
Dear Reviewer,

We appreciate your comments and suggestions, which have helped us improve our
manuscript further. We have made the necessary changes to the manuscript, which can
be found in the attached file (Track Changes). The following is a response to your
comments and suggestions. Corresponding changes in the revised manuscript are also
made available below, if applicable, at the appropriate places.

Sincerely,

On behalf of all co-authors,

Vigneshkumar Balamurugan

______________________________________________________________________

Response to Reviewer-1:

The authors explored the gradient boosted tree approach for
spatial-temporal modelling of NO2 and O3 and applied it to the case in
Germany. There are some issues to address in the revised version:

Thank you so much for reading and reviewing our manuscript! We carefully reviewed
and considered your comments/suggestions, and made improvements in the revised
manuscript.

Validations:

Table 1 lists the types of datasets used in this study. May you clarify which
dataset was used for the ground-truth data?

In the revised manuscript (Table 1), we now included the purpose of the data.
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Table 1. Data sets and related information used in this study.

Data source Data

(purpose)

Temporal
resolution

Spatial
resolution

Governmental in situ
measurements

Near-surface NO2 and O3

(Ground-truth data)

1 hr -

TROPOMI satellite
measurements

Tropospheric column NO2,
total column O3 and total

column HCHO

(Input features)

Daily 7 km*3.5 km
(5.5 km*3.5
km, after 6

August 2019)

ERA5 (ECMWF
reanalysis)

Temperature, relative
humidity, wind speed, wind
direction, downwind UV solar

radiation at surface,
boundary layer height,
surface pressure and

temperature of air at 2m
above the surface

(Input features)

1 hr 0.25*0.25-de
gree

U.S. Geological
Survey

Surface elevation

(Input features)

- 1*1-km

GRIP global roads
database

Road density

(Input features)

- 8*8-km

CAMS European air
quality forecasts

Near-surface NO2 and O3

(for validation)

1 hr 0.1*0.1-degre
e
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GEOS-Chem
chemical transport

model

Near-surface NO2 and O3

(for disentangling
meteorology impacts)

1 hr 0.5*0.625-de
gree

Figures 5-6 show the spatial distribution of the averaged NO2 and O3
during the study period. Is the study period between 2019-07-17 and
2020-01-31? May you specify which months were used for Summer, Spring,
Autumn, and Winter?

In figure 5 (and 6), the averaged NO2 (and O3) concentrations are between 2018-04-30
and 2021-07-01. We have updated the figure captions in both Figure 5 and Figure 6 to
include the study period as well as the specific months used to calculate the seasonal
averages.

Figure 5. (a) Averaged GBT-simulated daily near-surface NO2 concentrations over the
study domain for the study period between 2018-04-30 and 2021-07-01. (b-e)
Averaged GBT-simulated daily near-surface NO2 concentrations for each season
during the study period. Winter: December, January and February. Spring: March,
April and May. Summer: June, July and August. Autumn: September, October and
November.

Figure 6. (a) Averaged GBT-simulated daily near-surface O3 concentrations over the
study domain for the study period between 2018-04-30 and 2021-07-01. (b-e)
Averaged GBT-simulated daily near-surface O3 concentrations for each season during
the study period. Winter: December, January and February. Spring: March, April and
May. Summer: June, July and August. Autumn: September, October and November.
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The data sets were pre-processed in daily scale. Could you please generate
a spatial map illustrating the average daily concentrations of NO2 and O3
during Summer and Winter, instead of considering the seasonal averages?
Furthermore, may you compare these results with reanalysis from CAMS?

For Figures 5 and 6, the seasonally average NO2 (and O3) values were not simulated.
The Machine learning model was used to simulate daily NO2 and O3 concentrations
spatial map, and daily maps were averaged for each season, as shown in Figure 5 (and
6). We also modified the figure 5 and 6 captions to make it clearer to the reader. We
hope this clarifies your comment.

Figure 5. (a) Averaged GBT-simulated daily near-surface NO2 concentrations over the
study domain for the study period between 2018-04-30 and 2021-07-01. (b-e)
Averaged GBT-simulated daily near-surface NO2 concentrations for each season
during the study period. Winter: December, January and February. Spring: March,
April and May. Summer: June, July and August. Autumn: September, October and
November.

