOMI data is 7*3.5 km (increased to

5.5*3.5 km after August 6, 2019). We applied the data quality filtering described in the product manual to each data product

(S5P (2022b) for NO2, S5P (2022c) for O3, and S5P (2022a) for HCHO). Tropospheric column NO2 is used in the NO2 ML

model because it can be considered as proxy for near-surface NO2. Since NO2 is the precursor for O3, we also included the

tropospheric column NO2 in the O3 ML model. Because formaldehyde (HCHO) is an intermediate gas-product of VOC oxi-100

dation, it can be used as a proxy for VOC-oxidation (Jin et al., 2017). Therefore, we included tropospheric column HCHO in

the O3 model. We also considered the “TROPOMI FNR” (ratio of “TROPOMI HCHO” and “TROPOMI NO2”) in the O3 ML

model, which in previous studies has been shown to be a useful indicator of ozone production regime (Jin et al., 2020; Wang

et al., 2021). We included total column O3 in the O3 ML model by considering total column O3 as a proxy for near-surface O3.
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Table 1. Data sets and related information used in this study.

Data source
Data

(purpose)
Temporal resolution Spatial resolution

Governmental in situ measurements
Near-surface NO2 and O3

(Ground-truth data)
1 hr -

TROPOMI satellite measurements

Tropospheric column NO2, total column O3 and

total column HCHO

(Input features)

Daily
7 km*3.5 km

(5.5 km*3.5 km, after 6 August 2019)

ERA5 (ECMWF reanalysis)

Temperature, relative humidity, wind speed, wind direction,

downwind UV solar radiation at surface, boundary layer height,

surface pressure and temperature of air at 2m above the surface

(Input features)

1 hr 0.25*0.25-degree

U.S. Geological Survey
Surface elevation

(Input features)
- 1*1-km

GRIP global roads database
Road density

(Input features)
- 8*8-km

CAMS European air quality forecasts
Near-surface NO2 and O3

(for validation)
1 hr 0.1*0.1-degree

GEOS-Chem chemical transport model
Near-surface NO2 and O3

(for disentangling meteorology impacts)
1 hr 0.5*0.625-degree

2.2.2 Vegetation index105

Normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) data were obtained from MODIS (Mod-

erate Resolution Imaging Spectroradiometer) measurements aboard the Terra and Aqua satellites. We used the “MOD13A2

(16-day 1-km) VI” data set, which contains NDVI and EVI data at 1 km spatial resolution and 16 day temporal resolution. To

generate daily intervals, the NDVI and EVI data were linearly interpolated. We considered these vegetation indexes in the O3

ML model because vegetation contributes a considerable amount of VOCs. We also considered these vegetation indexes in the110

NO2 ML model as a supplementary information to check whether changes in vegetation cover has any implications on NO2

concentration changes.

2.2.3 Meteorology

Meteorology has both direct and indirect effects (e.g., dispersion, photochemical reactions) on pollutant concentrations. Meteo-

rological variables such as temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WD) were obtained115

from the ERA-5 reanalysis product. These variables were derived from the lowest model level (1000 hPa) of the “ERA-5 hourly

data on pressure levels” data set. Downward UV solar radiation at the surface (DUV), boundary layer height (BLH), surface

pressure (SP) and temperature of the air at 2 m above the surface (T2m) were derived from the “ERA-5 hourly data on single

levels” data set. These meteorological data have a spatial resolution of 0.25 degree and a temporal resolution of one hour. In

both the NO2 and O3 ML models, we took all meteorology variables into account.120
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Figure 2. Predictor variables and data flow for the NO2 (a) and O3 (b) ML model.

2.2.4 Proxy for NOX emission source

Because vehicle (transport sector) emissions are a significant source of NOX emissions, considering a proxy for vehicle emis-

sions is crucial. Therefore, we used road density as a proxy for the source of NOX emissions. We are aware that traffic volume

or density would be the ideal proxy, but data on traffic volume or density on a national/regional span is not available. The road

density (RD) data was obtained from the GRIP global roads database, with a spatial resolution of 8 km.125

2.2.5 Additional features

Additional supplementary data such as surface elevation (E) was obtained from the U.S. Geological Survey (USGS), with a

spatial resolution of 1 km. Surface elevation was taken into account because it influences the tropospheric/total column value

of measurements. We also considered “DOW” (day of the week), and “season” (season of the year) information in both the

NO2 and O3 models since both NO2 and O3 have distinct weekly and seasonal cycles. Because NO2 is an important precursor130

to O3, in addition to “TROPOMI NO2”, we also included “Near-surface NO2” modeled from NO2 ML model as a feature

variable in the O3 ML model.