Figure 6. (a) Averaged GBT-simulated daily near-surface O3 concentrations over the
study domain for the study period between 2018-04-30 and 2021-07-01. (b-e)
Averaged GBT-simulated daily near-surface O3 concentrations for each season during
the study period. Winter: December, January and February. Spring: March, April and
May. Summer: June, July and August. Autumn: September, October and November.

CAMS European air quality forecasts are only available for three years in the rolling
archive. Therefore, we only compare the CAMS product for the period between
2019-07-17 and 2020-31-01 (Figure A5 and A6).
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Line 131, “we also included “Near-surface NO2” modeled from NO2 ML
model as a feature variable in the O3 ML model.” However, in Figure 3 (d),
the Near-surface NO2” modeled from NO2 ML model is not listed. I guess
the Near-surface NO2” modeled from NO2 ML model will be top one
affecting the O3 predive results. Is this case? Maybe you can use the ML
model to get the direct relationship between O3 and Near-surface NO2”
modeled from NO2 ML model.

Yes. We agree with the reviewer that ML modeled near-surface NO2 is one of the most
important factors influencing O3 predictive results. Based on our results, it is the sixth
most important feature. In figure 3(d), "ML modeled near-surface NO2" is given as
"in-situ NO2". This is changed in the revised manuscript (Figure 3).

When using machine learning models, the direct relationship between variables, such
as NO2 and O3, cannot be obtained as deterministic equations. Instead, one can
analyze the feature importance or variable importance provided by the model.

Figure 3. Comparison between ground-truth and GBT-simulated near-surface NO2 (a) and O3

(b). Feature importance (top 10) calculated based on SHAP (SHapley Additive exPlanations)
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values for NO2 (c) and O3 (d) GBT model. RD: Road Density, BLH: Boundary Layer Height, E:
Surface Elevation, T: Temperature, DOW: Day of the week, RH: Relative Humidity, T2m:
Temperature at 2 meter height, DUV: Downwind UV radiation, WS: Wind speed, WD: Wind
Direction.

Line 243, “After the discussed model evaluation, we trained the GBT model
using 100% of the data and modeled the near-surface NO2 and O3
concentrations over the study domain at 0.1 degree resolution and daily”, It
is not clear here. Are you re-train the model? How do you validate your
model?

Yes. We trained the model using 100% of data after performing different ML model
evaluations, which is a common practice in machine learning to leverage all available
information and avoid losing any valuable data. After using 100% of the data for
training, the model can only be evaluated with ground-truth data beyond the study
period. However, in our ML model evaluations, we followed different validation
approaches that involved more than just training and evaluating a single model. For
example, we employed evaluation strategies such as the five-fold
random/time/location-leave-out method. These methods enabled us to train five ML
models by systematically leaving out different subsets of the whole dataset during each
fold validations. Therefore, we believe our ML model would perform similarly on future
data, as the models' performance on unseen data yielded robust estimates of their
generalization ability during the different evaluation strategies.

______________________________________________________________________
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Response to Reviewer-2:

General comments

The authors develop a machine learning framework for modeling NO2 and
O3 concentrations in Germany, and based on that, they analyze human
exposure to the two air pollutants and the effects of COVID quarantine. The
authors also discuss the transferability of their model.

The manuscript is well organized and in particular the methodology is
thoroughly described. However, before it can be published, I believe the
authors should address the comments below.

Thank you so much for taking the time to read and review our manuscript! We carefully
reviewed and considered your comments/suggestions, and as a result, we improved the
manuscript.

Specific comments

Line 129: Does the “season” (season of the year) information in the ML
model have only 4 values? In my opinion, “day of the year” would be a
more ideal feature to help the model learn the daily variability of air
pollutants. The author should try or clarify this.