2.3 Study period and data pre-processing

The study period was chosen to be between 2018-04-30 and 2021-07-01, which corresponds to the availability of TROPOMI

data retrievals with the same processing version. Despite the fact that satellites pass over the study area between 13:00 and 14:00135

local standard time, we found that the satellite data represents the daily mean of air pollutants well. Therefore, we considered

the daily 24-hr mean for near-surface NO2 and the daily maximum 8-hour mean (i.e. the mean of the 8 highest hourly values

during a day) for near-surface O3 as our variables of interest (dependent variables to model), as these are commonly used

metrics in air quality research (Hoffmann et al., 2021).
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Table 2. Evaluation metrics of our GBT model in different testing strategies.

Random

(1-fold)

Random

(5-fold)

Time-leave-out

(5-fold)

Location-leave-out

(5-fold)

NO2

GBT model

R2 0.88 0.89±0.002 0.74±0.07 0.68±0.12

RMSE (µg m-3) 4.77 4.65±0.034 6.77±0.7 8.67±1

O3

GBT model

R2 0.92 0.92±0.001 0.74±0.09 0.8±0.06

RMSE (µg m-3) 8.53 9.36±0.068 13.2±1.1 12.45±1.3

Because each data set has a different spatial and temporal resolution, we re-sampled all of the data to the same spatial140

(0.1*0.1 degree) and temporal (daily) resolution. The 0.1 degree (≈ 10 km) resolution was chosen because it corresponds to

the resolution of the main features such as road density (spatial resolution of 8 km), TROPOMI satellite measurements (spatial

resolution of 7*3.5 km), and concurrent high-resolution (0.1 degree) air quality forecasts from CAMS (Copernicus Atmosphere

Monitoring Service). We computed the daily 24-hr mean for near-surface NO2 and the daily maximum 8-hr mean for near-

surface O3 for each in-situ measurement station and then calculated the mean of all stations that fell within 0.1 degree grid.145

The mean of surface elevation, NDVI, EVI, TROPOMI (NO2, HCHO, O3), and road density for each day were then calculated

for the corresponding 0.1 degree grids. The surface elevation and road density were assumed to be constant during the study

period. The ERA-5 meteorology product was resampled to 0.1 degree resolution using the nearest-neighbor method and the

24-hr mean was computed.

2.4 Machine learning model and evaluation strategies150

We primarily used the gradient boosted tree (GBT) machine learning algorithm, XGBoost (Chen and Guestrin, 2016), to

model near-surface NO2 and O3 concentrations. The GBT algorithm is a gradient-boosted decision tree-based algorithm that

is expected to outperform deep neural network-based algorithms for structured data (Lundberg et al., 2020). Furthermore,

tree-based models are more interpretable and require less time to train than deep neural network algorithms. However, for

comparison, we also used the multi-layer perceptron (MLP; neural network) algorithm (Gardner and Dorling, 1998). The GBT155

and MLP algorithms were implemented using "scikit-learn", a Python module (https://scikit-learn.org/stable/). When training

the MLP model, we normalized the discrete feature variables between 0 and 1. The corresponding predictor variables and data

flow for the NO2 and O3 ML model is shown in Fig. 2.

To evaluate the ML model, we used the R2 (coefficient of determination) and RMSE (root-mean-square error) metrics. We

split the available data into training (70% of the data) and testing (the remaining 30%). The training data set was used to160

iteratively vary the hyper-parameters (combinations) and select the best set of hyper-parameters using a 5-fold CV (cross-

validation). The hyper parameters used in this study are shown in Table A2 and Table A3. We also evaluated the ML model

using three different 5-fold CV testing strategies (random 5-fold CV, time-leave-out 5-fold CV, and location-leave-out 5-fold

CV) with 100% of the data (Meyer et al., 2018). In the random 5-fold CV testing strategy, the data was randomly split into
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Figure 3. Comparison between ground-truth and GBT-simulated near-surface NO2 (a) and O3 (b). Feature importance (top 10) calculated

based on SHAP (SHapley Additive exPlanations) values for NO2 (c) and O3 (d) GBT model. RD: Road Density, BLH: Boundary Layer

Height, E: Surface Elevation, T-Temperature, DOW- Day of the week, RH-Relative Humidity, T2m: Temperature at 2 meter height, DUV:

Downwind UV radiation, WS: Wind speed, WD: Wind Direction.
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five parts, four of which were used for training and one for testing. This procedure was repeated until all five parts had been165

used as test. The mean (and standard deviation) of R2 and RMSE from the 5-fold CV were then computed. In the time-leave-

out 5-fold CV testing strategy, the 5-fold CV procedure was the same, but the data was split based on time period (by date;

from the start of study period to the end of study period). Similarly, in the location-leave-out 5-fold CV testing strategy, the

data was split based on location (by latitude). Figure A1 shows the first one-fold step in a 5-fold CV for time-leave-out and

location-leave-out testing strategies. To interpret the importance of feature variables in the fitted model, we use SHAP (SHapley170

Additive exPlanations) values. The SHAP method (https://christophm.github.io/interpretable-ml-book/shap.html) is the most

commonly used method for interpreting ML model output, which calculates the contribution of each feature variable to the

final prediction. Thus, higher SHAP values indicate greater feature importance.

2.5 CAMS model data

We obtained near-surface NO2 and O3 air quality forecasts from CAMS in order to compare the performance of our ML175

model to that of the chemical transport model. This data set is based on a data-assimilation technique that combines real-time

measurements with an ensemble of eleven air quality models to provide air quality data with high spatial resolution (0.1 degree)

and 1 hr temporal resolution over Europe; however, it is only available for three years in the rolling archive. We used data from

2019-07-17 to 2020-01-31. We did not use data after 2020-01-31 due to COVID-19 lockdown restrictions, which limited many

anthropogenic emission activities, and CAMS had not adjusted the emission inventory for changes in emissions. Furthermore,180

because NO2 has a shorter lifetime, the effect of assimilated observations is minimal, and the CAMS forecasts NO2 product

mostly reflects emissions prescribed in the inventory (Inness et al., 2015).

2.6 GEOS-Chem model data

In this study, GEOS-Chem (GC) chemical transport model simulations were used to disentangle the meteorology contribution

when estimating the influence of COVID-19 lockdown restrictions on air pollutant concentration changes. The GC simulations185

over the study area were obtained with a spatial resolution of 0.5 × 0.625 degree and 1-hr temporal resolution for the 2020

strict COVID-19 lockdown period (March 21 to May 31) and the same period in 2019. Identical anthropogenic emissions

from the 2014 CEDS inventory were used for both 2020 and 2019, but with the corresponding meteorology, natural, and fire

emissions in the respective years. Therefore, the difference in GC-simulated species (X) concentrations between 2020 and

2019 results from changes in meteorology, natural, and fire emissions between 2020 and 2019 (GC X 2020−2019); here, X190

refers to either NO2 or O3. Then, we subtracted the GC X 2020−2019 from the observed near-surface X 2020−2019 to estimate

the changes in concentrations of species X due to changes in anthropogenic emissions in the 2020 lockdown period (refer to

studies Balamurugan et al. (2021); Qu et al. (2021) for the detailed description of the method).
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Figure 4. Top: Comparison between ground-truth near-surface NO2 and CAMS forecasts near-surface NO2 (a) and O3 (b) for the period

between 17-07-2019 and 31-01-2020. Bottom: Comparison between ground-truth near-surface NO2 and GBT-simulated near-surface NO2

(c) and O3 (d) for the period between 17-07-2019 and 31-01-2020. The dotted line represents a 1:1 line, while the solid line represents a

linear fit.

3 Results

3.1 ML model evaluation and feature importance195

The trained GBT model with 70% of the data (78433) for NO2 reproduced the observed NO2 concentration well in the test

case (33615), with an R2 of 0.88 and RMSE of 4.77 µg m-3 (Fig. 3(a) and Table 2). The random 5-fold CV results were in

the same range (R2=0.89±0.002 and RMSE= 4.65±0.034 µg m-3). The other two testing strategies (time-leave-out 5-fold CV

and location-leave-out 5-fold CV) showed slightly worse agreement (Table 2), indicating that different validation strategies

should be performed to interpret the ML model capability. Otherwise, it may result in an overoptimistic view of ML models200

(Meyer et al., 2018). Furthermore, the worse agreement in the location-leave-out 5-fold CV testing strategy suggests that there

is less confidence in modeling the near-surface NO2 over new locations that the GBT model has not been trained on before.
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However, these results outperformed the MLP model trained by another study (Chan et al. (2021); R = 0.8 and RMSE = 6.32

µg m-3 obtained for the testing strategy of random split of 90% of data used for training and 10% of data used for testing)

for near-surface NO2 over Germany. Feature importance, based on the SHAP values, indicates that road density is the most205

important feature in the fitted model for NO2 (Fig. 3(c)), because traffic is the main source of near-surface NOX in urban

areas. The next most important features were TROPOMI NO2, boundary layer height, and elevation. Because the majority

of NOX sources are present at the surface, tropospheric column NO2 data plays an important role in explaining near-surface

NO2. Near-surface NO2 typically has a negative correlation with boundary layer height, as increasing BLH disperses more and

vice versa (Balamurugan et al., 2021). Therefore, BLH is one of the most important features. It is unexpected that elevation210

was an important feature. The cause could be that the surface elevation varies greatly across Germany, influencing the total

tropospheric column of NO2 and thus serving as a link between the tropospheric column of NO2 and near-surface NO2. A

previous study (Chan et al., 2021) also found that elevation was an important feature in the fitted MLP model for near-surface

NO2 over Germany.