Thank you for your suggestion! We have evaluated the ML model using both "Day of the
Year" and "season of the year" as features in all our evaluation strategies. We noted
that there is a slightly worse performance in both the NO2 and O3 GBT model (Table R1
and R2), when using “Day of the year” as a feature instead of “season of the year”.
Therefore, we decided to use "season of the year'' instead of "Day of the Year" in our
study.
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Table R1. Evaluation metrics of our GBT model in different testing strategies (using
“Season of the Year” as a feature).

Random
(1-fold)

Random
(5-fold)

Time-leave-out
(5-fold)

Location-leave
-out (5-fold)

NO2

GBT
model

R2 0.88 0.89±0.002 0.74±0.07 0.68±0.12

RMSE (μg
m-3)

4.77 4.65±0.034 6.77±0.7 8.67±1

O3

GBT
model

R2 0.92 0.92±0.001 0.74±0.09 0.8±0.06

RMSE (μg
m-3)

8.53 9.36±0.068 13.2±1.01 12.45±1.26

Table R2. Evaluation metrics of our GBT model in different testing strategies (using “Day
of the Year” as a feature).

Random

(1-fold)

Random

(5-fold)

Time-leave-out

(5-fold)

Location-leave
-out

(5-fold)

NO2

GBT
model

R2 0.88 0.89±0.002 0.74±0.061 0.68±0.14

RMSE (μg
m-3)

4.76 4.67±0.05 6.76±0.68 8.74±1.3

O3

GBT
model

R2 0.91 0.90±0.001 0.72±0.09 0.78±0.06

RMSE (μg
m-3)

8.60 9.82±0.054 13.6±1.16 12.96±1.21
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Line 131: Given the coupled nature of NO2 and ozone, I would suggest the
authors try to include O3 as a feature in the NO2 ML model, like why they
did the same way for O3 model, or please clarify why they didn’t do so.

If we include the ML-modeled O3 in the NO2 ML model iteratively, we believe the ML
model may suffer from overfitting. For example, O3 could become an important feature
as it already contains information about NO2 (it is important to note that the ML-modeled
NO2 is the sixth most important feature). Additionally, the errors from both the NO2 and
O3 ML models in the first iteration would propagate and potentially amplify the errors.

Line 148: 24h-mean of ERA-5 data makes sense for NO2 model, but I would
suggest the authors to test daytime-mean or daily-max for O3 model, as
ozone is calculated as MDA8. This is especially the case for daily-max 2m
temperature, which has been shown to be well correlated with MDA8 ozone.

Thanks for the suggestion! Before deciding on the 24-hr mean of meteorology as a
feature for the O3 GBT model, we also conducted a test on the maximum O3-time (10 - 6
local time), when maximum 8-hr O3 concentration occurs (Figure R1). When we used
maximum O3-time mean as a feature, we noted a similar performance, compared to
24-hr mean as a feature (Table R3 and R4). Therefore, we chose a 24-hour mean for
both the NO2 and O3 models.

Figure R1. The diurnal mean O3 averaged between 2010 and 2019.
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Table R3. Evaluation metrics of our O3 GBT model in different testing strategies (using
“24-hr mean of meteorology” as a feature).

Random

(1-fold)

Random

(5-fold)

Time-leave-out

(5-fold)

Location-leave
-out

(5-fold)

O3

GBT
model

R2 0.92 0.92±0.001 0.74±0.09 0.8±0.06

RMSE (μg
m-3)

8.53 9.36±0.068 13.2±1.01 12.45±1.26

Table R4. Evaluation metrics of our O3 GBT model in different testing strategies (using
“maximum O3-time of meteorology” as a feature).

Random

(1-fold)

Random

(5-fold)

Time-leave-out

(5-fold)

Location-leave
-out

(5-fold)

O3

GBT
model

R2 0.91 0.92±0.001 0.75±0.09 0.79±0.07

RMSE (μg
m-3)

8.6 8.8±0.054 13.16±1.16 12.65±1.47

Line 160: Authors should give the exact size of data samples (both training
and testing set), as text or labelled on the figure.

In the revised manuscript, we added the training and test sample size in the
corresponding locations.