The GBT model trained with 70% of the data (65705) for O3 also well represented the observed O3 concentrations in the test215

case (28160), with an R2 of 0.92 and RMSE of 8.53 µg m-3 (Fig. 3(b)). Similar to the NO2 GBT model findings, time-leave-

out 5-fold CV and location-leave-out 5-fold CV testing strategies showed less agreement than the random 5-fold CV testing

strategy (Table 2). In comparison to our NO2 GBT model, our O3 GBT model demonstrated greater confidence in modeling

near-surface O3 over locations the model was not trained on. According to SHAP values, the five most important features were

DUV, T, RH, BLH, and season, with DUV having the greatest influence (Fig. 3(d)). Because ozone is formed in the atmosphere220

from the photolysis of NO2, DUV plays a significant role in the fitted model that explains near-surface O3. Temperature is the

second most important feature, which is also not surprising as it drives biogenic VOC emissions (an important precursor to

O3). Previous studies also show similar findings (Diao et al., 2021; Hu et al., 2021). GBT-modeled near-surface NO2 was the

sixth most important feature in the fitted model, according to the SHAP values, and it was also more important than TROPOMI

NO2.225

Figure A2 shows the results obtained from the MLP model. Both the NO2 and O3 MLP models performed worse than the

NO2 and O3 GBT models, respectively (Table A4 vs. Table 2). In particular, MLP model findings showed low agreement in

time-leave-out 5-fold CV and location-leave-out 5-fold CV testing strategies. This supports previous studies (Heaton, 2020;

Lundberg et al., 2020) showing MLP model is unlikely to outperform tree-based models for tabular data. Because the GBT

model outperforms the MLP model, we only considered the GBT model results in the following.230

It is important to note that deep learning models are data-intensive, and their performance and generalization capabilities

tend to improve with larger amounts of data. In our study, we utilized the simplest deep learning algorithm known as MLP.

However, it is essential to explore the capabilities of other deep learning algorithms, such as CNN and LSTM, in future studies

to gain further insights. Additionally, employing multiple ML models through bagging techniques could potentially lead to

improved performance, despite the computational expense involved.235
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Figure 5. (a) Averaged GBT-simulated daily near-surface NO2 concentrations over the study domain for the study period between 2018-

04-30 and 2021-07-01. (b-e) Averaged GBT-simulated daily near-surface NO2 concentrations for each season during the study period.

Winter: December, January and February. Spring: March, April and May. Summer: June, July and August. Autumn: September, October and

November.

3.2 GBT model performance compared to CAMS

To evaluate how well our GBT model performs compared to CAMS, we compared the high-resolution near-surface NO2 and

O3 forecasts from CAMS with observations, and GBT-simulated near-surface NO2 and O3 with observations, for the period

between 2019-07-17 and 2020-01-31, i.e., CAMS comparison period, (Fig. 4). Please note this time period was not used for

training the GBT model for this comparison. Our NO2 GBT model reproduced the observed near-surface NO2 concentrations240

well during this comparison period, with an R2 of 0.82 and RMSE of 5.76 µg m-3, while CAMS NO2 forecasts showed poor

representation (R2 = 0.37 and RMSE = 14.96 µg m-3). However, CAMS O3 forecasts agreed slightly better with observed

concentrations (R2 = 0.93 and RMSE of 9.2 µg m-3) compared to our O3 GBT model (R2 = 0.85 and RMSE = 13 µg m-3).

It should be noted that CAMS model forecasts were based on data assimilation techniques. Therefore, the CAMS models are

expected to outperform our GBT models. However, our NO2 GBT model outperforms CAMS, possibly because the effect of245

data assimilation is minimal in the CAMS forecasts product due to the short NO2 lifetime.
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Figure 6. (a) Averaged GBT-simulated daily near-surface O3 concentrations over the study domain for the study period between 2018-04-30

and 2021-07-01. (b-e) Averaged GBT-simulated daily near-surface O3 concentrations for each season during the study period. Winter: De-

cember, January and February. Spring: March, April and May. Summer: June, July and August. Autumn: September, October and November.

3.3 Spatio-temporal changes in near-surface NO2 and O3 over the study domain

After the discussed model evaluation, we trained the GBT model using 100% of the data and modeled the near-surface NO2

and O3 concentrations over the study domain at 0.1 degree resolution and daily (24-hr mean for NO2 and 8-hr maximum

mean for O3) intervals. The averaged GBT-modeled near-surface NO2 concentrations over the study domain during the study250

period are shown in Fig. 5(a). The spatial variability of near-surface NO2 correlates with Germany’s population density, and

the main hotspots correspond to Germany’s major metropolitan areas (Figure A3). The study domain’s main hotspot is western

Germany (North Rhine-Westphalia; a federal state of Germany), Germany’s industrial heartland. The number of days (%) that

exceeded the 2021 WHO NO2 limit (24-hr mean > 25 µg m-3) over major metropolitan areas in Germany was more than

50%, with western Germany exceeding the WHO NO2 limit on more than 80% of the days during the study period (Fig. 7).255

Around 36% of people live in locations where more than 25% of days exceed the WHO NO2 limit during the study period

(Fig. 8). The GBT-simulated near-surface O3 showed distinct spatial variability compared to NO2, with high O3 concentrations

over southern Germany and low O3 concentrations over northern Germany (Fig. 6). This could be due to the fact that O3 is

a secondary pollutant that is primarily driven by photochemical reactions influenced by meteorology; DUV and temperature

values, which were the most influencing factors for photochemical reactions and accordingly the most important features fitted260
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in the O3 GBT model, were higher in southern Germany than northern Germany (Figure A4). During the study period, more

than 50% of days in southern Germany exceeded the 2021 WHO O3 limit (maximum 8-hr mean > 100 µg m-3). Nearly 90%

of people live in locations where more than 25% of days exceed the WHO O3 limit (Fig. 8). Another interesting fact is that

southern metropolitan areas and high NOX regions have less days that exceeded the WHO O3 limit than southern rural regions

(Fig. 7). It is a well-known fact that rural regions have higher ozone levels than urban regions (Malashock et al., 2022). It could265

be because NO is a significant O3 scavenger in higher NOX (NO2 is a proxy for NOX ) regions or due to being in a NOX

saturated regime. Furthermore, it is due to the fact that rural regions being the downwind locations of emission plume and are

the primary source of biogenic VOC emissions (Zong et al., 2018).

We also evaluated the model capability in capturing the exceedance events (above WHO limit) using time-leave-out evalu-

ation strategy. The exceedances of NO2 and O3 events simulated by GBT model compared with Ground-truth events in each270

iteration. This allows us to assess the model’s ability to reproduce the exceedance events that have not been used in the training

process. The 82% of the WHO NO2 and O3 exceedance events in the whole dataset (Ground-truth) were correctly identified

as WHO NO2 and O3 exceedance events (True Positives) in both the NO2 and O3 GBT models (Table A5). However, we

also noted that 6.6% and 7.3% of the data were incorrectly identified as exceedance events by our NO2 and O3 GBT models,

respectively (False Positives). This indicates that our GBT model might slightly underestimate the exceedance events for both275

NO2 and O3. This could be due to unknown drivers that are not included in the model.

The GBT-simulated near-surface NO2 showed seasonal variations, as expected, with higher values in the winter season

(Fig. 5). This is because of high-residential heating demand and favorable meteorology (e.g., a low boundary layer height)

for pollutant accumulation and less NO2 photolysis due to low solar radiation in the winter. The near-surface NO2 hotspots

were the same in all seasons, as seen in the overall study period average. In contrast, near-surface O3 showed strong seasonal280

variations, with high values in the spring and summer due to high solar radiation (Fig. 6). It is worth noting that, as seen

in the overall study period average, O3 values in southern Germany were significantly higher in spring and summer than in

northern Germany. Because near-surface O3 is mainly driven by meteorology (DUV and temperature, which drive photo-

chemical reactions and precursor emissions), the spatial and temporal variability is attributed to changes in meteorology. We

also compared the spatial variability of GBT-simulated near-surface NO2 and O3 to the CAMS forecasts product for the period285

between 2019-07-17 and 2020-01-31 (Figure A5 and A6). The spatial variability of GBT-simulated near-surface NO2 and O3

agreed well with CAMS model. This implies that the ML model can supplement or replace the computationally expensive

chemical transport models.