Line 196-197 The trained GBT model with 70% of the data (78433) for NO2
reproduced the observed NO2 concentration well in the test case
(33615), with an R2 of 0.88 and RMSE of 4.77 μg m-3.
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Line 215-216 The GBT model trained with 70% of the data (65705) for O3 also well
reproduced the observed O3 concentrations in the test case (28160),
with an R2 of 0.92 and RMSE of 8.53 μg m-3.

Line 205: It is interesting to see that road density is the most important
feature, given that it has constant values which don’t show temporal
variations. Can the authors explain this further?

We agree with the reviewer that road density doesn’t show temporal variation for a
particular location. However, in our study, we developed a ML model for the whole
Germany domain, in which spatial variation in road density explains the majority of the
near-surface NO2 variation. Therefore, road density is the most important feature in our
ML model.

Line 229 (and also line 153): The fact that MLP is worse than GBT can be
interesting or maybe controversial here, as people now tend to believe that
deep learning techniques should outperform light-weight algorithms such
as GBT. The authors should explain more about this, as it is an important
and perhaps new finding. Personally, I can think of a few questions below
that might help clarify this.

● What is tabular/structured data and what is non-tabular/structured
data? Is the data we use for air pollutants prediction usually of the
former type?

In this study, we prepared the data as structured data format. Tabular/Structured
Data and Non-Tabular/Unstructured Data are the terms used to categorize
different types of data based on their format. Tabular/structured data refers to
data that is organized in a tabular format, similar to a table or spreadsheet. Most
ML models, such as decision trees, SVR, and feedforward neural networks, take
this type of input.

Non-tabular/unstructured data refers to data that does not have a predefined
structure and does not necessarily fit into rows and columns. It can include text,
images, audio, video, or other formats that do not conform to a table-like
structure. Typically, ML models such as CNN and GAN are used to handle these
types of inputs.

● Is the use of tabular/structured data the only reason why GBT
outperforms MLP in this study? Is it possible that the size of the data

11



samples limits the capability of MLP, given that it is a deep learning
technique after all?

The use of tabular data could be one of the reasons for the better performance of
GBT compared to MLP. The GBT algorithm is known for its ability to capture
feature interactions effectively, which can be particularly advantageous when
dealing with tabular data. On the other hand, the MLP algorithm might require a
larger number of hidden layers and neurons to achieve similar performance.
Additionally, the performance of MLP can also be affected by the sample size.
Deep learning algorithms, including MLP, are known to be data-hungry and often
require a large amount of data to generalize well. We have included a discussion
on the sample size and other neural network algorithms in the revised
manuscript.

Line
231-235

It is important to note that deep learning models are
data-intensive, and their performance and generalization
capabilities tend to improve with larger amounts of data. In our
study, we utilized the simplest deep learning algorithm known as
MLP. However, it is essential to explore the capabilities of other
deep learning algorithms, such as CNN and LSTM, in future
studies to gain further insights. Additionally, employing multiple
ML models through bagging techniques could potentially lead to
improved performance, despite the computational expense
involved.

● In addition to the work of Heaton and Lundberg et al, can the authors
find any other studies that have focused on the prediction of air
pollutants that can support the results of this study?
There have been numerous studies conducted on deep learning models (Chan
et. al., 2021) and traditional machine learning models (Zhu et. al., 2022) like
Random Forest, XGBoost, etc., individually, to model air pollutant concentrations.
However, we have not come across any studies that support our findings
regarding the comparison between deep learning and tree-based models.

● What about other neural network techniques? The author may not
need to try them, but at least give a brief discussion, as MLP is one of
the simplest deep learning algorithms.
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Thanks for the suggestion. In the revised manuscript, we have included a
discussion on the sample size and other neural network algorithms in the revised
manuscript, as given below.

Line
231-235

It is important to note that deep learning models are
data-intensive, and their performance and generalization
capabilities tend to improve with larger amounts of data. In our
study, we utilized the simplest deep learning algorithm known as
MLP. However, it is essential to explore the capabilities of other
deep learning algorithms, such as CNN and LSTM, in future
studies to gain further insights. Additionally, employing multiple
ML models through bagging techniques could potentially lead to
improved performance, despite the computational expense
involved.