3.4 Influence of COVID-19 lockdown restrictions on near-surface NO2 and O3 changes

Due to the COVID-19 out-break, many nations, including Germany, announced a lockdown in the spring of 2020. During290

that time period, various anthropogenic emission activities were restricted, affecting particularly traffic-related emissions. To

estimate the influence the lockdown restrictions on air pollutant concentration changes, we compared the GBT-simulated 2020

lockdown concentration with the same period in 2019. The 2020 lockdown period measurements were not used for GBT model

training in this comparison. This can also be regarded as the critical performance evaluation of the GBT model.
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Figure 7. Number of days (%) that exceeded the WHO 24-hr mean NO2 (a) and maximum 8-hr mean O3 (b) limits over the study domain

during the study period based on GBT-model simulations. White circles represent major metropolitan areas. The metropolitan area of Munich

and its surroundings (rectangular box) are enlarged to illustrate the urban vs. rural gradient. The administrative boundaries of Munich are

marked in black in the inset panel.

Figure 8. The population distribution in terms of the number of days (%) that exceeded the WHO 24-hr mean NO2 (a) and maximum 8-hr

mean O3 (b) limits over the study domain during the study period based on GBT-model simulations.
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Figure 9. Absolute changes in GBT-simulated near-surface NO2 and O3 concentrations in 2020 lockdown period compared to the same

period in 2019 after accounting for meteorology.

When comparing different time periods, it is crucial to account for meteorological effects when estimating the impact of295

anthropogenic emission reductions (i.e., lockdown effects) on changes in air pollutant concentrations. Therefore, as described

in the method section, we used GC simulations to exclude the meteorology contribution from GBT-simulated concentrations.

After disentangling the meteorology contribution, it is noticeable that high near-surface NO2 levels decreased primarily over

the previously observed hotspots (Fig. 9). The near-surface O3 increased over western Germany while decreasing elsewhere,

particularly over low NOX regions. We already observed that western Germany was a NOX hotspot, possibly a NOX saturated300

regime, so a reduction in NOX increases ozone. Also, we could see that changes in near-surface O3 were either negligible

or slightly increased over metropolitan areas. The meteorology-accounted for mean lockdown near-surface NO2 decreased by

about 23 (±5.3)%, while meteorology-accounted for mean lockdown near-surface O3 increased by 1 (±4.6)%, over ten ma-

jor metropolitan areas (Berlin, Bremen, Cologne, Dresden, Düsseldorf, Frankfurt, Hamburg, Hanover, Munich, and Stuttgart),

compared to 2019. It increased by about 9% in the Cologne and Düsseldorf metropolitan areas (located in western Germany)305

and slightly increased or decreased (between -3 and +2%) in other metropolitan areas, compared to 2019. This finding is

consistent with other studies that found a decrease in meteorology-accounted for lockdown near-surface NO2 and the small

increase in lockdown near-surface O3 over German metropolitan areas compared to 2019 using in-situ measurements (Balamu-

rugan et al., 2021, 2022b). We also evaluated our GBT model’s ability to represent different emission scenarios by comparing

weekends and weekdays; typically, anthropogenic NOX emissions on weekends are lower than on weekdays due to reduced310

vehicle transportation. Our GBT model was also able to distinguish between the weekend and weekday emission scenarios;

weekend near-surface NO2 was lower than weekday near-surface NO2, and, as expected, there were no or only slight changes

in weekend near-surface O3 compared to weekdays, with slight increases particularly over metropolitan areas (Figure A7).
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Figure 10. Comparison between ground-truth and GBT-simulated near-surface NO2 (a) and O3 (b) for five different European metropolitan

areas.

3.5 Transferability of our GBT model

Our study domain also covered parts of other European countries. However, we trained our GBT model using data from315

German measurement stations only. Therefore, comparing our trained GBT model simulations with measurements in other

countries demonstrates how well our GBT model models near-surface NO2 and O3 concentrations in neighboring parts of

the world; similar to the location-leave-out testing strategy. We chose five major cities (Salzburg, Prague, Strasbourg, Liège,

and Groningen) in different European countries covered by our study domain and compared their measured NO2 and O3

concentrations with GBT modeled NO2 and O3 concentrations (Fig. 10 & Table A6).320

Our trained NO2 GBT model based on German measurement stations explained 32-64% (R2 ranges between 0.32 and 0.64,

and RMSE ranges between 9.76 and 13 µg m-3) of near-surface NO2 measured in five metropolitan areas located outside of

Germany, while O3 GBT model simulations agreed well with observations (R2 ranges between 0.87 and 0.94, and RMSE

ranges between 9.55 and 14.32 µg m-3). Since near-surface O3 is mainly driven by meteorology, the O3 GBT model trained

using German measurement stations explains a large portion of near-surface O3 in other locations. The worse agreement325

between NO2 GBT model predictions and NO2 observations in other European countries suggests that information is lacking

in the NO2 GBT model for better representation of other locations, similar to location-leave-out 5-fold CV, which also showed

low agreement for the NO2 GBT model when modeling new locations (Table 2). Differences in vehicle fleet composition and

emission standards across different countries/locations would have an impact on our NO2 GBT model predictions when applied

to other countries/locations. In future work, other features/proxies besides road density could be considered to represent traffic330

emission.

17



4 Conclusion

This study simulated near-surface NO2 and O3 concentrations using an ML model over Germany at 0.1 degree resolution

and daily intervals. The ML model was used to link satellite column measurements (proxies for near-surface air pollutants),

meteorology and proxies of emission source information to near-surface NO2 and O3 concentrations. The ML models are335

extremely effective at learning the complex non-linear relationships between variables. Therefore, in this study, we explored

the capabilities of ML models in the spatio-temporal prediction of air pollutants. In addition, we investigated three aspects of

the ML model: 1. how well our ML model performs compared to the chemical transport model, 2. how well our ML model

can be used to assess the effectiveness of mitigation initiatives; and 3. how well our ML model can be transferred to locations

where measurements are unavailable.340

Four different testing strategies were performed to evaluate the ML model’s spatio-temporal prediction: 1. Random split of

data (70% for training and 30% for testing), 2. Random 5-fold CV, 3. Time-leave-out 5-fold CV, and 4. Location-leave-out

5-fold CV. The gradient boosted tree (GBT) model trained for NO2 explained about 68-88% of observed NO2 concentrations

in Germany, with RMSE of 4.77-8.67 µg m-3, whereas the GBT model trained for O3 performed even better, with an R2 of

0.74-0.92 and RMSE of 8.53-13.2 µg m-3. The evaluation metrics of the GBT model for different testing strategies differed345

significantly. The location-leave-out 5-fold CV testing strategy showed poor agreement for the NO2 GBT model, whereas

the time-leave-out 5-fold CV testing strategy showed poor agreement for the O3 GBT model. This points out the importance

of performing different testing strategies to interpret the true capability of the ML model. The road NOX emission source

proxy (road density) and TROPOMI tropospheric column NO2 were the most important features in the fitted NO2 GBT model.

However, for O3, the most important features were downward UV radiation at the surface and temperature. The multi-layer350

perceptron (MLP) model trained for both NO2 and O3 performed worse than the GBT model.

We also showed that our NO2 GBT model outperforms the CAMS model, while slightly under-performing for near-surface

O3. The CAMS model forecasts data set uses real-time observations with an ensemble of eleven air-quality models through

data assimilation techniques, which are expected to be more computationally expensive than our GBT model. Therefore, the

spatio-temporal variability of near-surface NO2 and O3 concentrations and human exposure at a locations where no measure-355

ments are available can be studied with lower computational effort when using our GBT model. Near-surface NO2 hotspots

were found over German metropolitan areas, particularly western Germany. The near-surface NO2 hotspots locations did not

change with the seasons but had high values in the winter. However, near-surface O3 showed high seasonal variability, with

high values in the spring and summer and no definite hotspots. Overall, southern Germany experiences higher ozone levels

than northern Germany due to higher downward UV radiation and temperatures in southern Germany compared to northern360

Germany. Even though metropolitan areas were the NO2 hotspots, rural regions, particularly in southern Germany, had higher

O3 concentrations than metropolitan areas. It is because rural areas are dominated by meteorology-driven biogenic VOC emis-

sions and are generally situated downwind of the emission plume. About 36% of people live in locations where WHO NO2

limit exceeds more than 25% of days during the study period. Meanwhile, 90% of the people lives in areas where the WHO

O3 limit is exceeded for more than 25% of days.365
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Our study also demonstrated the GBT model’s capability to assess the efficacy of mitigation strategies. For example, our

GBT model reproduced the observations that, during the 2020 COVID-19 lockdown period, meteorology-accounted for near-

surface NO2 was significantly reduced, while meteorology-accounted for near-surface O3 was slightly increased or decreased

over metropolitan and industrial areas over Germany, compared to 2019. These findings agreed with those of other studies that

used in-situ measurements.370

Our GBT ML model’s transferability is assessed by comparing simulations from our GBT model trained with measurements

in Germany to measurements in other European countries. Our NO2 GBT model showed moderate agreement with observations

from other countries (R2 ranges between 0.32 and 0.64, and RMSE ranges between 9.76 and 13 µg m-3), implying a lack of

information in the GBT model when modeling near-surface NO2 over other countries, which may have different vehicle fleet

composition and emissions standards. However, our O3 GBT model performed well (R2 ranges between 0.87 and 0.94, and375

RMSE ranges between 9.55 and 14.32 µg m-3), indicating that our O3 GBT model can be used to model the O3 concentrations

in other countries, at least in neighboring European countries.