Section 3.3: In this section, the authors discuss the exceedances of NO2
and O3 using data produced by the GBT model, but the model’s ability to
capture extreme pollution is hardly evaluated in the validation section
above. In fact, the scatter plot of Figure 4 indicates model does have a
weakness in reproducing large NO2/O3 values. Therefore, I would suggest
that the authors add this uncertainty discussion when analyzing people
living beyond the WHO limit.

Thanks for the suggestion. We agree with the reviewer that our model has some
difficulty in capturing the extreme pollution events, as shown in figure 4. In order to
evaluate the model capability in capturing the exceedance events (above WHO limit),
we used the time-leave-out evaluation strategy. This approach is chosen because
comparing the ML model simulations (after training with 100 % of data) with
ground-truth is questionable as it was already used during the training process. In
time-leave-out strategy, the exceedances of NO2 and O3 values simulated by GBT
model are compared with Ground-truth exceedance events in each iteration. This allows
us to assess the model's ability to reproduce the exceedance data that has not been
used in the training process.

In both the NO2 and O3 GBT models, 82% of the WHO NO2 and O3 exceedance data in
the whole dataset (Ground-truth) were correctly identified as WHO NO2 and O3

exceedance (True Positives), meaning 18% of actual WHO exceedances have not been
identified as such by our GBT models (False Negatives). However, we also noted that
6.6% and 7.3% (False Positives) of the whole data were incorrectly identified as
exceedance data by our NO2 and O3 GBT models, respectively (Table A6).
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This discussion and table are included in the revised manuscript, as given below.

Line 269-276 We also evaluated the model capability in capturing the
exceedance events (above WHO limit) using time-leave-out
evaluation strategy. The exceedances of NO2 and O3 events
simulated by GBT model compared with Ground-truth events in
each iteration. This allows us to assess the model’s ability to
reproduce the exceedance events that have not been used in the
training process. The 82% of the WHO NO2 and O3 exceedance
events in the whole dataset (Ground-truth) were correctly
identified as WHO NO2 and O3 exceedance events (True
Positives) in both the NO2 and O3 GBT models (Table A5).
However, we also noted that 6.6% and 7.3% of the whole data
were incorrectly identified as exceedance events by our NO2 and
O3 GBT models, respectively (False Positives). This indicates
that our GBT model might slightly underestimate the exceedance
events for both NO2 and O3. This could be due to unknown
drivers that are not included in the model.

Table A6. Comparison between WHO NO2 and O3 exceedance events in the
ground-truth dataset and GBT simulated WHO NO2 and O3 exceedance events using
time-leave-out testing strategy.

Ground-truth WHO
exceedance

Correct detection
as exceedance
by GBT model
(True Positives)

Incorrect detection
as exceedance
by GBT model
(False Positives)

Near-surface
NO2

36772 30125 7439

Near-surface
O3

35860 29396 6924

In addition, a temporal evaluation of the daily time-series (CAMS/GBT
versus ground-truth O3) may be meaningful, such as using the temporal
correlation coefficient.

As discussed above, it is questionable to compare the ground-truth O3 values to the
model predictions (after training with 100 % of ground-truth data). This is because the
model is fitted based on the ground-truth O3. However, we compared CAMS vs
Ground-truth and GBT vs Ground-truth for the period between 17-07-2019 and
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31-01-2020 (this time period was not used for training the GBT model for this
comparison). This evaluation strategy involves comparing the model predictions with the
ground-truth O3 for a particular period, which is not included in the training dataset
(Figure 4). The outcome of this evaluation, along with the results of the time-leave-out
evaluation strategy results, provides valuable insight into the model's temporal
correlation coefficient.

Figure 4. Top: Comparison between ground-truth near-surface NO2 and CAMS
reanalysis near-surface NO2 (a) and O3 (b) for the period between 17-07-2019 and
31-01-2020. Bottom: Comparison between ground-truth near-surface NO2 and
GBT-simulated near-surface NO2 (c) and O3 (d) for the period between 17-07-2019 and
31-01-2020. The dotted line represents a 1:1 line, while the solid line represents a linear
fit.
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