Code and data availability. The various data sets and code used to conduct this study will be made available on GitHub following publica-

tion.
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Appendix A380

Table A1. Different type of stations (%) considered in this study (based on locations specified by the European Environment Agency).

Traffic Industrial Background

Near-surface NO2 37.1% 5.3% 57.6%

Near-surface O3 2.7% 5.8% 91.4%

Table A2. The hyperparameters of the GBT model for each pollutant used in the study.

Hyper paramertes NO2 model O3 model

Max_depth 10 10

Learning_rate 0.3 0.3

reg_lambda 12 4

reg_alpha 18 26

gamma 20 8

min_child_weight 16 8

n_estimators 2500 2500

Table A3. The hyperparameters of the MLP model for each pollutant used in the study.

Hyper paramertes NO2 model O3 model

Hiddern_layers

(neurons in each layer)

3

(200,100,50)

4

(350,150,75,37)

activation tanh tanh

alpha 0.04 0.1

learning rate adaptive adaptive

solver sgd lbfgs

Max_iter 2000 1500
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Table A4. Evaluation metrics of our MLP model in different testing strategies.

Random

(70%/30%)

Random

(5-fold)

Time-leave-out

(5-fold)

Location-leave-out

(5-fold)

NO2

MLP model

R2 0.79 0.82±0.006 0.54±0.29 0.46±0.25

RMSE (µg m-3) 4.77 5.9±0.11 8.6±1.76 13.2±1.07

O3

MLP model

R2 0.83 0.9±0.001 0.42±0.37 0.71±0.13

RMSE (µg m-3) 12.15 9.6±0.027 20.1±7.3 14.9±3.2

Table A5. Comparison between WHO NO2 and O3 exceedance events in the ground-truth dataset and GBT simulated WHO NO2 and O3

exceedance events using time-leave-out testing strategy

Ground-truth exceedance
Correct detection as exceedance

by NO2 GBT model

(True Positives)

Correct detection as exceedance

by O3 GBT model

(False Positives)

Near-surface NO2 36772 30125 7439

Near-surface O3 35860 29396 6924

Table A6. Metropolitan areas in other European cities considered for the evaluation of GBT model. The evaluation metrics (comparison

between GBT simulations and in-situ measurements) for NO2 and O3 shown in last two columns for each city.

Metropolitan area (country) Coordinates
R2 and RMSE

(µg m-3) for NO2

R2 and RMSE

(µg m-3) for O3

Salzburg (Austria) 47.80° N, 13.05° E 0.32 and 12.52 0.87 and 12.43

Prague (Czech Republic) 50.07° N, 14.43° E 0.43 and 10.05 0.79 and 14.32

Strasbourg (France) 48.57° N, 7.75° E 0.47 and 13 0.94 and 9.55

Liège (Belgium) 50.63° N, 5.56° E 0.64 and 11.9 0.88 and 12.04

Groningen (Netherlands) 53.21° N, 6.56° E 0.34 and 9.76 0.87 and 11.33
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Figure A1. A first one-fold step in 5-fold CV is illustrated for time-leave-out (a) and location-leave-out (b) testing strategies. In time-leave-

out 5-fold CV, the data was divided into 5 parts based on time period (date-wise), with four parts used for training and one part tested. This

process is repeated until each part (a total of 5) has been tested. Similarly, in location-leave-out 5-fold CV, the data was divided into 5 parts

based on location (latitude), with four parts used for training and one part tested. This process is repeated until each part (a total of 5) has

been tested.

Figure A2. Comparison between ground-truth and MLP-simulated near-surface NO2 (a) and O3 (b). The dotted line represents a 1:1 line,

while the solid line represents a linear fit.
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Figure A3. Population density for the year 2020 (a) and the locations of major German metropolitan areas (b).

Figure A4. Averaged “Downward UV radiation at the surface” (a) and “Temperature” (b) over the study domain during the study period.
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Figure A5. Averaged GBT-simulated near-surface NO2 concentrations (a) and CAMS forecasts near-surface NO2 concentrations (b) over

the study domain for the period between 2019-07-17 and 2020-31-01.

Figure A6. Averaged GBT-simulated near-surface O3 concentrations (a) and CAMS forecasts near-surface O3 concentrations (b) over the

study domain for the period between 2019-07-17 and 2020-31-01.
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Figure A7. The difference in GBT-simulated near-surface NO2 (a) and O3 (b) concentrations between weekend and weekday during the

study period.
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